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Introduction

Understanding the relationship between elevation and 
species richness has been a general challenge addressed 
over the past years. In various organisms and geographical 
areas, main findings point to a decrease in species richness 
with increasing elevation (Terborgh 1977, Stevens 1992) or a 
humped-shaped relationship, with a peak in richness at inter-
mediate elevations (Rahbek 1997, Grytnes and Vetaas 2002, 
Krömer et al. 2005, Brehm et al. 2007, Baniya et al. 2010). 
Apart from the environmental changes associated with the al-
titude, biotic, abiotic and historical factors have also been dis-
cussed as having a possible impact on species richness along 
these gradients (Rahbek 1995, Lomolino 2001). 

The published studies about species richness and diver-
sity along elevational gradients are strongly biased towards 
plants and temperate zones (Brehm et al. 2007). In tropical 
areas altitudinal gradients have been considered in several 
diversity studies (Terborgh 1977, Sipman 1989, Gradstein et 
al. 1989, Krömer et al. 2005, Brehm et al. 2007, Jankowski 

et al. 2013). However, very few are focused exclusively on 
the study of altitudinal gradients in high Andean páramo eco-
systems (Sipman 1989, Keating 1999, Sklenář and Ramsay 
2001, Paredes 2006, Sklenář et al. 2010). Páramo ecosystems 
provide several ecological functions and environmental ser-
vices such as the regulation of hydrology, protection from 
erosion, carbon storage and its function as a biological corri-
dor for many species of flora and fauna (Hofstede et al. 2003, 
Buytaert et al. 2006). Furthermore, páramos host the richest 
high mountain flora of the world (Smith and Cleef 1988), 
being considered as a hotspot within a hotspot (Myers et al. 
2000) with a high endemicity and with the fastest diversifica-
tion rates of all hotspots (Madriñán et al. 2013). In these pára-
mos, climatic factors, orography, age of the substrate, land 
use or dispersal have an influence on the diversity patterns 
(Acosta-Solís 1984, Luteyn 1992, Sklenář et al. 2010). 

Terricolous cryptogams are an important fraction of the 
high diversity of these ecosystems and also play a relevant 
role in terms of biomass, carbon/nutrient cycling, ecosystem 
functioning, water-storage and soil cohesion (Pérez 1997, 
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Gradstein and Holz 2005, Rai et al. 2010). However, very 
few studies have focused on their response to altitude in the 
Neotropics (Sipman 1989, Van Reenen and Gradstein 1983, 
Gradstein et al. 1989, Kessler 2000) and even less in páramo 
ecosystems (Paredes 2006). 

Although it has been reported that the diversity of soil 
lichens and bryophytes is structured along an altitudinal gra-
dient in different geographic regions and ecosystems, there 
is no clear pattern of changes in the richness and diversity 
in relation to elevation. Thus, different responses have been 
found: increases in richness or cover with altitude, decreases, 
humped relationships with maximum richness at interme-
diate altitudes or different responses for bryophytes and li-
chens separately (Thompson et al. 2005, Bruun et al. 2006, 
Grytnes et al. 2006, Paredes 2006, Grau et al. 2007, Tusiime 
et al. 2007, Stehn et al. 2010, Vittoz et al. 2010, Sun et al. 
2013, Rai et al. 2015). Differences found in these responses 
could be related to environmental variables operating at dif-
ferent scales. Thus, local factors such as slope, aspect, soil 
properties (pH, texture, acidity, electrical conductivity), 
micronutrients, moisture, herb and shrub cover, or land use 
intensity also have a significant effect on the ground com-
munities (Ponzetti and McCune 2001, Bowker et al. 2005). 
Additionally it has highlighted the role of biotic interactions 
structuring these communities, affected by the availability of 
resources like space, nutrients or water (Maestre et al. 2008, 
2009, Bowker et al. 2010). Other factors explaining the dif-
ferent patterns found could be related to different scales of 
the studies, diverse methodologies used or differences in the 
studied organisms (Grau et al. 2007). 

