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Abstract

Testing is a significantly time-consuming, yet commonly employed ac-
tivity to improve the quality of software. Thus, techniques like dynamic
symbolic execution were proposed for generating tests only from source
code. However, current approaches usually could not create thorough tests
for software units with dependencies (e.g. calls to file system or external
services). In this paper, we present a novel approach that synthesizes
an isolation sandbox, which interacts with the test generator to increase
the covered behaviour in the unit under test. The approach automati-
cally transforms the code of the unit under test, and lets the test genera-
tor choose values for parameters in the calls to dependencies. The paper
presents a prototype implementation that collaborates with the IntelliTest
test generator. The automated isolation is evaluated on source code from
open-source projects. The results show that the approach can significantly
increase the code coverage achieved by the generated tests.

1 Introduction

Nowadays, the demand for higher quality software is significantly increasing.
Testing is one of the most commonly used techniques to improve the quality of
software. During different phases of a software development process testing can
be conducted at multiple levels. This paper focuses on unit testing, where the
goal is to test a well-defined, isolated module commonly called as a unit.

Software testing is a time and resource consuming task and developers face
several questions during unit testing [10]. Numerous techniques have been pro-
posed to reduce the time required for unit testing by automatically generating
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tests using only the source code [7, 23, 1]. These techniques are able to select
relevant inputs for the unit under test. Symbolic execution is one of the code-
based techniques, while dynamic symbolic execution (DSE) is a state-of-the-art
variant that combines symbolic with concrete executions.

Several tools exist implementing symbolic execution for different program-
ming languages or even binary code. Among several others, KLEE [5], EXE [6],
CUTE [31], and DART [13] are designed to be used for C programs. SAGE [14]
is a tool for the x86 instruction set. Java PathFinder [26], jCUTE [31] can be
used on Java, while IntelliTest (formerly Pex [33]) is available for C#.

An ongoing research area of code based-based test generation techniques (in-
cluding symbolic execution) is concerning their industrial adoption [35, 3, 36]
as the techniques are hindered by numerous already confirmed factors [8, 28, 4].
As a result of these issues, tests generated by dynamic symbolic execution typ-
ically achieve low code coverage on complicated source code. Interaction with
dependencies of the unit is often mentioned among these factors as it may in-
volve accessing the environment (e.g., file system, network) or reaching external
modules that are outside the scope of testing. Environment accesses may cause
undesired side effects (e.g., creating files), while calling external modules may
lead to incorrect test results for the unit under test.

A commonly used technique in unit testing tackling the interaction problem
is the isolation of calls to the dependencies. Isolation of the unit under test can
be performed using stubs (returning only a given value) or mocks (both return-
ing different values and verifying the interaction). Currently existing isolator
frameworks are using two different approaches in terms of implementation: 1)
a runtime proxy that detours calls to another objects, or 2) low-level runtime
detouring of calls that invoke external modules. Both of them poses a challenge
for symbolic execution-based test generation as runtime code intervention is a
hindering factor of the technique. Moreover, both implementation approaches
have their own limitations of isolating special cases like static or abstract types,
which tightens their usage scenarios on source code that is not prepared or de-
signed for testability (e.g., legacy code or complex communicational modules).

Although challenges exists, several attempts were made to enhance test gen-
eration on environment-dependent software [34, 22, 2, 32]. For example, the
concept of parameterized mock objects [34] is a technique, which collaborates
with mocks during test generation. This special type of mocks is designed to
obtain return values from the symbolic executor process by adding them as new
variables to the path constraint. Using this technique, the test generator is able
to select relevant values for the dependencies. This is crucial to cover parts of
the unit under test, which rely on return values from dependencies. Parameter-
ized mock objects may solve the problem of dependency interaction in certain
cases, still the common limitations of existing isolation approaches and their
general collaboration capability with symbolic execution-based test generators
leave numerous issues.

The approach presented in this paper addresses the problem of unit isolation
for DSE-based test generation by generating a sandbox, which interacts with
the test generator to increase the covered behaviour in the unit under test.
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The approach employs code transformations to replace invocations to external
dependencies with fake ones with corresponding signatures. These replacement
methods include configurable generated logic interacting with the test generation
process to obtain values to be returned and to alter states of objects passed to the
dependency. Moreover, these generated fake methods can be extended with user-
provided assumptions restricting the possible behavior of the given dependency.
The fake methods together form a fully parameterized code sandbox around the
unit under test hence making the dependencies explorable for the test generation
process. This technique may be employed in scenarios, where dynamic symbolic
execution-based test generators usually fail due to the lack of isolation.

We have already presented a preliminary version of our idea in a conference
paper [16]. This paper enhances the approach with 1) analyzing possible solu-
tions to the addressed problem in detail, 2) extending the technique with source
code transformations, 3) introducing a vastly enhanced implementation and 4)
presenting a more thorough evaluation.

Section 2 presents the importance of the unit isolation problem during DSE-
based test generation. Then, the main contributions are arranged as follows.

• We give an overview of possible solutions to the problem of unit isolation
during dynamic symbolic execution-based test generation (Section 3).

• We introduce a source code transformation approach that may be able to
overcome the issues of existing unit isolation approaches and to seamlessly
collaborate with test generators. A prototype tool that implements the
approach is also presented (Section 4).

• We evaluate the approach and the implemented prototype tool using ar-
tificial code samples and modules from open-source projects (Section 5).

2 Background and Motivation

Symbolic execution represents the possible paths of the source code with quantifier-
free first order logic formulas over symbolic variables created from program vari-
ables. The solution of a path formula (path constraint) provides values for each
variable that drive the program execution along the given path. The solution is
obtained using constraint solvers that are able to reason over different types of
variables.

Classic symbolic execution [21] interprets each statement in a static way,
hence the program does not need to be executed. Dynamic symbolic execution
(DSE) [30, 8] is an advanced variant that executes the program, while dynami-
cally gathering symbolic constraints over the variables. Notice that DSE requires
initial values to start from, which can be simply predefined for each variable type
or can be generated randomly. After each concrete execution, the gathered path
constraint or a part of it is transformed (e.g., negated) and then solved to be
able to steer the concrete execution to a different path. The process is repeated
until no more new execution path can be discovered or a predefined boundary
criteria (e.g., time, memory) is met.
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Example 1. Consider the following example method (Listing 1), where the
process of DSE is demonstrated. The method has three different execution paths
ending in return statements with different values.

