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Summary. Fibrinolysis appears in many diverse physiolog-

ical situations, and the components of the system are well

established, along with mechanistic details for the individ-

ual reactions and some high-resolution structures. Key

questions in understanding the regulation of fibrinolysis

surround mechanisms of initiation and propagation, the

localization of fibrinolysis reactions to the fibrin clot, and

the influence of fibrin structure and clot composition on

thrombolysis. This review covers these key areas with a

focus on recent developments on fibrin structure and

binding, the effects of a variety of cell types, the conse-

quences of histones and DNA released by neutrophils,

and the influence of flow. A complete understanding of

the regulation of fibrinolysis will come from the building

of detailed mathematical models. Suitable models are at

an early stage of development, but may improve as model

clots increase in complexity to incorporate the compo-

nents and interactions listed above.

Keywords: fibrin; fibrinolysis; plasminogen; thrombolytic

therapy.

Introduction

Fibrin is a substrate in fibrinolysis in two senses of the

word, being both a surface for the binding and develop-

ment of key reactions, and also a substance that an

enzyme, plasmin, acts upon. These two features may also

be viewed as delineating the two key steps of fibrinolysis

which are the generation of plasmin followed by the

digestion of fibrin. It is likely that the main players in the

fibrinolysis pathways have been identified, and individual

reactions have been extensively studied. The regulation of

fibrinolysis involves different mechanisms, including pro-

tease action, serpin inactivation and conformational

changes. Fibrin fiber diameter and clot architecture influ-

ence fibrinolysis, so clot stability and resistance is prede-

termined to a significant degree at the clot formation

stage. This brief review covers selected aspects of fibrino-

lysis with a focus on recent developments that improve

our understanding of regulation. Space does not allow for

many important historic citations which are replaced by

reference to more recent reviews and apologies are given

to original authors.

Fibrin binding and the initiation of fibrinolysis

Tissue plasminogen activator (tPA) is probably the most

widely studied plasminogen activator, as well as being

extensively used clinically as a therapeutic thrombolytic

(Alteplase), so much detail is available on its mechanism

of action. Key in understanding the regulation of tPA

activity is its colocalization with plasminogen on a fibrin

surface [1] (elaborated in Fig. 1), leading to stimulation in

activity of 102- to 103-fold, probably as a random-order

process [2]. Early investigations identified the main fibrin

binding sites, which are located primarily in the finger

domain and kringle 2 of tPA [3], and one or more of the

five kringle domains in plasminogen (see below). Kringle

domains often (though not always) contain lysine binding

sites (LBS) that bind to internal and C-terminal lysine

residues. C-terminal lysine residues generated by plasmin

are particularly important as a positive feedback mecha-

nism for the stimulation of fibrinolysis.

Fibrin binding sites

A molecule of fibrinogen is a dimer where each subunit is

composed of three polypeptide chains forming distinct

structural regions, crucially a central E domain, com-

posed of N-terminal regions from each half of the dimer

and two symmetric distal D-domains (for a review of

fibrinogen structure, see [4] and Fig. 1A). Each fibrinogen

chain contains 104 lysine residues, but intact fibrin ini-

tially has no C-terminal lysines. This initial fibrin struc-

ture demonstrates only a weak affinity for the native full

length form of plasminogen (Glu-plasminogen), with Kd
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values in the 10�5
M range, higher than the plasma

concentration of plasminogen (around 2 lM) [1,5]. How-

ever, published Kd values for the binding of plasminogen

and tPA molecules to fibrin are highly variable (e.g.

reviewed [6]).

