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Abstract Many oxbows are contaminated by Fe and Mn as a
consequence of the elemental concentration of sediment and
water originating from the Upper Tisza Region of Hungary.
The phenomenon is partly caused by anthropogenic activities
and mainly due to the geochemical characteristics of the re-
gion. The effects of Fe and Mn on the aquatic ecosystem of
these wetlands were investigated in a model experiments in
this study. Survival, individual body weight and the elemental
concentrations of organs were determined in common carp
(Cyprinus carpio) juveniles reared in Fe andMn contaminated
media (treatment 1: Fe 0.57 mg L−1, Mn 0.29 mg L−1, treat-
ment 2: Fe 0.57 mg L−1, Mn 0.625 mg L−1, treatment 3: Fe
1.50 mg L−1, Mn 0.29 mg L−1, treatment 4: Fe 1.50 mg L−1,
Mn 0.625 mg L−1 and control: Fe 0.005 mg L−1, Mn
0.003 mg L−1), for rearing time of 49 days. The treatment with
Fe and Mn did not have any effect on the survival data and
individual body weight in the levels tested. The highest con-
centration of Fe and Mn was found in the liver and brain of
carp juveniles, while the lowest concentration of these ele-
ments occurred in the muscular tissue and gills. The treatment
where Fe and Mn were applied in the highest concentrations
resulted in a statistically higher level of these elements in the

brain, grills and muscle tissues. The treatment where only Mn
was present in the highest concentration caused increased lev-
el of Mn only in the liver. We found metal accumulation in
almost every organ; however, the applied concentrations and
exposure time did not affect the survival and average body
weight of carp juveniles.
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Introduction

The pollution of aquatic ecosystems is a serious problem
around the world, especially the heavy metal contamination.
The appearance of these elements in water ecosystems is due
to two reasons: the natural geological background and the
anthropogenic activities, such as industrial and agricultural
emission and atmospheric deposition. Metals are deposited
in water over time and may be accumulated by aquatic plants
and organisms resulting these elements to be present in the
whole aquatic ecosystem via food chain [1–3].

Heavy metal pollution reached River Tisza (Hungary) in
January 2000, when a large amount of cyanide as well as
silver, copper, zinc and cadmium contamination arrived
through River Szamos from Romania. The pollution appeared
in oxbows near the river and its effects are detected even
nowadays in the sediments [4, 5]. Besides the anthropogenic
pollution, recent studies have demonstrated that oxbows are
highly contaminated by Fe and Mn due to the high elemental
concentration of sediment and water in the Upper Tisza region
of Hungary which originates from the geochemical back-
ground [6]. The average Fe concentration of water was
1.1 mg L−1 while the Mn concentration appeared to be
0.4 mg L−1 in the oxbows [7].
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Among vertebrates, fish, frogs and toads are excellent
indicators of heavy metal pollution [8–11]. Fish, as indi-
cator organisms, are well suited for the monitoring of
polluted aquatic ecosystems, since they are able to accu-
mulate all the harmful substances from water and sedi-
ment as well as from the food chain [12–14]. Common
carp (Cyprinus carpio L., 1758) is a world-wide freshwa-
ter fish species with relatively wide tolerance toward con-
tamination and it is one of the most important farmed fish
in Eastern Europe [15]. It is also the most frequent fish in
Hungary, which can be found in almost all wetlands and it
is an extensively studied species. With respect to meat
production, the growth parameters of common carp are
well-documented [16–19]. Wong et al. (1982) studied
the effect of animal manure and sewage sludge on the
mortality and fish meat of common carp demonstrate that
the species is a good indicator in toxicity tests [20].
Earlier studies demonstrated the nutritional effects on fat-
ty acid composition and the toxicity of carbamate pesti-
cides in carp, respectively [21, 22]. The feeding behaviour
of carp is omnivorous and it is also a known bioturbator.
Consequently, it is an ideal indicator organism due to its
contact with the dissolved pollutants in water and with the
resuspended surface sediment where the organic and inor-
ganic pollutants can accumulate at a higher level.
Furthermore, it also feeds upon plants and species from
lower taxonomy aquatic class [21–23].