Listing 1: Example method for the demonstration of DSE

1 public int Example(int a, int b)
2 {
3 if(a > 5)
4 {
5 if(b > 10) { return 1; }
6 return 0;
7 }
8 return -1;
9 }

DSE can be started from an arbitrary method, which is Example in this
case. The technique selects the most simple inputs at first to start a concrete
execution. As the two parameters (a and b) are both integer types, let their
assigned values be 0. Thus, the first concrete execution will execute the path,
which ends in statement return -1. Along this path, the symbolic execution
engine collects the first constraint on the program variables, which is a > 5.
The DSE engine discovers that if a := 0 then this path constraint is not sat-
isfied, hence solving this formula may give a new execution path. The solution
is calculated by a constraint solver, and a satisfying value is returned. Let this
value be a := 6, while b remains 0. This executes the body of the first if

statement as a > 5 evaluates to true. However, the next statement reached by
the execution is return 0 and a new constraint is added to the path formula
(b > 10), which has to be satisfied to obtain new execution paths. In the last
step, this constraint is solved that gives the value of 11 for variable b. Finally, a
concrete execution is run with a := 6 and b := 11 reaching the only uncovered
statement return 1. As no more new constraints were collected, thus no new
execution paths can be revealed, the DSE algorithm stops and yields the test
cases found in Table 1. The last column (Expected result) denotes that the DSE
algorithm observed that specific behavior (return value) for the given inputs.

Table 1: Set of generated test cases by DSE for method in Listing 1

# Value of a Value of b Observed result

1 0 0 -1
2 6 0 0
3 6 11 1

Code-based test generators (including those based on DSE) may alleviate
the work of developers and testers by generating an initial set of test cases that
can be extended to a whole test suite manually. However, the testability issues
of the modules may more likely to hinder the test generation process as test
generators reach their limitations.

A frequent testability issue is caused by developing a module without con-
sidering testing, which prevents testers to inject every external object and con-
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figuration into the unit under test. This issue hinders the environment and
dependency isolation during testing as there is no possibility to replace origi-
nal objects to fake ones. Subsequently test generators also usually face several
difficulties in these scenarios, as they cannot execute the entire code under test.

Example 2. Let us consider the following example, where a simple method
is the unit under test (with two data objects: FileData and FileContentData

that are also included in the unit) in a problematic testing scenario that hinders
the work of test generators. The method GetPermissions(int,byte):int im-
plements a logic, which decides on permissions of a file. The decision is based
on a header indicator in the file, and on results from a permission analysis using
another module.

Listing 2: Example method for isolation case

1 public int GetPermissions(int fileLength , byte indicator)
2 {
3 Stream file = File.Open(CONFIGLOCATION , FileMode.Open);
4 byte[] fileContent = new byte[fileLength ];
5 file.Read(fileContent , 0, fileLength);
6 if (fileContent [0] < indicator)
7 {
8 return -1;
9 }

10 FileContentAnalyzer fca = new FileContentAnalyzer ();
11 FileData fd = new FileData ();
12 FileContentData fcd = fca.Analyze(fileContent , fd);
13 if(fd.IsReadable && !fcd.IsSecret)
14 {
15 return 1;
16 }
17 return 0;
18 }

In this setting, the first challenge that a dynamic symbolic execution-based
test generator may face is found in line 3, where the configuration file is opened.
If the file does not exist, test generators would always fail here and would not
explore remaining parts of the code (C1). The issue can be solved via isolating
the call or creating the file. During test generation, accesses to the file system
should be isolated as unintended behavior may occur. Note that we assume these
test generators can seamlessly collaborate with different isolation approaches
and frameworks.

The next difficulty, where a test generator may fail is found in line 5, where
the stream of the file is read into an array. Assuming the opening of the file is iso-
lated, this call shall be also handled similarly. Otherwise statement return -1

could not be reached. However, only runtime detouring of the call can be carried
out due to the method (unit) structure and design (C2). With the help of run-
time detouring, statements return -1 and return 0 are considered reachable.

Proceeding further one may notice that line 15 may not be executed due to
the fact that an external object (FileContentAnalyzer) is called. If the type is
not implemented yet or contains behavior that may affect test results of the unit
(e.g., throws unexpected exceptions), the call to method Analyze shall also be
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isolated. Moreover, in this specific call, the state of the reference-type argument
shall be changed using the properties to reach line 15 (C3).

Based on the previous example, some common identified challenges of code-
based test generation in a strongly environment-dependent software are the
following.

• C1: Access to the environment of programs (e.g., file system, network).

• C2: Limitations and collaboration capability of isolation approaches.

• C3: Change of object states in external invocations.

Supporting test generation even for this simple method may require tremen-
dous effort. Furthermore, we assumed that test generators can collaborate with
arbitrary isolation approaches. On the contrary, it is not the fact: their collabo-
ration introduce more issues [17]. This simple example has introduced the main
challenges for DSE-based test generation caused by the lack of isolation.

3 Overview of the Supporting Approaches

As presented in Section 1 and 2, invoking dependencies from the unit under
test may raise numerous issues when using DSE-based test generation. Thus,
their usage on such source code is burdensome. In general, we distinguish four
different ways of supporting this test generation technique on software units
that possess several external dependencies.

3.1 Using Default Behavior

When using the default behavior of DSE, the test generation process is fully
automated. The motivating example presented in Section 2 demonstrated how
test generation can fail on various dependencies: access to the file system and
memory streams, or invoking methods that are outside the scope of testing.
DSE may fail due to these issues as they are included in the general limitations
of the technique [8, 28, 4]. Environment dependencies like the file system or
low-level library accesses (e.g., FileStream) are hindering the exploration of the
code (e.g., when handling files, in certain cases the file shall exist and in some
cases shall not). Hence, DSE is unable to collect constraints through some parts
of the execution path or even cannot finish a whole path.

Reconsider the example presented in Listing 2, the statements below line 8
were not possible to reach due to the exception occurred in the invoked method
if the file is not found or not accessible. Thus, no new symbolic constraint could
be collected during the concrete execution.

