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Recent studies suggest that proinsulin-connecting peptide (C-peptide) may exhibit characteristics of a hormone and
show physiological functions in various tissues. This study was aimed to determine whether C-peptide could be
involved in the regulation of lipolysis, adiponectin release, and function of mesenchymal stem cells (MSCs) in
adipose tissue. Human subcutaneous adipose tissue was cultured in the presence of C-peptide. The level of lipolysis
was determined by glycerol measurement in the conditioned media. Effect of C-peptide on adiponectin secretion was
evaluated in differentiated adipocytes. The adipogenic and osteogenic abilities of adipose MSCs were evaluated
using oil red and alizarin red staining, respectively. The tetrazolium bromide test was conducted for evaluating the
effect of C-peptide on MSCs proliferation. C-peptide induced a significant decrease in basal lipolysis at concentra-
tions of 8 and 16 nM (p < 0.05). It had no significant effects on isoproterenol-stimulated lipolysis, adiponectin
secretion, and adipogenic or osteogenic differentiation of MSCs. At a concentration of 4 nM, this peptide
significantly increased the proliferative capability of MSCs (p < 0.05). These results suggest that C-peptide has
some physiological effects in human subcutaneous adipose tissue and contributes to the regulation of basal lipolysis
and pool of MSCs.
Keywords: adipose tissue, adiponectin, C-peptide, stem cells, differentiation

Introduction

Proinsulin-connecting peptide (C-peptide) is a cleavage product of insulin release in the
pancreatic beta cells. For a long time, it has been considered as a biologically inert byproduct
of insulin synthesis, and served just as an indicator of endogenous insulin secretion in diabetic
patients (6). However, recent data from several lines of studies suggest that C-peptide may
exhibit characteristics of a peptide hormone and show physiological functions in various
tissues (21, 53). It increases muscle glucose transport (46) and tissue blood flow (25, 29), and
has cytoprotective and antiapoptotic effects (8). It is now accepted that this peptide improves
the function of most organs affected by diabetes complications (e.g., kidney, heart, and nerve)
and administration of C-peptide together with the classic insulin therapy may prevent, retard,
or ameliorate diabetic complications in patients with type-1 diabetes (21, 52, 53). For
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example, clinical studies have shown that combination of C-peptide and insulin can
ameliorate nephropathy and neuropathy in diabetic patients (28, 52).

Diabetic patients show a spectrum of abnormalities in lipid metabolism including
increased serum lipids, uncontrolled lipolysis, and dysregulation of adipogenesis and
lipogenesis in adipose tissue. These abnormalities are associated with the development of
atherosclerosis and cardiovascular diseases (4, 24, 34). In addition, there are some reports that
diabetes may impair some abilities of mesenchymal stem cells (MSCs). For example,
decreased mobilization ability of bone marrow MSCs and decreased wound-healing capa-
bility of adipose tissue MSCs have been demonstrated in the patients with type 1 and type 2
diabetes (7, 12).

Although insulin-like actions of C-peptide have been reported in some tissues, such as
muscle, the effects of C-peptide on adipose tissue, the main target organ of insulin involved in
lipid metabolism, are not yet well known. In our previous studies on normal and diabetic rats,
we observed that this peptide may conditionally act as an antilipolytic hormone (19, 20). The
aim of this study was to examine whether C-peptide could be involved in the regulation of
lipolysis, adiponectin secretion, and proliferation and differentiation abilities of MSCs in
human subcutaneous adipose tissue.

Materials and Methods

Chemical compounds

High glucose Dulbecco’s Modified Eagles Medium (DMEM)), fetal bovine serum (FBS), and
trypsin were purchased from Gibco (Grand Island, NY, USA). Dimethyl sulfoxide
(DMSO0), fatty acid-free bovine serum albumin fraction V, glycerol assay reagent, isopro-
terenol (ISO), human adiponectin enzyme-linked immunosorbent assay (ELISA) kit,
penicillin-streptomycin solution, type-II collagenase, 3-isobutyl-1-methylxanthine, 3-(4,5-
dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and 4-(2-hydroxyethyl)
piperazine-1-ethanesulfonic acid sodium salt (HEPES) were obtained from Sigma-Aldrich
(St. Louis, MO, USA). Human C-peptide was purchased from Bachem (Bubendorf,
Switzerland). Human insulin and indomethacin were kindly provided by Exir Company,
Iran. Fluorescein isothiocyanate-conjugated antibodies against CD34, CD44, CD45, and
CD105 were bought from AbD Serotec (Raleigh, NC, USA).

