
Among the periodic system's elements, mercury (Hg) is most liable to dispersion and,
simultaneously, most liable to secondary enrichment. Consequently, mercury enrichments can occur
as a result of a number of geologic as well as anthropogenic processes. If the geologic processes cease,
quite extended dispersion halos can form around a former accumulation center.

Hydrothermal mineralization is a typical process giving rise to mercury concentration. As a result,
regional mercury impacts can occur in the floodplains of rivers flowing from the mining and heavy
industrial regions of Transylvania and Slovakia. Elsewhere, mercury anomalies detectable at the
intermediate scale (1:50,000) can be found in the Zemplén and Mátra Mountains and, subordinately,
in the Börzsöny Mountains. Typically mercury anomalies develop above major structural lineaments
as well, unless they are buried under thick young sediments. A remarkable example is the deep fault
separating the Pilis and Visegrád Mountains. Another group of Hg anomalies is caused by well-
known mercury contamination sources (Kazincbarcika, Balatonfûzfõ), which are truly local: they
cannot be detected at the scale of the given study.
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Introduction: Mercury in the Earth's crust

Mercury is typically a microelement: its Clark value in the Earth's crust is
56 µg/kg (Wedepohl 1995). Newer sources quote higher crustal Hg concentration
(80 µg/kg – Risher 2003; 67 µg/kg – WebElements, 2010). It is characterized by a
dual geochemical behavior: it is liable to extreme concentration and to dispersion,
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the latter resulting in an approximately entirely even concentration. Its ability for
concentration can clearly be characterized by the ratio of the threshold of its
economic ability to be mined (in large occurrences) to its crustal average value,
which is presented for comparison with some other elements in Table 1.

Its ability for dispersion is clearly manifested by the fact that mercury is the
second most equally dispersed element (of lowest variance) after oxygen in the

Earth's crust in Cretaceous and pre-
Cretaceous sequences, irrespective of
their age and lithology (Fursov 1983).
Its expected concentration in rocks of
different age and composition (Table 2)
shows hardly any variation –
commonly with slightly lower values
in carbonate than in silicate rocks.

The strong dispersion ability of
mercury is due to the reduction of its
compounds to metal mercury, which is
a rather slow process discernable only
on a geologic scale. More than 80% of

the mercury in the Earth's crust occurs in the elementary state and a substantial
majority thereof is in capillary water
(Fursov 1977). The main reason for
mercury's geologic mobility is that its
tension largely exceeds that of the
other metals.

If the geologic processes inducing its
enrichment cease, the combination of
its concentration and dispersion results
in the dispersion of the concentrated
mercury, giving rise to extended
geochemical anomalies around its
accumulations. Given that mercury is
enriched by an extremely wide variety
of geologic processes, from the
formation of hydrocarbon to hydro-
thermal mineral occurrences, it can be
regarded as a universal geochemical
indicator of young geologic effects
(Saukov 1946); its dispersion halos are
more extensive than those of any other
element (Sergeev 1957).

In its industrial applications mercury
is predominantly used in the
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Table 1
Global lithosphere baselines (b) and
approximate workabke concentrations (wc) of
some elements

Table 2
Median mercury concentrations (µg/kg) in
some rock types (Fursov 1983)

Magakyan, 1974



elementary state. For this reason dispersion halos in the vicinity of industrial
mercury contamination sources are very limited, much more so than around any
geogenic source (Smith and Smith 1972; Yanin 1997; Ping et al. 2008; etc.). The
dispersion halos formed in the gaseous phase within the soil feature the highest
contrasts (Fursov 1983). Unfortunately, appropriate equipment for their study is
lacking in Hungary. However, during the last 20 years it was possible to obtain
enough quality analyses from near-surface sediment samples to appraise the
mercury content of these geologic formations and to detect mercury
accumulation and contamination at different scales. Based on these data we can
attempt to characterize the main distribution patterns and natural variation of
mercury in the surficial geologic formations of Hungary. In the present paper we
summarize the results of our geochemical investigations completed in this
period.