For example, running the IntelliTest DSE-based test generation tool on this
method without any guidance yields the results found in Table 2. Notice that –
as the opened file does not exist – only one test case is generated, which shows
the hindered behavior of the tool.
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Table 2: Results of simply running IntelliTest on Listing 2

# fileLength indicator Observed result

0 0 0 FileNotFoundException

3.2 Guiding Test Generation

Guiding DSE-based test generation can be achieved by employing preconditions
(assumptions). These preconditions are included in every path constraint col-
lected during the DSE process, hence every input that is generated must also
fulfill these preconditions. The assumptions are written by the user to steer
DSE along different, more relevant paths. In case of Listing 2, one can make
an assumption on the file location that points to a valid file. For example,
the following constraint can be added to every path to handle file locations:
CONFIGLOCATION == "C:\test.txt", where test.txt is a file preconfigured for
testing purposes. Using this guidance, DSE is not hindered by an invalid file
access, thus new constraints can be collected throughout the rest of the code.

In the example method of Listing 2, the guidance of the IntelliTest tool
can be achieved using a Parameterized Unit Test (PUT) [11], which serves as
the starting point of the test generation process. The list of parameters con-
sists of the following variables: target:PermissionProvider, fileLength:int,
indicator:byte. We extend this list with the CONFIGLOCATION variable in or-
der to assign new values. Furthermore, we make an assumption in the body of
the PUT describing that the value of this variable for all generated test cases
shall be equal to "C:\test.txt". This specific PUT method containing the
mentioned modifications can be found in Listing 3.

Listing 3: PUT with assumption for method found in Listing 2

1 public int GetPermissionsTest(
2 [PexAssumeUnderTest]PermissionProvider target ,
3 int fileLength , byte indicator ,
4 string configLocation // the extra parameter
5 )
6 {
7 // Adding assumption to the configLocation variable
8 PexAssume.AreEqual("C:\\ test.txt",configLocation);
9 // Setting the configuration target variable

10 target.CONFIGLOCATION = configLocation;
11 // Calling the method under test
12 target.GetPermissions(fileLength , indicator);
13 }

The modification introduced inside the PUT – in order to guide IntelliTest
– produces the outcome found in Table 3. The yielded results show that the
tool reached the branches in the code where 0 and -1 is returned. However, the
branch where 1 is returned remains uncovered.

Employing assumptions during DSE could alleviate the issues caused by the
lack of isolation in certain cases, however several other corner cases exist, where
preconditions are not powerful enough. These occur, when the unit under test
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Table 3: Results of running IntelliTest with guidance on Listing 2

# fileLength indicator configLocation Observed result

0 0 0 "C:\\test.txt" IndexOutOfRangeException

1 1 0 "C:\\test.txt" 0
2 int.MinValue 0 "C:\\test.txt" OverflowException

3 1 58 "C:\\test.txt" -1

uses values from external calls and its behavior depends on them. In these cases
different isolation approaches and frameworks may provide solutions.

3.3 Approaches for Using Isolation

The commonly known and employed isolation approaches are stubs and mocks.
Involving stubs and mocks into the DSE-based test generation process is not a
new idea as mentioned in Section 1 (parameterized mock objects). This special
type of mocks is able to return inputs necessary to cover parts in the unit that
depend on values from external invocations (e.g., content of the file).

Reconsider the example method in Listing 2. The previously defined PUT
can be reused by extending its body with a parameterized mock using the Fakes
isolation framework. By using this mock, the remaining uncovered branch can
also be covered, however this requires manual analysis of the code with scrutiniz-
ing its behavior (e.g., the required values for the variables to cover the remaining
branch). The Fakes code including the parameterization of the mock is found in
Listing 4. The first statement in the body assigns a new FileData object for the
data parameter, while the second statement returns a new FileContentData

object. Both assignments obtain the objects from the IntelliTest tool by using
its PexChoose.Value method. The resulting test cases are found in Table 4. The
table – compared to Table 3 – is extended with one test case, which executes
the path, where the method returns 1. Hence, all of the possible execution paths
are covered with using this approach.

Listing 4: Fakes code in the PUT for the method Listing 2

1 ShimFileContentAnalyzer // mock for FCA
2 .AllInstances // valid for all instances of FCA
3 .AnalyzeByteArrayFileData = (fca ,content ,data) => // Replaceing Analyze
4 {
5 data.IsReadable = PexChoose.Value <bool >("data.IsReadable");
6 return PexChoose.Value <FileContentData >("fcdata");
7 };

However, employing parameterized mocks during dynamic symbolic execution-
based test generation leaves questions open. First, the concept does not deal
with state change of objects in an external invocation, which is possible both on
the called object itself and on the object-type parameters of the method being
called. Second, the creation of mocks rely on isolator approaches that have lim-
ited applicability (runtime proxy or detour) as some cases – like native calls –
are difficult to handle. Third, one of the most challenging problems is that the
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Table 4: Results of running IntelliTest with Fakes on Listing 2

# fileLength indicator fd.IsReadable Observed result

0 0 0 - IndexOutOfRangeException

1 1 0 false 0
2 int.MinValue 0 - OverflowException

3 1 58 - -1
4 1 0 true 1

core ideas of isolator approaches hinder the DSE-based test generation process
in general due to the code and call interventions during runtime (as described
in Section 2).

3.4 Transforming the Unit Under Test

The previously mentioned challenges (Section 2) with the collaboration of DSE
and isolation approaches demands for a new technique, which could alleviate
these problems. To overcome the proposed challenges, treating calls in a novel
way could provide support to the dynamic symbolic execution-based test genera-
tion process. More specifically, replacement of these calls to fake, static methods
that have same signatures and contain value generation behavior so that it 1)
may not introduce complexity to test generators, along with 2) maintaining func-
tionality of the unit under test. This special procedure on the source requires
identifying all external calls and objects. Considering the motivating example
(Section 2), these methods are the following: File.Open, FileStream.Read,
FileContentAnalyzer.ctor, FileContentAnalyzer.Analyze. Moreover, the
code also contains two references of external types: FileStream and FileContentAnalyzer.
The replacement procedure involves the following two steps for this method.

1. Rewriting references of external types to a special type, which acts both as
a state container and a placeholder, to maintain the syntactical correctness
of the code.