Altitudinal gradients within the tropics constitute an im-
portant tool to improve the knowledge of ecosystem ecology 
and function, as well as to determine its influence on diversity 
and species distribution (Malhi et al. 2010). In this context, 
the main objective of our study was to ascertain whether el-
evation influences the diversity and composition of terrico-
lous cryptogamic communities of five páramos in southern 
Ecuador. Specifically, we aimed to address the following 
questions: (1) Are richness and composition of lichens and 
bryophytes structured along an altitudinal gradient? (2) Do 
lichens and bryophytes respond in the same way to these dif-
ferences in elevation and the ecological factors associated? 
(3) Which other factors affect these communities?

Materials and methods

Study site

The study area included five páramos located in Loja 
(Punzara, Loma del Oro, Cajanuma and Jimbura) and Azuay 
(El Cajas) provinces (southern Ecuador) (Fig. 1). The se-
lected páramos range between 2700 and 4000 m above sea 
level (Table 1). Punzara is considered an azonal páramo due 
to the influence of strong winds. The vegetation is character-
ized by grasses with some shrubs scattered and small herbs 
(León-Yánez 2000). The most important genera of grasses 
are Calamagrostis, Festuca and Stipa (León-Yánez 2000). 

Cajanuma, El Cajas, Jimbura and Loma del Oro correspond to 
grass páramo (Cueva and Chalán 2010, Hofstede et al. 2002). 
Main genera dominating in these areas are Calamagrostis, 
Carex, Festuca and Paspalum (León-Yánez 2000). Cajanuma 
is the only one covered by montane forest close to the páramo 
and below 3000 m. In the five sampled localities some other 
common species were Loricaria thuyoides (Lam.) Sch. Bip., 
Lycopodium clavatum L., L. vestitum Desv., Oreobolus sp. 
and Puya sp. 

The climate in the Ecuadorian páramos is generally cold 
and humid throughout the year, with extremely changing dai-
ly temperatures. In the five localities, the mean annual tem-
peratures range from 5 �� �� �� �� ������ �� ��� ������ ������� �� �� �� ������ �� ��� ������ ������� �� �� ������ �� ��� ������ �����
f��� ���w��� 936����0 mm (Table 1). The soils in southern 
Ecuador páramo ecosystems are highly variable, coming from 
Paleozoic metamorphic rocks, except in El Cajas, where the 
soils are enriched with volcanic ash deposits (Podwojewski 
and Poulenard 2000). 

The five studied páramos are similar both in plant compo-
sition and conservation status, corresponding to grass páramo 
of the Ecuadorian southern region with similar floristic com-
position which differs from the northern Ecuadorian páramos 
(Valencia et al. 1999, Hofstede et al. 2002).

Sampling design and data collection

Undisturbed zones were selected within each páramo with 
the same plant composition and well developed cryptogamic 
communities (3 ha approximately). Within these zones, forty 
plots of 40 × 40 cm2 were randomly placed, with a minimum 
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Figure 1. Location of the five studied páramos in Ecuador. 
 

 

  
Figure 1. Location of the five studied páramos in Ecuador.
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distance of 1 m between them to avoid spatial autocorrelation 
(Maestre et al. 2008).

We estimated the cover values of all terrestrial species 
of lichens and bryophytes in each sampling unit through vi-
sual detection and we collected samples for posterior identi-
fication. For lichen nomenclature and identification we used 
the following literature: Lumbsch 1989, Goward et al. 1995, 
Sipman 1997, 2002, Ahti 2000, Brodo et al. 2001, Nash et 
al. 2002, 2004, Smith et al. 2009, Rivas Plata et al. 2010, 
Moncada 2012, Lücking et al. 2013, Rincón-Espitia and 
Mateus 2013, and for bryophytes we used Churchill and 
Linares 1995, Gradstein et al. 2001 and Gradstein and Costa 
2003. 

