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Recently, we reported the induction of protective immunity by environmental
Escherichia albertii strain DM104 against Shigella dysenteriae in guinea pig model.
In this study, we assessed three different immunization routes, such as intranasal, oral,
and intrarectal routes, and revealed differences in immune responses by measuring
both the serum IgG and mucosal IgA antibody titers. Protective efficacy of different
routes of immunization was also determined by challenging immunized guinea pigs
against live S. dysenteriae. It was found that intranasal immunization showed
promising results in terms of antibody response and protective efficacy. All these
results reconfirm our previous findings and additionally point out that the intranasal
immunization of the environmental E. albertii strain DM104 in guinea pig model can
be a better live vaccine candidate against shigellosis.
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Introduction

Shigella species (spp.) are the causative agents of acute diarrheal disease,
shigellosis, with symptoms including abdominal cramps, watery or bloody diarrhea,
and fever. Recent estimates represent diarrhea as the third-leading cause of infant
mortality worldwide [1], and those most affected by shigellosis are children below
the age of 5 [2–4]. There are four different Shigella spp. causing mild to severe
diarrhea and attempts have already been taken under consideration for vaccine
development [5, 6]. Among these, Shigella flexneri and Shigella dysenteriae are
more prevalent in developing countries, whereas Shigella sonnei appears in regions
with advanced sanitation standards. Ideally, a successful vaccine against Shigella is
expected to be highly immunogenic without adverse side effects. While both live-
attenuated Shigella strains and parenteral conjugate vaccine candidates have shown
different degrees of success in human volunteer and non-human primate studies,
licensed vaccines against shigellosis are yet to be available [7].

In recent years, our group has isolated a number of Shigella-like bacteria from
freshwater environments in Bangladesh that serologically cross-reacted with different
Shigella spp. serotypes [8–10]. One of these strains included an environmental isolate
of Escherichia albertii (strain DM104), cross-reacting with S. dysenteriae type 4 [10].
DM104 strain was isolated from the Buriganga river in Dhaka, Bangladesh [11]. The
strain was phylogenetically identified as E. albertii and showed a similar lipopoly-
saccharide (LPS) gel banding profile to that of S. dysenteriae type 4 [10]. Recently, it
was also demonstrated that the DM104 isolate was non-invasive, did not produce any
entero- or cytotoxins, and showed negative results in the mouse lethal activity assay
[12]. The non-pathogenic DM104 strain gave, however, a high protective efficacy as
an ocularly administered vaccine in the guinea pig eye model against S. dysenteriae
type 4 challenge. It also induced a high titer of serum IgG against S. dysenteriae type 4
whole cell lysate (WCL) and LPS. On the whole, DM104 could be a good choice as a
live vaccine candidate against shigellosis. In this study, we compared three different
routes for immunization with the DM104 vaccine in guinea pigs to understand the
better route of administration of the DM104 vaccine and its immunogenicity and
protective efficacy in animal model.

Materials and Methods

Bacterial strains

E. albertii strain DM104 [10] and S. dysenteriae type 4 were obtained from
the stock culture of the Department of Microbiology, University of Dhaka, Dhaka,
Bangladesh.
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Animals

Male Hartley guinea pigs (body weight: 200–250 g) were maintained in the
Department of Microbiology, University of Dhaka, and all experiments using
animals were undertaken following the ethical issues set by the Faculty of
Biological Sciences, University of Dhaka.

Immunization

Intranasal and oral immunizations.Guinea pigs were divided into four groups with
10 guinea pigs in each. Two groups were immunized with live bacteria through
the intranasal and oral routes [13], and other two groups were used as negative
control for each immunization scheme. An overnight bacterial culture in Brain
Heart Infusion Broth was harvested, and the bacterial pellet was suspended in
phosphate-buffered saline (PBS) at a concentration of approximately 109 CFU
(colony-forming unit)/ml by comparing with McFarland standards. Guinea pigs
were anesthetized with diethyl ether and immunized with the live DM104
bacteria either intranasally or orally on days 0, 14, and 28. For intranasal
immunization, a suspension of the live DM104 bacteria was applied drop wise to
both the nostrils (50 μl each, 100 μl total) of the guinea pigs. For oral
immunization, 500 μl of live DM104 bacteria was administered through an
orogastric tube (no. 6) followed by a dose of 500 μl of 1.4% sodium bicarbonate
to neutralize the gastric acidity. Guinea pigs immunized with PBS only were
considered as a negative control group.

