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Abstract 

Understanding how metalloproteins work is of paramount importance to successfully design the            
next generation of catalysts, materials and therapeutics. Molecular modeling constitutes a           
valuable tool to inspect, and predict, their properties. In particular, the combination of classical              
mechanics-based conformational sampling and quantum chemical techniques allows to model          
how they catalyze a reaction or covalently bind a ligand, without missing crucial information              
about the dynamics of the whole protein. In this thesis, these computational techniques are              
systematically employed (combined but also separately) to study and guide present and future             
design efforts of laccases and hemoglobin. Laccases are copper-containing oxidoreductases of           
high biotechnological interest, with a role in several industrial applications such as textile and              
food industry, bioremediation, forestry and organic synthesis. Hemoglobin, which carries oxygen           
from the lungs to the tissue in the body, is a candidate for blood substituent design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
KEYWORDS: QM/MM, PELE, computational protein design, ​in silico​  enzyme engineering, 
laccases, hemoglobin, oxidoreductases, allostery, cooperativity, biocatalysis 
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1. Motivations 

 
Proteins are large macromolecules made up of 20 natural amino acids (Figure 1.1), also              

called the residues of the protein, linked by peptide bonds (Figure 1.2). The carboxylic and               

amine groups plus the carbon atom between them (the alpha carbon, C​α​) form the protein               

backbone, the remaining atoms constitute the side chains. Proteins are responsible of a variety              

of biological functions, among which are storage, transport and chemical transformation of small             

molecules (called ligands or substrates). Their function is encoded in the amino acid sequence              

(primary structure), which determines short range structural patterns like helices, sheets and            

loops (secondary structure), their mutual position in space (tertiary structure) and how different             

protein chains assemble (quaternary structure) (Figure 1.3). Compared to chemical catalysts           

(organometallics, surfaces, etc.), proteins (enzymes) have a well-defined configuration around          

the active site which potentially ensures higher specificity, selectivity and turnover frequencies            

(TOFs); while industrial chemical catalysts display TOFs in the 10​-2​-10​2 s​-1 range ​(Hagen, 2015)​,              

some enzymes can catalyze reactions in a diffusion-controlled regime (10​5​-10​6 s​-1​) ​(Bar-Even et             

al., 2011)​. Chemically catalyzed reactions tend to work in organic solvents and are             

produced/designed through chemical reactions; proteins are soluble in water, their function can            

be optimized genetically by modifying an expression host (a bacteria, plant, fungi, etc.) and they               

are biodegradable. Therefore, proteins have a very low impact on the environment and are ideal               

templates for the creation of novel green catalysts and therapeutics. Indeed, industrial proteins             

have a great market which, focusing on enzymes, it is expected to be worth 6.2 billions of USD                  

by 2020 according to MarketsAndMarkets (​http://goo.gl/e1wePh​).  

Notwithstanding these remarkable properties, proteins, as found in nature, are usually           

not ready for industrial scale-up. In fact, physico-chemical conditions in a batch reactor can              

significantly differ from their natural counterpart in terms of temperature, pressure, pH and             

chemical environment (co-solute composition). On top of that, the reaction of interest may not              

have a natural enzyme or it may have one with an unsatisfying kinetics. As a matter of fact, the                   

rate constant (​k​ cat​ ) of the average enzyme is around 10 s​-1​, far away from the values associated                 

to diffusion-controlled kinetics ​(Bar-Even et al., 2011)​, suggesting that enzymes evolved to just             

accomplish their natural task fairly, leaving room to improve their catalytic power and fulfil the               

industrial needs. 
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Figure 1.1. Structure of the 20 natural amino acids. MW is the molecular weight, pKa is the acidic dissociation                   

constant of the side chain. Source: ​https://goo.gl/BL4akQ​. 

The evolvability of enzymes has been successfully exploited to re-design several           

proteins ​(Gerlt & Babbitt, 2009) or create new ones from scratch (​de novo design) ​(Kiss et al.,                 

2013)​. Although ​de novo design is a vibrating research field with the potential to revolutionize               

the future of catalysis, this thesis is focused on re-designing existing proteins. From now on, the                

words design and engineer should be understood as re-design and re-engineer. 
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Figure 1.2. Chemical sketch of a peptide bond in a dipeptide (complex of two amino acids). Source:                 

http://goo.gl/PwUhte​. 

Proteins are improved in the lab following three different strategies: rational design,            

directed evolution and semi-rational design. In rational design, a few site-directed mutations are             

introduced based on structural and mechanistic knowledge of the system. The main limit of this               

approach is the difficulty of predicting the effect of a point mutation even if the system is very                  

well known. Oppositely to rational design, directed evolution randomly introduces mutations in a             

protein, not requiring a thorough understanding of the system ​(Romero & Arnold, 2009)​. The              

advantage of directed evolution is the potential discovery of beneficial mutations which could not              

be predicted rationally, thanks to its random and high-throughput nature. On the other hand, the               

fraction of sequence space explored is very tiny: for a N residues protein 10​3​-10​4 variants out of                 

20​N are explored at most. Thus, the rate of beneficial mutations is low. In semi-rational design,                

the drawbacks of the two previous approaches are addressed focusing mutagenesis at            

positions where, according to prior knowledge and/or computational techniques, the rate of            

beneficial mutations should be higher ​(Chica, Nicolas & Pelletier, 2005)​. More specifically, these             

positions are subjected to saturation mutagenesis (SM, all 20 residues are tested for a given               

position), combinatorial SM (given N positions all the 20​N combinations are tried) or iterative SM               

(Reetz & Carballeira, 2007) (combinatorial SM is iteratively carried out on regions of maximum              

three residues). 
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Figure 1.3.​ Structural organization of proteins. Source: ​https://goo.gl/FSIqpK​. 

Molecular simulations, which are already routinely used in drug discovery ​(Sliwoski et al.,             

2014)​, are in a unique position to drive rational and semi-rational protein design; their              

physics-based nature provides out-of-the-box knowledge on the system which allows to guide            

the ​in vitro search for new functionality. A great example is the recent work of Moroz et al. where                   

a non catalytic protein was turned into a Kemp eliminase or an ester hydrolase with one point                 

mutation ​(Moroz et al., 2015)​. The take home message is powerful: desired reactivity may be               

one mutation away from a (suitably chosen) inactive protein and molecular simulations can find              

it or, at least, narrow down its search in the lab. In Chapter 2, the theory underlying molecular                  

simulations is introduced and its use in protein design is illustrated in Chapter  3.  

In this thesis, computational techniques are systematically employed to guide present           

and future design efforts of laccases ​(Giardina et al., 2010) and hemoglobin ​(Bellelli, 2010)​.              
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These are two metalloproteins, i.e. proteins that contain a metal ion as cofactor. Laccases are               

copper-containing oxidoreductases with very broad specificity which have a role in several            

industrial applications such as textile and food industry, bioremediation, forestry and organic            

synthesis ​(Riva, 2006)​. Hemoglobin, an iron-containing protein that carries oxygen from the            

lungs to the tissue in the body, is a candidate for blood substituent design ​(Fronticelli et al.,                 

2007)​. Both metalloproteins are reviewed in Chapter 4. 
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2. Theory 
 

In this chapter the theory necessary to understand the content of this thesis is              

introduced. Firstly, basic thermodynamics notions, the concept of potential energy surface and            

their connection are summarily explained. Then, some methods to explore the potential energy             

surface and calculate its value in a given point are described. In the last section, some useful                 

protein-related theories are introduced. 

2.1 A bridge between microscopic states and macroscopic variables 

Entropy (S) is the measure of the number of microstates accessible to the system,              

intuitively associated to its “degree of disorder”. The second law of thermodynamics establishes             

that for an isolated system (where no exchange of matter and energy with the surrounding is                

allowed) its entropy (​S​ u​ ) cannot decrease ​(Atkins, 1998a)​. When the number of particles (​N​ ),              

temperature (​T​ ) and pressure (​p​ ) are fixed (like in a living being or a chemical reactor) and no                  

external work is applied on it, the entropy of the universe (system+surroundings, which is              

isolated by definition) coincides with the opposite of the Gibbs free energy (G) of the system                

multiplied by its temperature. For a molecular transformation (i.e. a chemical reaction) it can be               

shown that: 

 

S / T G G⁰ TlnQ− Δ  
U ≡ Δ = Δ + R ≥ 0 Eq. 2.1 

 

where ​R is the gas constant, ​T is the temperature of the system and ​Q is the ratio of the                    

concentrations of the end-points of such transformation. ​ΔGº is the standard free energy             

difference between the end-points in their pure state. By standard, it is meant that the               

end-points are in their standard states. When a transformation reaches equilibrium the free             

energy no longer changes, therefore: 

 

G⁰ TlnKΔ =  − R Eq. 2.2 

 

where ​K is ​Q at equilibrium and it is called the equilibrium constant. It follows that ​ΔGº is a                   

rigorous measure of the spontaneity of a transformation at a given temperature ​T​ . If ​ΔGº<0​ , the                
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final state of the transformation is more stable and the process is said exergonic; if the opposite                 

is true the transformation is called endergonic. The Gibbs energy of the system is defined as: 

 

H SG =  − T Eq. 2.3 

 

where ​H is the enthalpy, the internal energy of the system at constant pressure, and ​S is the                  

entropy of the system. The lower the potential energy and the higher the entropy of the system,                 

the more stable it is. The main advantage of ​G over ​S​ U is that the spontaneity of a                  

transformation is related to system’s quantities with sound physical interpretation (enthalpy and            

entropy), instead of referring to the universe.  

The potential energy surface (PES) of the system defines the energy as a function of its                

degrees of freedom (Figure 2.1) ​(Leach, 2001)​. If the number of particles, volume (​V​ ) and               

temperature are fixed, the average Helmholtz free energy (​A​ ) of the system can be calculated               

through the canonical partition function (​Z​ ) ​(Hill, 2012)​, provided that the PES is known: 

 

(N, , )Z V T = ∑
 

i
πi = ∑

 

i
e 

− Ei
k TB Eq. 2.4 

TlnZ(N, , )A =  − R V T Eq. 2.5 

 

where ​π​ i and ​E​ i are the probability density and energy of the ​i-th microstate, ​k​ B is the Boltzmann                  

constant (the gas constant R for one molecule instead of one mole). Analogously to ​G for an                 

isothermal-isobaric system, ​A defines the criteria of spontaneity of a transformation in a             

isothermal-isochoric system. ​G​  and ​A​  have the following relationship: 

 

A VG =  + p Eq. 2.6 
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Figure 2.1. PES and a minimum energy path connecting reactants and products (A and C) minimum through a                  

saddle point  (B). Source: ​https://goo.gl/SAzHGv 

In solution, if no liquid-gas phase transition occurs, V is virtually constant, therefore: 

 

V TlnZ(N, , )G ≈ p − R V T Eq. 2.7 

 

Moreover, since the volume of a solution does not change significantly along a molecular              

transformation: 

 

G TlnK TlnΔ 0 =  − R ≈  − R
Z (N ,p ,T)f inal

0

Z (N ,p ,T)initial
0 Eq. 2.8 

 

Therefore, the thermodynamical equilibrium of a transformation can be in principle assessed            

from the PES through the canonical partition function. 