2. Replacing every external call to a static invocation into a fake class with
same signature.

After conducting these two steps on the source code found in Listing 2, the re-
sulting code of the method is found in Listing 5. Lines 3, 5, 10 and 12 are changed
and transformed to isolate external dependencies (marked with color). In line
3, a DynamicFake object replaces the original FileStream as a state container
(see step 1) and the opening of the file is replaced with a call to a static method
FileOpen in the class Fake (see step 2). The reading of FileStream is replaced
to method FileStreamRead (line 5). The instantiation of FileContentAnalyzer
is transformed to the instantiation of a state container (DynamicFake) (line 10)
and a call to method Analyze is also changed to a fake one (line 12). Argument
lists of FileStreamRead and FileContAnalyzerAnalyze are extended with a
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DynamicFake that may be able to store the current state of their original con-
tainer objects dynamically.

Listing 5: Transformed example method for isolation case

1 public int GetPermissionFromFileContent(int fileLength , byte indicator)
2 {

3 DynamicFake file = Fake.FileOpen(CONFIGLOCATION, FileMode.Open);

4 byte[] fileContent = new byte[fileLength ];

5 Fake.FileStreamRead(fileContent, 0, fileLength, file);

6 if (fileContent [0] < indicator)
7 {
8 return -1;
9 }

10 DynamicFake fca = new DynamicFake();

11 FileData fd = new FileData ();

12 FileContentData fcd = Fake.FileContentAnalyzerAnalyze(fileContent,fd,fca);

13 if (fd.IsReadable && !fcd.IsSecret)
14 {
15 return 1;
16 }
17 return 0;
18 }

Although the invocations have been replaced, the replacement methods also
have to be implemented in the Fake static class. Method FileOpen shall be
able to return a new DynamicFake object, method FileStreamRead shall be
able to fill the fileContent byte array with arbitrary content, and finally
FileContentAnalyzerAnalyze shall be able to set the properties of FileData
and FileContentData to different values. The source code of class Fake is found
in Listing 6. Note that in the current example, we used a method ChooseValue<T>

that represents interaction with the test generator to obtain values of a specific
type T. For example, when using the IntelliTest tool, this can be replaced to
method PexChoose, which was already presented in the previous sections. In
case of array initializations (line 10 and 21), we did not parameterize the size of
arrays as it may require preliminary assumptions to avoid unintended overflows.

Listing 6: Example fake container class for replacement methods

1 public static class Fake
2 {
3 public DynamicFake FileOpen(string p0, FileMode p1)
4 {
5 return new DynamicFake (); // Returning a state container
6 }
7
8 public int FileStreamRead(byte[] p0 , int p1, int p2, DynamicFake obj)
9 {

10 p0 = new byte [2]; // Assigning a new array to p0
11 for (int i = 0; i < p0.Length; i++)
12 {
13 // Filling p0 with arbitrary values
14 p0[i] = ChooseValue <byte >("fsr -p0-"+i);
15 }
16 return ChooseValue <int >("fsr -ret"); // Choosing arbitrary int to return
17 }
18
19 public FileContentData FileContentAnalyzerAnalyze(byte[] p0, FileData p1,

DynamicFake obj)
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20 {
21 p0 = new byte [2]; // Assigning a new array to p0
22 for (int i = 0; i < p0.Length; i++)
23 {
24 // Filling p0 with arbitrary values
25 p0[i] = ChooseValue <byte >("fcaa -p0-"+i);
26 }
27 // Setting a property of p1
28 p1.IsReadable = ChooseValue <bool >("fcaa -p1-IsReadable");
29 // Returning a new FileContentData object
30 return ChooseValue <FileContentData >("fcaa -ret");
31 }
32 }

Using this fake method container class in combination with the special trans-
formation of the unit under test, a dynamic symbolic execution-based test gen-
eration process is alleviated from the issues caused by external dependencies
(C1, C2 and C3 in Section 2). Thus, a white-box test suite could be generated
easily to cover the unit under test with additional information about the de-
pendencies. This data describes which behavior (return value, state change of
parameters) steers the program executions along different paths.

Table 5: Possible set of generated inputs for the transformed example method

indicator fcaa-p1-IsReadable fcaa-ret result

00 false null 0
00 true null -
00 true new FileContentData(IsSecret=false) 1
01 - - -1

Implementing this approach for IntelliTest provides the generated set of test
inputs found in Table 5, which covers every execution path in the method under
test. We use notations of the variables from Listings 5 and 6 (see assigned pa-
rameters of method ChooseValue). Note that the table only contains variables
that needed to have different values for the test generation process. The con-
stant assignments for the other variables are the following: fileLength = 6,
fsr-p0-0 = fsr-p0-1 = 00, fsr-ret = 0, fcaa-p0-0 = fcaa-p0-1 = 00.

The proposed procedure has three main steps: 1) static code analysis, 2)
code transformation and 3) sandbox generation. All of them can be automated
using special algorithms and techniques. Static code analysis is viable using code
traversal algorithms to identify external types and invocations. The rewriting
of the source code can be achieved using specific transformations to replace
the parts identified during the analysis step. Finally, the synthesization of the
sandbox around the unit under test can be accomplished using code generation
techniques. In Section 4, we present this automated isolation approach in detail.

4 Approach for Automated Isolation

The approach presented in this paper tackles the unit isolation problem for DSE-
based test generation using syntax transformations and sandbox code synthesis.
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Our technique uses Abstract Syntax Trees (ASTs) [20] to gain information and
to modify the source code. ASTs are graphs representing parts of source code,
which can be obtained via code parsing. The nodes of the tree denote different
structures taking place in the code, hence types of the nodes are depending on
the grammar of the programming language being used.

4.1 Generic Definition

Our isolation approach involves three main steps: 1) analysis of the code un-
der test, 2) syntax transformation of the unit and 3) synthesis of an isolation
sandbox. The overview of the whole approach can be found in Algorithm 1. The
process starts from a predefined unit, which is given with the fully qualified
names of elements to include. An element can be a method, a class or even a
whole module. The concept of a unit can be formalized as found in Definition 1.