Additionally, we measured the cover of vascular plants 
(%) at plot level and the slope (°) and aspect (compass direc-
tion of the slope, cosine transformed) as both are related to 
microclimatic conditions as irradiance, stability of the sub-
strate, soil temperature or soil moisture (Garcia-Pichel and 
Belnap 2001). The macroclimatic variables (annual rainfall, 
mean annual temperature and monthly mean minimum and 
maximum temperature) at páramo level were provided by 
the Ministry of Environment of Ecuador (MAE 2010). We 
considered the minimum temperature important as a limiting 
factor because páramo ecosystems reach extreme tempera-
tures at night (León-Yánez 2000), affecting growth and de-
velopment of cryptogams (Kappen 2000, Bramley-Alves et 
al. 2014). Elevation was obtained with a GPS (Garmin GPS).

Data analyses

The community variables analyzed were Simpson’s and 
Shannon’s indices, Pielou’s evenness, total species rich-
ness, the richness of lichens and bryophytes separately and 
the cover and richness of the lichen family Cladoniaceae 
(i.e., Cladia and Cladonia, which were considered together). 
Cladoniaceae family was analyzed separately because they 
are very important components of the terricolous commu-
nities within páramos and dominate in these habitats (Ahti 
1992). Simpson’s and Shannon’s indices allow to combine 
species richness and relative abundance into an estimate of 
diversity when data from multiple sites exist (Gorelick 2006). 
Simpson’s index is determined by the most dominant species 
and the Shannon’s index assumes that the individuals are se-
lected randomly and that all species are represented in the 

sample (Magurran 2004). Pielou’s evenness is calculated as 
the ratio between the observed diversity and the maximum 
diversity (Magurran 2004). 

To determine the effect of the macroclimatic (elevation, 
annual rainfall, mean annual temperature, monthly mean 
minimum and maximum temperature) and the small-scale 
factors (slope, aspect and plant cover) on the community 
variables, we used generalized linear models (GLMs). In or-
der to test non-linear relationships we introduced a quadratic 
term for the elevation. Elevation showed high correlations 
with annual rainfall, mean annual temperature and monthly 
mean minimum and maximum temperatures (Pearson’s cor-
relation r2 > 0.800, p < 0.05 in all cases). Thus, in order to 
prevent multi-collinearity problems, elevation was the only 
variable at páramo level included in the model. For total rich-
ness, richness of lichens, bryophytes and Cladoniaceae we 
used a Poisson distribution with a “log” link function and for 
Simpson’s inverse, Shannon’s index, Pielou’s evenness and 
Cladoniaceae cover we used a Gaussian distribution with 
“identity” link function. Poisson distribution is usually em-
ployed to fit count data, and inspection of our data confirmed 
that this distribution fitted better than alternative distribu-
tions, such as the normal distribution. All statistical analyses 
were performed in R version 3.1.1

The composition of soil species of the five páramos was 
compared using the PRIMER multivariate statistical analysis 
software version 6.1.11 (Anderson et al. 2008). In this analy-
sis, the experimental design included one factor: páramo (five 
levels) with 40 replicate units per páramo. The cover data 
(percentage cover per species) were log10 (x + 1) transformed 
to downplay the influence of abundant taxa. We used the 
Bray-Curtis distance measure to test whether the five pára-
mos had significantly different composition of cryptogams 
and we performed a one-factor permutational multivariate 
analysis of variance (PERMANOVA) on the cover data. For 
all tests, we allowed 9999 random permutations under the re-
duced model. Non-metric multidimensional scaling (NMDS) 
was used to determine the main factors (elevation, slope, as-
pect and plant cover) influencing total species composition 
and lichens and bryophytes composition separately. NMDS 
ordination was performed using 50 random restarts. We com-
puted the resemblance matrix using the Bray-Curtis dissimi-
larity index. Values of relative species abundance and envi-
ronmental variables were then fitted onto the first two axes of 

Table 1. Environmental variables of the five studied páramos.

No. Name
Elevation 
(m a.s.l.) 

(min – max) 

Slope (º) 
mean ± 

S.E.