Models for the initiation and propagation of fibrinoly-

sis have been developed, built upon binding and kinetic

studies using fibrinogen and fibrin fragments, synthetic

peptides, X-ray structure data, monoclonal antibodies

and natural variants of fibrinogen [4,7], and are summa-

rized in Fig. 1. Work with fibrinogen peptides drew atten-

tion to the sequences Aa148-160 (as a kringle-dependent

binding site, most likely for plasminogen) and c312-
324 (as a binding site for tPA via the finger domain).
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Fig. 1. Proposed scheme for initiation and propagation of fibrinolysis. Panel (A) shows the formation of fibrin highlighting the central (E-)

domain (green) of fibrinogen with the N-terminal fibrinopeptides A and B (red) that are cleaved from the Aa- and Bb-chains by thrombin

when fibrinogen is converted to fibrin. The distal (D-) domains (purple), composed of the C-terminal portions of the Bb- and c-chains, interact
with the E- and D-domains of adjacent fibrin monomers to form double-stranded protofibrils. The aC-domains (yellow) meet in the central

part of the fibrinogen molecule, initially connecting non-covalently in fibrin to form an extensive 3D network. At a later stage, FXIIIa forms

isopeptide bonds between c- and a-chains in adjacent monomers. The location of potential initial binding sites for plasminogen (stars) and tPA

(triangles) is indicated. Also shown are models of Glu-plasminogen and tPA indicating intramolecular bonding of domains, adapted from

[15,16] and [61], respectively. Panel (B) shows reaction sequences occurring during fibrinolysis as a template mechanism where a ternary com-

plex of fibrin-tPA-plasminogen (F-tPA-Pgn) forms to stimulate the generation of plasmin. The series of reactions in C shows the change from

fibrinogen (with weak, kringle-dependent binding sites [62,63]) to fibrin and subsequent series of fibrin degradation products (F, F0, F″, etc.).
Early events in fibrin formation include exposure of cryptic binding sites, indicated in panel (A). Plasmin generates C-terminal lysines providing

a positive feedback mechanism through enhanced plasminogen binding. Fibrin degradation leads to aggregate formation to focus the binding

of tPA (via finger domain) and plasminogen (at C-terminal lysines) around amyloid-like cross-b structures to complete fibrinolysis through a

series of fibrin degradation products, culminating in DDE the smallest FDP to bind tPA and plasminogen.
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Recombinant aC domain, Aa221-610, was also found to

include lysine dependent but distinct binding sites for

both tPA and plasminogen. Binding sites were localized

to the C-terminal portion from residue 392 and demon-

strated a high affinity for tPA and plasminogen (Kd 16–
33 nM), but this region in fibrin is cleaved early by plas-

min. However, this picture is complicated by other find-

ings that show a high dependence of tPA binding to C-

terminal lysines in fibrin degradation product, DDE

domain complexes. There are 8 C-terminal lysines, and

removal of four could drastically reduce the stimulation

of plasminogen activation by tPA [8]. A precise, simple

picture of the unmasking of specific binding sites during

fibrin formation is further challenged by longstanding

observations that tPA and plasminogen bind to many

denatured, aggregated or modified proteins [9]. tPA bind-

ing and plasminogen activation via this mechanism has

been termed the cross-b structure pathway [10]. Accord-

ing to this mechanism, stacked b-sheets (cross-b structures

with amyloid properties) bind to tPA finger domain resi-

dues with a particular alternating charge sequence, Arg7,

Glu9, Arg23, Glu32, Arg30, while plasminogen binding

and activation relies on C-terminal lysines. These observa-

tions bring into focus binding to fibrin fibrils or aggre-

gates. For example, addition of tPA to preformed clots

resulted in concentration of tPA to a narrow lytic zone

and the development of fibrin ‘agglomerates’ that tightly

bind plasminogen and tPA [11,12]. More recently, confo-

cal microscopy studies have shown green fluorescent pro-

tein fusions of tPA (tPA-GFP) bind fibrin aggregates [13],

primarily through the finger domain. Fingerless tPA-GFP

(ΔF tPA-GFP) interacts more weakly with aggregates,

results that agree with kinetic studies where it was esti-

mated that finger interactions account for 80% of the

binding of tPA to fibrin [14]. It was also observed that

aggregates form preferentially in fibrin composed of thick

fibers, not fine fibers, and stain with thioflavin T, a well-

known marker for cross-b structures (see Fig. 2).

