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Abstract. The sharp estimates of the product of the inner radius for pairwise disjoint domains are
obtained. In particular, we solve an extremal problem in the case of an arbitrary finite number of the
free poles on the unit circle for the following functional

n∏
k=1

(|ak+1 − ak|α · r (Bk, ak)) .

Introduction

This paper is belong to the theory of extremal problems on the classes of non-overlapping domain,
which is a separate direction in geometric theory of functions of a complex variable. The begin
of these investigations is associated with the paper of M.A. Lavrent’ev [1] in 1934. He found the
maximum of some functional with respect to two simply connected domains with two fixed points.
We note that this result was needed him for applying to some aerodynamics problems. In 1947,
G.M. Goluzin solved a similar problem for three fixed points on the complex plane [2]. Then the
topic began to evolve rapidly. In this connection we may recall the papers of many authors, including
Y. E. Alenitsina, M.A. Lebedev, J. Jenkins, P.M. Tamrazov, P. P. Kufareva and others. Using the idea
of P.M. Tamrazov, in 1975 G. P. Bakhtin solved first the problem with so-called ”free poles” on the
unit circle, see, e.g., [3].

An important step for the development of this topic was the papers of V.N. Dubinin. He developed
a new method of research that is the method of piecewise-separating transformation. He also first
solved numerous of extremal problems for the arbitrary but fixed multi connected non-overlapping
domains (see, e.g., [4]– [6]). Now this type of extremal problems is used for the investigations in the
holomorphic dynamics.

In the last decade actively used Bakhtin’s method of ”managing functional”. He managed to solve
a series of extremal problems for so-called ”radial systems of points” (see, e.g., [4], [7]–[12]). In the
present paper we use the mentioned above Bakhtin’s method.

The subject of studying of our work is the following problem.
Let n ∈ N, n ≥ 2, α ≥ 0. The maximum of the functional be found

n∏
k=1

(|ak+1 − ak|α · r (Bk, ak)) ,

where An = {ak}nk=1 – an arbitrary system of the points on the unit circle, {Bk}nk=1 – an arbitrary set
of the non-overlapping domains, ak ∈ Bk ⊂ C (k = 1, n).

Theory

Let N, R are the sets of the natural and real numbers of conformity, C – the plain of the complex
numbers, C = C

∪
{∞} – the Riemannian sphere.
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For the fix number n ∈ N and the system of the points

An = {ak}nk=1

the relations are executed:

0 = arg a1 < arg a2 < ... < arg an < 2π,

ak ∈ C, |ak| = 1, k = 1, 2, ..., n. (1)

For such systems of points we will consider the following sizes:

σk =
1

π
(arg ak+1 − arg ak) , k = 1, 2, ..., n, an+1 := a1.

Let’s consider the system of the angular domains:

Mk := {w : arg ak < argw < arg ak+1} , k = 1, n, an+1 := a1

Let {Bk}nk=1 is an arbitrary non-overlapping domains such that

ak ∈ Bk, Bk ⊂ C, k = 1, n. (2)

Let
gB (B, a) = hB,a(z) + log

1

|z − a|
is the generalized Green’s function of the domains B with respect to a point a ∈ B. If a = ∞, then

gB (B,∞) = hB,∞(z) + log
1

|z|
.

By the value
r(B, a) := exp (hB,a(z))

wee define the inner radius of the domain B ⊂ C with respect to a point a ∈ B (see [4], [5], [6], [13],
[14], [15]).

We use the concept of a quadratic differential. Recall that a quadratic differential on a Riemann
surface S is a map

φ : TS → C

satisfying
φ(λυ) = λ2φ(υ)

for all υ ∈ TS and all λ ∈ C. If z ∈ U → C, is a chart defined on some open set U ⊂ S then φ is
equal on U to

φU(z)dz
2

for some function φU defined on z(U).
Suppose that two charts z : U → C and w : V → C on S overlap, and let

h := w ◦ z−1

be the transition function. If φ is represented both as φU(z)dz
2 and φV (w)dw

2 on U ∩ V , then we
have

φV (h(z)) (h′(z))
2
= φU(z).

One way to say this is that quadratic differentials transform under pull-backs by the square of the
derivative. As the main results associated with it can be found in [16].
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Results

Lemma. The function
P (τ) = ln sin

πτ

2

is convex for τ ∈ (0, 2).
Proof of Lemma. Find the second-order derivative

P ′′(τ) =
π

2
·
(
ctg

πτ

2

)′
= −

(π
2

)2
· 1

sin2 πτ
2

.

Consequently,
P ′′(τ) < 0, for 0 < τ < 2.

This proves the lemma.
Theorem. Let n ∈ N, n ≥ 2. Then for all system of the points An = {ak}nk=1, which satisfy the

condition (1), and an arbitrary set of the non-overlapping domains {Bk}nk=1 that satisfies the condition
(2), the inequality holds

n∏
k=1

(|ak+1 − ak|α · r (Bk, ak)) ≤
(
2α+2

n
· sinα π

n

)n

.