Aspect (º) 
mean ± 

S.E.

Annual pre-
cipitation 

(mm)

Average 
temp.a 

(ºC)

Min. 
temp.a 

(ºC)

Max. 
temp.ª 
(ºC)

1 Punzara 2770 (2700 – 2900) 33±2.3 0.15±0.11 936 14 9 18

2 Loma del 
Oro 3245 (3100 – 3300) 25±2.6 –0.11±0.11 1256 10 5 15

3 Cajanuma 3337 (3300 – 3400) 12±1.4 0.06±0.11 1295 10 5 16

4 Jimbura 3450 (3400 – 3500) 17±2 –0.08±0.11 1140 7 2 14

5 El Cajas 3930 (3850 – 4000) 22±1.7 –0.03±0.10 1440 5 2 10

a Source: Ministerio del Ambiente, Ecuador, 2010.
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the NMDS ordination. For these linear fittings squared cor-
relation coefficients (r2) and empirical p-values (p) were cal-
culated. Variables with r2≥0.3 were considered as correlated. 
To identify the taxa that contributed most to the similarity and 
dissimilarity among páramos in the NMDS ordination plot, 

we used the BVSTEP statistical routine. This routine identi-
fies the smallest subset of species capable of reproducing the 
differences in community patterns among páramos that were 
obtained in the NMDS ordination (ρ = 0.95, with 100 restarts) 
(Clarke and Warwick 1998). 

Table 2. Species richness and exclusive taxa of the five studied páramos.

Páramo Elevation  
(m a.s.l.)

Total taxa Exclusive taxa

Total 
number

Bryophyte Lichen
Total Bryophyte LichenNumber of 

species
Cover*  

(%)
Number of  

species
Cover* 

(%)
1 2770 19 5 11 14 59 6 1 5
2 3245 42 20 33 22 48 10 3 7
3 3337 39 28 36 11 61 13 11 2
4 3450 31 16 31 15 49 3 2 1
5 3930 39 15 24 24 63 14 3 11

* Average cover for each páramo.
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Figure 2. Species richness and diversity patterns in the five studied páramos. Values 

represent the means (±SD) of the 40 plots per páramo.  

 

  

  

  

 

  

Figure 2. Species richness and diversity patterns in the five studied páramos. Values represent the means (± SD) of the 40 plots per 
páramo. Páramos are arranged according to elevation, so axis X corresponds to an elevation gradient. 
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Results

We recorded 46 lichens belonging to 16 families and 
44 bryophytes belonging to 24 families in the five studied 
páramos (Appendix 1). The total number of species ranged 
from 19 in Punzara páramo to 42 in Loma del Oro (Table 
2). The number of exclusive taxa ranged from 3 in Jimbura 
to 14 at the highest elevation (El Cajas) (Table 2, Appendix 
1). Lichens dominated in all sampling units, with an average 
cover between 48% and 63%, while bryophytes cover never 
exceeded of a 36% (Table 2). The family Cladoniaceae was 
the most predominant and the best represented lichen family 
with 20 taxa belonging to the two genera Cladia (2 species) 
and Cladonia (18 species) (Appendix 1). Members of the 
Cladoniaceae appeared in 98% of plots, showing an average 
cover of about 50%. The predominant species were Cladia 
aggregata and Cladia fuliginosa, which were presented 

in 142 and 114 plots, respectively, out of 200 plots in total 
(Appendix 1).

We found significant relationships between the elevation 
(including the quadratic term) and all community variables, 
except Pielou’s evenness (Fig. 2, Table 3). The slope had a 
negative and significant effect on the species richness, bryo-
phyte richness, Simpson’s inverse, Shannon’s index and the 
Cladoniaceae cover (Tables 3 and 4). 