Together, these results suggest a mechanistic link between

binding to fibrin and other protein aggregates, and high-

light differences in fibrinolysis between thin and thick

fibrin fibers (see below). Thus, some of the later fibrin

structures shown in Fig. 1C (F″ etc.), are aggregates that

concentrate tPA and plasminogen, at least in fibrin com-

posed of thick fibers (common in plasma clots [11]). The

variety of modes of interaction with fibrin and different

fibrin structures involved may explain the difficulties in

providing consistent estimates of Kd values for tPA and

plasminogen binding [6].

Plasminogen binding

Significant progress has been made recently from the

structural analysis of full length plasminogen (Glu-plas-

minogen, Glu1-Asn791) [15,16]. These structures shed

light on long-established observations, such as the role of

Cl� ions in maintaining the closed conformation; the

affinity of different kringles for lysine analogues; and the

role of different kringles in triggering conformational

changes. In particular, the structures help explain the

resistance of Glu-plasminogen to activation and how

fibrin binding promotes activation to plasmin. Thus, a

key feature of control of plasminogen activation is termed

‘conformational regulation’ due to the relatively inert

closed spiral structure of Glu-plasminogen in which the

activation cleavage site at Arg561 is inaccessible to

plasminogen activators (as is a pro-activation site at

Lys77). Glu-plasminogen is a protein of seven domains,

5 35 min

20 µm

10 µm
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A B C

Fig. 2. Fibrin aggregate formation and characterization. Panel (A) shows fibrin aggregates from a scanning electron microscopy image follow-

ing 10 min of fibrinolysis after tPA was added to the surface of a preformed, coarse fiber clot made with 5 nM thrombin. Panel (B) shows a

similar clot made with orange labeled fibrinogen treated with tPA fused to jellyfish green fluorescent protein (tPA-GFP). Fibrin aggregates are

red spots and when merged with the green tPA-GFP image appear yellow, illustrating the strong association of fibrin aggregates and tPA. The

arrows indicate positions of the lysis front in two overlaid images showing the diffuse surface accumulation of tPA at 5 min and the appear-

ance of aggregates after 35 min at the new lysis front. Panel C shows the staining of fibrin aggregates by thioflavin T (ThT) after 45 min of

fibrinolysis with native (unlabeled) tPA. ThT fluorescence indicates the presence of amyloid-like cross-b structures, which are able to bind the

finger domain of tPA (images adapted from [13]).

© 2015 Crown copyright. Journal of Thrombosis and Haemostasis © 2015 International Society on Thrombosis and Haemostasis

S100 C. Longstaff and K. Kolev



N-terminal peptide (NTP), kringles 1–5 and serine prote-

ase domain, and interdomain bonds particularly between

Lys50, Arg 69 and Arg70 of the NTP with kringles 4 and

5 that help maintain the closed structure (see Fig. 1A). If

the NTP is cleaved at Lys77 by plasmin (generating Lys-

plasminogen, Lys78-Asn791), the structure unfolds to

become more linear and Arg561 is accessible to plasmino-

gen activators. Lys77 is hidden in Glu-plasminogen but

may become available following a sequence of conforma-

tional changes. It is proposed that kringle 1 initially binds

fibrin and triggers undocking of kringles 4 and 5 from the

NTP to expose Lys77 and Arg561. However, other inter-

esting aspects of the activation pathway may involve dif-

ferences between plasminogen glycoforms and kringle 3,

which has no LBS. Glycoform I of plasminogen has two

carbohydrate moieties, one at Asn289 (on kringle 3)

which may destabilize the Glu-plasminogen closed confor-

mation and enable kringle 3 to be mobile. Furthermore,

two different conformations were found in the crystal

structure of glycoform II, and one was partially open

such that kringle 5 was available for lysine binding [15].

