
43 
 

Ecocycles 2(2) 43-53 (2016)     
DOI: 10.19040/ecocycles.v2i2.62  ISSN 2416-2140 
 

REVIEW ARTICLE  
 

Role of wastewater treatment plant in environmental cycling of 
poly- and perfluoroalkyl substances  

 Hanna Hamid, Loretta Y. Li1 

 
1Department of Civil Engineering, Faculty of Applied Science, 2002 - 6250 Applied Science Lane, Vancouver, BC Canada V6T 1Z4, 

Tel. 604 822 2637, Email: lli@civil.ubc.ca  
 
 

Abstract – The role of wastewater treatment plants (WWTP) in environmental cycling of poly- and perfluoroalkyl substances (PFASs) 
through aqueous effluent, sludge and air emission has been critically reviewed here. Understanding the role of WWTPs can provide 
better understanding of global cycling of persistent PFASs and assist in formulating relevant environmental policies. The review suggests 
that WWTP effluent is a major source of perfluoroalkyl acids (PFAAs) in surface water. Land application of biosolids (treated sludge) 
has shown preferential bioaccumulation of short chain (<C7) PFAAs in various plant compartments, leading to possible contamination 
of the food cycle. Elevated air concentration (1.5 to 15 times) of ∑PFASs have been reported at the aeration tanks on WWTP sites, 
compared to reference sites not contaminated with WWTP emission. The air emission of neutral PFASs has important implications 
considering the long-range transport and subsequent degradation of neutral compounds leading to the occurrence of recalcitrant PFAAs 
in pristine remote environments. Research gap exist in terms of fate of polyfluroalkyl compounds (neutral PFASs) during wastetwater 
treatment and in aquatic and terrestrial environment. Considering the wide range of commercially available PFASs, measuring only 
perfluorocarboxylic acid (PFCA) and perfluorosulfonic acid (PFSA) can lead to underestimation of the total PFAS load derived from 
WWTPs. Knowledge of the various pathways of PFAS from WWTPs to receiving environments, outlined in this study, can help in 
adopting best possible management practices to reduce the release of PFASs from WWTPs. 
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1. Introduction  
Poly- and perfluoroalkyl substances (PFASs) are a diverse 
group of synthetic fluorinated compounds. PFASs are 
aliphatic compounds, where all H atoms, except those in 
the functional groups, attached to all C (perfluoroalkyl) or 
in at least one C (polyfluoroalkyl) have been replaced by 
F atoms (Fig. 1). Due to the unique surface active 
properties and very high chemical and thermal stability 
imparted by the C-F bonds, (Buck et al. 2011), PFASs are 
widely used in numerous consumer products (e.g. textiles, 
paper, non-stick cookware, carpets, cleaning agents etc.) 
and industrial applications including metal plating, fire-
fighting foams, electronics production, photography etc. 
(Kissa 2001; Arvaniti et al. 2014). There is a growing 
concern over the persistence, bioaccumulation potential 
and possible adverse effects in animal and humans of 
some PFASs, notably perfluoroalkyl acids (PFAAs). Two 
of the most commonly detected PFAA, pefluorooctane 
sulfonate (PFOS) and perfluorooctanoic acid (PFOA), 
have been detected in water (several ng/L range), human 
and animal blood and tissue, soil and sediment 
(concentration range of pg/g to ng/g) (Ahrens, 2011; 
Bartell et al. 2010; Bossi et al. 2008; Chen et al. 2012; 
Houde et al. 2011; Zareitalabad et al, 2013). Due to these 
findings, PFOS has been listed under Annex B of the 

Stockholm Convention Treaty on persistent organic 
pollutants (POPs) since 2009, prohibiting its production 
and use, except for a few exemptions; while 
perfluorooctanoic acid (PFOA) is currently under review 
by the POPs Review Committee (Convention 2008).  
 