A significant component of the variation of the species 
composition was associated with páramo (Table 5). The 
NMDS ordination for the total species composition showed 
that the highest variability was explained by the elevation 
(Axis 1: –0.36; Axis 2: 0.93; r2 = 0.38; p = 0.000999). This 
variable was weakly correlated to lichen (Axis 1: –0.99; Axis 
2: –0.03; r2 = 0.08; p = 0.000999) and bryophyte composition 
(Axis 1: –0.24; Axis 2: –0.97; r2 = 0.21; p = 0.000999) (Fig. 

Table 3. Results of the generalized linear models on the community variables. Coef.: coefficient of the variable in the model, S.E.: 
standard error. 

Coef. (S.E.) t-value p-value
Species richness
Elevation 0.0044 (0.0012) 3.657 0.0003
Elevation^2 –6.1 × 10–7 (1.8 × 10–7) –3.454 0.0006
Plant cover 0.0017 (0.0014) 1.199 0.2306
Slope –0.0056 (0.0020) –2.777 0.0055
Aspect 0.0293 (0.0376) 0.778 0.4365
Lichen richness
Elevation –0.0035 (0.0016) –2.211 0.0270
Elevation^2 5.4 × 10–7 (2.3 × 10–7) 2.337 0.0194
Plant cover 0.0010 (0.0018) 0.549 0.5828
Slope –0.0051 (0.0028) –1.846 0.0649
Aspect 0.0457 (0.0519) 0.882 0.3781
Bryophyte richness
Elevation 0.0156 (0.0020) 7.707 < 0.001
Elevation^2 –2.3 × 10–6 (2.9 × 10–7) –7.593 < 0.001
Plant cover 0.0024 (0.0021) 1.126 0.2603
Slope –0.0060 (0.0030) –2.008 0.0447
Aspect 0.0108 (0.0547) 0.196 0.8443
Simpson’s inverse
Elevation 0.0122 (0.0060) 2.042 0.0425
Elevation^2 1.6 × 10–6 (8.8 × 10–7) –1.833 0.0683
Plant cover 0.0127 (0.0071) 1.793 0.0745
Slope –0.0267 (0.0101) –2.638 0.0090
Aspect 0.1157 (0.1984) 0.583 0.5603
Shannon’s index
Elevation 0.0038 (0.0012) 3.186 0.0017
Elevation^2 –5.1 × 10–7 (1.8 × 10–7) –2.931 0.0038
Plant cover 0.0030 (0.0014) 2.165 0.0316
Slope –0.0066 (0.0020) –3.265 0.0013
Aspect 0.0377 (0.0394) 0.957 0.3396
Pielou’s evenness
Elevation 0.0003 (0.0003) 0.883 0.3785
Elevation^2 –4.0 × 10–8 (5.0 × 10–8) –0.802 0.4235
Plant cover 0.0008 (0.0004) 1.950 0.0526
Slope –0.0010 (0.0006) –1.745 0.0825
Aspect 0.0039 (0.0112) 0.348 0.7279

p-values < 0.05 are considered significant and marked in bold.
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3). The NMDS ordination showed a clear separation between 
páramos for total and bryophyte composition (Fig. 3A-C). 
Although significant, the correlations were weak (r2 < 0.15) 
for the remaining variables (slope, aspect and plant cover). 
Ninety-five percent of the variation in the NMDS ordination 
was explained by ten taxa. Of the ten species identified by 
the BVSTEP routine six were bryophytes (Breutelia tomen-
tosa, Campylopus richardii, Leptodontium sp., Polytrichum 
juniperidium, Rhacocarpus purpurascens and Racomitrium 
lanuginosum) and four were lichens (Cladia aggregata, C. 
fuliginosa, Cladonia arbuscula subsp. boliviana and C. caly-
cantha). When these species were excluded, the next-best 
model contained 22 species, which explained 90% of the ob-
served pattern. 

Discussion

In this study we found evidence of changes in the rich-
ness, diversity and composition of soil cryptogamic commu-
nities, comparing for the first time páramo ecosystems (grass 
páramo) situated at different altitudes. 

Main changes are related to elevation and slope. How-
ever, when we consider lichens and bryophytes separately, 
we found different and contrasting patterns with elevation. 