This is particularly interesting considering kringle 5 has a

preference for internal lysines, which could be relevant to

the initiation of fibrinolysis, before the generation of sig-

nificant plasmin that could produce C-terminal lysines in

fibrin.

Other activators

tPA is not the only plasminogen activator and it is impor-

tant to appreciate the variety of mechanisms that exist to

generate plasmin. Single chain urokinase plasminogen

activator (scuPA) is a zymogen precursor of active 2 chain

urokinase (uPA) and although scuPA/uPA is mostly

linked to cell-associated fibrinolysis (in association with a

specific receptor uPAR or CD87), studies with knockout

mice suggest a role in intravascular fibrinolysis [17]. scuPA

activity is fibrin-specific to some extent, possibly by a

number of mechanisms, although uPA has no direct affin-

ity for fibrin [18]. uPA activates plasminogen in solution,

so does not rely on a colocalization mechanism like tPA,

and uPA is more sensitive to the open conformation of

plasminogen [14]. Thus, while ‘antifibrinolytics’ such as

tranexamic acid or aminohexanoic acid block plasminogen

binding to fibrin and inhibit tPA activity, they bind to

kringle LBS to open up the inert conformation of Glu-

plasminogen and enhance activation by uPA, but not tPA

[14]. This conformational rather than colocalization mech-

anism is confirmed by studies on ‘fibrinolytic cross talk’

which describe scuPA or uPA bound to cells or microvesi-

cles activating plasminogen (in an appropriate open con-

formation) bound to a different surface [19].

Bacteria have adopted a number of strategies to pro-

mote invasion that involve hijacking the host plasminogen

system. Streptokinase (SK) is a first-generation thrombo-

lytic and the therapeutic molecule, which is isolated from

Streptococcus equisimilus, a Lancefield Group C strain, is

the most widely studied. However, other SK variants have

distinct mechanisms that rely on interactions with bacte-

rial cell surface proteins such as PAM and M1, which

bind plasminogen and fibrinogen, respectively [20]. Other

bacterial proteins, including another binding protein,

staphylokinase from Staphylococcus and the pla enzyme

from Yersinia pestis, have been extensively studied, and

much information regarding mechanism of action, struc-

tural–function relationships, is available [15,16,21].

Inhibition of fibrinolysis

Mechanisms are needed to reduce unwanted systemic

plasmin generation to avoid excessive degradation of

plasma proteins. Inert conformations of plasminogen and

fibrinogen represent an important barrier to plasminogen

activation, bearing in mind single chain tPA is an active

enzyme, not a zymogen [22]. The two most critical serpin

inhibitors in fibrinolysis are plasminogen activator

inhibitor 1 (PAI-1) and alpha-2 plasmin inhibitor (a2PI,
or a2-antiplasmin). Both these inhibitors circulate at

concentrations in the same range as their potential

enzyme targets and both are very potent with second-

order rate constants for inhibited complex formation

around 107 M
�1 s�1, close to the diffusion controlled

limit. However, plasmin bound to fibrin, or lysine ana-

logues, is inhibited much more slowly by a2PI, allowing
time for plasmin to act where needed, and most protec-

tion appears with the formation of C-terminal lysines [23].

PAI-1 inhibits both uPA and tPA and the rate constants

quoted are also high, but these values refer to free solu-

tion and are also modulated by fibrin and fibrinogen [22].

Other serpins may form complexes with plasmin, tPA or

uPA, including PAI-2 and PAI-3 and protease nexin; and

a2-macroglobulin also forms a further back up.