Direct emissions of PFASs during manufacturing and 
industrial processes, as well as use and disposal of 
consumer products containing PFASs (as additives or 
impurity) release these compounds into wastewater 
streams. During wastewater treatment, polyfluoroalkyl 
compounds (often called precursors) can degrade into 
perfluoroalkyl compounds (PFAAs) as shown in Fig. 1.  
 
 

 
 
Fig. 1. Polyfluoroalkyl and perfluoroalkyl compounds (PFASs) 
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Fig. 2. Environmental pathways of poly- and perfluoroalkyl compounds (PFASs) from wastewater treatment plant (WWTP) 
 
 
However, due to their recalcitrant nature, PFAAs are not 
efficiently removed during conventional wastewater and 
sludge treatment processes (Ahrens et al. 2011; Sun et al. 
2011). PFASs are also frequently detected in wastewater 
treatment plant (WWTP) effluent at concentrations up to 
hundreds of ng/L (Arvaniti et al. 2014; Bossi et al. 2008; 
Higgins et al. 2005; Stasinakis et al. 2013) and are 
believed to be the major point source of these chemicals 
in the aquatic environment (Ahrens, 2011). The disposal 
of the solid or semi-solid product of WWTP (known as 
sludge) is also a cause of environmental concern. The 
environmental cycle and pathways of PFASs are 
illustrated in Fig. 2. A fraction of PFASs partition with 
sewage sludge during wastewater treatment, survive the 
subsequent sludge digestion processes and are detected in 
treated sludge (up-to 400 ng/g dw) (Campo et al. 2014; 
Guerra et al. 2014; Sun et al. 2011). The disposal of 
treated sludge (biosolids) on land acts as source of PFASs 
to enter surface water, groundwater (Zareitalabad et al. 
2013) and the food chain (Lee et al. 2014; Yamashita et 
al., 2004). A limited number of studies also indicate that 
WWTPs act as a source of PFASs, notably semi-volatile 
and neutral PFASs, in the air (Ahrens et al. 2011; 
Weinberg, Dreyer, and Ebinghaus 2011; Shoeib et al. 
2016), which can to be transported over great distances in 
the atmosphere and photodegrade, possibly leading to 
occurrence of PFAAs in remote and pristine environments 
(Yamazaki et al. 2016).  
 
While WWTPs play a pivotal role in closing the cycle of 
water, the most valued natural resource, WWTPs also 
cycle contaminants (Pal et al. 2014). For the first time, this 
study critically reviews the environmental cycling of the 
PFASs through the aqueous effluent, sludge and air 

emissions from WWTPs to the receiving environment. 
Understanding the role of WWTPs can provide better 
understanding of global cycling of persistent PFASs (e.g., 
PFOS, PFOA) and assist in formulating relevant 
environmental policies. In addition to the well-studied 
perfluorinated compounds (e.g., PFAAs), the release of 
polyfluoroalkyl compounds are also considered here, as 
an increasing number of research papers prove them to be 
precursor compounds of PFAAs in the environment. 
Based on the review, existing knowledge gaps are 
identified, and future research directions are proposed in 
this study. 
 
This paper is complementary to previous publications on 
PFASs that reviewed physiochemical properties (Ding 
and Peijnenburg 2013; Buck et al. 2011), microbial 
degradation (Liu and Avendano 2013), occurrence and 
fate in aquatic environment (Ahrens 2011), drinking water 
treatment processes (Rahman, Peldszus, and Anderson 
2014) and WWTPs (Arvaniti and Stasinakis 2015). 
 
2. PFASs in liquid effluent stream of WWTPs 
2.1 Occurrence of PFAS in liquid stream of WWTP  
PFAAs are routinely detected in wastewater from both 
municipal and industrial sources. Despite their phase-out 
by 3M, PFOA and PFOS are still two of the most 
frequently detected PFAAs in wastewater (Fig. 3), 
indicating their widespread past use and their continuing 
release (Guerra et al. 2014; Campo et al. 2014; Stasinakis 
et al. 2013; Arvaniti et al. 2012; Shivakoti et al. 2010). 
While the highest concentrations of PFOS and PFOA in 
municipal WWTP (in influent and effluent) were up to 
465 ng/L and 638 ng/L, respectively (Arvaniti and 
Stasinakis 2015), much higher concentrations (>1000 