Has-Schön et al. (2015) investigated the distribution
and age-related bioaccumulation of heavy metals such as
lead, mercury, cadmium and arsenic in tissues of common
carp in one reservoir. They found that the heavy metal
adsorption in carp tissue depends such factor as age and
body mass [24]. In a model experiment, Garcia-Medina
et al. (2013) demonstrated the effect of aluminium on carp
blood indica t ing the poss ible cyto toxic i ty and
genotoxicity of aluminium for erythrocytes [25]. Varanka
et al. (2001) studied the effect of copper sulphate and
tannic acid on carp liver biochemistry and morphological
parameters. They concluded that toxic effect of copper
sulphate and tannic acid may be remarkable in a polluted
area than uncontaminated area [26]. Cossarini-Dunier
et al. (1988) studied the immune response of Mn ions
on carp. The contaminated model medium (50 mg L−1

Mn) did not cause decrease in the antibody production
but it had a negative effect on the hematocrit [27].

In this paper, the effects of high Fe and Mn concentra-
tion are investigated on the mortality, individual body
weight and the elemental distribution of different organs
of common carp in detail. The absorption of both essential
and toxic trace metals in biological systems can be affect-
ed by interrelations in their metabolic functions. Several
studies demonstrate that this phenomenon is present in
fish; however, the diversity of its manifestation varies

among species and depends on such factors as age, size
(both weight and length), feeding habit and ecological
requirements [28]. A previous experiment of Fehér et al.
(2013) revealed the interactive effect of cobalt treated wa-
ter on the manganese and zinc adsorption of Lates
calcarifer [12]. According to the literature data, it has also
found that heavy metal accumulation in tissues of fish
species show a certain tendency; however, the reasons
and explanations are not yet clearly stated. The different
trace metal retentions of tissues may be caused by fish
species, the form of the metals available in diet or water,
exposure regime or water parameters. Thus, the aim of
this study is to measure the accumulation of Fe and Mn
in carp juveniles and also to assess if the applied treat-
ments affect the level of other elements in carp organs.

Material and Methods

Experimental Design

Duration of the experiments were 49 days; there were four
treatments and one control in three replicates. In each treat-
ment, 54 common carp (Cyprinus carpio) juveniles were
used (18/aquaria). Size homogeneity of the juveniles was
tested by measuring the starting body weight of the indi-
viduals and evaluating the data by ANOVA test (p = 0.989,
F = 0.073). The experimental design was set in randomly
arranged glass aquaria of 40 L. The following treatments
were used: in the treatment 1, the concentration of Fe was
0.57 mg L−1 and the concentration of Mn was 0.29 mg L−1;
in the treatment 2, the Fe concentration was 0.57 mg L−1

and the Mn concentration was 0.625 mg L−1; in the treat-
ment 3, the Fe concentration was 1.50 mg L−1 and the Mn
concentration was 0.29 mg L−1; in the treatment 4, the
concentration of Fe was 1.50 mg L−1 and the concentration
of Mn was 0.625 mg L−1. Solid manganese chloride and
iron chloride (MnCl2, FeCl3 AnalaR NORMAPUR, VWR)
were used to make the solutions with which the desired
concentrations in the model mediums were adjusted.
Control aquaria were filled up with tap water, which
conta ined 0.006 mg L−1 Cu, 0.005 mg L−1 Fe ,
2.80 mg L−1 K, 16.19 mg L−1 Mg, 0.003 mg L−1 Mn,
31.72 mg L−1 Na, 0.36 mg L−1 Sr and 0.048 mg L−1 Zn.
Twelve hours of light/dark periods were applied. Fish were
fed with dried feed (ALLER FUTURA 1.5 mm) once a day
(Table 1). The oxygen saturation was maintained at 100 %
by aeration stones and temperature was controlled at
23 .0 ± 0 .5 °C. The conduc t iv i ty of wate r was
547 μS cm−1 and the pH was 8.0 during the experiments.
A 30 % of water exchange was applied in each aquaria
every week. The level of Fe and Mn of the water was also
monitored weekly to determine the decrease in the
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concentration; based on the gained results, the proper level
of these two elements in the treatments was adjusted again
to the initial values.