Meanwhile lichen richness is maximum at the highest eleva-
tion, bryophyte richness showed a hump-shaped relationship. 
Several authors found similar patterns with a higher richness 
of lichens at elevations above 3000 m (Sipman 1989, Paredes 
2006, Baniya et al. 2010) and the highest diversity at middle 
elevations for bryophytes (Grau et al. 2007, Sun et al. 2013), 
although these studies included different ecosystems at dif-
ferent altitudes. 

As the studied páramos are similar in plant composition 
and disturbance level, differences in altitude might rather re-
flect a gradient in precipitation, temperature and irradiance, 
with a trend showing an increase of precipitation and irradi-
ance (Kessler 2002), and a decrease in mean annual tempera-
ture with altitude. Thus, differences observed in the patterns 
for different groups along the same gradient may be attributed 
to different physiological responses to the changing environ-
mental conditions (Bhattarai and Vetaas 2003, Ah-Peng et al. 
2012). Although bryophyte richness usually increases with 
humidity (Sun et al. 2013), the highest species richness was 
not found in the páramo with the highest rainfall, but instead 
at middle altitudes, with less rainfall. In general terms, with 
increasing altitude, the substrate tends to dry faster by the 
more intense solar radiation meanwhile in the lower eleva-
tion, a similar pattern occurs with the raise in temperature 
(Vittoz et al. 2010), increasing the evapotranspiration and 

Table 4. Results of the generalized linear models on the Cladoniaceae richness and cover. Coef.: coefficient of the variable in the 
model. S.E.: standard error. 

Coef. (S.E.) t-value p-value

Cladoniaceae richness

Elevation 0.0003 (0.0003) 1.140 0.2556

Plant cover 0.0042 (0.0052) 0.803 0.4230

Slope –0.0138 (0.0070) –1.955 0.0520

Aspect 0.2356 (0.1459) 1.615 0.1080

Cladoniaceae cover

Elevation 0.0013 (0.0044) 0.289 0.7729

Plant cover –0.0895 (0.0831) –1.076 0.2832

Slope –0.2484 (0.1129) –2.201 0.0290

Aspect 1.2107 (2.3369) 0.518 0.6050

Table 5. Results of one-factor PERMANOVA analysis by páramo ecosystem. Values for the total composition, lichen composition and 
bryophyte composition. Degrees of freedom (df); mean sum of squares (MS); F value by permutation (Pseudo-F); significance level 
(P); coefficient of variation (CV). 

Source df MS Pseudo-F P CV (%)

Total 

Páramo 4 50453 23.738 0.0001 34.759
Residual 195 2125.4 46.102

Lichens

Páramo 4 30863 12.868 0.0001 26.676
Residual 195 2398.4 48.974

Bryophytes

Páramo 4 84177 44.917 0.0001 45.36

Residual 195 1874 43.29
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making the air drier. Thus, dessication and air temperature 
may be affecting species of bryophytes that only survive in 
more favorable sites situated at middle elevations (Walker et 
al. 2006, Vittoz et al. 2010, Sun et al. 2013).  The highest 
bryophyte richness f���� �� ��j���m� p���m� ��� m����� ������m� ��� m����� �����m� ��� m����� ���
�v������ w�s ��s� �ss�c����� with an increase of the number 
of exclusive species (11 exclusive species). This highest rich-
ness could also be related to the proximity of montane forests 
that can serve as a source of species to colonize the nearby 
páramo. 