Analyses

Until 1997 the cold-vapor AAS method (Bertalan and Bartha 1999) was used for
the analysis of mercury after leaching with hot aqua regia in Teflon bombs. Since
1998 the determination of total mercury has been carried out using a cold vapor
atomic absorption technique, involving pre-concentration on a gold amalgam
before detection with an "Advanced Mercury Analyser" (AMA-254, ALTEC)
instrument (Sandström et al. 2005). The analysis was performed directly on solid
samples without any sample preparation. Mercury is liberated from the sample
during a programmed temperature elevation to 850 °C and amalgamated with
gold. Mercury vapor is then released from the amalgam by heating and detected
using atomic absorption spectrometry. The detection limit of the atomic ab-
sorption method is 30 µg/kg and the detection limit with the AMA-254 is 0.1
µg/kg.

Background and anomalies

Neither the terms background nor anomaly are well defined. As Reimann and
Garrett (2005) have shown more than 10 quite different definitions are in use in
the scientific literature. The Hungarian rule of law (10/2000., 219/2004.) and most
of the EU documents (for example EU, 2008) in various forms define the
background of some component as its "natural" concentration(s) without (any)
anthropogenic influence.

In directly opposition to this conception, in our opinion (Fügedi et al. 2006)
there is no reason to estimate where geochemical cycles of individual atoms have
been influenced by any human activities, and where activities considered as
"natural" end and the "anthropogenic" influences begin. Our (purely technical,
i.e. formal) conception is that background and anomalies need to be viewed
together, and can only be defined on the basis of statistical distribution patterns,

Mercury content in the superficial geological formations of Hungary 289

Central European Geology 52, 2009



always taking, however, the possible heterogeneity of the background (geologic-
geographical setting) into account. 

There exist a number of different techniques for the statistical calculation of the
background (see Reimann et al. 2005). In our experience the most effective
method is the separation of the so-called "uncorrelated background" from the
well-correlated anomalies. In presenting the results of some technical problems
in this paper we followed another method: the background of mercury always
falls into the same range (between two frequency minimums of the polymodal
distribution), in which the majority of the values occur. The positive and negative
anomalies are placed outside of this range. If the distribution is unimodal, all
samples may be considered as background.

It is important to point out that the background is, in most cases, heterogenic:
the concentration may be quite different in different rock types. The variability
(the range of the background concentrations) is dependent on the location of the
sample type: e.g. overbank sediments represent a larger catchment basin (with
lower variability) than stream sediments, while stream sediment samples
represent larger territories than a soil sample.

Previous investigations

1. Continental scale. In the FOREGS Geochemical Baseline Mapping
Programme (Salminen et al. 2005) 14 overbank sediment and 14 stream sediment
samples were collected from Hungary. All the solid samples of this program were
analyzed for mercury in the laboratory of MÁFI using a AMA 254 instrument.

2. Regional scale (Darnley et al. 1995) geochemical mapping (1: 500 000) in
Hungary was completed in 1991–1995 (Ódor et al. 1997, 1998). In regions with
well-developed drainage systems, 196 catchment basins of approx. 400 km2 were
delineated and flood-plain (overbank) deposits sampled at their outlets. Two
samples were collected at each site, one from a depth of 0 to 10 cm and one from
50 to 60 cm. The most important result of these investigations was that in
Hungary there is no single background because the territory is divided into four
geochemical regions (Fig. 1) with different characteristics. The larger part of the
country (the "main" Region 1) does not show a characteristic association of
elements, i.e. the dominant part of the variations resulted from processes of
accumulation and leaching. In Central Hungary (the "limy" Region 2) the
association of Ca-Mg-Sr-CO3