Sample Preparation and Element Analysis

Fish were counted and their body weight was determined
weekly to study the survival rate and individual body weight.
To measure the elemental concentration of the liver, eyes,
brain, gills and muscular tissue, three juveniles were selected
randomly and sacrificed from each aquaria at the end of the
experiment. The sacrificed procedure was by physical
methods suggested in the AVMA Guidelines on Euthanasia
for fish reported by the American Veterinary Medical
Association [29]. During the sample preparation, only plastic
tools were used to avoid the metal contamination of the sam-
ples. Organs were weighted into glass beakers using analytical
balance. They were dried at 105 °C until constant weight.

Samples were digested on an electric hot plate with 4 ml
65 % (m/m) nitric acid (reagent grade, Merck) and 1.0 ml
30 % (m/m) hydrogen-peroxide (reagent grade, Merck) at
80 °C for 4 h. After digestion, samples were diluted with
1 % nitric acid (reagent grade, Merck and Milli-Q water)
up to a final volume of 10 ml. The concentration of Cu, Fe,
K, Mg, Mn, Na, Sr and Zn was determined by a microwave
plasma atomic emission spectrometer (Agilent MP - AES
4200) system. Auto sampler (Agilent SPS3), Meinhard
type nebulizer and double pass spray chamber were used.
We applied a five-point calibration procedure prepared
from multi-element standard solution (Merck ICP multi-
element standard solution IV). Certified reference material
was used (ERM-BB422, fish muscle) during the measure-
ment. The recoveries were within of the 10 % of the certi-
fied values for the metals. The wavelengths and measuring
parameters were chosen based on the suggestions of the
instrument’s software (MP Expert).

Evaluation of the Data

SPSS/PC+ software package was used for the statistical anal-
ysis. Homogeneity of variance was tested by Levene test. The
elemental concentration results were evaluated by canonical
discriminant analysis (CDA). The parameters of survival and
individual body weight and the elemental concentration of
organs and treatments were studied with ANOVA and
Kruskal-Wallis test. Bioconcentration factor (BCF) was calcu-
lated as a ratio of the Fe and Mn found in the fish tissue
(Ctissue), given in milligram per kilogram for dry weight and
the Fe andMn concentration applied in the treatments in water
(Cwater), given in milligram per litre [30].

BCF ¼ Ctissue=Cwater

Results

Survival Data and Individual Body Weight

There was no significant difference among the survival data of
the treatments at the end of the experiment (p = 0.797,
F= 0.231). In the treatment 1,we observed 94.4 ± 5.6% survival
rate and 98.1 ± 3.2%was found in the control and the other three
treatments. There was no significant difference among treat-
ments based on individual body weight (p = 0.124, F = 2.352)
during the time of the experiment (Table 2).

Concentration of Elements in Different Organs

The elemental concentration results of organs are indicated in
Fig. 1 for Fe and Mn, as well as in Table 3 for the rest of the
measured elements. In the case of the brain, the significantly
higher Mn and Fe concentrations were found only in the treat-
ment 4 (p < 0.05). A significantly higher Mn concentration
was measured in the liver of carp juveniles originating from
the treatment 3 and treatment 4 (p < 0.05). The treatment 4
statistically resulted in the highest measuredMn concentration
(p < 0.05) of the muscle, gills and brain compared to the other
groups. It was also observed that the Fe concentration was
significantly higher in gills of the treatment 4 than that of the
second one (p < 0.05). Furthermore, in the case of muscle, the
measured concentration of Fe was found to be significantly
the highest in the treatment 4 compared to the other groups
(p < 0.05) (Fig. 1). Our results show that the treatment 4
increased the Mn concentration of organs significantly
(Kruskal-Wallis test, p < 0.044, H = 34.972).