Subjects

The subcutaneous adipose tissue samples were obtained from patients (35-55 years, body
mass index less than 30 kg/m?) undergoing conventional intra-abdominal surgery (chole-
cystectomy and hernia repair). Pregnant women and patients with serious diseases such as
cancer, infections, and autoimmune diseases were excluded. The study protocols were
reviewed and approved by the Ethics Committee of the Mashhad University of Medical
Sciences. Informed written consent was obtained from each volunteer for obtaining a
subcutaneous fat sample.

Lipolysis study

The effect of C-peptide on lipolysis was evaluated in ex vivo organ culture condition. The
tissue samples were minced into small slices with a sterile procedure, washed with phosphate-
buffered saline (PBS), and dried on the sterile gauze. Then, the tissue slices were precisely
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weighed and distributed into 24-well plates (100 mg/well). For basal lipolysis assessment, the
tissue slices were cultured for 24 h in serum-free DMEM (1 ml/well) in the presence or
absence of 4—16 nM C-peptide at 37 °C in an atmosphere of 5% CO,. For stimulated lipolysis
assessment, the tissue slices were distributed into a 24-well plate (100 mg/well) containing
1 ml/well Krebs—Ringer bicarbonate buffer (118 mM NaCl, 4.8 mM KCI, 1.3 mM CaCl,,
1.2 mM MgSO,, 1.2 mM KH,PO,4, and 10 mM NaHCO;) supplemented with 5.5 mM
glucose, 25 mM HEPES, and 2% (w/v) bovine serum albumin (16). Then, the tissues were
treated for 90 min with 1 uM ISO (a non-selective beta-adrenergic receptor agonist) and
4—16 nM C-peptide under constant shaking at 37 °C. The level of lipolysis was determined by
measurement of glycerol in the conditioned media using glycerol assay reagent based on an
enzymatic method.

Isolation and characterization of MSCs

Adipose tissue samples were minced into small slices, washed with PBS, and incubated in
PBS containing collagenase (2 mg/ml) under constant shaking at 37 °C (17). After 90 min,
the digested tissues were centrifuged for 5 min at 2,000 rpm and the floated lipid layer
was discarded. The precipitated stromal cells were washed with PBS and then cultured in
25-cm? flasks containing DMEM supplemented with 10% FBS, 100 pg/ml streptomycin, and
100 IU/ml penicillin. After 24 h, non-adherent cells were discarded and anchored cells were
expanded over three passages. To confirm MSC phenotype of isolated cells, they were
incubated with antibodies against cell surface antigens CD34, CD44, CD45, and CD105 for
30 min at 4 °C. After washing with PBS, the cells were suspended in PBS supplemented with
2% FBS and then flow cytometric analysis was performed using an FACSCalibur
(BD Biosciences, San Jose, USA) flow cytometer.

Cell proliferation assay

The effect of C-peptide on the proliferation of MSCs was evaluated using MTT assay. The
cells from passage 3 were seeded in 96-well culture plates (5 x 10° cells/well) in DMEM
supplemented with 100 pg/ml streptomycin, 100 IU/ml penicillin, and 10% FBS. After 24 h,
the culture media was changed by a fresh one containing 1-64 nM C-peptide. The cells were
incubated for either 24 h or 48 h at 37 °C in an atmosphere of 5% CO,. Then, MTT was added
to the media at a final concentration of 0.5 mg/ml. After 3 h, the media was discarded and the
precipitated formazan dye was dissolved in DMSO. The absorbance of the dye was measured
at 545 nm using a StatFax303 plate reader.