The equality is obtained in this inequality when points ak and domains Bk are, respectively, the poles
and the circular domains of the quadratic differential

Q(w)dw2 = − wn−2

(wn − 1)2
dw2. (3)

As a consequence, at α = 0, we obtain the well known result of the V.N. Dubinina.
Corollary. [4], [5], [6]. Let n ∈ N, n ≥ 2. Then for all system of the points An = {ak}nk=1, which

satisfy the condition (1), and an arbitrary set of the non-overlapping domains {Bk}nk=1 that satisfies
the condition (2), the inequality holds

n∏
k=1

r (Bk, ak) ≤
(
4

n

)n

.

The equality is obtained in this inequality, when the points ak and domains Bk are, respectively, the
poles and the circular domains of the quadratic differential (3).

Proof of Theorem. The proof of the theorem leans on amethod of the piece-dividing transformation
developed by Dubinin (see [4], [5], [6]).

The function
ζk (w) = −i

(
e−i arg akw

) 1
σk , k = 1, 2, . . . , n (4)

realizes univalent and conformal transformations of the domain Mk to the right half-plane Reζ > 0,
for all k = 1, n.

From a formula (4) we receive the following asymptotic expressions

|ζk (w)− ζk (am)| ∼
1

σk

|w − am| , w → am, k = 1, 2, ..., n, m = k, k + 1. (5)

It’s obvious that
ζk (ak) = −i, ζk (ak+1) = i, k = 1, 2, ..., n. (6)
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For the family of the functions {ζk(w)}nk=1, setted by the equality (4), it is possible the piece-
dividing transformation (see [4], [5], [6]) of the domains

{
Bk : k = 1, n

}
in relation to the system of

the corners {Mk}nk=1. For any domain∆ ∈ C we define (∆)∗ :=
{
w ∈ C : w ∈ ∆

}
. Let G(1)

k means
the connected component ζk

(
Bk

∩
Mk

)∪ (
ζk
(
Bk

∩
Mk

))∗, containing a point (−i), G(2)
k−1 means

the connected component ζk−1

(
Bk

∩
Mk−1

)∪ (
ζk−1

(
Bk

∩
Mk−1

))∗, containing a point i, k = 1, n,
M0 := Mn, ζ0 := ζn, G

(2)
0 := G

(2)
n . It is clear, that, in general, G(s)

k domains are the multiconnected
domains, k = 1, n, s = 1, 2. A pair of the domains G(2)

k−1 and G
(1)
k is grows out of the piece-dividing

transformation domains Bk concerning families {Mk−1,Mk}, {ζk−1, ζk} in point ak, k = 1, n.
From the Theorem 1.9 [13] (see also [5], [6]) and the formula (5), we have the inequalities

r (Bk, ak) ≤
[
σk · r

(
G

(1)
k ,−i

)
· σk−1 · r

(
G

(2)
k−1, i

)] 1
2
, k = 1, 2, ..., n. (7)

From the condition that the points ak, k = 1, 2, .., n are belong to the unit circle, we get that

|ak+1 − ak| = 2 sin
πσk

2
, k = 1, 2, ..., n. (8)

Using formulas (7), (8) we have:

n∏
k=1

(|ak+1 − ak|α · r (Bk, ak)) ≤ 2nα×

×
n∏

k=1

sinα
πσk

2
·

n∏
k=1

(
σk−1 · σk · r

(
G

(1)
k ,−i

)
· r
(
G

(2)
k , i

)) 1
2
. (9)

Using the Lavrent’ev inequalities [1], we get:

r
(
G

(1)
k ,−i

)
· r
(
G

(2)
k , i

)
≤ 4, k = 1, 2, ..., n.

Taking into account the last inequality, the expression (9) can be written as follows:

n∏
k=1

(|ak+1 − ak| · r (Bk, ak)) ≤ 2n(α+1) ·
n∏

k=1

σk sinα
πσk

2
.

Also,
n∏

k=1

σk ≤
(
2

n

)n

.

The equality can be obtained in this inequality, if and only if

σ1 = σ2 = ... = σn =
2

n
.

Then, we have:
n∏

k=1

(|ak+1 − ak| · r (Bk, ak)) ≤
(
2α+2

n

)n

·
n∏

k=1

sinα
πσk

2
. (10)

The equality can be reached in this inequality when the points ak and domains Bk are, respectively,
the poles and the circular domains of the quadratic differential
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Q(ζ)dζ2 =
dζ2

(ζ2 + 1)2
. (11)

From the Lemma we have the function α ln sin πσk

2
is convex for σk ∈ (0; 2) , α ≥ 0. Hence, when

σk ∈ (0; 2), then
α

n
·

n∑
k=1

ln sin
πσk

2
≤ α ln sin

(
π

2
· 1
n

n∑
k=1

σk

)
.

Given that
n∑

k=1

σk = 2,

we obtain
n∏

k=1

sinα
πσk

2
≤ sinnα

π

n
. (12)

The equality obtain in this inequality, if and only if

σ1 = σ2 = ... = σn =
2

n
.

Then from (10) using formulas (12) it is received the following ratio
n∏

k=1

(|ak+1 − ak| · r (Bk, ak)) ≤
(
2α+2

n

)n

· sinnα π

n
.

The equality holds in this inequality, when the points ak and domains Bk are, respectively, the
poles and the circular domains of the quadratic differential (3). It is derived from the square of the
quadratic differential (11) conversion using

ζ = −iw
n
2 .

The theorem is proved.
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