A significantly higher concentration of Cu was found
in the liver and brain than in the muscle and gills.
Furthermore, the level of Cu was significantly higher in
the liver than that in the eyes (p < 0.020, H = 63.530)

Table 1 The
composition of the fish
food

Ingredients (%)

Crude protein 56

Crude fat 18

Dry matter content 91.4 ± 0.1

Elemental composition (mg kg−1)

Cu 16.3 ± 0.5

Fe 470.4 ± 23.0

K 631.1 ± 50.5

Mg 164.7 ± 16.3

Mn 49.1 ± 4.3

Na 582.4 ± 57.6

Sr 122.9 ± 7.2

Zn 91.0 ± 4.2
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(Table 3). The Fe concentration was significantly higher
in the liver than that in the other organs and it was sig-
nificantly higher in the gills and brain than that in the
muscle (p < 0.015, H = 55.024). In the case of K, we
found significantly higher concentration in the liver than
in the muscle. At the same time, the level of K was sig-
nificantly higher in the liver, muscle and in the brain than
that in the gills and eyes (p < 0.045, H = 64.753). The Mg
concentration was significantly higher in the muscle com-
pared to the gills, while the level of Mg was significantly
higher in the muscle, gills and liver than that in the eyes
and brain (p < 0.025, H = 64.605). Furthermore, the con-
centration of Na was significantly higher in the eyes com-
pared to the gills and liver (p < 0.010, H = 62.789). In the
case of Sr, we found significantly higher concentration in
the gills than that in the other organs (p < 0.001,
H = 35.453). Higher Zn level was found in the gills and
liver than that in the muscle and brain. The concentration
of Zn was significantly higher in the eyes than that in the
muscle (p < 0.001, H = 63.463). No significant difference
occurred in the Mn concentration of the organs (p > 0.05).

Using canonical discriminant analysis, the study of elemen-
tal concentration of different organs shows that significant
differences were found between organs (p < 0.001). In the
cases of gills and livers, overlap was found (Fig. 2). Effects
of treatments show that the elemental concentration of control
treatment differed significantly from the treatment 4 using
canonical discriminant analysis (p < 0.001) (Fig.3).
Significant differences were found in the case of concentration
of Mn between treatments.

Bioconcentration of Metals in Common Carp Tissues

The highest BCF factor for brain and muscle occurred in
the treatment 4, for gills in the treatment 1 and for eyes in
the treatment 3, respectively, for Fe and Mn. The only
difference between the two applied elements occurred in
the case of the liver is as follows: for Fe, the treatment 2
had the highest BCF value while for Mn, the highest fac-
tor was calculated in the case of the treatment 3. Detailed
results are indicated for BCF in Table 4.

Discussion

The applied concentration of Fe and Mn is adjusted based on
the measured elemental concentration of oxbows in the Upper
Tisza region of Hungary [7]. Based on these data, the
Hungarian National Standard (MSZ12749) considers these
wetlands toxic to Fe (>1.0 mg L−1) and Mn (>0.5 mg L−1).
Generally, the concentration of essential trace metals below or
over the optimum level in water has negative effects on the
fish size, depending on the concentration, species and the
chemical elements [31]. Although fish uptake dissolved iron
and manganese through the gills, the uptake is more efficient
through diet. Watanabe et al. (1997) found that the anaemic is
caused by the reduced Fe level in carp but it is not resulted in
retard growth parameters [32]. However, the absence of Mn
usually has negative effects on growth. Romanenka (1984)
reported better growth performance in the case of carp indi-
viduals fed by Mn supplied diet since it increases protein
synthesis and decreases fat synthesis in the liver [33]. Ogino
and Yang (1980) also reported that lower Mn containing diet
resulted in lower growth parameters in carp individuals [34].

Skoric et al. (2012) also studied the elemental concentra-
tion of 1- and 2-year-old common carps which were collected
from a Serbian fish farm with ponds utilizing water mainly
from the Tisza River. They found the following Fe concentra-
tion in different organs: in muscle 25 ± 11 mg kg−1 and in gills
269 ± 134 mg kg−1 which are similar to our results, but they
measured only 103 ± 37 mg kg−1 Fe in liver. In the case of Cu
concen t ra t ion o f l ive r, they had s imi la r r esu l t
(9.8 ± 12.6 mg kg−1) to ours. In case of Mn, they measured
2.80mg kg−1 in liver as well as 2.46 ± 2.27 mg kg−1 in 1-year-
old and 10.6 ± 3.4 mg kg−1 in 2-year-old common carp gills,
which are comparable to our data. In the case of Mn concen-
tration, they reported 925 ± 45 mg kg−1 in muscle,
486 ± 36 mg kg−1 in liver and 1086 ± 203 mg kg−1 in gills,
which also show a good concordance to our findings. A lower
level of Sr was found in organs, 0.89 ± 0.39mg kg−1 inmuscle
and 0.27 ± 0.06 mg kg−1 in liver except the gills, where
25.70 ± 13.62 mg kg−1 was observed compared to our find-
ings. They measured similar concentration of Zn in muscle
(20.51 ± 4.27 mg kg−1), but their results were an order of
magnitude less than in gills (214 ± 14 mg kg−1) and in liver