Adipogenic differentiation assay

The MSCs at passage 3 were seeded in 12-well plates (5 x 10* cells per well) and cultured for
24 h in DMEM supplemented with 10% FBS, 100 pg/ml streptomycin, and 100 IU/ml
penicillin. Then, for adipogenic induction, the cells were incubated with the differentiation
medium consisting of DMEM supplemented with 3% FBS, 5 pM indomethacin, and 1 pM
dexamethasone, in either the presence or absence of 0.2 uM insulin or 16 nM C-peptide. The
cells were maintained in adipogenic medium for 12 days; meanwhile, the medium was
replaced every 3 days. Then, the cells were fixed with 10% formalin and stained with oil red
O dye, which stains intracellular triglycerides in differentiated adipocytes. After washing
thrice with PBS, 200 pl isopropanol was added to each well to elute the stain from cells and its
optical density was measured at 545 nm (2).
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Osteogenic differentiation assay

The MSCs at passage 3 were seeded in 12-well plates (5 x 10 cells per well) and cultured
for 24 h in DMEM supplemented with antibiotics and 10% FBS. For osteogenic
induction, the cells were further cultured in a differentiation medium consisting of DMEM
supplemented with 10% FBS, 10 pg/ml ascorbic acid, 5 mM f-glycerol phosphate, and
0.1 pM dexamethasone in the presence or absence of 4—16 nM C-peptide. The cells
were maintained in the osteogenic medium for 2 weeks and the medium was replaced
every 3 days. Then, the cells were fixed with formalin and stained with alizarin red
dye which stains calcium-rich mineral deposits excreted by differentiated cells. After
washing the wells thrice with PBS, 400 pl 0.5N HCI-5% sodium dodecyl sulfate solution
was added to each well to solubilize the stain and its optical density was measured at
405 nm (3).

Adiponectin release assay

The effect of C-peptide on adiponectin secretion was evaluated in differentiated adipocytes.
Initially, MSCs were seeded in 6-well plates (1 x 10> cells/well) and differentiated
into adipocytes as described above. Then, the differentiated adipocytes were incubated
in serum-free DMEM containing 4, 8, or 16 nM of C-peptide for 24 h at 37 °C in an
atmosphere of 5% CO,. The level of adiponectin in condition media was measured with
ELISA method.

Statistical analysis

Data were analyzed by one-way analysis of variance, followed by Tukey’s post hoc test.
The results were presented as mean =+ standard error of mean (SEM). They were considered to
be statistically significant when p values were less than 0.05.

Results

Effect of C-peptide on lipolysis

Table I demonstrates the effect of C-peptide on adipose tissue lipolysis. The presence
of 8 and 16 nM of C-peptide in the culture medium reduced the level of lipolysis to
83% + 6% and 83% =+ 4% of the basal level, respectively (p < 0.05). Regarding stimulated
lipolysis, ISO (1 pM) led to a significant elevation in lipolysis (p < 0.01) as expected.
C-peptide at the tested concentrations had no significant effect on ISO-stimulated
lipolysis.

Characterization of MSCs
Flow cytometric analysis showed that the MSCs isolated in this work were positive for stem
cell-associated markers CD44 and CD105, and consistently negative for hematopoietic
markers CD34 and CDA45.

Effect of C-peptide on MSCs proliferation
As shown in Fig. 1A, incubation with 4 nM C-peptide for 24 h significantly increased
proliferation of MSCs compared with untreated cells (136% + 13% vs. 100% =+ 3%,

p < 0.05). Similarly, after 48 h incubation, C-peptide could significantly (12%, p < 0.05)
enhance proliferation of MSCs only at a concentration of 4 nM (Fig. 1B).
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Table I. Effects of C-peptide on basal and stimulated lipolysis in human subcutaneous adipose tissue

Treatment Relative lipolysis (%)