Within a clot, fibrinolysis may be inhibited by a metal-

loproteinase, thrombin-activatable fibrinolysis inhibitor

(TAFIa) or carboxypeptidase U (CPU) [24,25]. This pro-

tein circulates in an inactive zymogen form (TAFI or

pro-CPU) and is activated by thrombin/thrombomodulin

or plasmin during on-going fibrinolysis. Once activated,

the enzyme cleaves C-terminal lysines in fibrin, critical for

the binding of plasminogen as discussed above, and

mechanistic studies have identified a threshold behavior

and the involvement of other plasma inhibitors, including

a2PI. Several approaches suggest TAFIa acts predomi-

nantly by reducing binding of plasminogen or plasmin,

rather than through lysine binding of tPA via kringle 2

[14,23,26]. The crystal structure of TAFI has been solved

and provides a rationale for the known thermal instability

of the protein at 37 °C, which forms an important regula-

tory mechanism [27,28]. Both PAI-1 and TAFI, being

associated with adverse cardiovascular events or cancer

(in the case of PAI-1), have been targets for drug devel-

opment [25].
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Plasmin digestion of fibrin

The degradation of fibrin by plasmin is not well under-

stood, probably accounted for in part by the difficulties

of studying enzymology at a solid–liquid interface. As

mentioned above, the aC-domains in fibrin are an early

target for plasmin (cleavage of at least 10 bonds next to

lysine or arginine residues results in a highly heteroge-

neous set of early degradation products [29]) followed by

removal of a peptide from the N-terminal of the b-chain
(cleaved primarily at Arg42 [30]) and cleavage of the

coiled coil connector of the E- and D-domains [31]

(at aLys81-bLys122-cLys59 or aArg104-bLys133-cLys63
[32]). Several lines of evidence suggest that efficient solu-

bilization of the fibrin meshwork requires only 25% of

the total E–D connections need to be broken and 50%

of the fibrin monomers can remain intact [33]. However,

all three polypeptide chains of the triple helical structure

within a fibrin monomer must be cleaved through the

same cross section in both adjacent monomers within a

protofibril and in all adjacent protofibrils within a fiber.

The cited low fraction of E–D connections broken at dis-

solution suggests that cleavage of fibrin fibers is achieved

by clustering of plasmin molecules at points on a fiber

rather than uniformly along the fiber, and evidence for

preferential transversal cleavage of the fibers is provided

by atomic force microscopic images of lysing fibrin [34].

The clustering of the enzyme optimizes the pattern of

cleavage, but it has some negative impact on the kinetics

of enzyme action. The macroscopic consequence of plas-

min clustering was found to be a gradual decay of its

lytic efficiency, which was quantitatively expressed in

fractal kinetic terms as a time-dependent increase of the

Michaelis constant (KF
m) of plasmin [34]. A further obser-

vation was that low concentrations of the lysine analogue

aminohexanoic acid can promote plasmin digestion of

fibrin by reducing clustering, in agreement with earlier

studies [35].

Clot architecture

Fibrin structure

There is a link between fibrin structure and risk of cardio-

vascular events [7]. Many studies (e.g. [36]) evidence that

thin fibers (formed at high thrombin concentrations for

example [37]) are more difficult to dissolve on a macro-

scopic scale than thick fibers, despite the faster digestion

of individual thin fibers. This apparent contradiction may

be explained by efficient plasmin action on tightly packed

monomers within a single thick cross section, avoiding

slower steps where plasmin must diffuse through the

pores of the network. Many factors other than thrombin

concentration can regulate clot structure [7,38], including

some specific cellular interactions which will be dealt with

below.

Platelet effects on clot structure In vivo, fibrin is formed

at sites of blood vessel injury where platelets are also

activated and bind fibrin. Thus, the strong adhesive

forces between platelets and fibrin, in combination with

platelet contraction, place the fibers under tension that

modulates the clot structure, stiffens fibrin and increases

its density in the platelet-rich areas (‘clot retraction’)

[39]. Similar mechanical stress is exerted on fibrin on the

surface of non-occluding intravascular thrombi exposed

to mechanical shear generated by circulating blood,

which profoundly alters the fibrin architecture: fibers

become longitudinally aligned with a smaller diameter

and pore size compared to the randomly running fibers

in the interior of the same thrombi [40]. Stretching of

in vitro fibrin clots can be used to model the structural

consequences of platelet- and shear-related mechanical

forces. Electron microscopic and small angle X-ray scat-

tering observations evidence that mechanical stress

causes unfolding of the coiled coil region in the fibrin

monomers and exposure of hydrophobic residues [41].