Algorithm 1 High-level algorithm of the presented approach

1: function AutomatedIsolator(Unit[] units)
2: for all unit in units do . iterating through units
3: ast := parseAst(unit.getSource()); . getting AST of unit
4: syntaxData := analyzeSyntax(ast); . analyzing syntax tree
5: newAst := transformAst(ast,syntaxData); . transforming the AST
6: sandbox := synthesizeSandbox(syntaxData); . creating the sandbox
7: outputCode(newAst, sandbox); . emitting the results
8: end for
9: end function

Definition 1 (Unit Under Test). Let the unit under test UUT be a set so that
an element u ∈ UUT is an arbitrary module of the software, which can be
identified by its fully qualified name.

For example, MySoftware has three modules (Module1, Module2, Module3),
then a possible unit under test is UUT = {MySoftware.Module1, MySoftware.Module2}.
In that context, Module3 is thought as external during unit testing. Note that
every ancestor of classes included in the unit are also automatically added to
the unit to avoid issues caused by rewriting external types in signatures.

4.1.1 Syntax Analysis

The tasks during the analysis are 1) to reveal invocations of methods thought as
external from the unit and 2) to identify references to types thought as external.
The detection is performed using the ASTs and the attached semantic models
that are obtained from runtime compilation of the source code under test. The
semantic model contains information about the types used in the source. The
AST is traversed and every node Call is scrutinized in detail that matches the
following two constraints at once.
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Definition 2 (Call node). Call(s, c) is an AST node with signature s (e.g., its
name, parameters, etc.) and container c so that Call is a method invocation or
member access expression, and c is an external module: c /∈ UUT .

Deciding if the invoked method or accessed member is external or not is
achieved via type analysis using the semantic model, which can be used to
obtain fully qualified names for the elements (e.g., variables, methods) in the
AST. Note that basic types or specific primitive or system types shall be included
in the unit by default to avoid overisolation (e.g, isolating integers).

Furthermore, in order to detect external type usages, every node Typ is
collected for further analysis that satisfy the following two constraints.

Definition 3 (Typ node). Typ(t) is an AST node so that it is a parameter
of type t or a return type of t or a variable declaration expression of type t.
Furthermore, t is an external type: t /∈ UUT .

Before any other step could be taken, external method invocations shall be
analyzed more deeply to discover their signature, which can be used in the body
of the replacement method. In there, the actual state of different parameter
objects can be altered possibly simulating the original behavior. Hence, during
the analysis of parameters, variables with types included in the unit are sought
(t, Typ(t) ∈ UUT ). However, changing the state of these objects requires further
and more deeper examination.

Using the semantic model, parameters of external invocations are analyzed
that have types included in the unit. The type analysis discovers members (e.g.,
fields) of the object, which can be modified from any other object (i.e., it is public
and writable from outside). This process is performed recursively as several levels
of references among types may exist.

All the information collected during the analysis of invocations, variables
and types is stored for use in the forthcoming steps of the automated isolation
process.

Example 3. Let us consider the example method found in Listing 7 in order
to demonstrate the workflow of syntax and type analysis. The method indicates
if the weekend is near by returning true if the day after tomorrow is Saturday
and false otherwise. Let the under under test be only this method, thus UUT =
{WeekendNotifier.IsWeekendNear():bool}.

Listing 7: Example method to the demonstration of isolation workflow

1 public class WeekendNotifier {
2 public bool IsWeekendNear ()
3 {
4 DateTime date = DateTime.GetNow ();
5 date.AddDays (2);
6 if(date.GetDay () == "Saturday")
7 {
8 return true;
9 }

10 return false;
11 }
12 }
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The analysis starts with parsing the source code into an AST. A simplified
version of the AST for this example method is found in Figure 1. The first step
discovers external invocations, which we marked with light gray on the AST.
The signature and type information of all the three invocations are collected and
persisted for later use. The next step during the analysis phase is to identify
external type usages. In this case, there is only one variable declaration, which
uses an external type (marked with dark gray on the AST).

Figure 1: The simplified AST of method IsWeekendNear

4.1.2 Syntax Tree Transformation

In order the replace the invocations and type usages detected during the anal-
ysis step, the AST is transformed for each detected node (Call or Typ). The
approach rewrites 1) method and constructor invocations, 2) member accesses
and 3) type usages. The rewriting algorithm conducts the following transforma-
tions on the previously collected nodes (Call or Typ).

• Call(s, c) → Call(s′, f), where Call(s′, f) denotes a method invocation
with similar s′ signature in container f that stands for Fake. s′ is a slightly
modified (s′ has the method name combined from the unique name of the
containing type and the original method name), and possibly extended
variant of s signature if the method call is not static. In this case, the list
of parameters is extended with a DynamicFake parameter to maintain the
state of the external object.

• Typ(t)→ Typ(df), where df denotes the type DynamicFake.
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Let us reconsider the example method used during the demonstration of the
analysis step. All the required information in method IsWeekendNear was col-
lected regarding the external invocations and type usages. We demonstrate the
AST transformation through this simple method to give a better understanding
(Figure 2). The modified nodes of the AST have bold labels. First, the invo-
cations are transformed in order to invoke replacement methods instead of the
original ones. Note the invocation of method AddDays: the containing type and
original method name is combined (DateTimeAddDays) for unique identification
and the list of parameters is extended with a new variable of DynamicFake type
representing the state of the external object. Note that if there were multiple
types named DateTime, then the approach would use the fully qualified name of
the type (e.g., SystemDateTime, OtherDateTime). Moreover, if method names
are colliding, the list of parameter types are also added to their names to ensure
uniqueness. The other two invocations were also transformed, however method
DateTime.GetNow is static, thus the list of parameters is not extended there.
Furthermore, the only one external type usage node (VariableDeclaration) is
transformed to use the DynamicFake type instead of the original DateTime.

Figure 2: The transformed AST of method IsWeekendNear

A question may be raised about the modified code in the unit under test if
it influences or alters the behavior or not. In a wrongly designed source code
with numerous external dependencies, isolating these external calls is hindered
by the lack of injection possibility. This causes the modification unavoidable
for the code under test. Manual testability refactoring [15] techniques mostly
employ approaches, which also introduce modifications to the source code, like
extracting interfaces [24]. Although these may provide solutions for testability
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issues, manual refactoring may require tremendous effort in large and complex
software. Our code transformation 1) does not modify the behavior of the unit
under test and 2) does not require manual effort as it is performed automatically.

4.1.3 Sandbox Synthesis

As the original source code is rewritten to invoke replacement methods, the
container for the definitions needs to be created. The replacement calls are
acting as static calls hence the container itself is also a static class called Fake.