Knowing the PES gives access to kinetic properties as well. For an elementary step A +                

B → C, the rate constant ​k​ , the rate at unitary concentrations of A and B, can be calculated with                    

Eyring’s equation ​(Atkins, 1998b)​: 
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exp  k = κ h
k TB −( RT

ΔG#)  Eq. 2.9 

 

where ​h is the Planck constant, ​κ is the transmission coefficient (generally assumed to be               

unitary) and ​ΔG​ # is the activation free energy, i.e. the free energy difference between the               

transition state (TS) and the reactants (the free energy barrier). The TS is the saddle point of the                  

minimum energy path that connects the reactant and product energy minima on the PES. It               

should be noted that Eyring’s equation is derived with several assumptions: (i) the TS is stable                

enough to form an equilibrium with the reactants; (ii) nuclear tunnelling is negligible (not valid for                

proton transfer or very low barriers); (iii) the reaction passes always through the TS (can be                

false at relatively high temperatures). Assumptions (i) and (iii) are reasonable for enzymes             

because they work at moderate temperatures and TS is stabilized by the protein environment.              

Conversely, attention should be paid to proton transfer reactions which are frequent in biology. 

Unfortunately a direct estimation of the partition function is impossible for flexible            

macromolecules due to their high number of degrees of freedom ​(Leach, 2001; Frenkel & Smit,               

2001)​. Therefore, absolute free energies are inaccessible to molecular simulations. Still, for a             

macroscopic variable ​O which does not directly depend on the value of the partition function               

(like potential energy, specific heat, atom-atom distances, etc.), its ensemble average can be             

calculated with fair accuracy by sampling the low-energy states, practically binning the            

simulated values with importance sampling techniques ​(Allen & Tildesley, 1989)​: 

 

fO ≈ ∑
 

n
On n Eq. 2.10 

 

where ​O​ n and ​f​ n are the n-th bin value and frequency. Furthermore, although absolute free               

energies are not accessible, a number of methods have been developed to calculate the              

differences between two end-points and therefore their thermodynamic equilibrium from          

molecular simulations ​(Frenkel & Smit, 2001)​. 

2.2 Quantum mechanics 

The most accurate, but also computationally intensive, theoretical framework to calculate           

the energy of the system is quantum mechanics, where the electronic degrees of freedom are               

24 

https://paperpile.com/c/HvszW1/48Zd+7yrs
https://paperpile.com/c/HvszW1/48Zd+7yrs
https://paperpile.com/c/HvszW1/V4O6
https://paperpile.com/c/HvszW1/HRYA


 

treated explicitly. If the Hamiltonian operator (​H​ ) of the system does not explicitly depend on               

time ​(Messiah, 2014)​, the wavefunction (​Ψ​ ) and the energy (​E​ ) of the systems can be calculated                

solving the time-independent Schr​ö​dinger’s equation (TISE) ​(Atkins & Friedman, 2011a)​, a           

partial differential eigenvalue equation: 

 

Ψ ΨH = (T )N + T e + V NN + V eN + V ee Ψ = E Eq. 2.11 

 

where ​T​ N and ​T​ e are the kinetic energy operators of the nuclei and electrons respectively, ​V​ NN​ ,                

V​ eN and ​V​ ee are the operators of the nuclei-nuclei, electron-nuclei and electron-electron potential             

energies. According to the first postulate of quantum mechanics, the wavefunction contains all             

the information about the system ​(Atkins & Friedman, 2011b)​. Therefore, given a linear operator              

O corresponding to an observable, its expectation value can be estimated. In order to decrease               

the complexity of the TISE, the nuclei are considered fixed with respect to the electrons due to                 

their much higher mass (~2000-fold). This is known as the Born-Oppenheimer (BO)            

approximation, which allows to separate the electronic from the nuclear degrees of freedom,             

solving the electronic part of the TISE as a parametric equation of the fixed coordinates of the                 

nuclei ​(Szabo & Ostlund, 2012)​. Once the electronic energy is obtained, this serves as potential               

(the BO surface) in the nuclear part of the TISE. In such a way, an extremely complicated                 

equation (Eq. 2.11) is broken down in two easier ones:  

 

 ψ (r; ) (r; ) ψ (r; )ℋe i R = (T )e + V ee + V eN + V NN ψ R = U i i R Eq. 2.12 

 ϕ (R) (R) ϕ (R)ℋN j = (T )N +U i ϕj = Ej j Eq. 2.13 

(r, ) (R) ψ (r; )Ψ R = ϕj i R Eq. 2.14 

 

where ℋ​e and ℋ​N are the electronic and nuclear Hamiltonians respectively, ​ψ​ i and ​Φ​ j are the i-th                 

and j-th eigenvector of ℋ​e and ℋ​N​ , ​U​ i and ​E​ j are the i-th and j-th eigenvalues of ℋ​e and ℋ​N​ , while r                      

and R indicate the electronic and nuclear coordinates. Unfortunately, Eq. 2.12 cannot be solved              

exactly for many electrons systems and approximated methods are necessary. In the            

Hartree-Fock (HF) method, the wavefunction ansatz to solve the TISE of an N electron system               

is the antisymmetrized product of mono-electronic wavefunctions (spin-orbitals): 
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 A (x )  P (x )ψHF = √N! ∏
N

i=1
φi i = (N!)−1/2 ∑

 

P
(− )1 π ∏

N

i=1
φi i Eq. 2.15 

σxi = ri i Eq. 2.16 

 

where A is the antisymmetrizer operator, ​φ​ i is the spin-orbital of the i-th electron, P is the                 

permutation operator, ​π is the parity of the permutation and ​x​ i is the product of the spatial (​r​ i​ )                  

and spin (​σ​ i​ ) coordinates of the i-th electron. The antisymmetrizer operator ensures that the              

Pauli exclusion principle is satisfied, therefore the HF ansatz (the so called Slater determinant)              

is a valid solution. In quantum chemistry the molecular spin-orbitals are built as linear              

combinations of atomic spin-orbitals, which are mono-electronic functions centered on the           

atomic nuclei of the system (Eq. 2.17), the so called basis set: 

 

(x ) χ (x )φi i = ∑
 

 
cμi μ i Eq. 2.17 

 

The TISE is solved exploiting the variational principle, which states that for any N-electron              

wavefunction (assumed to be normalized from now on) the expectation value of the energy U[ψ]               

is higher than the exact ground state energy U​0​: 

 

[ψ] ℋψdτU =  ∫
 

 
ψ* ≥ U0 Eq. 2.18 

 

where ℋ is the electronic Hamiltonian plus the nuclei-nuclei repulsion term and ​ψ* is the complex                

conjugate of ​ψ​ . Therefore, the TISE can be solved minimizing the expectation value of the               

energy with respect to a set of suitable parameters that define the ansatz. In the case of the                  

Slater determinant, such parameters are the expansion coefficients of Eq. 2.17 and the             

variational principle is applied as follow: 

 

ℒ[ψ ] U[ψ ]   δ HF = δ HF − ∑
 

ij
εij φ dx(∫

 

 
φi* j 1 − δij) = 0 Eq. 2.19 
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where ​δ indicates the variation of a functional, ​ε​ ij is a Lagrangian multiplier and ​δ​ ij is the                 

Kronecker delta. The second term of Eq. 2.19 imposes the orthonormality of spin-orbitals. After              

some algebraic manipulation, the HF equation is obtained: 

 

(x )φ (x ) φ (x )f i i i = εi i i Eq. 2.20 

(x )f i = T (x ) (x ) (x ) (x )e i + V eN i + ∑
N

j=1
J j i −K j i

 
Eq. 2.21 

 

where ​f(x​ i​ ) is the Fock operator acting on the i-th electron, ​ε​ i is the energy of the i-th spin-orbital.                   

J and K are the coloumbic and exchange operators accounting for the electron-electron             

interaction between electron of same and opposite spin respectively. Inserting Eq. 2.17 in 2.20,              

multiplying by ​χ*​ ν​  and integrating over ​x​ i​  yields the Roothaan-Hall equation: 

 

 (x ) f(x ) χ (x ) χ∑
 

μ
ciμ ∫

 

 
dx χ1 

*
ν 1 1 μ 1 = εi∑

 

μ
ciμ∫

 

 
dx χ1

*
ν μ Eq. 2.22 

 

Which in matrix form is: 

 

C CεF = S  Eq. 2.23 

 

Where ​F is the Fock matrix (containing the Fock operator ​f​ , Eq. 2.21), ​C is the matrix of the                   

coefficients of Eq. 2.17, ​ε is the matrix of the orbital energies and ​S is the overlap matrix. The                   

peculiarity of Eq. 2.23 is that it cannot be solved diagonalizing ​F since this explicitly depends on                 

C​ . Therefore an iterative approach called self-consistent field procedure is employed and            

stopped when the wavefunction and the energy converge, i.e. their change is below a              

pre-defined threshold. This equation can take different forms whether a restricted (RHF) or             

unrestricted HF (UHF) calculation is carried out. The former, employed in closed-shell systems             

(with same number of spins up and down), have pairs of spin-orbitals with the same spatial                

component (molecular orbital, MO) and distinct spin component. This means that each MO is              

occupied by two electrons with opposite spin. On the other hand, UHF calculations use distinct               

molecular orbitals for spin-up and spin-down electrons, which implies two sets of Eq. 2.23 which               

in this case are named Pople-Nesbet equations. This methodology is used to deal with systems               

with unpaired electrons. An alternative to treat open-shell systems is to model paired and              
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unpaired electrons with doubly- and singly-occupied molecular orbitals (restricted open-shell          

HF, ROHF). 

The HF method carries one fundamental approximations: the mean-field approximation          

is adopted for electrons of opposite spin. The difference between the exact and the HF energy                

arising from this approximation is the so called correlation energy. Post HF methods try to               

correct this gap in different ways: for example configuration interaction (CI) and coupled cluster              

(CC) approaches expand the HF ansatz adding more Slater determinants (although they do it in               

a different way) while the Møller-Plesset method employs a perturbative approach ​(Szabo &             

Ostlund, 2012)​. Post HF calculations are very expensive so their use is limited to small size                

systems. Conversely, semi-empirical calculations ​(Leach, 2001) introduce further        

approximations and empirical data, providing much quicker but less accurate solutions to Eq.             

2.12 than the HF method. Their continuous development is making them popular in             

biomolecular simulations ​(Yilmazer & Korth, 2015)​. 

A completely different approach is delineated by the density functional theory (DFT)            

(Koch & Holthausen, 2015)​. In this theoretical framework the central role of the wavefunction is               

undertaken by the electron density (Eq. 2.24), which measures the probability of one electron to               

be at a specific location. This implies two main advantages: i) the electron density is an                

observable and provides a direct bridge between theory and experiment and ii) the electron              

function is a one-body quantity of easy interpretation. 