Basal lipolysis Control 100 + 3

C-peptide (4 nM) 98 + 6

C-peptide (8 nM) 83 + 4%

C-peptide (16 nM) 83 + 3*
Stimulated lipolysis Control 100 £ 5

ISO (1 pM) 327 + 54%*

ISO (1 pM) + C-peptide (4 nM) 303 + 50*

ISO (1 pM) + C-peptide (8 nM) 304 + 54*

ISO (1 pM) + C-peptide (16 nM) 267 + 47

Basal lipolysis: adipose tissue slices were cultured for 24 h in serum-free DMEM in the presence of C-peptide.
*p < 0.05 vs. untreated cells. Stimulated lipolysis: the tissue slices were maintained in Krebs—Ringer bicarbonate
buffer and treated for 90 min with 1 pM ISO or human C-peptide. *p < 0.05 vs. control; **p < 0.01 vs. control
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Fig. 1. Effect of C-peptide on the proliferation of MSCs isolated from human subcutaneous adipose tissue. The MSCs

were treated for either 24 h (A) or 48 h (B) with human C-peptide and then MTT assay was performed. Data are

represented by means + SEM of three independent experiments performed in triplicate. *p < 0.05 vs. untreated cells
(concentration of 0)

Effects of C-peptide on MSCs differentiation

Figure 2 shows the effect of C-peptide on osteogenic differentiation of MSCs. Incubation of
the differentiating cells with C-peptide concentrations of 4, 8, and 16 nM had no effect on
osteogenesis as evaluated with alizarin red staining of the extracellular calcium deposit.
Figure 3 demonstrates the effect of insulin and C-peptide on adipogenic differentiation of
MSCs. The addition of insulin to the differentiation medium promoted the accumulation of
intracellular lipid droplets. On the other hand, C-peptide at the tested concentration (16 nM)
failed to induce adipogenic differentiation of MSCs. It also failed to enhance the stimulatory
effect of insulin on intracellular lipid droplet accumulation.
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Effect of C-peptide on adiponectin release

The effect of C-peptide on adiponectin secretion from differentiated adipocytes is shown in
Fig. 4. In the presence of 4, 8, and 16 nM of this peptide, concentrations of adiponectin in
culture media were 11 + 2 ng/ml, 9.8 + 2 ng/ml, and 8.7 + 2.5 ng/ml, respectively, which
were not statistically different from the value measured in the medium of untreated cells
(8.3 £ 2.5 ng/ml).

Discussion

This is the first study to show that C-peptide decreases lipolysis and increases proliferation of
MSCs in human adipose tissue. These results rule out the earlier view that that C-peptide is
biologically inert and supports the current suggestion that it not only plays an important role
in the synthesis of insulin but also acts as a peptide hormone.

The adipose tissue is one of the largest compartments in the body and has many
physiological functions including energy storage and hormone secretion (1, 32). During times
of energy excess, it accumulates triglyceride through lipogenesis and adipogenesis processes,
and during calory insufficiency, it delivers the stored triglyceride through the activation of
lipolysis (10). This tissue is one of the main target organs of insulin, where it stimulates
lipogenesis and adipogenesis, and inhibits lipolysis (18, 21, 31, 35, 45). Lipolysis is under the
control of the endocrine and the nervous systems. Catecholamines stimulate lipolysis through
beta-adrenergic receptors, which enhance adenylate cyclase activity, and raise intracellular
production of cyclic adenosine monophosphate (CAMP). The increased cAMP results in
activation of protein kinase A and subsequent activation of hormone sensitive lipase. On the
other hand, insulin inhibits lipolysis by activating the phosphodiesterase-3B and consequently
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Fig. 3. Effect of C-peptide on adipogenic differentiation of MSCs isolated from human subcutaneous adipose tissue.
The MSCs were maintained in adipogenic medium (consisting of DMEM supplemented with 3% FBS, 5 uM
indomethacin, and 1 pM dexamethasone) for 12 days either in the absence (A) or presence of 0.2 pM insulin (B),
16 nM C-peptide (C), or both insulin and C-peptide (D). The lipid accumulation was quantified by measuring the
optical density of oil red O stain eluted from cells (E). Data are represented by means + SEM (n = 3). **p < 0.01 vs.
control. Black arrow: oil red O stained intracellular lipid droplets; CP16: 16 nM C-peptide
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reduces cAMP level (35). This data showed that C-peptide, at concentrations of 8 and 16 nM,
decreases lipolysis in the basal state and therefore possesses insulin-like action on lipolysis.
This effect is most probably mediated by activating phosphodiesterase-3B in adipocytes (20).
Insulin deficiency as seen in type-1 diabetes is associated with increased lipolysis that
ultimately results in severing fat loss and even diabetic ketoacidosis (22, 43). Because of the
antilipolytic property of C-peptide, coreplacement of insulin and C-peptide may prevent, retard,
or ameliorate such diabetes-related complications.