Fake contains all the m methods that were invoked in the unit under test
and thought as external (m /∈ UUT ). If the method m has signature s then
the method in the container has signature s′ corresponding to the invocation
in the transformed AST. These methods are not only need to be defined in
the container Fake, they should also define arbitrary and extensible behavior to
simulate the original.

Numerous possibilities exist to simulate the original behavior of external
components. Our technique currently defines two different behaviors.

• Simple behavior: If the method does return any value, it will act as a stub
and will not define any logic or behavior. If it does return a value of some
type, then it is obtained from the DSE-based test generator by adding the
variable to the path constraint.

• Advanced behavior: Extends the simple behavior with object state han-
dling. Hence, if a parameter has a type, which is included in the unit,
then all of its recursively discovered modifiable members has an assign-
ment in the body of the method. The assignments obtain values for the
members from the test generation process by adding them as variables to
the path constraint.

Let us reconsider the method IsWeekendNear and its transformed AST (Fig-
ure 2) used during the previous examples. The synthesized sandbox (Fake) from
the data collected during the analysis contains the definitions of the three meth-
ods that are invoked in the transformed unit under test. Note that there is no
parameter, which state can be altered in the body of the replacement method.
The synthesized sandbox code for the IsWeekendNear example can be found in
Listing 8.

Listing 8: Sandbox for the example method IsWeekendNear

1 public static class Fake
2 {
3 public DynamicFake DateTimeGetNow ()
4 {
5 // Return a state storage object instead of the original
6 return new DynamicFake ();
7 }
8
9 public void DateTimeAddDays(int days)

10 {
11 // A simple test stub
12 }
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13
14 public int DateTimeGetDay ()
15 {
16 // Getting value from test generator
17 return ChooseValue <int >();
18 }
19 }

4.2 Possible use cases

The presented approach is suitable for two different possible use cases as it is
currently tied to the dynamic symbolic execution technique. Furthermore, it is
designed to alleviate the challenges of a code-based test generator (C1, C2 and
C3 of Section 2) in a strongly environment-dependent software.

The first and main use case of the approach is the support of the DSE-based
test generation by alleviating the isolation problem that may hinder the process.
By replacing the external invocations and type usages, the unit under test is
isolated from everything thought as external and could be run in a parameterized
sandbox filled by DSE. The test cases generated for the transformed source code
may reveal problems in the original code as it only focuses on the behavior of
the unit under test in a simulated environment altered by DSE.

The other use case is for the integration of modules. By using the presented
approach, one can analyze the influence of external invocations in the unit un-
der test. This includes checking the possible interactions and their values to
decide if the module is ready for integration with others. Also, one can describe
and restrict the generated behavior of external invocations in order to have
more realistic simulation of the original dependencies. These descriptions can
be achieved via using assumptions for the test generator.

4.3 Tool-specific Implementation

The implementation of the approach requires a code-based test generator that
uses dynamic symbolic execution to create tests. Moreover, the technique em-
ploys a special abstract syntax tree transformation, which demands for a source
code parser and transformer that enables the definition of custom transforma-
tion rules.

We selected IntelliTest as the DSE-based test generator for the implementa-
tion. It is one of the most advanced tools available and its transfer to industrial
practice was already investigated indicating its maturity [35]. As IntelliTest
currently only works with source code written in C# language, the number of
possibilities to choose a source code parser was reduced. One approach could
have been to write our own C#-to-AST parser, however the .NET developer
team provides a code analysis library, called Roslyn [25]. This library is able to
construct ASTs from C# source code and also supports the transformation of
the trees, which makes it a suitable tool for the requirements of our approach.

We implemented the whole approach in a tool, which is an extension of the
Visual Studio integrated development environment. The user first defines the
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elements of the unit under test using their fully qualified names. Then, when
invoking the tool the ASTs of the unit elements are transformed, and the code
of the sandbox (Fake) – containing the implementations of the replacement
methods – is also generated. The bodies of the replacement methods contain
statements that collaborate with IntelliTest by obtaining concrete values from
the tool. Note that the current implementation does not support the state con-
tainer feature of DynamicFake objects.

5 Experimental Evaluation

As the approach has been implemented in a proof-of-concept prototype tool,
the preliminary experimental evaluation of the approach became feasible. We
employed two types of source code in this experiment: 1) snippets from an
evaluation framework and 2) parts of open-source projects from GitHub.

5.1 Objective

This evaluation intends to decide whether the approach and the implemented
prototype tool is able to support DSE-based test generation process. Hence, the
current experiment aims to answer the following research question.

Is the automated isolation approach able to enhance block coverage
for DSE-based test generation?

5.2 Process

Answering the RQ requires collecting software modules that are implementing
different behaviors with diverse logic constructs. The subjects of evaluation can
be obtained from various places like open-source code repositories, where C#
projects can be found (e.g., CodePlex or GitHub). We chose GitHub as the
sources of the projects.

First, we used environment-dependent snippets from SETTE [9] (Symbolic
Execution-based Testing Tool Evaluator), a framework specially created to com-
pare test generator tools. The SETTE snippets were translated manually from
Java to C#.

Next, we randomly chose projects available on GitHub meeting a predefined
set of criteria. We defined the following selection criteria.

• The project repository shall have at least 100 stars indicating its popular-
ity, thus the mature state of the code.

• The project repository shall have been updated in the last five days, which
indicates the active development.

• The project shall be compiled and built with one-click in order to speed
up the evaluation process.
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• The selected modules of a project shall not contain code with multi-
threading as it cannot be handled by IntelliTest.

The answer requires measurements of the yielded results in terms of coverage.
We measured the basic code block coverage of simply running IntelliTest on the
analyzed module first. Then, the transformation was applied to the code using
the automated isolation approach, and IntelliTest was executed again. Note that
we did not provide any support manually (e.g., factory methods, assumptions,
etc.) for IntelliTest, or for the automated isolation tool either.

5.3 Setup

The selection process of the projects from GitHub was very simple. We searched
for repositories that have more than 100 stars and had been updated in the last
five days. Then, we selected an arbitrary project from the list that contained
no multi-threaded logic, then we tried to compile it. If the compilation finished
successfully, the project was included in the evaluation, otherwise we looked for
another repository that matched our criteria. Using this procedure, we managed
to select the following projects and modules for this preliminary evaluation. The
class selection criteria was to choose classes that act crucial roles in the business
logic. From SETTE, we selected three classes implementing various behaviors
with environment interaction. The detailed statistics of the selected modules are
found in Table 6. We used these classes as the unit under tests (UUT ).