 

(r ) ψdσ dx ...dxρ 1 = ∫
 

 
ψ* 1 2 N Eq. 2.24 

 

Given the Hamiltonian of Eq. 2.12 (ignoring ​V​ NN​ , that is constant for a fixed nuclear               

conformation), for a N-electrons system ​T​ e and ​V​ ee are invariant to the number and kind of                

nuclei forming the system, they are universal. On the other hand, ​V​ eN is an external (to the                 

electrons) potential (​v​ ext​ ) which uniquely defines the system. DFT rests upon the the             

Hohenberg-Kohn (HK) theorems which state that:  

 

i) The external potential and therefore the electronic energy of the system is a unique functional                

of the ground state electron density. 

  

(r)  ρ ⇔ vext ⇔ ℋe Eq. 2.25 
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 ρ (r) drU ρ (r)[ 0 ] = F ρ (r)[ 0 ] +∫
 

 
vext 0 Eq. 2.26 

 

where ​F[ρ(r)] is the universal functional which includes electron-electron repulsion and electron            

kinetic energy. 

 

ii) The ground state electron density can be obtained variationally. 

 

 U ρ(r)[ ] ≥ U ρ (r)[ 0 ] Eq. 2.27 

 

The conceptual consequence of these statements is that the ground state electron density, a              

one-body quantity, uniquely defines a N-electrons system and that a variational method can be              

built on the energy functional of this quantity. Unfortunately, the universal functional is unknown              

and these theorems do not provide any practical way to compute ground state electron              

densities. Kohn-Sham DFT (KS-DFT) allows to circumvent this limitation borrowing some           

concepts from the HF method. In KS-DFT an N non-interacting electron system (described by a               

Slater determinant) with the same electron density of the real system is used to find the electron                 

density variationally: 

 

(r)ρ = ∑
N

i=1
φ (r)|| i

|| ² Eq. 2.28 

 

Using Eq. 2.28 and rewriting the universal functional conveniently yields: 

 

F ρ(r)[ ] = T s ρ(r)[ ] +UH ρ(r)[ ] +UXC ρ(r)[ ] Eq. 2.29 

r φ (r) T  φ (r)T s ρ(r)[ ] = ∑
N

i=1
∫
 

 
d i

*
e i Eq. 2.30 

/2 r rρ(r)ρ(r ) rUH ρ(r)[ ] = 1 ∫
 

 
d ∫

 

 
d ′ ′ | − r′|−1 Eq. 2.31 

 

where ​T​ s​ [ρ(r)] is uncorrelated kinetic functional (known from HF theory) ​U​ H​ [ρ(r)] is the classical                

electrostatic energy functional of the non-interacting system and ​U​ XC​ [ρ(r)] is the           
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exchange-correlation functional which corrects the previous two functionals to the exact one.            

Therefore, a new Hamiltonian can be written as: 

 

h = T rρ(r ) r  ve + d ′ | − r′|−1 + vext +  XC = T e + veff  Eq. 2.32 

vXC = δρ(r)
δU [ρ(r)]XC Eq. 2.33 

 

Using the orbitals of Eq. 2.28 as ansatz, the eigenvalues and eigenvectors of Eq. 2.32 can be                 

found and the so called Kohn-Sham equation (Eq. 2.34) can be solved self-consistently: 

 

 φ         i , ..,hi
 
i =  ε φi

 
i = 1 . N Eq. 2.34 

 

As in the case of HF, the spin-up and spin-down electrons of open-shell systems are generally                

treated separately with two sets of Eq. 2.34. In this case a new quantity arises: the spin density,                  

which is the difference between spin-up and spin-down electron densities. 

It should be noted that although the KS equation is an exact computational tool, its               

resolution is necessarily approximate because the form of the exchange-correlation functional is            

unknown. The development of approximate functionals is an active research topic whose            

starting point is local-density approximation (LDA). According to LDA the exchange-correlation           

energy density ​u​ XC ​ [ρ(r)]​  depends only on the local value of the electron density:  

 

(r) u [ρ(r)] drUXC
LDA ρ(r)[ ] = ∫

 

 
ρ XC Eq. 2.35 

 

This is equivalent to assume that, for an N-electron system, the exchange-correlation energy             

density at any position is the same as it would be for a homogeneous electron gas with the                  

same electron density of the system in that position. Obviously the electron density of a               

molecular system if far from being homogeneous and some corrections are needed to improve              

the quality of the exchange-correlation functional. The generalized gradient approximation          

(GGA) and meta-GGA successfully do it adding the local dependence of the energy density on               

the gradient (GGA) and Laplacian (meta-GGA) of the electron density at any point of the space.                

Furthermore, the exchange part of the exchange-correlation functional can be (partially) taken            

by the HF theory, whose exchange energy is exact, producing the so called hybrid functionals. 
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The main practical advantages ​(Cramer, 2013) of KS-DFT are: i) the capability to             

retrieve part of the correlation energy at a fraction of the computational cost of post-HF methods                

and ii) the good scaling with N. Indeed, KS-DFT is the go-to method for modeling large systems.                 

Notwithstanding, KS-DFT has a few drawbacks ​(Cramer, 2013) such as the unclear physical             

meaning of the KS orbitals of Eq. 2.34, which are a mere mathematical escamotage, and the                

limited knowledge of density functionals to calculate observables (other than the energy)            

compared to the plethora of linear operators applicable to the wavefunction. Still, KS orbitals are               

often used as they were the physical orbitals of the N-electrons interaction and the associated               

Slater determinant as it were the wavefunction of the system, not without (at least qualitative)               

success. 

An important concept in molecular systems is that of atomic charge, the amount of total               

charge assigned to a given atom. Atomic charges can be assigned partitioning the             

wavefunction, e.g. according to the number of basis set functions centered on each nuclei              

(Mulliken, 1955)​, or the electron density according to its topology ​(Bader, 1994)​. The spin can               

be partitioned in atomic contributions analogously. A third way to determine atomic charges is to               

fit them to the electrostatic potential of the system ​(Breneman & Wiberg, 1990; Bader, 1994)​. In                

molecular mechanics, such atomic charges are assumed to be concentrated in the nuclear             

position and are therefore called point charges. 

2.3 Molecular mechanics 

Although QM is a powerful theory, its use is impractical when the system to model is a                 

large and flexible biomolecule like a protein due to its high computational cost. Molecular              

mechanics (MM) expresses the potential energy of the system as a function of the nuclear               

degrees of freedom, without explicitly modeling the electronic degrees of freedom. Such a             

function, called the force field (FF), is fitted over a set of experimental and/or QM data ​(Leach,                 

2001)​. Since electrons are ignored, the BO approximation is implicit: no vibronic coupling and              

PES inter-crossing can be modeled with a traditional FF (alternative FFs are in hand to model                

PES inter-crossing though ​(Kamerlin & Warshel, 2011)​). The main concept beyond FFs is             

transferability: functional groups (e.g. -CHO) maintain their properties in different molecules           

regardless of the chemical environment. This assumption finds its justification in several            

experimental data such as the linear dependence of the heat of formation of linear alkanes with                

the number of carbon atoms ​(Cramer, 2013)​. A typical FF, as shown in Figure 2.2, includes                
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bonded and non-bonded interactions. For bonded interactions, stretching and bending energies           

are represented as harmonic functions, while torsional energies are written as Fourier series to              

ensure periodicity. For non-bonded interactions, the electrostatic energies are modeled with a            

coulombic interaction between atomic point charges, and van der Waals interactions, which            

accounts for nuclear repulsions and dispersion forces, have a Lennard-Jones potential form.  

 

 
Figure 2.2. ​Typical FF. Source: ​http://goo.gl/wEQJn1​. 

A FF may also include other terms such as improper torsions to ensure planarity in certain                

systems, cross terms to model coupling effects between e.g stretching and bending, explicit             

hydrogen bond (H-bond) terms, etc. Whatever form of the FF is chosen, it: i) must be continuous                 

and derivable to make force calculations possible; ii) should include enough transferable            

parameters to have broad generality and; iii) should limit parameters’ redundancy to be as              

general as possible, allowing fast energy calculations. It is worth noting that a FF like the one in                  

Figure 2.2 has fixed valence, meaning that no bonds can be formed or broken. Therefore, such                

scheme is not suitable for chemical reaction modeling (but alternatives exist ​(Kamerlin &             

Warshel, 2011; Senftle et al., 2016)​). Moreover, all parameters are fixed for the principle of               

transferability, making them insensible to the environment (no polarization effect, although           

polarizable FFs are being developed ​(Baker, 2015)​). 

32 

http://goo.gl/wEQJn1
https://paperpile.com/c/HvszW1/wYEk+QICi
https://paperpile.com/c/HvszW1/wYEk+QICi
https://paperpile.com/c/HvszW1/0suZ


 

 

Figure 2.3. ​Two-dimensional scheme of PBCs. The blue box is the unit cell, the red spots are the system’s molecules                    

with their velocity vectors. Source: ​http://goo.gl/G55t8T​. 

The solvent, which in protein modeling is usually water, can also be modeled explicitly              

through a dedicated FF. The main drawback is the huge number of solvent molecules needed to                

reproduce its bulk behavior. A way to significantly reduce this number is the use of the periodic                 

boundary conditions (PBCs). When PBCs are applied, the system box (the unit cell) is infinitely               

replicated in space with rigid translations. In order to avoid unphysical behavior, the non-bonded              

interactions are subjected to a cut-off radii (​r​ cut​ ) such that an atom interacts only with the closest                 

images of the remaining atoms (minimum-image convention, Figure 2.3).  

For macromolecular simulations, it is recommendable to place at least 1 nm of solvent              

buffer around the solute ​(de Souza & Ornstein, 1997)​. The introduction of explicit solvent              

molecules, even within PBCs, severely increases the computational cost of a simulation. Implicit             

solvation models are therefore used to average out the solvation free energy of the system               

(Cramer, 2013)​, which has three contributions (Eq. 2.36): electrostatic, van der Waals and             

cavitation. 
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G G G mSASAΔ ele + Δ vdW + Δ cav =  + q Eq. 2.36 

 

The latter is the free energy penalty associated with the formation of a solute cavity within the                 

solvent. The non-electrostatic terms are usually modeled as linear function of solvent-accessible            

surface area (SASA), which is the area of the solute reachable by the solvent molecules (Eq.                

2.36). The rationale behind the linear relationship is the substantial dependence of this term on               

the number of solvent molecules in the first solvation shell, which is proportional to SASA. 