Table 2 Survival rate and
individual body weight
(mean ± SD, n = 54)

Treatment Control 1 2 3 4

Survival rate (%) 98.1 ± 3.2a 94.4 ± 5.6a 98.1 ± 3.2a 98.1 ± 3.2a 98.1 ± 3.2a

Start of experiment (g) 6.3 ± 1.4a 6.4 ± 1.4a 6.3 ± 1.3a 6.4 ± 1.3a 6.4 ± 1.4a

End of experiment (g) 6.9 ± 1.6a 7.4 ± 1.7a 7.6 ± 1.7a 7.4 ± 1.4a 7.7 ± 1.8a

Notations: treatment 1: Fe 0.57 mg L−1 , Mn 0.29 mg L−1 , treatment 2: Fe 0.57 mg L−1 , Mn 0.625 mg L−1 ,
treatment 3: Fe 1.50 mg L−1 , Mn 0.29 mg L−1 , treatment 4: Fe 1.50 mg L−1 , Mn 0.625 mg L−1 and control: Fe
0.005 mg L−1 , Mn 0.003 mg L−1 . Different letters indicate significant differences between treatments and the
control (p > 0.05)
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(117 ± 38 mg kg−1) [35]. Merciai et al. (2014) also examined
common carp from a river in the Mediterranean region which
was called as Llobregat river; inter alia measured the concen-
tration of Mn and Fe in carp muscles. They reported between
2.12 and 15.4 mg kg−1 of Mn as well as 48.83 and
120.4 mg kg−1 of Fe [31].

In this study, we observed that the organs are significantly
d i f f e ren t f rom each o the r when the i r e l emen ta l

concentrations are considered. Our results demonstrate that
the elemental concentration data from the control group did
not differ remarkably from treatment 2 and treatment 3. It
indicates that the Fe and Mn levels of the treatment 1(0.57
and 0.29 mg L−1, respectively) and treatment 2 (0.57 and
0.625 mg L−1, respectively) did not affect the metabolism
of the metals compared to the control; the levels seem to be
comparable. In the treatment 3, however, where Fe

Fig. 1 Concentration of Fe
(mean ± SE) andMn (mean ± SE)
in the muscle (a), gills (b), liver
(c), eye (d) and brain (e).
Notations: treatment 1: Fe
0.57 mg L−1, Mn 0.29 mg L−1,
treatment 2: Fe 0.57 mg L−1, Mn
0.625 mg L−1, treatment 3: Fe
1.50 mg L−1. Mn 0.29 mg L−1,
treatment 4: Fe 1.50 mg L−1, Mn
0.625 mg L−1 and control: Fe
0.005 mg L−1, Mn 0.003 mg L−1.
Different letters indicate
significant differences between
treatments for the same metal
(p > 0.05)
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(1.50 mg L−1) was applied in a higher andMn (0.29 mg L−1)
in a lower concentration, the overlap is not as unambiguous.
This phenomenon may suggest that the Fe level determines
more the retentionprocess ofMnand theother tracemetals—

the higher Fe concentration may caused higher differences
between the control and the treatments.

While there is less literature data available for common
carp regarding the metal accumulation of organs, the differ-
ences found in the present study has been reported for other
fish species. Karadede et al. (2004) assessed the heavy metal
level in two fish species (Liza abu and Silurus triostegus)
collected by fishermen from the Atattürk Dam Lake located
on Euphrates. According to their study, the higher heavy metal
concentration was found in the liver and gills, while the lowest
concentration was observed in muscle, i.e. the different fish
tissues show dissimilar affinities for the accumulation of
heavy metals. Wei et al. (2014) studied different fish species
caught by fishermen in the spring time from lake Poyang,
China, and demonstrated that the metals show different affin-
ities to the fish organs since different metabolic ways for
heavy metals may be operative in different tissues.
Squadrone et al. (2013) draw similar conclusion when
European catfish (Silurus glanis) was analysed by electro fish-
ing boat in the Italian rivers covering the Po area [36, 37].