• Abot is customizable and lightweight web crawler. Class WebContentExtractor
obtains the required content from the currently crawled site. RobotsDotTextFinder
is responsible for seeking the robots.txt file, which is a de facto stan-
dard for describing the intended behavior of web crawlers for the website.
CrawlDecisionMaker decides on the behavior, when a possible branch
occurs in the crawled website path.

• Textc is a natural language processing library. Command Syntax Defini-
tion Language is an included notation, which can be used to define syn-
taxes. Syntaxes form the basis of processing as they are matched against
the input tokens. Class SyntaxParser implements the default behavior of
parsing an arbitrary text with a selected syntax. The result is informa-
tion about an expression that was parsed from an input text using the
specified syntax. CsdlToken represents a token in the syntax description
language. Class CsdlParser can parse texts written in CSDL to define
new syntaxes.

• LiteDB is a NoSQL document store that uses only a single file for storage.
The application is lightweight and is rich of features. Class LiteFileStorage
is a collection to store files or data streams. DataService provides basic
CRUD methods to create, read, update and delete arbitrary data in the
document store. Finally, TransactionService is responsible for managing
transactions.

19



• Papercut is an SMTP e-mail receiver. The application is useful for testing
applications that are sending e-mails. Class MessageRepository is respon-
sible for managing the storage of incoming messages. NetworkHelper is a
class, which provides methods for frequently used actions in networking
(e.g., getting the IP address). TempDirectoryCleanupService is a ser-
vice, which cleans the temporary storage directory, when a specific event
occurs.

• SETTE is a symbolic execution-based testing tool evaluator framework
implemented in Java. We translated three environment-dependent classes
to C# for this evaluation. Class SetteFileIo performs various file oper-
ations like writing and reading. SetteNetworking implements a complex
networking behavior including a server that processes requests from a
client. SetteStdio uses the standard input and output for various opera-
tions.

Table 6: Details of the selected classes for evaluation

Project Class Method count Lines of code

WebContentExtractor 1 63
Abot RobotsDotTextFinder 1 15

CrawlDecisionMaker 4 68

SyntaxParser 1 35
Textc CsdlToken 6 101

CsdlParser 5 53

LiteFileStorage 14 57
LiteDB DataService 8 80

TransactionService 5 38

MessageRepository 5 38
Papercut NetworkHelper 4 29

TempDirectoryCleanupService 3 17

SetteFileIo 3 44
SETTE SetteNetworking 1 41

SetteStdio 4 36

Two steps were taken to obtain the results: 1) we executed IntelliTest and
obtained the coverage results, then 2) the automated isolation tool was exe-
cuted to transform the code and to create a sandbox, and IntelliTest was run
once again to obtain the new coverage metrics. Each execution was repeated 3
times. During the evaluation, we observed no differences among the outcomes
of repetitions.

The evaluation was performed on a laptop running Windows 10 and Visual
Studio 2015 Enterprise Update 3.
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5.4 Results

The results obtained can be found in Table 7. Here, GT denotes the number of
generated tests, while BC indicates the block coverage reached.

Table 7: Detailed results of the evaluation.

IntelliTest default Automated isolation

Project Class GT BC GT BC

WebContentExtractor 1 7,87% 17 93,59%
Abot RobotsDotTextFinder 1 29,03% 5 92,59%

CrawlDecisionMaker 17 30,23% 61 95,82%

SyntaxParser 24 91,07% 28 100,00%
Textc CsdlToken 61 46,54% 88 58,29%

CsdlParser 41 54,62% 7 35,96%

LiteFileStorage 22 55,28% 51 100,00%
LiteDB DataService 21 16,08% 20 30,61%

TransactionService 5 25,37% 6 33,90%

MessageRepository 5 16,22% 37 90,28%
Papercut NetworkHelper 4 81,67% 10 81,67%

TempDirectoryCleanupService 3 62,5% 11 91,67%

SetteFileIo 7 69,35% 21 100,00%
SETTE SetteNetworking 1 23,08% 3 92,31%

SetteStdio 25 100,00% 12 100,00%

The first project we employed was Abot. The results for project Abot show
significant increase in the number of generated tests and block coverage in all
three cases. The block coverage reaches more than 90%, which can be thought
as successful.

Comparing the results of Textc to the previous project, the initial num-
ber of generated tests are significantly larger, meaning that IntelliTest could
more easily handle these classes. When the automated isolation was applied,
the number of generated tests and also the block coverage increased in the first
two classes. Note that there were blocks in class CsdlToken, which were not cov-
ered even in the transformed code. This issue is related to IntelliTest as it could
not instantiate a map object with specific elements that is required to execute
different branches. Also, class CsdlParser shows interesting results: the cover-
age decreased after applying automated isolation. This anomaly was due to the
following two root causes: 1) current implementation of the Fake container does
not support returning arbitrary sizes of arrays of given types, 2) a type query
(typeof) statement could not be transformed in the AST. The combination of
these issues led to missing a whole method and multiple other blocks to cover.
It must be emphasized here that this issue is only related to the current state
of the prototype tool and not to the approach.

In terms of project LiteDB, the yielded coverage and test metrics show sim-
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ilar results to Abot: a significant increase is seen for all three classes in both
metrics. In case of the last two classes, there are code blocks, which were not
covered even in the transformed code, which caused the coverage metric to stay
very low in both cases. After scrutinizing the generated test cases, we found two
different reasons. For class DataService, the blocking issue was that IntelliTest
could not provide a map for the Fake container that is indexable with different
values. In case of class TransactionService, reaching 100% coverage would re-
quire construction of method invocation sequences (e.g., begin, commit, save).
Thus, these issues are not related to the approach or the prototype tool.

The results for project Papercut show similar increase of both examined met-
rics than in the previous three projects. For class NetworkHelper, the coverage
did not show any growth, however the number of generated tests was raised
from 4 to 10. This was caused by a tool-related issue, particularly the lack of
transforming a special structure in the code (using). This feature is currently
not implemented in the tool.