` 
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ng/L) of PFOA and PFOS have been detected in industrial 
wastewater (Kim et al. 2012; Lin et al. 2014a).  
Additionally, municipal wastewater from highly 
urbanized and populated areas contains greater 
concentrations of PFAAs than rural areas (Sun et al. 2011). 
Other commonly-detected PFAAs in the liquid stream 
include perfluorohexanoic acid (PFHxA) (Guerra et al. 
2014; Sun et al. 2012) perfluoropentanoic acid (PFPeA) 
(Arvaniti et al. 2012; Stasinakis et al. 2013) 
perfluorobutanoic acid (PFBA), (Campo et al. 2014), 
perfluoroheptanoic acid (PFHpA) and PFHxA (Shivakoti 
et al. 2010). Perfluorononaic acid (PFNA), 
perfluoroundecanoic acid (PFUnDA) and 
perfluorodecanoic acid (PFDA) have also been detected 
at lower frequencies and concentrations in some studies, 
indicating the prevalent production and use of shorter 
chain (≤ C8) PFCAs. 

 

 
Fig. 3. Concentration of perfluoroalkyl compounds (PFAAs) in 

wastewater treatment plant effluent in various countries 
(Filipovic and Berger 2015; Guerra et al. 2014; Campo et al. 

2014; Bossi et al. 2008) 
 
2.2 Fate of PFASs in WWTP 
Few studies have systematically investigated factors 
affecting the fate of these compounds along the 

conventional and/or advanced treatment train. The 
primary treatment aimed at physical settling of solids 
seems to provide very little or no removal of these 
compounds, possibly due to lower hydraulic retention 
time (HRT) and minimum biological activity of such units 
(Guerra et al. 2014; Shivakoti et al. 2010; Yu et al. 2009). 
Variable, poor and negative removal efficiency for most 
of the PFAAs were reported during biological treatment, 
as illustrated in Fig. 4 (Arvaniti et al. 2012; Campo et al. 
2014; Guerra et al. 2014; Loganathan et al. 2007; 
Thompson et al. 2011; Yu et al. 2009). The observed 
increase in the secondary effluent concentration has been 
attributed to polyfluoroalkyl precursor degradation 
(fluorotelomer alcohols (FTOHs), perfluoroalkyl 
phosphates, or fluorotelomer sulfonates) in biological 
treatment processes. Biodegradation of polyfluoroalkyl 
compounds with microbial culture, activated sludge, soil 
and sediment has been reviewed by Liu et al. (2013). 
Despite an increase in removal efficiencies, no clear trend 
has been established so far. A recent study (Guerra et al. 
2014) investigating the fate of 21 perfluoroalkyl acids 
across 20 Canadian WWTPs found that the effects of 
various treatment processes on formation of PFAAs 
differed statistically. In terms of high to low formation of 
PFAAs, the ranking was: advanced biological treatment 
with nutrient removal (median: 160%) > aerated/ 
facultative lagoon (150%) > secondary biological 
treatment (55%) > chemically assisted primary treatment 
(-1%) (Guerra et al. 2014). Greater formation of PFAAs 
(PFBA, PFHpA, PFNA and PFHxA) were observed with 
higher HRT and higher temperature in the summer, 
possibly due to increased associated microbial activities 
(Guerra et al. 2014). Another study (Chen et al. 2012) also 
reported relatively higher effluent concentrations of PFOS 
and PFOA in A2O treatment (Anaerobic / anoxic / oxic) 
technology compared to conventional activated sludge 
systems, biofilm process, and chemical flocculation 
(Chen et al. 2012). Although Yu et al. (2009) observed an 
increase in PFOA at higher solid retention times ((SRT)> 
15 d), Guerra et al. (2014) did not find any correlation 
between formation of PFASs and SRT, mixed liquor 
volatile suspended solids, chemical oxygen demand or 
total suspended solids.  