Consequently, fluid is expelled from the vacant space

among the protofibrils within the fibers resulting in a

decrease in fiber diameter and an increase in the protein

density of the fibers. Although unfolding generally ren-

ders proteins more susceptible to enzymatic degradation,

the mechanically stressed fibrin is more resistant to plas-

min digestion [40].

Proteolytic resistance conferred to fibrin by chemical

modifications can also be explained by similar changes in

clot morphology. Factor XIIIa (FXIIIa) is a transgluta-

minase of plasma or platelet origin, known to introduce

c-glutamyl-lysine cross-links between cC- and aC-
domains of adjacent fibrin monomers (reviewed in [42]).

This covalent cross-linking results in a significant reduc-

tion (by about 20%) of the fiber diameter without any

change in the number of protofibrils in a fiber, implying

that FXIIIa tightens the lateral attachment of protofibrils

and decreases the volume of the vacant fluid space within

the fibers [37], accompanied by a two-fold reduction of

the pore size as assessed from clot permeability measure-

ments [43]. Fibrinogen variants have been used to dissect

the roles of a- and c-crosslinks, and a-crosslinking of

fibrin fibers was found to affect appearance, biophysical

properties and delay fibrinolysis [44]. Platelets are also a

source of polyphosphate, which when released from acti-

vated platelets results in localized changes in fibrin struc-

ture. Polyphosphate of sufficient length has been found to

result in thicker fibrin strands that were more resistant to

fibrinolysis [45].

In a plasma environment, additional factors appear to

take a leading role as a determinant of the lytic resistance

conferred by FXIIIa. a2-PI can serve as a substrate of

FXIIIa, and its covalent attachment to fibrin appears to

be indispensable for the lytic stabilization of plasma clots

[46]. Depletion of a2-PI eliminates the antifibrinolytic
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effect of FXIIIa, and lysis rates are inversely correlated

with the amount of a2-PI cross-linked to fibrin in plasma

clots. The antifibrinolytic effect of platelet FXIIIa is also

dependent on the availability of a2-PI [47]. Further

insights into conflicting results concerning the mechanism

of clot stabilization by FXIII—directly altering fibrin

structure and the requirement of a2-PI—may require close

evaluation of experimental methods, including the role of

plasma proteins, platelets and flow.

Red blood cells Although the size of pores between

fibrin fibers (typically 160–380 nm in diameter) allows

free diffusion of macromolecules, if fibrin is formed in

blood, then the entrapped cells cause a significant

reduction in molecular diffusion coefficients [48]. This

pore-filling effect alone could further impair plasmin

diffusion, a rate defining feature discussed above, but

the most abundant blood cells, the erythrocytes, are

more than simply inert bystanders in the clot. They are

involved in active interactions with fibrin through an

integrin receptor [49], and their retention in the clot

requires FXIIIa [50]. Thus, fibrin can transmit the con-

tractile force of neighboring activated platelets to red

blood cells causing a change of their shape from bicon-

cave to polyhedral [51], resulting in almost gap-free

compaction of red blood cells in the vacant space

between fibrin fibers and forming a structure with a

stronger diffusion barrier and higher lytic resistance [52].

Red blood cells entrapped in thrombi express phosphati-

dylserine on their surface [53], which supports the

assembly of prothrombinase complex and accelerates

thrombin generation [54], and at higher thrombin con-

centrations, a fibrin structure with higher lytic resistance

is formed. Increasing the fractional volume of fibrin

occupied by red blood cells from 0 to a physiologically

relevant hematocrit value of 0.4 causes a reduction of

the median fiber diameter from 150 to 96 nm [52]. As

discussed above in relation to mechanical and enzymo-

logical factors, such alterations of fibrin structure result

in lytic resistance. The antifibrinolytic effects of red

blood cells could be reversed by an integrin antagonist,

eptifibatide, suggesting a therapeutic approach to throm-

bosis through the pharmacological blockade of the red

blood cell–fibrin interactions [52].