 

G G  mSASAΔ vdW + Δ cav =  + q Eq. 2.37 

 

Modeling the electrostatic part is mathematically more laborious. The Poisson-Boltzmann (PB)           

method provides a fairly accurate solution but it requires the (expensive) self-consistent            

numerical solution of the linearized form of the homonymous equation: 

 

(r)∇ϕ(r) πI(r)ϕ(r) πρ(r) 0∇ • ε − 8 + 4 =  Eq. 2.38 

 

where ​ε(r)​ , ​Φ(r), I(r) and ​ρ(r) are the dielectric constant, electric potential, ionic strength and               

charge density at the position ​r respectively. A less expensive approach is furnished by the               

generalized Born (GB) equation, in which the system is modeled as a collection of particles with                

charge ​q​ i and radii ​a​ i in a medium of relative dielectric constant ​ε​ . The solvation free energy of                  

such system is the sum of the Coulomb energy in the medium and the Born solvation energy                 

minus the Coulomb energy in vacuo: 

 

G q r .5 aΔ ele = (1/ε )− 1 ∑
 

i>j
qi j ij

−1 + 0 (1/ε )− 1 ∑
 

i
qi

2
i
−1 Eq. 2.39 

 

Although implicit solvent models greatly speed up the calculations, they present some            

limitations such as the lack of solvent viscosity (which is also an advantage in terms of                

conformational space exploration rate) and the total neglect of hydrogen (H-bonds) between the             

solute and the solvent (if it has H-bond donor/acceptors like water does). The last point is                

especially limiting since water might have a primary role in some structural and dynamical              

features of a protein. 
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2.4 Quantum mechanics/molecular mechanics 

So far, it has been established that QM is confined to accurately describing             

small/medium sized systems while MM can be used to deal with large systems such as proteins                

at the expenses of accuracy. Hybrid QM/MM methods ​(Warshel & Levitt, 1976; Senn & Walter,               

2009; Cramer, 2013) provide a clever way to model chemical reactivity in large systems. The               

reactive part is modeled with QM and embedded in the FF of the non-reactive part (Figure 2.4). 

 

 

Figure 2.4.​ Schematic description of a QM/MM calculation. Source: ​http://goo.gl/VH7yIy​. 

In additive QM/MM schemes, which are used in this thesis, the energy of the system (​U​ ) is the                  

sum of the energies of the QM (​U​ QM​ ) and MM (​U​ MM​ ) regions plus the energy of the frontier                  

(​U​ QM/MM​ ), which determines how the two regions interact: 

 

U = UQM +UMM +UQM /MM Eq. 2.40 

 

If the QM region is not covalently bonded to the MM part, the Hamiltonian of the frontier part can                   

be written as the sum of a classic LJ potential (which requires to estimate the relative                

parameters for the QM region) and an electrostatic part. The latter can include a polarization               

scheme for the QM electron density (if not, the electrostatic part is a Coulomb interaction               

between point charges). In such case the electrostatic part is further divided into a classical               

nuclear-nuclear and an electron-electron repulsion term: 

 

ℋQM /MM = V vdw + V NN + V ee Eq. 2.41 

/rV ee = ∑
QM

i
∑
MM

I
qI iI Eq. 2.42 
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Things get more complicated when the QM region is covalently attached to the MM part. In such                 

case, several schemes have been proposed using link atoms or frozen orbitals. In this thesis,               

the link atom approach is employed, capping the dangling bonds with hydrogen atoms. The QM               

calculation is carried out on the capped system while the stretching, bending and torsional terms               

involving both QM and MM atoms are treated with MM. The fictitious angle between the frontier                

atoms and the relative hydrogen capped are strongly constrained to avoid artifacts. Finally, the              

MM charges which are very close to the QM region are replaced by spherical gaussian charge                

distributions to avoid an artificial overpolarization of the QM electron density in proximity of the               

frontier region. 

2.5 Geometry optimization and normal modes 

Whatever method is used to quantify the energy, conformational sampling is necessary            

to represent the system. The local minima of the PES are the points that mostly contribute to the                  

canonical partition function. Therefore, energy minima are highly representative elements of the            

system. The energy can be minimized numerically through an iterative geometry optimization            

until a convergence criteria, typically the root mean square deviation of the gradient being below               

a small threshold, is met. The opposite sense of the energy gradient is used to guide the                 

minimum search, like in the steepest descent and the conjugated gradient method ​(Leach,             

2001)​. In addition to that, the inverse of the Hessian matrix (that contains all the second                

derivatives) needs to be calculated in the Newton method ​(Leach, 2001)​. It should be noted that                

energy minimization algorithms per se do not guarantee to land in an energy minima but only in                 

a stationary point (but not in an energy maximum). Therefore, the nature of such stationary point                

can be assessed through the diagonalization of the Hessian matrix: if no imaginary frequency is               

found, the structure is indeed a local energy minimum, otherwise it is a saddle point. If only one                  

eigenvalue is imaginary, the point corresponds to a TS (specific TS search requires different              

approaches which are not covered here). 

The diagonalization of the Hessian matrix, an expensive calculation, provides more           

information than the nature of the stationary point found: the resulting eigenvectors are called              

the normal modes (since they are orthogonal and therefore independent). Their motion            

describes vibrational fluctuations around the energy minimum conformation and their          

eigenvalues correspond to the vibrational frequencies. Therefore, the vibrational spectra of a            
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molecule can be simulated, bearing in mind that the energy function is assumed to be quadratic                

around the minimum. On top of that, the normal modes can be used to quantify the vibrational                 

partition function, allowing to calculate the free energy of the system in a minimum according to                

the rigid-rotor-harmonic-oscillator framework (RRHO) ​(Hill, 2012; Jensen, 2015)​. 

2.6 Monte Carlo and Molecular dynamics simulations 

If the system is at equilibrium, the net flux of transitions entering and leaving any state ​a                 

must be null (balance condition) ​(Krauth, 2006)​: 

 

p p∑
 

b=a/
πa ab = ∑

 

b=a/
πb ba Eq. 2.43 

 

where ​π​ a is the equilibrium probability of the state ​a and ​p​ ab is the probability to jump from state                   

a to ​b​ . It follows that in the attempt to explore the conformational space of a protein hopping                  

sequentially from a state to another, Eq. 2.43 must be satisfied in order to sample the                

equilibrium distribution of the system. A sufficient but not necessary solution is the satisfaction              

of the detailed balance condition for every pair of states ​(a,b)​  of the system: 

 

p pπa ab = πb ba Eq. 2.44 

 

The transition probability ​p​ ab is the product of the probability to try such transition ​(α​ ab​ ) multiplied                

by the probability to accept it (​A​ ab​ ): 

 

pab = αab · Aab Eq. 2.45 

 

Assuming that ​α​ ab​  is symmetric, Eq. 2.44 can be rearranged as: 

 

/p /A /π xppab ba = Aab ba = πb a = e (− ΔE)β Eq. 2.46 

 

where ​ΔE is the energy difference between the final and the initial state. Therefore, whatever               

form of ​A​ ab is picked, it must satisfy Eq. 2.46. The Metropolis criterion makes the following                

choice: 
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in{1, xp }pab = αab ·m e (− ΔE)β Eq. 2.47 

 

In Metropolis Monte Carlo the equilibrium distribution is sampled through a trajectory in system’s              

conformational space generated by random moves. A move is accepted straight away if ​ΔE is               

negative, otherwise a random number is generated: if this is lower than ​exp(-βΔE) the transition               

is accepted, otherwise it is rejected. It should be noted that the only constraint on ​α​ ab is that it                   

must be symmetric. 

Molecular dynamics (MD) simulates the time evolution of the system according to            

Newton’s second law of motion ​(Tuckerman, 2010)​. At each timestep the PES value and its               

gradient are evaluated, then the latter is used to calculate the forces acting on the nuclei                

propagating system’s dynamics in time: 

 

(t) U/maI = −∇I I Eq. 2.48 

 

where ​m​ I is the mass and ​a​ I​ (t) the acceleration of the I-th atom at time ​t​ . For proteins, only MM                    

energy calculations allow to cover ns-ms timescales while QM/MM potentials can be used to              

reproduce 10s-100s of ps, limiting their application. In order to sample the equilibrium             

distribution of a NpT system, p and T need to be constant across the simulation by coupling the                  

system to a barostat and a thermostat. This is equivalent to rescale coordinates and velocities               

according to user-defined coupling constants. In alternative, barostat and thermostat can be            

directly included in the the systems adding further degrees of freedom ​(Leach, 2001; Frenkel &               

Smit, 2001)​.  

A powerful method used in this thesis to accelerate MD and estimate the free energy               

surface (FES) of the system is metadynamics ​(Laio & Parrinello, 2002; Laio, Alessandro &              

Gervasio, 2008)​. A reduced set of collective variables (CVs) is chosen to describe the free               

energy surface (FES) of the system and a bias potential (​V​ G​ ), which is a gaussian function of the                  

CVs, is periodically added to push the system to sample other CV values. When the simulation                

is converged, all the free energy minima are filled and the modified FES is flat. The sum of all                   

the gaussian added during the simulation approaches the negative image of the FES. To yield               

an accurate FES estimation, the CVs must clearly distinguish between relevant states of the              
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system (e.g. folded and unfolded states), including the slow events relevant to the process of               

interest. Then, no more than two or three CVs should be used to efficiently sample the FES. 

MC and MD are different approaches to sample the equilibrium distribution of the             

system. When choosing between them, it should be taken into account that: (i) MD reproduces               

system’s time evolution while MC does not; (ii) while MD naturally couples with explicit solvent               

models, MC generally uses implicit solvent schemes which might limit its accuracy; (iii) MC              

allows to build creative (and non-physical) moves which can improve sampling while MD is in               

this sense an inefficient sampling tool; (iv) even MD has a random component in its initial                

conditions (atomic velocities, assigned through Maxwell’s distribution), therefore more than one           

simulation should be carried out (as for MC) unless the simulation time is significantly larger               

than the slowest event studied (so the system “has no memory” of its initial conditions).  

2.7 Protein-ligand docking and PELE 

Protein-ligand docking techniques are used to find the most stable, i.e. with lowest free              

energy, conformation of a protein-ligand system. The free energy is evaluated with a scoring              

function which can be physics-based (a FF), knowledge-based, empirical, or even derived from             

machine learning. A knowledge-based function judges the protein-ligand contacts according to           

statistics derived by a structural database while an empirical scoring functions assigns positive             

or negative contributions to contacts depending on their nature (hydrophobic-hydrophobic,          

hydrophilic-hydrophilic, H-bonds, etc.). In this thesis, two softwares are used: Glide ​(Friesner et             

al., 2004; Halgren et al., 2004) and Autodock Vina ​(Trott & Olson, 2010)​. In both approaches the                 

ligand is flexible and the backbone is frozen, while side-chain flexibility can be included in               

Autodock Vina. In Glide, ligand conformation and orientation is exhaustively searched through            

the active site; each pose is evaluated with physics-based and empirical terms. In Autodock              

Vina, on the other hand, the active site is explored through Metropolis MC sampling, using a                

mixed scoring function which aims to take advantage from both empirical and knowledge-based             

scoring functions. The main drawback of these approaches is the total or partial neglect of               

protein flexibility. Although it is customary to picture proteins with a single structure, most likely               

due to the influence of X-ray diffraction structures ​(Drenth, 2013)​, these are better represented              

with ensembles of structures ​(Orozco, 2014)​. Therefore, ligands likely interact with a plethora of              

different protein conformations and select the ones that minimize the binding free energy             

(conformational selection). On top of that, after selecting such conformations, ligands might            
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directly induce some changes on protein’s structure and dynamics (induced-fit). For these            

reasons docking can be done on an ensemble of structures (experimentally determined or             

generated by MD or MC), simulating conformational selection, followed by further sampling to             

model induced-fit. 