In our previous works on the visceral adipose tissue of normal rats, the inhibitory
effect of C-peptide (6 nM) on basal lipolysis remained non-significant after 90 min of
incubation (19). In this study on subcutaneous adipose tissue, we tested several concen-
trations of C-peptide (4, 8, and 16 nM) in an incubation period of 24 h and observed
significant antilipolytic action at concentrations >8 nM. In addition to species-related
differences or incubation period, anatomical depot-related differences in lipolytic activity
of adipose tissues may explain the differing results. Several studies have reported that there
are fat depot-related differences with regard to glucose uptake (48, 51), endocrine function
(38, 39), and lipolysis (5, 44, 50, 55). The subcutaneous adipose tissue shows higher basal
lipolysis than visceral fat depots. On the other hand, catecholamines-induced lipolysis is
more pronounced in visceral than subcutaneous fat (5, 44, 50, 55). In addition, some
antilipolytic agents including insulin and clonidine exert a more potent antilipolytic effect
on subcutaneous than visceral adipocytes (44, 55). Therefore, the possibility that C-peptide
might affect basal lipolysis in a depot-specific manner should be tested in humans by future
studies.
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In addition, biological effects of C-peptide may be varied depending on the metabolic
status of the body. There are some reports which suggest that certain actions of C-peptide
appear only in diabetes and not in normal condition (33, 41). Consistent with this
hypothesis, results of this study and our previous works (19, 20) showed that C-peptide
significantly inhibited ISO-stimulated lipolysis in untreated diabetic rats, whereas it
virtually had no effect on the stimulated lipolysis in insulin-treated rats and in non-diabetic
subjects.

White adipose tissue secretes a large number of endocrine factors, called adipokines,
such as adiponectin, leptin, resistin, and visfatin. Inappropriate secretion of adipokines is
known to be involved in the development of obesity-related pathologies including athero-
sclerosis, diabetes, and inflammation (9). The effects of C-peptide on endocrine function of
subcutaneous adipose tissue are not yet well known. Recently, Garcia-Serrano et al. (15)
demonstrated that this peptide at concentrations of 1 and 10 nM increased leptin and
decreased visfatin secretion from human visceral fat. In this study, the effect of C-peptide on
adiponectin secretion was investigated in human subcutaneous adipocytes. Adiponectin is a
secretory protein, which promotes beta cell survival and function, decreases serum glucose by
reducing hepatic glucose output, increases adipocyte number, and induces local and systemic
anti-inflammatory effects (49). Decreased adiponectin level is associated with insulin
resistance, metabolic syndrome, and extension of coronary artery disease (11, 54). Strategies
to increase adiponectin have been suggested as an approach for management of adipose
tissue-linked diseases, such as diabetes and insulin resistance (54). This data showed that
C-peptide at 4 nM induced a non-significant increase (approximately 32%) in adiponectin
secretion. This effect was attenuated at higher concentrations of C-peptide (8 and 16 nM),
suggesting that the effect might be significant at C-peptide concentrations of <4 nM.
However, Garcia-Serrano et al. (15) reported that C-peptide at 1 nM did not significantly
alter the adiponectin secretion in visceral fat. Considering the aforementioned fat depot-
related differences, further works are suggested to elucidate the effect of lower concentrations
of C-peptide on adiponectin secretion in the subcutaneous adipose tissue.