Intrarectal immunization. A total of eight guinea pigs were anesthetized before
being immunized through the intrarectal route with 5 × 108 CFU of DM104 cells
in 100 μl PBS on days 0 and 14 [14]. Another group of eight guinea pigs
immunized with PBS only was used as the negative control group.

Collection of serum and other body fluids

Two guinea pigs from each intranasally and orally immunized and control
groups were used for collection of blood, eye wash, and intestinal lavage fluid, one
day before the challenge experiment. Sera were separated from the blood and
stored in aliquots at −20 °C until used. Eye wash was collected from the guinea
pigs by instilling 30 μl of PBS in each eye. Intestinal lavage fluid fluids were
collected from the guinea pigs as described by Orr et al. [15]. In brief, 20–25 cm of
the small intestine, mainly the jejunum portion, was removed, and 0.5 ml of PBS
containing 0.1% bovine serum albumin, 50 mM ethylenediaminetetraacetic acid,
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and 0.1 mg of soybean trypsin inhibitor per ml was passed through it and intestinal
fluid was collected. Phenylmethylsulfonyl fluoride was then added to the fluid
(1 mM, final concentration), followed by vigorous vortexing and centrifugation at
1,000 × g for 20 min to remove cells and debris. After supernatant collection,
sodium azide (0.1%, final concentration) was added and the preparation was stored
at −20 °C until used. One week after the second immunization dose through
intrarectal route, two of the guinea pigs from each group were sacrificed for blood
sera collection.

Measurement of antibody titers

Enzyme-linked immunosorbent assay (ELISA) was performed to quantify
the serum IgG and IgA and mucosal IgA against WCL of DM104 and
S. dysenteriae type 4 [16]. Wells were precoated with DM104 and S. dysenteriae
type 4 WCL (1 μg/well) and incubated with serially diluted guinea pig sera as the
primary antibody. IgG and IgA antibody titers were determined using peroxidase-
labeled goat anti-guinea pig IgG (Sigma, USA) and IgA (Innovative Research,
USA). Endpoint titers were determined for each serum by taking the reciprocal of
the dilution at which the average optical density (OD) at 450 nm value was greater
than the mean of negative control sera samples plus 10 standard deviations (SD) of
the mean or 0.1, whichever was greater [17].

Challenge assay

Two weeks after the last dose of intranasal and oral immunizations, the
remaining eight guinea pigs from each immunized and control groups were used
for challenge experiment. The guinea pigs were conjunctively inoculated [18] with
live S. dysenteriae type 4 (20 μl each, ∼5 × 108 CFU/ml, corresponding to five
times of the infective dose 50). All these animals were observed daily for 5 days
and scored for the development of disease or protection [12, 17].

One week after the second immunization dose, the remaining six guinea pigs
from the intrarectally immunized group were inoculated with 109 CFU of the
S. dysenteriae type 4 in 100 μl PBS through intrarectal route [14]. After 24 h, two
of the guinea pigs from each group were monitored for physiological and
macroscopic changes, and the others were sacrificed to collect the distal region
of the colon to examine the histopathological changes. Randomly selected distal
regions of the colon were washed with PBS and fixed in 4% formaldehyde for
1 h at 4 °C. The tissues were dehydrated by gradually soaking in alcohol and
xylene and were embedded in paraffin [19]. Formalin-fixed, paraffin-embedded
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slides were sectioned at 6 μm thickness, stained with hematoxylin and eosin,
and examined under microscope. For evaluation of the biopsy specimens,
histopathological features were selected as described by Rabbani et al. [20]. The
criteria were as follows: (i) mucosal erosions were considered only when
neutrophils or bleeding were present at the site of damage, (ii) cellular infiltrate
within the lamina propria was subjectively assessed for increase in total number
and relative number of neutrophils and mononuclear cells, and (iii) distorted crypt
architecture was considered if there was crypt branching or when the regular and
parallel array of crypts was deranged or irregular shape of crypt epithelial cells
leading to damage of crypt architecture. Thus, histopathological changes were
graded as mild, moderate, or severe. Normal histology or chronic inflammation
was graded as 0. Mild inflammation was diagnosed when the epithelial lining was
intact with some cellular infiltrate and an increase in inflammatory cell in the
lamina propria and with or without edema. Specimens with moderate changes had
focal erosions of the epithelial surface and a pronounced increase in cellular
infiltrate in the lamina propria and derangement of the crypts. Severe inflammation
was diagnosed in presence of diffused mucosal erosion with surface exudates and
damaged crypt architecture or crypt abscesses.