 
Figure 2.5.​ Schematic description of PELE workflow. 

Compared to the above-mentioned methods, the protein energy landscape exploration          

(PELE) software ​(Borrelli et al., 2005; Madadkar-Sobhani & Guallar, 2013) aims to thoroughly             

sample the protein-ligand conformational space, modeling conformational selection and         

induced-fit on the fly. At each simulation step, the system is perturbed roto-translating the ligand               

and displacing the protein C​α along a linear combination of low-frequency normal modes. In              

particular, such normal modes are not calculated from the all-atom energy of the system, which               

is evaluated with a OPLS 2005 force field ​(Kaminski et al., 2001) and surface-generalized Born               
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solvent model ​(Bashford & Case, 2000)​, but with a simplified anisotropic network model (ANM)              

(Atilgan et al., 2001)​. In ANM, the system is described as a network of elastic forces connecting                 

the C​α​; such elastic force decay as the reciprocal of the interatomic distance and they become                

null after a certain distance cut off. PELE’s perturbation phase is followed by side chain               

prediction ​(Jacobson et al., 2002) and all-atom energy minimization. Side chain prediction            

consists in a discrete optimization of the rotamers (dihedral angle conformers) among a set of               

possible solutions derived from PDB statistics, while all-atom minimization is carried out with a              

truncated Newton algorithm. After structural perturbation and relaxation, the Metropolis criterion           

is used to accept or reject the proposed move. A resuming scheme of PELE’s workflow is                

depicted in Figure 2.5. 

Although at a much higher computational cost than most docking algorithms, PELE            

performs fully flexible protein-ligand docking, allowing to model induced-fit ​(Borrelli, Cossins &            

Guallar, 2010) and conformational selection effects ​(Cossins, Hosseini & Guallar, 2012)​. On top             

of that, PELE can efficiently map ligand migration pathways in the protein matrix ​(Lucas &               

Guallar, 2012; Hosseini et al., 2015)​. Compared to MD, PELE can exhaustively search the              

active site blindly, i.e. with no prior knowledge of its location, in a much lower time, and                 

eventually the FES can be mapped with Markov state models ​(Takahashi, Gil & Guallar, 2014)​.               

On the other hand, the usage of an implicit solvent draws some limitations because: (i) each MC                 

step involves all-atom minimization which in the long run can exaggerate protein packing and              

close important channels and (ii) water molecules can have a direct role in binding. For both                

cases, the inclusion of conserved structural waters can alleviate these (potential) problems. In             

particular for point (ii), an explicit solvent description can be retrieved using MD on the most                

important poses in a second stage. 

2.8 Protein-related theories 

In this section the theories related to enzyme kinetics, electron transfer rate and             

cooperative binding are introduced. Such theories are fundamental to understand the thesis            

work done on laccases and hemoglobin. 

2.8.1 Electron transfer in proteins 

According to Marcus theory, the rate of an electron transfer (ET) reaction depends on              

three parameters: (i) the tunnelling probability between electron donor and acceptor           
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wavefunctions (​T​ DA​ , the electronic coupling); (ii) the ET standard free energy (​ΔG°​ , also called              

the ET driving force); and (iii) the energy cost to distort the geometry of reactants (solvent                

included) into that of the products (or vice versa) prior to ET (​λ​ , the reorganization energy)                

(Marcus, 1993)​: 

 

kET =
4π² T ²| DA|
h√4πk TλB

xp  e  −( 4k Tλ B

(ΔGº + λ)²)  Eq. 2.49 

 

It follows from Eq. 2.49 that the ET rate is a gaussian function of the ET driving force, with a                    

maximum when ​ΔG° = -λ​ . 

The driving force depends on the standard reduction potential (Eº) of the oxidized donor              

and of the acceptor. Given a semi-reaction (Eq. 2..50 and 2.51), Eº measures the tendency of                

the reactant to be reduced to the product: the greater Eº the more favorable the reaction ​(Atkins,                 

1998c)​. As shown in Eq. 2.52, Eº is the negative value of the ET free energy divided by the                   

Faraday constant (​F​ ). It should be noted that the ΔGº of a semi-reaction cannot be measured,                

but it can be estimated if a proper reference, whose ΔGº is null by convention, is provided. 

 

,  Eº(D /D)D+ + e− → D  + Eq. 2.50 

,   Eº(A/A )A + e− → A−  − Eq. 2.51 

Gº −  Δ = F − º(D /D) º(A/A )[ E + + E − ] Eq. 2.52 

 

The reorganization energy has inner- and outer-sphere contributions; the former          

depends on donor and acceptor degrees of freedom, the latter on those of rest of the system                 

(other amino acids and solvent). MD simulations of azurin, a copper-containing protein, revealed             

a direct relationship between the outer-sphere reorganization energy and: (i) active site solvent             

exposure (also found in cytochrome c ​(Bortolotti et al., 2011)​; (ii) and the extent of reorientation                

of the active site and the waters around it upon reduction ​(Paltrinieri et al., 2013)​.  

The pre-exponential factor depends on the magnitude of the electronic coupling, defined            

as the overlap integral of donor and acceptor wavefunctions. This, for relative large             

donor-acceptor distances typically observed in proteins, mostly depends on the nature of the             

tunnelling barrier (vacuum < H-bond < covalent bond) and it decays exponentially with the              

donor-acceptor distance (Eq. 2.53): 
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Vψ dτ  expTDA = ∫
 

 
ψ*
D

 
A ≈ ∏

 

i
hi ≈ T 0

DA − (R )[ α − R0 ] Eq. 2.53 

 

where ​V is the perturbation operator describing ET, ​h​ i is the electronic coupling of the i-th                

tunnelling barrier, ​R is the donor-acceptor distance, ​Tº​ DA is the electronic coupling value at the               

reference distance ​R​ 0​ , and ​α is a positive number. If ​T​ DA is too large, Marcus theory no longer                  

applies; generally the donor-acceptor separation is large enough in proteins to ensure its validity              

and laccases, the enzymes studied in this thesis, are not an exception ​(Tadesse et al., 2008)​. 

2.8.2 Enzyme kinetics 

The rate (​v​ ) of an enzymatic reaction E+S ⇄ ES→P can be modeled by the               

Michaelis-Menten equation ​(Atkins, 1998c)​: 

 

v = K +[S]M

k [E] [S]cat 0 = v [S]max
K +[S]M

Eq. 2.54 

 

where ​k​ cat is the rate constant of the conversion of the Michaelis complex (ES) into products (P),                 

[E]​0 is the total concentration of enzyme in solution, [S] is the concentration of unbound               

substrate, ​v​ max is the maximum value for the reaction rate and ​K​ M is the Michaelis constant. The                 

latter is defined as the substrate concentration at which the reaction rate is half of ​v​ max for an                  

enzymatic reaction whose kinetic obeys to the Michaelis-Menten equation (Figure 2.6). In the             

pre-equilibrium approximation, when ES → P is much slower than E+S ⇄ ES, ​K​ M coincides with                

the dissociation constant of ES. For this reason ​K​ M is usually associated with the              

enzyme-substrate affinity. However, if ES → P is much faster than ES formation and [ES] ~ 0,                 

the steady-state approximation is valid and ​K​ M​  explicitly depends on ​k​ cat​ : 

 

KM = kon
k +kof f cat Eq. 2.55 

 

where ​k​ on and ​k​ off are the rates of formation and dissociation of ES. It is worth noting that: (i) for                    

a given reaction none of the above approximations could be valid; (ii) product dissociation from               

the enzyme might be slow (which means breaking ES → P into ES → EP ⇄ E+P). It follows that                    

estimating ​K​ M through molecular simulations is far from trivial, and the only safe definition of ​K​ M                

43 

https://paperpile.com/c/HvszW1/TIKbc
https://paperpile.com/c/HvszW1/922o4


 

is the one of Figure 2.6, although it seems reasonable to associate ​K​ M to all the factors of Eq.                   

2.55 (and, if that is the case, to product dissociation).  

 

Figure 2.6.​ Plot of the Michaelis-Menten equation. Source: ​http://goo.gl/i5RiJX​. 

On the other hand, ​k​ cat can be calculated, through the modelization of the TS and               

applying Eyring’s equation to the rate-determining step (Eq. 2.9) or, if ET occurs, by computing               

the key parameters of Marcus’ equation (Eq. 2.49). However, if the catalyzed reaction is              

complex and some non-chemical event are required (intermediate unbinding, protein          

conformational change, etc.) the abovementioned strategy could fail and ​k​ cat evaluation become            

cumbersome. 

2.8.3 Cooperative binding in multimeric proteins 

Let’s consider a multimeric protein, i.e. a complex of amino acid chains (subunits)             

organized in a well defined quaternary structure, where each subunit is capable of binding a               

certain ligand. If all the binding events are independent, protein-ligand binding is            

non-cooperative and the fraction of occupied subunits (y) varies with the concentration of the              

ligand (x) following a Langmuir curve (Figure 2.7). Conversely, if protein-ligand affinity is higher              

than the product of the individual subunit-ligand affinities, the association is cooperative and a              

sigmoid fits the experimental results quite well (Figure 2.7) ​(Ferrell, 2009)​. A careful look at               

Figure 2.7 reveals the advantage of cooperative binding: the prompt response of affinity to              
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changes in ligand concentration. This characteristic allows a protein to switch from a low- to a                

high-affinity receptor (or vice versa) more easily than in a non-cooperative system ​(Ferrell,             

2009)​. 

 
Figure 2.7. Saturation curve of cooperative and non-cooperative multimeric protein. Plot produced with KmPlot              

(​https://goo.gl/9biJ2N​) and modified with GIMP (​https://www.gimp.org/​). 

Two of the most popular models of cooperative binding were provided in the 60s by the                

Monod, Wyman and Changeux (MWC) ​(Monod et al., 1965) on one hand, and by Koshland,               

Nemethy and Filmer (KNF) ​(Koshland, Némethy & Filmer, 1966) on the other. In the KNF               

model, a multimeric protein binds ligand molecules sequentially with increasing affinity; after one             

subunit binds a ligand molecule, its structural and/or dynamical changes are communicated to             

the other subunits, whose ligand affinity increases. In the MWC model the protein is assumed to                

exist in tense (T) and relaxed (R) states with low- and high-ligand affinity respectively. Such               

affinities are intrinsic characteristics of the two states and are independent on the number of               

ligand molecules bound. Therefore the fraction of bound ligand molecules is solely regulated by              

the T/R equilibrium, which is in turn perturbed by the presence of the ligand: if its concentration                 

is high R is favored otherwise the system will be predominantly in the T state. 