Patients with type-1 diabetes show decreased fat mass mainly due to lack of trophic
action of insulin on adipose tissue (22). The adipose mass is determined by both the number
and size of adipocytes. While the dimension of adipocytes depends on the rate of lipolysis
and lipogenesis, their number is controlled by a balance between generating new adipocytes
(adipogenesis) and adipocyte apoptosis (27, 47). New adipocytes are believed to arise from
resident MSCs, a process which is promoted by insulin (36). Consistent with this, this data
showed that the presence of insulin in the adipogenic culture medium is essential for
differentiation of MSCs into adipocytes. However, C-peptide did not induce adipogenic
differentiation of MSCs and also failed to enhance the adipogenic effect of insulin. The
effect of C-peptide on adipogenesis was examined only at a concentration of 16 nM, which
is one limitation of this study. Nevertheless, the inability of C-peptide in inducing
differentiation was also observed regarding osteogenic differentiation of MSCs which
was examined at 4, 8, and 16 nM C-peptide. On the other hand, C-peptide could increase
proliferation of MSCs, suggesting that it may contribute to preserving an optimal pool of
adipose MSCs required for adipogenesis and tissue repair. Nowadays, the abilities of
adipose MSCs to proliferate and differentiate into diverse cell lineages, to migrate and
home into damaged tissues, and to secrete several growth factors have made them attractive
candidates for cell therapies and tissue engineering (42). However, there are some
challenges that need to be resolved to increase the efficiency of stem cell therapy. One
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of the major challenges is the limited number of stem cells that can be obtained from many
tissues. One approach is to incubate stem cells in vitro with pro-proliferative hormones or
growth factors to generate enough numbers of cells for subsequent cell therapy (18). The
stimulatory effect of C-peptide on the proliferation of adipose MSCs makes it a good choice
for expanding stem cell number.

Proliferation and differentiation of MSCs are regulated by complex networks of
transcription factors that control the expression of hundreds of proteins involved in
survival and commitment of the cells to a certain phenotype. The two principal
adipogenic factors, such as peroxisome proliferator-activated receptor-y (PPARY) and
CCAAT/enhancer binding protein-a (C/EBPa), are at the center of a network of
transcription factors responsible for adipogenic differentiation of MSCs (14). On the
other hand, while some transcription factors such as runt-related 2 (Runx2) and osterix
are inducers of differentiation toward osteoblasts, PPARy and C/EBP are considered as
inhibitory factors for osteogenic differentiation of MSCs (13). In addition to regulating
differentiation, transcription factors of the C/EBP family are of fundamental importance
for controlling MSCs proliferation through interaction with proteins of the cell cycle (40).
There are no sufficient data on the effects of C-peptide on the expression of transcription
factors in MSCs and future studies are required in this area. Yet, in multiple cell types
from multiple tissues, this peptide has been reported to stimulate several transcription
factors (e.g., PPAR, Bcl-2, nuclear factor-kB, and cAMP-responsive element-binding
protein) that have key roles in the control of cell processes, such as growth and apoptosis.
C-peptide stimulates these factors through its own intracellular signaling or by cross talk
with the insulin pathway (23, 26). It is rational to assume that, in diabetes, deficiency in
the levels or activities of insulin and C-peptide can be accompanied by dysregulation of
the aforementioned transcription factors. However, the results published in the literature
are not consistent; Minteer et al. (37) reported that PPAR-y expression is not different
between MSCs of non-diabetic and type 2 diabetic subjects, but Jumabay et al. (30)
reported an increase in the expression of PPAR-y and C/EBPa in MSCs of type 2 diabetic
rats compared with non-diabetic rats.

In conclusion, results of this study suggest that C-peptide has physiological effects in
human subcutaneous adipose tissue and contributes to the regulation of basal lipolysis and
pool of MSCs. Therefore, C-peptide deficiency in type-1 diabetes may be involved in
dysregulation of adipose tissue functions. These results also support the current idea that
coreplacement of insulin and C-peptide in diabetic patients may prevent or even ameliorate
some of the diabetes-related complications.
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