 

 
 
Fig. 4. Relative abundance of perfluoroalkyl compounds (PFAAs) in sewage sludge in various countries (Filipovic and Berger 2015; 

Guerra et al. 2014; Campo et al. 2014; Bossi et al. 2008) 
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Table 1: Occurrence of PFOA and PFOS (ng/L) in riverine and coastal water 

 
Concentration range in ng/L(median) 

References 
PFOS PFOA 

Total PFAAs 
reported 

Surface river water     
Hanoi, Danang, Hue and Ho Chi 
Minh City, Vietnam 

0.18–5.3 (0.27)a 0.09–18 (0.78) 1–17 
(Duong et al. 2015) 

Red River, Vietnam 0.21 0.16–0.52 (0.22) 0.2–1.2 (Duong et al. 2015) 
Phong River, Thailand <0.1–1.1 <0.2–8.8  (Lien et al. 2006) 
Rivers in Japan <0.1–191 <0.1–1.5  (Murakami et al. 2008) 
Guangzhou, China 0.90–99 0.85–13  (So et al. 2007) 
Yangzte River, China <0.01–14 2.0–260  (So et al. 2007) 
Pearl River Delta, China 0.02–12 0.24–16  (So et al. 2004) 
Liao River, China n.d.b–6.6 (n.d.) n.d.–27.9 (11.5)  (Yang, Zhu, and Liu 2011) 
Rhine, Germany 

2.0–26 2.0–48 
 (Skutlarek, Exner, and 

Farber 2006) 
Tennessee River, USA 16.8–114 <25–598  (Hansen et al. 2002) 
European countries (6) (3)  (Loos et al. 2008) 
Lake and stream water     
Taihu Lake, China 3.6–394 (5.8) 10.6–36.7 (19.5)  (Yang, Zhu, and Liu 2011) 
Shihwa and Banweol, South Korea 2.24–651 0.9–62  (Rostkowski et al. 2006) 
Lake Victoria , Africa  <.1 ̶  2.5 0.4 ̶   12  (Orata et al. 2009) 
Coastal/bay water     
Moreton Bay, Australia 0.64–2.3 0.13–0.63 1.0–4.8 (Gallen et al. 2014) 
East to South China Sea, China <0.02–0.07 0.03–1.54  (Cai et al. 2012) 
Sydney Harbour/ Parramatta River, 
Australia 

7.5–21 4.2–6.4 
 

(Thompson et al. 2011) 

Estuarine and coastal of Korea 4.11–450 (28.5) 2.95–68.6 (14.7)  (Naile et al. 2010) 

German Bight 0.69–3.95 2.92–7.83 
 (Ahrens, Felizeter, and 

Ebinghaus 2009) 
South Korea 0.04–730 0.24–320  (So et al. 2004) 
South China Sea 0.24–16 0.02–12  (So et al. 2004) 
Hong Kong 0.73–5.5 0.09–3.1  (So et al. 2004) 

 
              aMedian value reported in parenthesis; bnot detected 
 
2.3 PFAS pathways from WWTP effluent to environment  
Studies have identified effluent from municipal and 
industrial WWTPs to be a major point source of PFASs in 
aquatic environments (Huset et al. 2008b; Ahrens et al. 
2009; Möller et al. 2010; Sun et al. 2011; Lam et al. 2016). 
The concentrations in river water samples are 
approximately 5 - 12 times smaller than in WWTP 
effluents (Lam et al. 2016; Zareitalabad et al. 2013; 
Ahrens 2011). As shown in Table 1, PFOS and PFOA 
have been detected in tens to hundreds of ng/L 
concentration in river and lake water, with the higher 
concentration end representing streams receiving 
wastewater from fluorochemical industries (Wang et al. 
2015; Zhao et al. 2015; Zareitalabad et al. 2013; Ahrens 
2011; Möller et al. 2010; Huset et al. 2008a). The 
estimated mass flux of PFAAs (sum of C6-C9 PFCA and 
PFOS) from domestic wastewater source was 14.4 and 
0.78 ton/y in Japan and Korea, respectively (Kim et al. 
2012; Murakami et al. 2008). As the surface water is used 
as feed to the water supply system, PFAAs can then enter 
the urban water cycle (Pal et al. 2014). A recent study 
found that in a Swedish city (Bromma), the tap water was 
an important source of PFAAs to the WWTP influent, 
contributing >40% for each quantified perfluorosulfonic 
acid (PFSA) and up to 30% for PFCAs (Filipovic and 
Berger 2015), indicating the environmental recirculation 
of PFAAs in the urban water cycle. PFOA and PFOS have 