Cooperativity is the consequence of inter-subunit allosteric communication: binding at          

one site affects the affinity of the others. According to the MWC and KFN models of                
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cooperativity, such allosteric mechanism is purely structural. However, it should be beared in             

mind that any equilibrium is dictated by a free energy difference. Therefore, cooperative binding              

might well arise from purely dynamical effects such as the altered vibrational entropy of the               

receptor upon ligand binding ​(Cooper & Dryden, 1984; Popovych et al., 2006; Hilser, Wrabl &               

Motlagh, 2012; Nussinov, Ruth & Chung-Jung, 2015) which could then propagate to the other              

protein chains. 
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3. Computational protein design: state of the art 
 

In this chapter the state of the art of computational protein design is reviewed,              

highlighting, when possible, the strength, limitations and perspectives of each methodology. The            

discussion is divided in three sections, each focusing on one aspect of design: stability, ligand               

binding and catalysis. Protein-protein and antibody design are not covered since they are out of               

the scope of this thesis.  

3.1 Protein stability design 

A protein with its characteristic and functional three-dimensional structure is said to be             

folded in its native structure. Its stability is affected by several factors such as temperature, pH,                

and concentration of co-solute in solution. Estimating the effect of mutations on the folding free               

energy (the difference in free energy between native and non-native states) is of paramount              

importance for industrial applications, where the conditions can significantly differ from the            

natural ones. Two of the most popular tools to prepare and score mutated proteins are Rosetta                

(Korkegian, 2005; Kellogg, Leaver-Fay & Baker, 2011) and FoldX ​(Guerois, Nielsen & Serrano,             

2002)​. After introducing a mutation in the wild type, the protein’s (usually side chain) torsional               

degrees of freedom are optimized to minimize a scoring function which estimates the folding              

free energy for the created variant. Such function depends on: (i) physics-based terms, which              

account for van der Waals, H-bond, solvation and electrostatic (approximated with PDB            

statistics in Rosetta ​(Kuhlman & Baker, 2000)​), energies; (ii) knowledge-based contributions,           

which determine the probability of a given rotamer according to structural database statistics             

(Dunbrack, 2002)​. Apart from these overlaps, Rosetta approximates the free energy change in             

the unfolded state due to a mutation with context-independent reference energies for each             

residue ​(Kuhlman & Baker, 2000)​, On the other hand, FoldX explicitly estimates the entropy              

cost to fix a rotamer in the native state ​(Guerois, Nielsen & Serrano, 2002)​. The relative low                 

computational cost of these protocols permits to generate and score a large number of              

mutations in a short time. As shown by Potapov et al, the accuracy/cost trade-off is such that                 

these tools can correctly reproduce overall trends, and therefore suggest stabilizing mutations            

with acceptable probabilities, but they are not good enough to provide detailed results ​(Potapov,              

Cohen & Schreiber, 2009)​.  
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Following Potapov et al.’s accuracy assessment, Kellogg et al tested the ability of             

Rosetta to score mutations combining several energy functions and sampling methods with            

variable resolution ​(Kellogg, Leaver-Fay & Baker, 2011)​. As a main result, the authors             

concluded that the choice of the sampling algorithm should be tuned with the resolution of the                

energy function adopted. In other words, an accurate energy function better performs with a              

finer sampling; vice versa, roughly sampled structures should be scored by smoother functions             

which can tolerate steric clashes better. Still, flexible backbone protocols improved small to             

large residue mutations, where significant structural changes can occur. In addition, the authors             

found that conformational sampling was still insufficient to recover the crystal conformation            

when a large to small hydrophobic residue mutation was introduced, due to poor packing.              

Larger errors were found when the polarity of the residue drastically changed upon mutation,              

which suggests poor trade-off between polar desolvation and buried polar interactions. The lack             

of explicit water molecules and ligand contacts was another factor in some failed prediction.              

Finally, the lack of a context-dependent unfolded state modeling (a given mutation A1→A2 was              

considered to have the same effect on the unfolded state independently on the environment              

(Kuhlman & Baker, 2000)​) was held up as a source of error, although not a major one. In fact, a                    

free energy variation of the unfolded state upon mutation might change protein stability as well               

as a variation in the folded state. However, a recent paper shows that an accurate               

conformational and energetic characterization of the unfolded protein is not trivial and that its              

inclusion in protein stability scoring significantly worsened the prediction ​(Estrada, Echenique &            

Sancho, 2015)​. 

The entropic scoring in FoldX ​(Guerois, Nielsen & Serrano, 2002) only takes into             

account the change in conformational entropy, which depends on the number of accessible             

conformers in the unfolded state and their probabilities ​(Karplus, Ichiye & Pettitt, 1987)​.             

Although this entropic variation dominates folding ​(Chong & Ham, 2015)​, large discrepancies in             

vibrational entropy (the intrinsic entropy of a given protein conformer ​(Karplus, Ichiye & Pettitt,              

1987)​) have been calculated between thermophilic and mesophilic proteins ​(Frappier &           

Najmanovich, 2015)​. ​Therefore, the thoughtful inclusion of a vibrational entropy contribution in            

protein design free energy functions might pay off. Najmanovich and coworkers implemented            

this strategy in the ENcoM server ​(Frappier, Chartier & Najmanovich, 2015)​, where they             

combine FoldX ​(Guerois, Nielsen & Serrano, 2002) with their ENcoM protocol to rapidly             

estimate vibrational entropy. ​ENcoM uses ANM ​(Atilgan et al., 2001) with ​a pairwise atom-type              
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non-bonded interaction term to include the specific nature of amino-acids ​(Frappier &            

Najmanovich, 2014)​.  

 

Figure 3.1. Schematic representation of the stability design workflow of Wijma et al. 2014 ​(Wijma et al., 2014)​.                  

Source: ​(Wijma et al., 2014)​. 

In an attempt to quantify free energies more rigorously, De Groot and coworkers             

employed alchemical free energy simulations to score 109 mutants of Ribonuclease Barnase            

(Seeliger, Daniel & de Groot, 2010)​. In this technique, sampling a convenient number of              

unphysical (“alchemical”) intermediates renders a rigorous evaluation of the free energy energy            

difference between two states (e.g. wild type and mutant protein) ​(Leach, 2001)​. Sampling was              
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carried out with molecular dynamics (MD). Unfolded state free energy differences were            

calculated with Gly-Xxx-Gly peptides with capped termini. This choice provides an universal,            

albeit less accurate as context-independent, reference state (whose values need to be            

calculated only once and then are stored as a database). The overall correlation with              

experimental values was 0.86 and ~72 % of the predicted values were within 1 kcal/mol of the                 

experimental value with 30 ns of simulation time. Notably, most of this accuracy (65 %) is                

retained with only 5 ns. Larger errors were detected for mutations that introduced large              

variations in structure and fluctuation (mutations to glycine, from a bulky residue to another, of               

well packed residues) or in the electrostatics of buried residues. 

Possible strategies to focus the experimental search of stable protein variants in smaller             

regions to optimize protein design are: (i) the identification of flexible backbone sites (associated              

with instability) with sampling techniques and their rigidification ​(Joo et al., 2011; Huang, Gao &               

Zhan, 2011) designing salt bridges ​(Lee et al., 2014) and/or disulphide bonds ​(Pikkemaat et al.,               

2002)​; (ii) the optimization of surface charge-charge interactions ​(Spector et al., 2000;            

Schweiker et al., 2007; Gribenko et al., 2009)​; (iii) the optimization of core packing ​(Borgo &                

Havranek, 2012)​; (iv) the removal of unsatisfied buried polar groups ​(Hendsch et al., 1996)​; (v)               

the localization of critical residues in the active site entry tunnels, especially for co-solute              

tolerance, with MD ​(Koudelakova et al., 2013) or other algorithms like PELE ​(Borrelli et al.,               

2005; Madadkar-Sobhani & Guallar, 2013)​. 

Recently Wijma and coworkers developed, and applied with success, a mixed approach            

which would allow to obtain highly thermostable protein variants in a short time with minimum               

experimental screening ​(Wijma et al., 2014)​. In their computational workflow (Figure 3.1),            

potentially stabilizing mutations were firstly produced and scored with Rosetta ​(Kellogg,           

Leaver-Fay & Baker, 2011) and FoldX ​(Guerois, Nielsen & Serrano, 2002)​. To minimize the risk               

to affect catalysis, only residues beyond 10 Å of the active site were mutated. Mutations were                

considered potentially stabilizing if ΔΔG​folding ≤ -5 kJ/mol or if |ΔΔG​folding​| < 5 kJ/mol and the                

mutation type was contained in the set {Xxx→Arg, Xxx→Pro, Gly→Xxx}. These were then             

filtered to avoid undesired, typically destabilizing features such as increased unsatisfied H-bond            

donors and acceptors or hydrophobic surface exposure to water. Then, multiple short MD             

simulations were used to discard variants with increased backbone flexibility. Finally, variants            

with experimentally confirmed higher thermostability and preserved activity were combined in           

the lab. This computational workflow, thanks to its hierarchical screening which helps to unmask              

false positives (~50% of the potentially stabilizing mutations), effectively focuses the           
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experimental efforts on reliable mutations and it is therefore a plausible model for future              

computer-aided design of thermostable proteins. The main drawback is the exclusion of            

mutations which are neutral or mildly damaging per se but that coupled to other mutations could                

synergically improve thermostability. 

3.2 Protein-ligand binding 

Designing proteins which bind small molecules selectively and tightly is fundamental for            

the development of new therapeutics ​(Morin, Meiler & Mizoue, 2011) and catalysts ​(Wijma,             

Floor & Janssen, 2013)​. The accurate ​in silico design of protein-ligand interactions is very hard               

(Schreier et al., 2009) for a number of reasons: (i) the low tolerance to error due to the small                   

size of protein-ligand interfaces; (ii) the huge number of possible combinations in sequence             

space (for 10 positions there are ~10​13 sequences); (iii) the need to accurately reconstruct              

protein-ligand polar interactions, which are very sensitive to geometry ​(Allison et al., 2014)​. 

In a recent attempt to benchmark the state of art of computational protein-ligand             

interactions design, Allison and coworkers tested Rosetta’s ​(Schueler-Furman et al., 2005)           

sequence recover (with respect to the wild type) capability over a set of 43 protein-ligand               

complexes ​(Allison et al., 2014)​. The Rosetta protocol involved simultaneous ligand motion and             

side chain rotamer discrete optimization. Overall, sequence recovery was more successful           

when: (i) a near-optimal pose was inputted and subjected to limited sampling instead of being               

blindly searched; (ii) the ligand was small, non polar and rigid; (iii) the binding pocket packing                

was not too crowded or poor. Another interesting result was the significantly higher recovery for               

non polar residues. The authors suggested that new terms should be added to the energy               

function to correct this bias toward non polar interactions ​(Allison et al., 2014)​. However, this               

bias could be an artifact of poor sampling, which might limit the accuracy of polar interactions                

estimation (see above). In fact, other suggested areas of improvement were the use of              

continuous (instead of discrete) sampling of backbone and side chain rotamers ​(Gainza et al.,              

2013)​, local backrub motions (small concerted rotation of the backbone of two adjacent residues              

which lead to a much larger side chain motion) ​(Davis et al., 2006; Keedy et al., 2012)​, and the                   

approximate calculation of partition functions over structural ensembles ​(Chen et al., 2009;            

Allen, Nisthal & Mayo, 2010; Frey et al., 2010)​. 