2--PO4
3--SO4

2- reflects the presence of limy soils.
Near the western border line (the "ferrous" Region 3) the iron alloy metals Co-Cr-
Ni-Fe originate from basic and ultrabasic rocks of the Alpine belt. In the flood-
plain deposits of rivers discharging from Transylvanian mining areas and from
some heavy industrial centers ("eastern" Region 4) we can find characteristic Ag-
Au-Cd-Pb-(Cu-Zn) anomalies in the overbank sediments of lower courses, and
also Hg originates from the processing of ore from low- to medium-temperature
hydrothermal ore deposits.
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On the mercury distribution map (Fig. 2) yet another tendency is visible. More
variable Hg concentrations occur in the mountainous areas than in the plains.
The reason for this is that during the weathering process mercury vaporizes and
precipitates continuously, and that during transportation the concentrations
become more and more equalized.

3. Intermediate scale (1: 50 000): In addition to the surveys mentioned above, a
large part of the hilly and mountainous regions of Hungary was subjected to
more detailed geochemical mapping, based on stream sediment sampling of
small, approx. 4 km2 catchment basins (Hartikainen et al. 1992; Ódor et al. 1999;
etc.) between 1989 and 1998. The most important result of these investigations
was that no significant difference between the composition of stream and
overbank sediments eroded from carbonatic, volcanic and siliciclastic rocks were
found (Fügedi et al. 2007). The concentrations of elements are mainly determined
by the young (Miocene–Holocene), easily eroded, soil-forming sediments (tuffs,
loess, etc.). Against this background only the influence of rare, extreme geologic
formations becomes visible: some ore deposits, alkaline ultrabasic rocks, etc.
(Fügedi et al. 2006). Therefore, in 2000–2010, most of the detected anomalies were
resampled.

The results of these three mapping programs were integrated in 2008–2010.
Now the uniform database contains 1,863 records with 1,629 mercury analyses.
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Fig. 1
Geochemical regions of Hungary (after Ódor et al. 1997, corrected). 1. Region 1 ("main"), 2. Region 2
("limy"), 3. Region 3 ("ferrous"), 4. Region 4 ("eastern"), 5. catchment area in Hungary, 6. catchment
area outside the national boundaries



Some parts of the integrated geochemical atlas of Hungary (Figs 3, 4) are
published for the first time in this paper.

The most important (recent) mercury contamination sources in Hungary were
described in the NATO ASI Programme "Regional and Global Mercury Cycles:
Sources, Fluxes and Mass Balances", in 1995–1996. A large contamination (about
600 t Hg) was located at Kazincbarcika resulting from the production of
hydrochloric acid. A second is located at Balatonfûzfõ close to the Nitrochemistry
Works (Fügedi et al. 1995, 1996). Unusually high values of Hg with a limited
geographical extent were detected in the Budapest agglomeration area. Such
very local Hg contamination sites remain difficult to detect with traditional
geochemical mapping methods.

The regular content of mercury in Hungary

The background levels of mercury (Table 3) in the geochemical regions of
Hungary have been determined within the framework of completing the
1:500,000 geochemical atlas of Hungary.

In full compliance with the above presented features of mercury its expected
values are almost equal in the geochemical regions, notwithstanding substantial
differences in geology. The exception is the eastern Region 4 with 1.5–4 times
higher Hg-values than elsewhere in the country.
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Fig. 2
Mercury background concentrations in Hungary based on overbank sediments
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Fig. 3
Mercury concentrations in the Mátra Mountains based on stream sediment sampling

Fig. 4
Mercury concentrations in
the Zemplén Mts based on
stream sediment sampling



The background levels of the
mountain- and hilly regions (Table 4)
are also quite close to each other and
these are very similar to the sub-
regional medians of the Geochemical
Atlas of the Republic of Croatia
(Halamić  and Miko 2009, 35–105
µg/kg). It can be suggested that the
smaller part of the relevant values
below background level could have
been due to analytical reasons (the
Zemplén Mountains, Pilis-Buda
Mountains, Börzsöny-Visegrád

Mountains and Cserhát Hills were sampled at the beginning of the project and
analyzed with the cold vapor AAS technique).