Statistical analysis

Mean± standard error of measurement or mean± SD were determined, and
ELISA OD titers were compared using Student’s t-test. A statistical comparison of
protection data was determined using Fisher’s exact test. p values of <0.05 were
considered significant.

Results

Protective efficacy of the live DM104 in guinea pig model

Guinea pigs, which were immunized through intranasal or oral route
and later ocularly challenged 2 weeks after the last dose with wild-type
S. dysenteriae type 4, were observed for the onset of symptoms [17]. Three
of the eight intranasally immunized guinea pigs completely resisted kerato-
conjunctivitis and two guinea pigs showed mild keratoconjunctivitis after
3 days of challenge (Table I). The remaining three guinea pigs showed fully
developed keratoconjunctivitis. In case of orally immunized group, two guinea
pigs showed mild inflammation, whereas the remaining six guinea pigs showed
fully developed keratoconjunctivitis with or without purulence. However, all
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eight control guinea pigs immunized with PBS developed keratoconjunctivitis
within 4 days of the live-cell challenge. If we consider the number of eyes with
a rating of 2 or 3 versus eyes with a rating of 0 or 1, then these results indicated
63% and 25% protective efficacy of the DM104 isolate in the intranasally and
orally immunized guinea pig eye model, respectively.

After 24 h following challenge with 109 CFU of S. dysenteriae type 4 by the
intrarectal route, guinea pigs immunized with PBS developed bacillary dysentery
characterized by weight loss, tenesmus, and liquid stool mixed with mucus and
blood (Table II). Furthermore, the body temperature increased by ∼2 °C at 24 h
after challenge compared with that of DM104-immunized group. Macroscopical-
ly, the distal region of the large intestine of PBS-immunized guinea pigs only
showed internal hemorrhage, whereas the group of guinea pigs immunized with
the DM104 strain did not suffer from the abovementioned symptoms. To examine
the histopathological changes, the distal regions of the colon in the guinea pigs
were observed for tissue destruction and inflammation after 24 h following
intrarectal challenge with S. dysenteriae type 4. This examination revealed that
the DM104-immunized group and the control group differed significantly
(p< 0.05). Severe inflammation was observed in the distal colons of the control
group guinea pigs receiving PBS (Figure 1a), whereas distal colons of the DM104-
immunized group appeared normal (Figure 1b) except for one of the guinea pigs
that suffered from mild inflammation in the colon. The result of inflammation

Table I. Protective efficacy of the DM104 in guinea pig’s eyesa immunized through intranasal or oral routes

No. of eyes
(n= 8) with rating

Immunization with Route of immunization 0 1 2 3 Disease/totalb Protection (%)c

PBS (control) Intranasal 0 0 0 8 8/8 0
Oral 0 0 1 7 8/8 0

DM104 Intranasal 3 2 2 1 3/8 63
Oral 0 2 5 1 6/8 25

aGuinea pigs were immunized intranasally or orally on days 0, 14, and 28 and later ocularly challenged on
day 42 with S. dysenteriae 4. Development of disease was rated as follows: 0, no sign and symptom of
inflammation; 1, mild keratoconjunctivitis; 2, keratoconjunctivitis without purulence; 3, severe keratocon-
junctivitis with purulence.
bGuinea pigs were considered unhealthy if they had a rating of 2 or 3.
cPercentage of protection was calculated by the following formula:

�
% of disease in controls − % of disease in vaccines

% of disease in controls

�
× 100
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grade after challenge was found to be statistically significant between the
immunized and control groups of guinea pigs (p< 0.05).