All these features are grasped by OSPREY ​(​Gainza et al., 2013​)​, a recent open source               

solution to protein design which includes GPU acceleration ​(Zhou et al., 2014)​, dead-end             
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elimination algorithm ​(Hallen, Keedy & Donald, 2013) and the K* method ​(Lilien et al., 2005)​. K*                

aims to approximate the partition function of the protein-ligand complex, the free protein and              

ligand over an ensemble of structures; their ratio provides an estimation of the binding constant.               

The conceptual advantage of this methodology is a mathematically rigorous free energy            

difference calculation which explicitly simulates the free ligand and protein. Consequently,           

ligand and binding site preorganization are, in principle, included in the calculation. On the other               

hand, absolute free energy calculations are inefficient and far from being accurate. However,             

the error of the method might compensate between complex and free monomers calculations,             

making this strategy an interesting tool for fast free binding energy simulations. Regardless the              

methodology chosen, an ​effort to produce new experimental data will be fundamental to             

benchmark these high-throughput computational protocols and improve their predictive power          

(Malisi et al., 2012)​. 

A poor knowledge and/or accurate description of the binding site is another possible             

source of error. Indeed, some mutations could shift the pKa of ligand’s and protein’s titratable               

sites or introduce a new titratable residue. Therefore, the system should be prepared thoroughly              

before computational mutagenesis and quick pKa predictors ​(Shields & Seybold, 2013) should            

be used to treat critical mutations. On the other hand, the pH ~ pKa condition requires to                 

simulate all the possible combinations for all the ambiguous titratable sites. Finally, waters in the               

binding site might have an important role in binding and their neglect could affect the quality of                 

the calculation. 

Another possible source of false positives can be the exclusive focus on the binding site,               

as some mutations could hinder the entrance of the binding site. Sampling algorithms like PELE               

can help to recognize such mutations mapping the whole ligand migration process with good              

accuracy, taking protein flexibility into account. High-throughput MD (HTMD) ​(Doerr & De            

Fabritiis, 2014) is a more accurate, as it explicitly models water molecules, but also more               

expensive alternative. 

A way to filter and correct designs is based on MD simulations ​(Kiss et al., 2013a)​. Many                 

features of designed protein-ligand complexes can be inspected with this technique, including            

H-bond geometries, binding site structural integrity, solvent exposure and binding site           

preorganization. In particular HTMD ​(Doerr & De Fabritiis, 2014) was used by Baker and              

coworkers to filter computationally designed candidates according to the fraction of near attack             

conformations (NAC, conformations which resemble the transition state, TS) displayed during           

the multiple simulations ​(Wijma et al., 2015)​. Moreover, MD can help in the future to discern                
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long range effects. In fact, it has been recently used to highlight the impact of distant mutations                 

on active site preorganization in evolved enzymes ​(Jiménez-Osés et al., 2014; Osuna et al.,              

2015)​. Furthermore, proteins are dynamical entities organized in a network of correlated            

fluctuations whose changes can significantly affect binding at large distances ​(DuBay, Bowman            

& Geissler, 2015)​. Importantly, such network can be identified through a correlation matrix             

(which quantifies the correlation degree of a pair of amino acids) and partitioned in communities               

of highly correlated residues, giving insights on allosteric interactions ​(Sethi et al., 2009)​. These              

analysis, with contact and H-bond maps, might be used in the future to identify regions whose                

motion influences the binding site dynamics (for example making the side chain of a catalytic               

residue too flexible), which can then be subjected to mutagenesis in the lab. 

Finally, quantum mechanics (QM) calculations can be used to validate promising           

mutations, especially when charge transfer and polarization might have an important role in             

binding. Quantum mechanics/molecular mechanics (QM/MM) calculations can significantly        

improve protein-ligand binding prediction directly, through explicit energy calculations ​(Chaskar          

et al., 2014)​, or indirectly ​(Cho et al., 2005)​, re-calculating ligand’s atomic charges in an attempt                

to model ligand polarization effects. An alternative, more accurate but heavier approach to large              

systems is the fragment molecular orbital (FMO) method ​(Fedorov, Nagata & Kitaura, 2012)​.             

FMO divides the system in N non overlapping fragments (e.g. one for each protein residue and                

ligand) and calculates the total energy as the sum of one-body fragment energies and two-body               

interaction energy corrections, providing a ~N​2 scalable fully parallelizable QM calculation.           

Jensen and coworkers used this methodology to energetically score the cleavability of peptides             

by HIV1-protease ​(Jensen et al., 2014)​.  

3.3 Catalytic activity design 

As previously discussed, estimating the Michelis constant (​K​ M​ ) through molecular          

simulations is challenging as it potentially depends on the kinetics of substrate binding,             

unbinding, product formation (Eq. 2.55) and dissociation. Only if product formation is much             

slower than substrate binding ​K​ M coincides with the dissociation constant and its design             

becomes a protein-ligand binding design. On the other hand, the catalytic rate constant (​k​ cat​ )              

can be conceptually associated to the rate constant of the slowest step of an enzymatic reaction                

(although in a multistep reaction with slow non-chemical event things could get complicated but              

this is the worst case scenario). Therefore, the computer-aided improvement of catalytic activity             
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passes through the modelization of the transition state (TS) of such step and Eyring’s equation               

(Eq. 2.9) or by computing the key parameters of Marcus’ equation (Eq. 2.49) when the rate                

limiting step involves ET. ​The problems with the design of optimal activation free energies are               

multiple: (i) the energy function should be sensitive enough to effectively discriminate between             

the substrate and the TS, whose charges and geometries might be similar; (ii) the nature of the                 

TS can change upon mutation; (iii) activation free energies are very sensitive to molecular              

geometry changes.  

In OptZyme the TS is approximated by a transition state analogue (TSA), a stable              

molecule which electronically and sterically resembles the TS ​(Grisewood et al., 2013)​. Once             

the TSA and the substrate are docked in the active site, two parameters drive mutant selection:                

the enzyme-substrate (ES) interaction energy and the enzyme-TSA interaction energy. Through           

a number of conceptual and mathematical simplifications, the authors show that the former             

energy correlates with K​M​, the latter with k​cat​/K​M​. Although it yielded satisfactory correlations for              

their specific case ​(​Grisewood et al., 2013​)​, it is worth noting that these correlations have no                

general validity (as discussed above). Notwithstanding, ES and enzyme-TSA interaction          

energies are still valuable tools for a fast semi-quantitative evaluation of enzyme variants. 

Khersonsky et al. combined computational design and directed evolution to optimize a            

previously designed Kemp eliminase ​(Khersonsky et al., 2011)​. The interaction energy between            

the enzyme and an explicit TS model (substrate plus catalytic residues), calculated in solution              

with QM methods, was the parameter to be optimized during the sequence exploration. The              

authors individuated three main factors of improved activity, namely a more favorable            

electrostatic environment, a better packed active site and a higher degree of active site              

preorganization.  

Although these two methods allow to test a big number of mutants, they both present a                

conceptual limitation: the use of enzyme-TS model interaction energies, which are           

size-dependent, to score activation energies (TS-substrate free energy differences), which are           

intensive quantities. Therefore, the ES interaction energies should be in principle taken into             

account. However, poor sampling and inaccurate energy functions might introduce uncertainties           

which could make their introduction useless (as it often happens in molecular            

mechanics/generalized born surface area free energy calculations ​(Genheden, Samuel & Ulf,           

2015)​). Moreover, optimizing only the TS energy along mutagenesis is expected to improve             

catalysis assuming that ES will not be stabilized as much as the TS will be. Thus, this is the best                    
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approach to test a very large number of mutations and find promising protein variants which can                

then be filtered with MD and QM/MM methods ​(Kiss et al., 2013b)​. 

 

Figure 3.2. Schematic representation of the catalytic activity design workflow of Zheng et al. 2008 ​(Zheng et al.,                  

2008a)​. Source: Zheng et al. 2008 ​(Zheng et al., 2008a)​. 

The only way to properly estimate (free) energy barriers is the introduction of a QM               

description in the methodology, which is capable to describe finer effects accompanying TS             

formation (such as charge redistribution and small geometry variations). QM/MM schemes,           

which have been widely applied to elucidate enzymatic reaction mechanisms ​(van der Kamp &              

Mulholland, 2013)​, have been employed to rescore promising candidates ​(van der Kamp &             

Mulholland, 2013; Kiss et al., 2013b)​. A remarkable example is the hierarchical approach of              

Zheng et al. used to design a cocaine hydrolase ​(Zheng et al., 2008b)​. Firstly, the reaction                

coordinate and the TS of the rate-determining limiting step is determined in the wild type. Then,                

many mutations are scored according to their protein-TS interaction energy; if this is lower than               

the wild type, a QM/MM calculation along the reaction coordinate is used to estimate the energy                

barrier. This type of calculation is carried out freezing the reactive coordinate at each step of the                 

reaction process and minimizing all the other degrees of freedom. The main drawback of this               

strategy is the need of extensive sampling to converge these values, which make the presented               

methodology expensive. 
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A cheaper alternative to QM/MM calculations is empirical valence bond (EVB) ​(Kamerlin            

& Arieh, 2011)​. EVB is based on a semi-empirical Hamiltonian which describes reactants and              

products with their resonance structure (explicitly defining atom connectivity). Although EVB           

energies are less accurate than ​ab initio and DFT QM/MM methods, EVB-based free energy              

calculations are orders of magnitude quicker and still can achieve accurate results ​(Frushicheva             

et al., 2010; Frushicheva, Cao & Warshel, 2011)​, making EVB a suitable tool to score a bigger                 

number of mutants. 

In the attempt to describe the entire enzyme or a large part of it with QM calculations,                 

Jensen and coworkers approximated the reaction coordinate with the linear interpolation           

between reactant and product optimized geometries and calculated each point with           

semi-empirical calculations ​(Hediger et al., 2012, 2013)​. These fast QM calculations, united with             

algorithms for large scale systems such as FMO ​(​Fedorov, Nagata & Kitaura, 2012​; Ito, Mika &                

Tore, 2014) or the much faster Effective Fragment Molecular Orbital (EFMO) ​(Steinmann,            

Fedorov & Jensen, 2012)​, make “all ab initio chemistry” ​(Steinmann et al., 2013) closer, albeit               

still far away for design purposes, in the horizon. 
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4. Metalloprotein studied and objectives 

 
Two proteins have been studied in this thesis work: laccases and hemoglobin. Both             

systems are briefly introduced in this chapter and the objectives of this thesis work are               

highlighted. 

4.1 Laccases 

Laccases ​(Morozova et al., 2007; Pardo & Camarero, 2015) are multicopper oxidases,            

enzymes that catalyze the oxidation of a molecule at the expenses of a sacrificial electron               

acceptor (in this case molecular oxygen, which is reduced to water) ​(Morozova et al., 2007)​.               

Laccases are effective over a wide range of compounds, most likely due to their shallow               

substrate binding site. Such broad specificity, their clean by-products (water) and cheap            

electron acceptor (oxygen) make them appealing for green chemistry ​(Riva, 2006)​. Indeed,            

laccases already have a place in several industrial applications such as textile and food              

industry, bioremediation, forestry and organic synthesis. 