On the other hand, lichen richness was maximum at the 
highest elevation, with more precipitation, less average tem-
perature and higher inputs of solar radiation (Kessler 2002). 
Certain lichens show preferences for high light levels, adjust-
ing their physiology to high light intensities by increasing 
thallus thickness or the concentration of protective pigments 
(Gauslaa and Solhaug 2001, Kranner et al. 2008). Moreover, 
lichens possess several mechanisms assuring cell function-
ing at low temperatures (Barták et al. 2007). The increase in 
lichen richness at higher altitudes has been previously found 
in Paredes (2006) in páramos but different patterns have also 
been found including broader altitudinal ranges and differ-
ent ecosystems (Baniya et al. 2010, Vittoz et al. 2010, Rai 
et al. 2015). Although the lichen family Cladoniaceae is an 
important component of the páramo communities, we did not 
find the same altitudinal pattern as in the total lichen richness. 
Soto-Medina (2013) found two peaks in the Cladoniaceae at 
0–1000 m and 2000–3000 m; however, these results are not 
fully comparable since the altitude considered and the geo-
graphic range were much greater. 

Another significant variable structuring these commu-
nities at all levels (total species, bryophytes, lichens and 
Cladoniaceae richness and diversity) is the slope, showing 
an inverse relationship. Slope is related to the stability of the 
substrate, radiation levels, soil temperature and soil moisture 
(Garcia-Pichel and Belnap 2001). Thus, microclimatic condi-
tions related to the slope are affecting richness and composi-
tion of terricolous communities, a fact that has been demon-
strated for bryophytes and lichens separately (Hauck et al. 
2007, Mandl et al. 2009).

The composition of terricolous communities in Ecua-
dorian páramos is also correlated to the elevation, with a 
stronger pattern in the bryophytes. This evidences the re-
markable influence of environmental variables related to dif-
ferences in elevation (temperature, solar irradiation, humidi-
ty, rainfall) on the structure of these communities. Small scale 
variables at the páramo level, such as slope or plant cover, 
also influence the composition of terricolous communities. 
Although other studies (e.g., Sipman 1989) found a differ-
ent floristic zonation with altitude, they compared different 
ecosystems (e.g., superpáramo, páramo, montane forest) and 
different substrates (trees, soils, rocks), contrary to this study 
in which we found floristic differences comparing the same 
type of habitat (grass páramo) and substrate (soils). 

We therefore conclude that elevation and slope are im-
portant factors affecting the diversity and composition of ter-
ricolous communities of tropical páramos, probably related 

Coef. (S.E.) t-value p-value

Cladoniaceae richness

Elevation 0.0003 (0.0003) 1.140 0.2556

Plant cover 0.0042 (0.0052) 0.803 0.4230

Slope –0.0138 (0.0070) –1.955 0.0520

Aspect 0.2356 (0.1459) 1.615 0.1080

Cladoniaceae cover

Elevation 0.0013 (0.0044) 0.289 0.7729

Plant cover –0.0895 (0.0831) –1.076 0.2832

Slope –0.2484 (0.1129) –2.201 0.0290

Aspect 1.2107 (2.3369) 0.518 0.6050

Source df MS Pseudo-F P CV (%)

Total 

Páramo 4 50453 23.738 0.0001 34.759
Residual 195 2125.4 46.102

Lichens

Páramo 4 30863 12.868 0.0001 26.676
Residual 195 2398.4 48.974

Bryophytes

Páramo 4 84177 44.917 0.0001 45.36

Residual 195 1874 43.29

31 
 

 

 

 
Figure 3. Non-metric multidimensional scaling analysis for spe-
cies composition of sampled units (plots) in the five studied pára-
mos: Punzara (p), Loma del Oro (×), Cajanuma (), Jimbura 
() and El Cajas (). (A) Total species composition; (B) lichen 
composition; (C) bryophyte composition.
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to changes in rainfall, humidity, temperature and irradiance. 
Patterns of response to elevations were different in lichens 
and bryophytes. The maximum lichen richness was found at 
the highest elevation. For bryophytes, a humped relationship 
between the amount of species and elevations below 4000 m 
a.s.l. was found, probably linked to the less hospitable climate 
at higher and lower altitudes or the proximity of more suit-
able areas serving as a source of species. Many factors such 
as temperature, rainfall, radiation, soil conditions and human 
disturbance should be assessed along elevational gradients in 
páramo ecosystems to gain better understanding of diversity 
and composition of lichens and bryophytes in these ecosys-
tems. 
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