Table 3 Elemental concentration (mg kg−1, dry weight) of different organs in Cyprinus carpio (mean ± SE, N = 3)

Treatment Organs Cu K Mg Na Sr Zn

Control Muscle 2.7 ± 0.2a 13,451 ± 836b 1493 ± 90c 1404 ± 101ab 9.2 ± 2.0a 65 ± 23a

Gills 2.6 ± 0.4a 7525 ± 454a 1022 ± 68b 4786 ± 187ab 64 ± 6.4ab 1120 ± 100b

Liver 10.4 ± 2.2b 22,560 ± 3603c 1139 ± 188bc 4534 ± 846b 17 ± 5.8a 1572 ± 357b

Eyes 4.0 ± 0.2ab 7485 ± 185a 644 ± 30a 11,647 ± 378bc 15 ± 4.4a 681 ± 37ab

Brain 7.4 ± 0.3ab 15,198 ± 143bc 610 ± 12.4a 5597 ± 202bc 39 ± 21a 88 ± 8.0ab

1 Muscle 2.7 ± 0.1a 14,398 ± 215b 1613 ± 21c 1563 ± 49ab 6.7 ± 1.6a 47 ± 3.9a

Gills 2.3 ± 0.3a 6620 ± 835a 1042 ± 48b 4783 ± 149ab 65 ± 5.3ab 972 ± 116b

Liver 7.7 ± 1.8b 17,949 ± 1338c 914 ± 67bc 5086 ± 399b 2.4 ± 0.5a 2387 ± 1084b

Eyes 3.9 ± 0.2ab 7571 ± 158a 653 ± 22a 11,621 ± 351bc 6.6 ± 0.4a 653 ± 34ab

Brain 7.5 ± 0.6ab 15,868 ± 238bc 644 ± 17a 6042 ± 296bc 9.2 ± 6.6a 99 ± 12.8ab

2 Muscle 2.5 ± 0.1a 13,657 ± 621b 1512 ± 66c 1422 ± 85ab 4.2 ± 1.1a 39 ± 6.1a

Gills 2.8 ± 0.3a 7683 ± 313a 951 ± 52b 4772 ± 173ab 57 ± 4.7ab 1265 ± 134b

Liver 11.7 ± 2.5b 24,680 ± 3501c 1118 ± 91bc 5309 ± 496b 4.4 ± 1.8a 1377 ± 391b

Eyes 4.1 ± 0.1ab 7815 ± 154a 667 ± 13.9a 12,391 ± 262bc 6.7 ± 0.3a 702 ± 42ab

Brain 7.8 ± 0.7ab 15,876 ± 307bc 617 ± 14.3a 5694 ± 184bc 2.6 ± 0.2a 80 ± 4.3ab

3 Muscle 2.7 ± 0.1a 14,212 ± 294b 1639 ± 17c 1511 ± 119ab 4.7 ± 0.9a 38 ± 5.2a

Gills 3.0 ± 0.4a 7859 ± 376a 965 ± 40b 4972 ± 215ab 58 ± 5.5ab 1332 ± 147b

Liver 11.4 ± 1.2b 21,264 ± 1340c 1121 ± 106bc 5854 ± 505b 3.0 ± 0.9a 2044 ± 946b

Eyes 4.0 ± 0.1ab 7594 ± 162a 674 ± 18a 11,647 ± 452bc 7.4 ± 0.9a 707 ± 32ab

Brain 7.6 ± 0.4ab 15,422 ± 571bc 591 ± 23a 5927 ± 260bc 22 ± 11.9a 69 ± 7.5ab

4 Muscle 2.5 ± 0.1a 14,390 ± 298b 1637 ± 31c 1320 ± 74ab 8.1 ± 1.4a 52 ± 9.1a

Gills 2.7 ± 0.4a 7622 ± 466a 1008 ± 68b 4657 ± 130ab 61.4 ± 7.0ab 1306 ± 141b

Liver 6.2 ± 0.7b 15,866 ± 1107c 1018 ± 124bc 3447 ± 200b 22.3 ± 6.7a 591 ± 113b

Eyes 3.7 ± 0.1ab 7108 ± 165a 641 ± 19a 11,123 ± 274bc 11.9 ± 2.1a 461 ± 56ab

Brain 7.5 ± 0.3ab 16,474 ± 214bc 722 ± 29a 5544 ± 75bc 23 ± 9.4a 74 ± 5.9ab

Notations: treatment 1: Fe 0.57 mg L−1 , Mn 0.29 mg L−1 , treatment 2: Fe 0.57 mg L−1 , Mn 0.625 mg L−1 , treatment 3: Fe 1.50 mg L−1 , Mn
0.29 mg L−1 , treatment 4: Fe 1.50 mg L−1 , Mn 0.625 mg L−1 and control: Fe 0.005 mg L−1 , Mn 0.003 mg L−1 ). Different letters indicate significant
differences between treatments and the control for the same metal (p > 0.05)

Fig. 2 Scatter plot of canonical discriminant analysis (CDA) based on the
elemental concentration of the organs in common carp. Notations:
□—brain, ○—eyes, △—liver, —gills, ◊—muscle
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Yilmaz et al. (2007) conducted study with Leuciscus cephalus
and Lepomis gibbosus from South-West Anatolia showed that
the elemental concentration of gills and livers was similar and