also been reported in sediments at concentrations up to 10 
ng/g (Zareitalabad et al. 2013). However, very high 
concentrations (in the range of 50 - 70 ng/g) of PFAAs in 
sediments have been detected in the surroundings of 
fluorochemical plants (Lin et al. 2014a; Zhou et al. 2013). 
 
Occurrence of PFAAs in freshwater biota (e.g., 
zooplankton, fish etc.) is well documented (Lam et al. 
2016; Lam et al. 2014; Lin et al. 2014b; Houde et al. 2011). 
In general, the concentration of PFAAs has been observed 
to increase with increasing trophic level in the food chain 
in riverine ecosystems (Lam et al. 2016; Lam et al. 2014; 
Li et al. 2008). In addition to PFOS and PFOA, long-chain 
PFCAs, including PFNA, PFUnDA and 
perfluorotetradecanoic acid (PFTrDA), are often detected 
in biota tissues, owing to the more hydrophobic nature of 
long-chain PFAAs (Lam et al. 2014). 
 
Despite the aforementioned studies on PFAAs, the fates 
of polyfluoroalkyl compounds and their degradation 
intermediates released with WWTP effluent are mostly 
unknown. A recent study (Ye et al. 2014) reported that 
total the PFCA (C4-C12) concentration increased by 16 
ng/L in WWTP effluent following oxidation treatment, 
indicting the presence of PFCA precursors in the effluent. 
Under the same treatment conditions, the total PFCA 
concentration of the river water upstream and downstream 
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of the WWTP increased by 6.5 and 7.6 ng/L, suggesting a 
possible contribution of precursor compounds to the river 
water through the effluent discharge (Ye et al. 2014). This 
shows that the PFAS load from a WWTP would likely be 
underestimated if PFAA precursors are not measured. 
 
3. PFASs in solid stream of WWTPs 
3.1 Occurrence and fate of PFASs in sewage sludge 
Various classes of perfluoroalkyl compounds, including 
PFCA, PFSA and perfluoroalkane sulfonamide (FOSA) 
have been detected in sewage sludge. In general, studies 
show that the most abundant PFASs in the liquid phase of 
wastewater are also frequently detected in the sludge 
phase (Arvaniti et al. 2012; Campo et al. 2014; Guerra et 
al. 2014). Additionally, long chain (>C8) PFCAs such as 
PFDA and perfluorododecanoic acid (PFDoA) (Sun et al. 
2011), PFDA, PFUnDA and PFDoDA (Shivakoti et al. 
2010), PFNA (Campo et al. 2014), and PFNA, PFDA 
(Guerra et al. 2014) are mainly detected in the sludge 
phase, as shown in Fig. 5. For PFOA and PFOS, two of 
the most widely studied PFAAs, concentrations up to 241 
and 7304 ng/g dw have been reported (Kim et al. 2012).  