Immune response

Immunogenicity of the live DM104 was measured by determining the levels
of serum IgG and IgA and mucosal IgA in eye wash and intestinal lavage fluid

Table II. Evaluation of the DM104-immunized guinea pigs (through intrarectal route) for protection
assaysa

Body weight (g)

Immunization
with

Challenge
with Initial Terminal

Frequency
of tenesmus

Stool mixed
with mucus
and blood

Body
temperature

(°C)

PBS S. dysenteriae
type 4

290 ± 2 250 ± 5 2–3 + Increased

DM104 283 ± 5 290 ± 2 0 − No change

aGuinea pigs were immunized through the intrarectal route with 5 × 108 CFU of DM104 cells in 100 μl PBS
on days 0 and 14. One week after the second immunization, both groups were challenged with S. dysenteriae
type 4. Physiological changes that included weight loss, tenesmus, change in body temperature, and stool
were monitored at 24 h after challenge. PBS-immunized group was considered as negative control.

Figure 1. Histopathological features of the large intestine of the immunized guinea pigs following
intrarectal challenge with S. dysenteriae type 4. Samples of the distal colon were taken at 24 h after
challenge. Distal colon of control guinea pigs showed degenerated epithelial line (arrow) and

irregular-shaped crypt structure indicative of severe infection (block arrow) (a). DM104-immunized
guinea pigs showed intact epithelial line (arrow) and regular- and parallel-shaped crypt structure

(block arrow) (b)
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Figure 2. Serum IgG level against live DM104. Guinea pigs were immunized through intranasal
(i.n.) or oral route with live DM104 on days 0, 14, and 28, and sera were collected 2 weeks after
the last immunization before challenge. Serum IgG titers (mean ± SD) against DM104 (a) and
S. dysenteriae type 4 (b) WCL antigens from immunized guinea pigs were measured and found
to be higher when compared with the control guinea pigs, administered with PBS only. Data
represent the geometric mean titers for each group of guinea pigs immunized intranasally or
orally with DM104. The titers were defined as the reciprocal of the last dilution having an optical

density of 0.1 or more at 450 nm
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directed against DM104 and S. dysenteriae type 4 WCL by ELISA. The results
shown in Figure 2 demonstrate significant differences in the levels of antibodies
elicited by the two different immunization routes (p< 0.05). Higher levels of IgG
were observed in animals immunized intranasally than in those immunized orally
(Figure 2). Serum IgG titer against homologous DM104 WCL antigen was also
found to be quite higher (Figure 2a) compared with the IgG titer against cross-
reactive S. dysenteriae type 4 WCL antigen (Figure 2b). However, the serum
geometric mean titer of the WCL-specific IgA was found to be significantly low.
The IgA levels found in the mucosal secretions of eye wash and intestinal lavage
fluid of the immunized guinea pigs were found to be quite significant against both
the DM104 and S. dysenteriae type 4 WCL antigens (Figure 3). When considered
as a group, the serum geometric mean titers of the intranasally immunized WCL-
specific IgA (Figure 3) was found to be significantly higher when compared with
the orally immunized WCL-specific IgA (Figure 3) (p< 0.05). However, serum
IgG and IgA titers in intrarectally immunized guinea pigs were found to be very
low (data not shown).

Discussion

In this study, immunogenicity was evaluated by assessing the ability of the
E. albertii strain DM104 to protect guinea pigs immunized through either
intranasal, oral, or intrarectal route against challenge with S. dysenteriae
type 4. We addressed how the route of immunization influenced the quality of
the immune response with regard to protection against challenge. Our results
indicate that the immune response elicited by vaccine candidate strain DM104 is
strongly dependent on the immunization route, with the intranasal route being
more efficient than the oral route following conjunctival challenge. Immunization
yielded 63% and 25% protective efficacy in intranasal- and oral-immunized guinea
pigs, respectively, against development of keratoconjunctivitis. Protection gener-
ated by intranasal immunization was accompanied by highly specific anti-WCL
IgA titers in eye wash and intestinal lavage fluid of DM104-immunized guinea
pigs. These experiments are consistent with the previous studies that reported
using the intranasal model of guinea pig vaccination, that high titers of anti-LPS
IgA were associated with protection [21–23]. Moreover, in the guinea pig
keratoconjunctivitis model, high levels of antigen-specific antibody-secreting
cells occur in superficial ventral cervical lymph nodes and correlate with the
protective efficacy of a vaccine [24].