Finally, identical results can be discovered for project SETTE. For classes
SetteFileIo and SetteNetworking, the coverage increased significantly. In the
latter class, the cause of omitting full block coverage is that the server-side
code contains an infinite loop, which can be only stopped by thread handling.
Thus, IntelliTest is not able to reach some statements after the loop. For class
SetteStdio, the block coverage remained 100% in both cases, however the num-
ber of generated tests is reduced as the unit to explore is smaller when using
isolation.

In summary, the results for the five projects showed a clear increase in the
number of generated tests and also in block coverage, when using IntelliTest
supported by the automated isolation approach. Based on these results, the
approach could be able to help increasing the coverage for tests generated by
DSE.

5.5 Limitations

During the preliminary evaluation, we managed to identify bugs and issues
hindering our approach, though they were caused only by the prototype state of
the tool, and were not related to the approach itself. One of these issues was the
lack of transformations of some special structures. These AST transformations
require numerous different scenarios to be prepared for as the C# language is
very vast. Among others, we found the following issues with the tool when it
was executed on the selected classes. Also note that most of these were not fixed
– due to the complexity – during the evaluation and the results for the RQ could
be influenced by them.

• The DynamicFake state container objects are currently acting as a dummy
type and are not storing anything.

• Class DynamicFake is not disposable and not enumerable meaning that it
cannot be used in some special code contexts.
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• Enums are thought as external types in some cases, however they are not
harmful as they have no behavior. Thus, should not act as subjects of
isolation.

• Properties of class Fake have no generic type indicators in certain situa-
tions.

• Methods in the Fake container are not able to throw exceptions in their
current implementation state.

• Generic methods and types are not handled properly in the AST trans-
formations in certain cases.

• Casting to an external type is not transformed in the AST.

• Delegates and anonymous methods are not handled during the AST trans-
formation.

• Using structures are currently not supported in the AST transformations.

• Classes in the unit that implement external interfaces or external abstract
classes are currently not supported due to the large amount of transfor-
mations required.

Some of these issues caused the compiling of the transformed unit under
test to fail. During the evaluation, we only fixed the blocking issues manually.
We decided to not fix the rest of the issues for this paper as 1) the results of
the prototype version was already able to show the potential in the underlying
approach, and 2) designing and implementing the missing features would require
significant effort.

6 Related work

Our idea originally derives from a paper written by Tillmann et al. [34], where
the idea of mock object generation is described. They also conducted a case
study for file-system dependent software [22], that showed promising results for
using parameterized mocks. Their presented technique is able to automatically
create mock objects with behavior and has the ability to return symbolic vari-
ables, which is used during the symbolic execution to increase the coverage of
the unit under test. However, their solution requires external interfaces explicitly
added to the parameterized unit tests (i.e. needs user intervention), moreover
they did not consider any state change of object inside mocks that can affect
the coverage in the unit under test. Hence, our solution covers a wider area of
scenarios and needs minimal user interaction for the automated generation (our
approach only requires the fully qualified names of the units under test).

The idea of Galler et al. is to generate mock objects from predefined de-
sign by contract specifications [12]. These contracts describe preconditions of a
method, thus the derived mocks are created in respect of them. This makes the
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mocks able to avoid false behavior. However, their approach does not relate to
dynamic symbolic execution and provides no mention of collaboration with any
test generation process. The approach may also introduce work overhead when
creating contracts as specification.

Samimi et al. proposed the approach of declarative mocking [29]. Their tech-
nique requires developers to write specifications in a domain-specific language
(DSL) to describe the intended behavior of the method to mock. The specifica-
tion is then executed by a special tool called PBnJ. Hence, this approach needs
developers to write their own tests, and it has also no mention of collaboration
with code-based test generator approaches and tools.

A similar approach is introduced in parallel with a symbolic execution engine
to Java by Islam et al. [18]. The difference with previous two techniques is that
this one uses interfaces as specifications instead of contracts or a special DSL.

Another approach of mock generation was presented by Pasternak et al. [27].
They created a tool called GenUTest, which is able to generate unit tests and so-
called mock aspects from previously monitored concrete executions. However,
the effectiveness of the approach largely relies on the completeness of previ-
ous concrete executions, while our presented approach uses only the previous
compilation with static AST transformations.

A model-based approach of isolation is presented by Jeon et al. [19] for Java
programs that largely rely on frameworks. Their technique derives a framework
model in order to support and collaborate with symbolic execution during the
test generation process. Their implemented tool Pasket is able to instantiate a
model from code artifacts and tutorial programs, which has a matching behavior
with the original framework.

7 Conclusion and future work

In this paper, an approach for automatically isolating external dependencies
has been presented to support dynamic symbolic execution-based (DSE) test
generation in complex software. This technique is designed to collaborate with
DSE-based test generation by obtaining values for dependencies directly form
the test generator tool. These values are used as return values for external meth-
ods and for assignments, where changing states of object is possible inside the
dependency. The presented approach replaces the calls to external dependencies
with fake invocations to a sandbox. The extensible sandbox is synthesized from
various information collected during code and type analysis. This sandbox is
able to collaborate with dynamic symbolic execution.

The paper also presented a prototype tool that implements the approach for
C# by using Roslyn and is able to collaborate with IntelliTest, a state-of-the-art
dynamic symbolic execution-based test generator. The technique was evaluated
in terms of increase in code coverage of the generated tests. The preliminary
evaluation employed snippets from a symbolic execution-based tool evaluator
framework, and modules from selected open-source projects on GitHub. The
results of the evaluation were promising as the prototype tool was able to trans-
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form these modules, and was also capable of synthesizing a sandbox without
serious blocking issues. Furthermore, the transformed code that used the sand-
box had significantly higher code coverage with increased number of generated
tests.

In terms of future work, our plan is to elaborate the use of DynamicFake ob-
jects that are able to store and maintain the state of externally-typed objects.
This would improve the whole approach and may provide better matching with
software system environments. We are also continuously fixing the issues of the
prototype tool. Another way of improvement could be to enhance the behav-
ioral logic inside the sandbox from sample programs or observations of concrete
executions (similarly to [19] and [27]). Furthermore, we would like to provide
an incremental isolation refinement method for our current approach in order
to avoid isolating calls that are not necessary for improving DSE-based test
generation.
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