 
Fig. 5. Relative abundance of perfluoroalkyl compounds 

(PFAAs) in sewage sludge in various countries (Arvaniti et al. 
2014b; Guerra et al. 2014; Kim et al. 2012; Sun et al. 2011a) 

 
3.2 Fate of PFASs in sewage sludge treatment 
Limited information is available regarding the fate of 
PFASs during sludge treatment processes (Arvaniti and 
Stasinakis 2015). Overall, anaerobic and aerobic digestion 
of mixed of secondary and primary sludge has been shown 
to increase the concentration of PFAAs, compared to 
untreated sludge (Guerra et al. 2014; Yu et al. 2009). 
Possible reasons include degradation of precursor 
compounds, decrease of volatile solids during digestion, 
and increased sorption capacity of the digested sludge 
(Guerra et al. 2014). Predominance of even-chain length 
PFCAs like PFOA, PFDA, and PFDoA has also been 
reported in digested sludge (Guerra et al. 2014; Sun et al. 
2011). This is consistent with the biodegradation of 
FTOH leading to even-chain PFCAs under aerobic 
conditions (Higgins et al. 2005; Sinclair and Kannan, 
2006). So far, only one peer-reviewed study investigated 
biodegradation of 6:2 and 8:2 FTOHs under anaerobic 

condition. Polyfluoroalkyl acids, e.g., fluorotelomer 
carboxylic saturated acids (FTCAs), fluorotelomer 
carboxylic unsaturated acids (FTUCAs) and x:3 acids 
were the major degradation products, as opposed to 
insignificant production of PFAAs (≤0.4% of 6:2 FTOH 
and 0.3% of 8:2 FTOH to PFHxA and PFOA, respectively) 
(Zhang et al. 2013). 
 
In contrast to the above, a 2- to 10-fold decrease in 
concentration of PFAAs (e.g., PFNA, PFOA, PFOS, 
PFDA) in sludge has been reported following incineration 
(Loganathan et al. 2007). Although this observation was 
made in a limited number of samples, (Arvaniti et al. 2012) 
reported generally lower concentrations of PFASs in 
thermally dried sludge compared to dewatered sludge. 
 
3.3 Cycling of PFASs through biosolids (treated sewage 
sludge) 
A review by Clarke and Smith (2011) ranked PFAAs as 
the highest priority groups of emerging contaminants in 
biosolids that require additional research and monitoring. 
The criteria used by these authors in the assessment 
included environmental persistence, human toxicity, 
evidence of bioaccumulation in humans and the 
environment, evidence of eco-toxicity, and number and 
quality of studies focussed on the contaminant 
internationally (Clarke and Smith 2011). Previous studies 
have shown that both industrially contaminated 
(Washington et al. 2010) and typical municipal biosolids 
(Sepulvado et al. 2011) application as a soil amendment 
can transfer PFAAs to the soil, with higher application 
resulting in increased PFAA concentration (Sepulvado et 
al. 2011). Following the transfer to the soil from biosolids, 
PFAAs may either accumulate on the surface of soil, leach 
into the subsurface and/or be taken up by plants and 
organisms (e.g., soil invertebrates). Preferential leaching 
of short chain PFCAs (<C8) were observed in biosolids-
amended soil cores at depths of 1.2 m or more (Sepulvado 
et al. 2011; Washington et al. 2010), indicating the 
potential for contamination of groundwater resulting from 
application of typical municipal biosolids to agricultural 
fields (Sepulvado et al. 2011). PFOA (12 ng/L) and PFOS 
(17 ng/L) were also detected in tile drainage of 
agricultural plots amended with municipal biosolids 
(Gottschall et al. 2010).  
 