Consistent with other studies [25] that focused on the differences between
the immune response following either intranasal or oral antigen administration, we
also found that higher titers of serum anti-WCL IgG were observed in guinea pigs

DM104 INDUCES PROTECTION 159

Acta Microbiologica et Immunologica Hungarica 64, 2017



immunized intranasally than in those immunized orally with DM104. However, it
has been shown that in the murine pulmonary model of shigellosis, there was no
correlation between high anti-LPS IgG and protection [26]. However, in this
study, under both the intranasal–oral immunizations, DM104 stimulated signifi-
cant levels of anti-WCL IgG, suggesting that these antibodies might have
influenced the protection in the guinea pig model.
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Figure 3. Mucosal IgA level against live DM104. Guinea pigs were immunized through intranasal
(i.n.) or oral route with live DM104 on days 0, 14, and 28, and mucosal secretions were collected
2 weeks after the last immunization before challenge. Mucosal IgA level (mean± SD) in eye wash
and intestinal lavage fluid against WCL antigen of DM104 (a) and S. dysenteriae type 4 (b) from
immunized guinea pigs were measured and found to be higher when compared with the control

guinea pigs, administered with PBS only
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The intranasal route of administration is becoming increasingly popular in
experimental animal models to elicit an immune response either in the airway
mucosa or in the distal mucosal sites. Studies with diverse antigens in various
animal species have demonstrated that the intranasal route of administration can
elicit a broad immune response, including serum, salivary, nasal, rectal, and
vaginal antibodies, that is often superior to responses obtained after oral immu-
nizations [15, 27, 28].

On the other hand, Shim et al. [14] established a new bacillary dysentery
model in the guinea pig by inoculating Shigella through the intrarectal route. An
intrarectal challenge with wild-type strains of S. flexneri type 2a or 5a induced
severe and acute bacillary dysentery that mimicked human shigellosis in terms of
weight loss, fever, tenesmus, severe damage to the colonic mucosa, enhanced
expression of proinflammatory cytokines such as IL-8, and predominant recruit-
ment of neutrophils. This novel model was followed and reproduced in this study
when results of the intrarectal model experiment also demonstrated the safety and
protective efficacy of the live non-invasive Shigella-cross-reacting strain DM104
against S. dysenteriae type 4 infections.

A previous study using rectal biopsy specimens from acute Shigella
dysentery patients identified the histopathological symptoms that are character-
istic for human bacillary dysentery [29]. The majority of shigellosis patients
show marked damage of the epithelial barrier, cellular infiltration (lymphocytes,
plasma cells, and neutrophils), dramatic tissue injury (erosion, crypt alterations,
necrosis, and edema), goblet cell depletion, and watery diarrhea [29–31].
General histological studies of rectal biopsies of Shigella-infected humans
revealed epithelial hyperplasia, tissue destruction, and penetration of crypts
into the submucosa [29]. Shim et al. [14] found the same symptoms and
histology in this guinea pig model, confirming that it successfully mimics
shigellosis symptoms in humans.

In another study, the immunogenicity and protective efficacy of a S. flexneri
2a vaccine candidate were compared with a live-attenuated Shigella vaccine strain
following intranasal or ocular immunization of guinea pigs [17]. Similarly, this
study, along with our previous study [12] carried out with S. dysenteriae type 4
vaccine strain DM104, clearly showed the protective efficacy of a vaccine in the
guinea pig model. The high protection in guinea pig models induced by
the DM104 strain along with its non-pathogenic properties strongly suggests that
the Shigella-cross-reacting DM104 strain may be used as a promising live vaccine
candidate against shigellosis. However, the mechanism of the immune response of
DM104 in protection against live-cell challenge in different animal models
remains to be done in future studies.
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