Neutrophils Neutrophils have been identified as having

a role in fibrinolysis. DNA and histones are components

of ‘neutrophil extracellular traps’ (NETs) released by acti-

vated neutrophils at sites of infection and in intravascular

thrombi (reviewed in [55]), and the effects of NET com-

ponents on fibrinolysis have been summarized [56].

Briefly, histones alone or in complex with DNA result in

thicker fibrin fibers and more robust clots (as shown in

rheology studies), whereas DNA alone causes the oppo-

site effects. Combinations of DNA and histones were

found to have a major effect on clot lysis by being able

to hold lysing fibrin together to delay fibrinolysis. Isother-

mal titration calorimetry studies showed that large FDP

strongly bound to histones and high molecular weight

DNA, which could stabilize lysing clots, results that pro-

vide a rationale for the use of DNase as an adjunct to

thrombolytic therapy [56]. Overall, the conclusions from

these studies are that DNA and histones may strengthen

clots and delay their complete dissolution.

Models of fibrinolysis

A number of groups have attempted to model blood

coagulation (or study ‘blood systems biology’ [57]). Mul-

tiscale models of coagulation that include multiple reac-

tions, flow, concentration gradients and platelets have

been developed with some success, but models of fibrino-

lysis have lagged behind, for number of reasons. An

issue with some fibrinolysis models was the approxima-

tion that fibrin was distributed homogenously rather

than in fibers, which does not permit any investigation

of the effects of fibrin architecture. Bannish et al. [58]

approached this problem by developing a one-dimen-

sional reaction-diffusion model that included a concen-

tration of fibrin that was fixed but heterogeneously

distributed into fiber patterns. As the lysis front travelled

through the clot, the model was able to replicate some

features seen in in vitro clot lysis experiments, including

concentration of tPA and plasminogen at the lysis front

(reported to be up to 30-fold increased for plasminogen

in aggregates in the 3 lm lysis front [11]). However, the

authors concluded the model was not entirely satisfac-

tory and suggested that low concentrations of circulating

tPA, amounting to three molecules per lm3, argued in

favor of a stochastic approach. Their 3D stochastic mul-

tiscale model [59] followed a number of tPA molecules

binding to fibrin and activating bound plasminogen lead-

ing to transverse cutting of fibrin fibers, rather than uni-

form degradation that limited the earlier model. Detailed

biochemical considerations, including binding and

unbinding terms and uncovering of cryptic sites (C-ter-

minal lysines), were included to develop the first stage

microscale stochastic model, providing results for a sub-

sequent macroscale stage to simulate transport of reac-

tants and large-scale fibrin clot lysis. Very recently, we

have validated the 3D stochastic model over ranges of

tPA and plasminogen concentrations in clot lysis experi-

ments using standardized clots fully characterized by

scanning electron microscopy, with good results [60].

Future work will allow hypotheses to be tested and gen-

erated to better understand the regulation of fibrinolysis

by the activators and inhibitors discussed above, and

explore the significance of fibrin architecture, flow and

cellular interactions.

This review has touched on the basic principles of fibri-

nolysis and highlighted current knowledge on important

regulatory features. Improved understanding of regulation

© 2015 Crown copyright. Journal of Thrombosis and Haemostasis © 2015 International Society on Thrombosis and Haemostasis
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may lead to advances in thrombolytic therapy, which is

still widely practiced, for stroke and myocardial infarc-

tion. Infectious diseases are also major sources of human

mortality and morbidity and involve interactions with

host fibrinolysis pathways that provide targets for thera-

peutic interventions. Considering the range of physiologi-

cal processes that involve fibrinolysis reactions, greater

knowledge of the regulation of this system has significant

potential for improving human health.
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