that the muscle is not an actively accumulating organ. Thus,
muscle cannot accumulate metals in high concentration [38].
In contrast to our results, Rajeshkumar et al. (2013) found
statistical difference between elemental concentrations of
milkfish liver and gill in a polluted area of Kaattuppalli
Island, Chennei, India [39].

According to the literature data, the effect of Fe and Mn on
the biota in the aquatic ecosystem is less studied, while the
interactive effect of Cu and Zn is much more investigated.
Zhao et al. (2011) and Hao et al. (2013) studied the effect of
CuO and ZnO nanoparticles on the size and weight of juvenile
carp organs.We found good agreement with their results in the
concentration of Cu and Zn of control treatments. According
to Zhao et al. (2011), the concentration of Cu was similar to
our findings in the gills, in the liver, in the muscle and in the

brain [40]. Hao et al. (2013) also found similar concentrations
of Zn to our results in the gills, liver, muscle and brain [41].
Reynders et al. (2008) studied the metal accumulation in ju-
venile carp individuals, in Grote Nete River system (Belgium)
along a metal pollution gradient. Their results showed a good
agreement with ours since they measured 10–15 mg kg−1 Cu
and 1000–2200 mg kg−1 Zn in carp gills, 10–15 mg kg−1 Cu
and 1500–4000 mg kg−1 Zn in the liver and 5 mg kg−1 Cu and
100 mg kg−1 in the carp muscle [42].

Our results for K agree with Partridge and Lymbery (2009)
findings since significantly reduced K concentration was found
in the liver of mulloway in fish exposed to Mn [43]. We mea-
sured 17–35 times higher Zn levels in the gills than in the
muscle depending on treatments. According to Wei et al.
(2014), the concentration of Zn in the gills of carp was 43 times
higher than in the muscle similar to our findings. Furthermore,
they demonstrated that the gills and liver can accumulate the
greater amounts of heavy metals in benthic fish among organs
[37]. This statement is similar to ours since we found that the
highest concentration of Fe and Zn was in the carp gills and
liver. Watanabe (1997) also reported elevated Fe concentration
in gills. In our study in the treatment 4, the highest Fe and Mn
concentration was found in the gills compared to the control
treatment, because the gills may be of direct contact with the
water in fish life. The gills are the first organ which is in contact
with water and suspended sediment, respectively. One of the
possible reasons may be that the slimy region between the gill
lamellae partly accumulates trace metals due to the relatively
high contact area. Although, these slimy parts are impossible to
be removed individually during the sample preparation [32,
38]. Thus, the whole gills were analysed. In spite of the gills
and liver are an organ itself for selection tasks thus perfect for
controlling the trace metal accumulation.