The anomaly in Mátra (Fig. 3) is due to a number of processes, including the
erosion of extensive ore zones (Gedeon et al. 1959; Gedeon 1964), environmental
contamination resulting from the Gyöngyösoroszi ore mine (Fügedi 2004) and
the As-Sb-Hg low-temperature hydrothermal mineralization discovered in the
area of the southwestern part of the mountains (Csongrádi 1984). At the same
time the background values in the Börzsöny and Zemplén Mountains (Fig. 4) are
not affected by mineralization, due to its substantially smaller extent: the
anomalies are separate from the background. A slight but characteristic anomaly
was detected between the Visegrád and Pilis Mountains.
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Table 3
Background concentrations (µg/kg) of mercury
in the geochemical regions of Hungary (Ódor et
al. 1998)

Table 4
Median background concentrations of mercury (µg/kg) in some mountanious or hilly areas of
Hungary



Discussion

In terms of their size mercury anomalies occurring in Hungary can be assigned
to three main categories as follows.

1. Regional level

In the (eastern) geochemical region (No 4), beside Hg the precious and base
metals Ag, Au, Cd, Cu, Pb, and Zn, as well as their accompanying elements (As,
Sb) also occur in anomalous concentrations. These anomalies do not extend
throughout the entire surface of the catchment areas displayed on the map. They
are restricted to the rivers' floodplains beneath heavy industrial complexes in the
Transylvanian mining region and of Kazincbarcika and Košice. The contaminated
sedimentary sequence is at least 60 cm thick; the length of the contaminated
floodplains totals several hundred kilometers; their width, unmeasured, is
probably in the order of one kilometer. The highest value of Hg detected in these
sediments is 96 µg/kg mercury. This is still just one order of magnitude above the
Clarke for Hg.

As shown by the first results of our analyses performed within the framework
of Romanian-Hungarian cooperation (Horvath et al. 2009) Hg contamination can
apparently be detected from the mining area down to the mouth of the Tisza
River.

2. Subregional level

Natural mercury anomalies occur extensively as a result of hydrothermal ore
mineralization processes (Zemplén Mountains, Mátra and Börzsöny), as well as
along some deep faults, like the fault zone between the Pilis and Visegrád
Mountains. Their individual surface area amounts to some or some dozen km2;
their intensity varies between 300 and 3000 µg/kg Hg. In some anomalies
(Zemplén Mountains, Mátra and Börzsöny) mercury occurs as the accompanying
element of precious and base metals. However, Hg alone occurs in the form of
occasional scattered metacinnabarite elsewhere (Zemplén and Dunazug
Mountains). These natural anomalies have occasionally been substantially
enhanced and strengthened by mining activities (Telkibánya, Gyöngyösoroszi,
Nagybörzsöny and Recsk-Lahóca).

3. Local level

The industry-induced mercury anomalies of Hungary were surveyed within
the framework of NATO's ASI program (Fügedi et al. 1996). Industrial plants
(Kazincbarcika, Balatonfûzfõ) as well as thermal power stations have been the
main emitters in the past and continue to be so today. The concentration of
mercury can attain several percent in the surficial geologic sequence beneath
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electrolytic plants as well. The contamination caused by factories is so small and
the signal caused by power stations is so weak that these possible sources remain
undetectable at the scale of our geologic survey.

Conclusions

In Hungary, natural enrichments of mercury are the result of Neogene
postvolcanic activities; they are not very significant. Substantial mercury
contamination was detected only in the immediate vicinity of large mines and
some major industrial complexes. Since they are found mainly in Transylvania, it
would be quite reasonable to study the removal of ore minerals jointly with
Rumanian colleagues. The 1:50,000 scale is still not sufficiently detailed to detect
the well-known domestic contamination.
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