Plant uptake of PFAAs and translocation into various 
above-ground parts have been observed from biosolids-
amended, PFAA spiked-soils and water for various 
vegetables (e.g., carrot, lettuce, tomato, cucumbers, 
spinach, celery, snap pea) and staple foods (e.g., wheat, 
maize, potato) (Bizkarguenaga et al. 2016; Wen et al. 
2014; Blaine et al. 2013; Lechner and Knapp 2011; Stahl 
et al. 2009; Navarro et al. 2017). The bioaccumulation of 
PFAAs from biosolids-amended soil depends on the 
concentration of PFAAs, physiochemical properties of the 
analyte, soil type, plant species and physiology (e.g., 
transpiration rate, lipid and water content) (Wen et al. 
2014; Blaine et al. 2013; Navarro et al. 2017). Both field 
and greenhouse studies on tomato and lettuce found 
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bioaccumulation factor (BAF=ratio of PFAA 
concentration in plant (ng/g dw) and in soil (ng/g dw)) 
greater than unity for C6 and shorter chain PFCAs, 
indicating accumulation in the plant tissues (Blaine et al. 
2013). The BAFs for PFAAs in greenhouse lettuce 
decreased approximately 0.3 log units per CF2 group 
(Blaine et al. 2013). Similarly, preferential bio-
accumulation of PFAAs in the shoot have been reported 
for spinach (Navarro et al. 2017), wheat (Wen et al. 2014), 
celery, snap peas and radish (Blaine et al. 2014b). In 
general, higher uptake and accumulation of PFCAs were 
reported compared to PFSAs in some crops (e.g., lettuce) 
(Bizkarguenaga et al. 2016; Blaine et al. 2014a). Based on 
the observation of PFAA accumulation in edible crops, 
Blaine et al., (2014) concluded that soils conventionally 
amended for nutrients with municipal biosolids (not 
impacted by PFAA industries) are unlikely to be a 
significant source of long-chain PFAA exposure to 
humans.  
 
The bioavailability and bioaccumulation of PFAAs to soil 
organisms from biosolids-amended soil represent a 
pathway for PFAAs to enter the terrestrial food chain.  
Using earthworms as model organism, PFAA bio-
availability and bioaccumulation have been studied in 
biosolids-amended (Navarro et al. 2017; Wen et al. 2015; 
Rich et al. 2015), aqueous film-forming foam (AFFF)-
contaminated (Rich et al. 2015) and PFAA-spiked soil 
(Zhao et al. 2013). BAF in the range of 1.5 – 4.99 
(Navarro et al. 2017; Wen et al. 2015; Rich et al. 2015; 
Zhao et al. 2013) and 0.52 – 2 (Rich et al. 2015; Wen et 
al. 2015) have been reported for PFOS and PFOA, 
respectively. The BAF values increased with increasing 
carbon chain length for both PFCA and PFSAs (Navarro 
et al. 2017; Zhao et al. 2013). The accumulation of PFAAs 
is correlated positively with concentration of PFAAs and 
negatively with soil organic matter (Wen et al. 2015). 
 
Following land application, polyfluoroalkyl compounds 
present in biosolids have been shown to undergo 
biodegradation and plant uptake. Lee et al. (2014) 

reported that, 6:2 polyfluoroalkyl phosphate diesters 
(diPAP) spiked with biosolids were biodegraded into 
corresponding fluorotelomer intermediates and C4-C7 
PFCAs, following soil application. Accumulation of 
PFCAs present in the biosolids (0.1-138 ng/g wet weight 
(ww)) and those produced from 6:2 diPAP degradation 
(100-58000 ng/g ww) was also observed within 1.5 
months of application (Lee, Tevlin, and Mabury 2014). 
Similarly, perfluorosulfonamide (PFOSA) spiked in 
compost degraded into PFOS after land application to 
carrot and lettuce plants (Bizkarguenaga et al. 2016). Both 
PFOS and PFOSA were reported to be taken up by these 
plants.  

4. Air emission of PFASs from WWTPs 
Occurrence of various classes of PFASs in WWTP 
ambient air (in pg/m3 to ng/m3 range) have been reported 
in a limited number of studies (Shoeib et al. 2016; 
Weinberg, Dreyer, and Ebinghaus 2011; Ahrens et al. 
2011). As shown in Table 2, compared to reference sites, 
where air was presumably not contaminated by WWTP 
emission, measured PFASs concentrations were 1.5 to 15 
times higher on WWTP sites. Generally, FTOHs were 
found to be dominant, accounting for 60 – 90% of total 
PFAS measured in activated sludge system (Shoeib et al. 
2016; Weinberg, Dreyer, and Ebinghaus 2011; Ahrens et 
al. 2011). It is interesting to note that, depending on the 
type of treatment, the relative distribution of PFASs may 
change dramatically. For example, Shoeib et al. (2016) 
found that ∑PFAAs accounted for >70% of gas phase 
PFASs in a lagoon system treating wastewater. This 
distributional shift was likely caused by the longer 
hydraulic retention time (>3000 h compared to 5 – 16 h) 
of the lagoons, increasing degradation of the precursors 
(e.g., FTOHs) to PFAAs (Shoeib et al. 2016). PFASs 
emissions from WWTPs also correlated positively with 
wastewater inflow rate and population served, except for 
PFAAs, presumably indicating additional input due to 
precursor conversion (Shoeib et al. 2016). Using a 
Gaussian dispersion model, the total PFAS release to air 
was estimated to be 110 - 320 g/year/aeration tank in 