Bioconcentration factor was used to prove the relation of the
concentration of Fe and Mn applied in the treatments and mea-
sured in fish tissue. It was found in recent study that the rate of

Table 4 Bioconcentration factors
(mean ± SD) for Fe and Mn in
common carp tissues

Elements BCF

Fe Treatments Muscle Gills Liver Eye Brain

1 70 ± 11 259 ± 105 2858 ± 998 158 ± 28 255 ± 20

2 56 ± 6 227 ± 67 4486 ± 453 146 ± 19 279 ± 143

3 29 ± 14 93 ± 4 1412 ± 715 170 ± 157 70 ± 5

4 71 ± 26 141 ± 39 1825 ± 799 170 ± 153 356 ± 279

Mn

1 137 ± 21 510 ± 206 5617 ± 1961 310 ± 54 502 ± 40

2 51 ± 5 207 ± 61 4091 ± 413 133 ± 18 254 ± 130

3 152 ± 70 479 ± 19 7302 ± 3687 882 ± 813 362 ± 23

4 171 ± 61 339 ± 95 4380 ± 1917 408 ± 367 853 ± 670

Notations: treatment 1: Fe 0.57 mg L−1 , Mn 0.29 mg L−1 , treatment 2: Fe 0.57 mg L−1 , Mn 0.625 mg L−1 ,
treatment 3: Fe 1.50 mg L−1 , Mn 0.29 mg L−1 , treatment 4: Fe 1.50 mg L−1 , Mn 0.625 mg L−1 and control: Fe
0.005 mg L−1 , Mn 0.003 mg L−1

Fig. 3 Scatter plot of canonical discriminant analysis (CDA) based on the
elemental concentration of the treatments in common carp. Notations:
■—control, ◊—treatment 1, ○—treatment 2, △—treatment 3,
●—treatment 4
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BCF values shows similarities for Fe andMn in the carp tissues
regarding the treatments. With the exception of liver the same
rate was observed in all tissues for both the studied metals. In
the case of the brain and muscle, the highest bioconcentration
was observed in treatment where both Fe and Mn were applied
in the highest level. In the case of the gills, the BCF value was
found to be the highest in the treatment 1. This finding corre-
lates with the elemental analysis results; gills showed the least
significant difference between the treatments regarding the ac-
cumulated level of Fe andMn among the organs. The liver is an
important organ in the detoxification pathway of vertebrates. In
this study, the highest BCF results were found in all treatments
for both Fe andMn. Parallel with this finding, the concentration
of these two metals occurred to be the highest in the liver of
carp juveniles [30].

Subotić et al. (2013) investigated the bioaccumulation of
heavy metals and trace elements in target tissues of four edible
fish species including common carp originating from the
Danube River, Serbia. They found the following
bioconcentration factors for common carp: for Fe in the liver,
BCF was 126.87, in the muscle, it was 18.31 and in the gills, it
was 100.77. The trend of the accumulation was similar in their
study for Fe to our results: liver > gills > muscle. According to
Subotić et al. (2013) for Mn, the BCFwas 37.5 in the liver, 2.2
in the muscle and 137.35 in the gills of carp. The trend in this
case slightly differs compared to our data where we found the
liver to be the most absorbing organ. In contrast to the study of
Subotić et al. (2013), our values for BCF are overall higher
since their data apply for freshwater and our BCF results are
calculated for an experiment where contaminated model me-
dia was used for fish rearing [44].

Conclusions

During the 49-day exposure period, negative influence of Fe
and Mn was not detected on the survival and individual body
weight of the carp juveniles. The highest concentration of Fe
and Mn was found in the liver and in the brain of the fish,
while the lowest concentrations were measured in the muscle
tissue and in the gills. The brain, muscle tissue and gills
contained statistically higher concentrations of Fe and Mn
only in the treatment 4. Iron has a positive effect on the Mn
accumulation since in those treatments where the Fe concen-
tration was high, significantly higher concentration ofMnwas
found. Our results demonstrate that the metal accumulation
occur in almost all organs; however, these concentrations
and the applied exposure time do not cause notable change
either in the survival rate or in the individual body weight of
fish. These results therefore suggest that the organs are not
affected by the accumulated elements. Furthermore, it was
found that the Fe level determines more the retention process
of Mn and the other trace metals.
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