 
Table 2: Concentration range of various classes of PFASs in air (pg/m3) on WWTP sites 
 

∑PFAAsa ∑FTOHsb 
∑FOSAs, 
FOSEsc      

Estimated 
input to air 
g/yr/tank 

∑PFAS WWTP 
/∑PFASreference site 

Type of 
treatment 

Reference 

85 - 812 36 - 3766 <DLd - 24 
37 – 110 

1.5 to 6 

Activated 
sludge  

(Shoeib et al. 2016) 33 - 317 23 - 252 < DL - 18 
3.5 – 13.4 Extended 

aeration 

8.5 - 398 26 - 93 <DL - 5 
<2 – 6f Facultative 

lagoons 

<DL – 10e 61 - 514 11 - 182 
- 

1.5 to 4 
Activated 
sludge  

(Weinberg, Dreyer, and 
Ebinghaus 2011) 

214 - 408 
1518 - 
23706 

21 - 124 
320 

3 to 15  
Activated 
sludge  

(Ahrens et al. 2011) 

 

aperfluorocarboxylic and perfluorosulfonic acids; bfluorotelomer alcohols; cperfluoroalkane and N-alkyl perfluoroalkane 
sulfonamide and sulfonamidoethanols; ddetection limit; emeasured in particulates; fg/yr 
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activated sludge systems (Shoeib et al. 2016; Ahrens et al. 
2011), an order of magnitude higher than the input   (~ 12 
g/year/tank) from extended aeration systems (Shoeib et al. 
2016). The semi-volatile and neutral PFASs emitted from 
WWTPs can to be transported over great distances in the 
atmosphere and photodegrade (Ellis et al. 2004), possibly 
leading to occurrence of PFAAs in remote and pristine 
environments (Yamazaki et al. 2016). 
 
5. Conclusions 
The occurrence, fate and behavior of PFASs in 
wastewater treatment plants (WWTPs) has been reviewed 
here. While the occurrence of perfluoroalkyl (PFAA) 
compounds have been reported in many studies, precursor 
compounds (e.g., fluorotelomer alcohol, fluorotelomer 
sulfonates) and their intermediate degradation products 
have received much less attention so far. Despite the 
overall increase of PFAAs observed in treated wastewater 
following biological treatment, the factors affecting the 
PFAA formation process are not well understood and 
require further study. Similarly, research gaps exist in 
terms of the fate of PFASs during sludge treatment 
processes.  
 
The environmental pathways of PFASs from WWTPs are 
also reviewed here. While, numerous studies have 
documented WWTPs to be a major source of PFASs in 
aquatic environments, fewer studies show that land 
application of treated sludge (biosolids) could also release 
PFASs to the environment. Historically PFOS and PFOA, 
and more recently other PFAAs, are found to be the focus 
environmental fate studies. Future monitoring studies 
should also include the known degradation intermediates 
of the precursor PFASs to avoid underestimation of the 
potential PFAA burden in an environmental compartment. 
The elevated ambient air concentration of primarily 
neutral PFSAs from WWTP sites were reported in a 
limited number of studies. While the estimated yearly air 
emission rate was at least 100 fold smaller (kg/y vs. 
tonne/y) compared to mass flux of PFASs in effluent, it 
nevertheless is important considering the long-range 
transport and subsequent degradation of precursor 
compounds leading to PFAA occurrence in pristine, 
remote environments. 
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