The reactive core of a laccase is split in two divalent copper (Cu) clusters: the so-called                

t1-type (T1) Cu and a trinuclear cluster of Cu (TNC), which comprises two t3-type (T3) and one                 

t2-type (T2) Cu. While the TNC is solely coordinated by His residues (see Figure 1.1 for the                 

abbreviation of amino acid names), the T1 copper has one Cys and two His residues as                

equatorial ligands, while the axial positions are occupied by an Ile and by a variable ligand,                

usually one between Met (in low reduction potential laccases), Ile and Phe. One of the               

equatorial His interacts with the substrate to convey one electron to the T1 copper (Figure 4.1).                

If ET is coupled to proton transfer, like in the case of phenols and amines at acidic pH, an Asp                    

residue plays the role of the catalytic base (Figure 4.1). Once the T1 copper is reduced, the                 

electron tunnels through the equatorial Cys and two T3-coordinating His residues (highlighted            

as balls and spheres in Figure 4.1) toward the TNC. Four substrate molecules are necessary to                

fully reduce the enzyme (4Cu​++​ + 4e​-​ → 4Cu​+​), activating oxygen reduction at the TNC site. 
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Figure 4.1. Reactive core of a ​Trametes trogii laccase (PDB: 2hrg ​(Matera et al., 2007)​). Figure prepared with VMD                   

(Humphrey et al., 1996)​ and modified with GIMP (​https://www.gimp.org/​). 

A correlation between the rate constant (k​cat​) and the difference in redox potential (Eº)              

between the T1 copper and some classes of substrate ​(Xu, 1996; Xu et al., 2000; Tadesse et                 

al., 2008) suggests that: (i) the T1 copper reduction is probably the rate-determining step of the                

catalytic process, and (ii) the rate of this step is determined by the ET driving force. The latter                  

point is likely a consequence of the high reorganization energy that accompanies substrate             

oxidation ​(Tadesse et al., 2008; Galli et al., 2013)​. For these reasons the Eº of the T1 copper                  

(Eº​T1​), which ranges from 0.4 to 0.8 V vs. normal hydrogen electrode (NHE), is considered the                

key parameter for substrate oxidation. Even if some determinants of Eº​T1 are known ​(Li et al.,                

2004; Hong et al., 2011)​, it is not clear how to effectively enhance it in order to improve laccases                   

activity and/or oxidize new compounds. Moreover it is not clear if tuning Eº​T1 is a viable way to                  

design laccases for two reasons: (i) increasing Eº​T1 would worsen the internal ET (from the T1                

copper to the TNC), which is already uphill in free energy, rendering Eº​T1 tunable in a limited                 

window, beyond which the internal ET would become the rate-determining step; (ii) in many              

cases an increased Eº​T1 did not yield a better catalyst, quite the opposite ​(Xu et al., 1998, 1999;                  

Durão et al., 2006)​. 

That Eº​T1 alone cannot define k​cat is not surprising since laccase-substrate binding can             

affect many key factors such as: (i) electronic coupling; (ii) the electrostatic environment of the               
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substrate, i.e. its oxidability; (iii) substrate solvent exposure, i.e. the reorganization energy. On             

top of that, a substrate may be more stable in a binding mode other than the reactive one while                   

directly inhibiting the formation of the latter. Therefore, a proper modeling of substrate binding              

into the T1 site and its oxidation might enlighten new design strategies. 

The oxidation of compounds toward which laccases are not active can be achieved             

using mediators ​(Riva, 2006)​. These are molecules that can reduce the T1 copper and, in their                

oxidized form, remove an electron from a target substrate. Interestingly, Tron and coworkers             

have shown that a hybrid laccase/tris(bipyridine)ruthenium(II) ([Ru(bpy)​3​]​
2+​) system can oxidize          

compounds such as ethylenediaminetetraacetic acid (EDTA) and p-styrene sulfonate ​(Simaan          

et al., 2011; Schneider et al., 2015)​. Although [Ru(bpy)​3​]​
2+ photoexcitation leads to a formidably              

fast ET to the T1 copper, a very quick back-transfer (BT) occurs due to the formation of                 

[Ru(bpy)​3​]​
3+​, which is a strong oxidant (Eº=1.29 V). Consequently, the oxidation of the target              

substrate and internal ET are inhibited, yielding a slow catalytic turnover. Limiting back-transfer,             

either sacrificing ET or modifying [Ru(bpy)​3​]​
2+ to make it act as a molecular diode, would make                

this photoactive hybrid species a powerful tool for sustainable catalysis and energy conversion. 

4.2 Hemoglobin 

Hemoglobin is a homodimer of heterodimers (Figure 4.2A) that binds molecular oxygen            

(O​2​), but also carbon monoxide (CO) and other small ligands, cooperatively. The heterodimers             

are made up of one α and one β subunit (Figure 4.2B and 4.2C respectively), both containing a                  

heme group (a divalent iron cation, Fe​++​, coordinated by a porphyrin ring, Figure 4.2D). Each               

heme, which is bound to the protein through the proximal His (Figure 4.2D), is the responsible of                 

uptaking one ligand molecule. Thanks to cooperative binding, hemoglobin can efficiently bind O​2             

in the lungs, where this is abundant, carry it through the circulatory system and release it in the                  

tissue, where O​2 partial pressure (pO​2​) is scarce ​(Ferrell, 2009)​. This unique ability makes              

hemoglobin a promising candidate for blood substituent design ​(Fronticelli et al., 2007)​,            

although its low thermostability and auto-oxidation limit the applications ​(Bobofchak et al.,            

2003)​. Therefore, hemoglobin needs to be designed to overcome these limitations while            

keeping an eye on cooperativity, which should not be compromised. Hence, hemoglobin design             

is a delicate multidimensional problem (not to speak about its interaction with the plethora of               

physiological effectors). Unfortunately, the mechanism behind hemoglobin cooperativity is far          

from being fully understood despite more than half a century of research. 
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The MWC model is considered one of the most reliable theories for hemoglobin             

cooperativity. This success was fueled by the discovery of oxy- and deoxy-hemoglobin crystal             

structures, which due to their different affinities were identified as the R and T states               

respectively ​(Perutz, 1970, 1979)​. In the deoxy-hemoglobin crystal, Fe​++ lays out of the heme              

plane and the heme-His bond is tilted and elongated, while in the oxy-hemoglobin structure Fe​++               

stays in the porphyrin plane and the heme-his bond is shorter and not tilted. Both out-of-plane                

displacement and bond elongation are normal consequences of the high-spin (quintet) state of             

Fe​++ when it is five-coordinated; however, tilting indicates that the heme-his moiety is strained.              

Further inspecting the crystal structures, Perutz concluded that this so called proximal strain in              

the deoxy-hemoglobin crystal is induced by several inter-subunit salt bridges that hold the             

proximal His back preventing Fe​++ to go back to the porphyrin plane upon binding ​(Perutz, 1970,                

1979)​. These salt-bridges were also predicted to break after ligand binding and trigger the T to                

R transition. Notably, when the heme is detached from the protein and coordinated by imidazole               

(analog to His side chain) ​(Barrick et al., 1997)​: (i) ligand affinity increases; (ii) the quaternary                

transition is inhibited and (iii) cooperativity is attenuated, but not completely lost. While the first               

two points validate the proximal His role in Perutz’s stereochemical model ​(Perutz, 1970)​, the              

last one underlines that a fraction of cooperative binding is controlled by other factors, which               

could comprise the configuration of the distal pocket ​(Olson et al., 1988) and entropic effects               

(Yonetani & Kanaori, 2013)​. 

According to the tertiary two-state (TTS) model, which is a generalization of the MWC              

theory, ligand affinity is directly controlled by the tertiary structure of each subunit, which can               

exists in two states r and t with high and low affinity respectively, whose population is                

determined by the nature of the quaternary state (R or T) ​(Henry et al., 2002)​. In particular,                 

almost all subunits are in the r state in R while t is predominant in T. Therefore, according to the                    

TTS model, the quaternary state controls ligand affinity only indirectly, influencing the tertiary             

state of each subunit. 

The scenario turned out to be more complicated when alternative quaternary structures            

were found for oxy-hemoglobin ​(Silva, Rogers & Arnone, 1992; Safo & Abraham, 2005)​.             

Moreover, the results of ANM sampling ​(Xu, Tobi & Bahar, 2003) and several MD simulations,               

run with different FFs ​(Hub, Kubitzki & de Groot, 2010; Yusuff et al., 2012; Vesper & de Groot,                  

2013)​, suggest that: (i) deoxy-hemoglobin crystal structure is very unstable in water and quickly              

(within 100-200 ns) converts into oxy-hemoglobin-like structures (ii) oxy-hemoglobin is well           

represented by a very wide ensemble of oxy-hemoglobin-like conformations instead of a few             
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crystal structures. Nuclear magnetic resonance (NMR) ​(Skoog, James Holler & Crouch, 2007)            

experiments confirmed the second prediction ​(Fan et al., 2013) and showed how neither deoxy-              

nor oxy-hemoglobin crystal structures fit well the NMR data ​(Sahu et al., 2007)​. As a               

consequence, hemoglobin should be considered as a highly flexible protein described by a wide              

ensemble of structures, being aware that crystal structures are (only) models, with their             

strengths and limitations, and should not be conclusive when interpreting experimental findings. 

 

Figure 4.2. A) Hemoglobin structure, colours: α1 blue, β1 red, α2 yellow and β2 gray ; B) α1 subunit; C) β1 subunit;                      

D) heme group coordinated by the proximal His and oxygen. Figure prepared with VMD ​(Humphrey et al., 1996) and                   

modified with GIMP (​https://www.gimp.org/​). 
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4.3 Objectives of the thesis 

4.3.1 Laccases 

● Develop an efficient computational protocol to model how laccases and their substrates            

interact (conformational sampling) and score ET rates (quantum mechanics). This          

methodology will be applied to reproduce the trends in available experimental data,            

aiming at a deeper understanding of the determinants of laccases reactivity. 

● Apply the developed computational strategy to design laccases variants with improved           

oxidation of a target substrate. Thanks to the collaboration with experimental groups that             

will validate the designs, the strengths and limitations of the proposed computational            

methodology will be discussed. 

● Combine classical conformational sampling and quick empirical T​DA estimations to          

rationalize the functioning of a hybrid laccase/[Ru(bpy)​3​]​
2+​system and, knowing that the           

fast electron BT is the major problem for this photocatalyst, design variants with             

improved ET directionality from the substrate to the TNC. 

4.3.2 Hemoglobin 

● Identify the structural features of the r and t states of the TTS model within the same                 

quaternary structure, establishing whether their difference involves the whole subunits or           

is located in close proximity to the heme, pinpointing how heme reactivity is regulated,              

and find out how much the r and t states resemble the tertiary structures found in the                 

oxy- and deoxy-hemoglobin crystal structures.  

● Find the preferential routes for heme-heme allosteric signalling using MD simulations,           

statistical and network analysis techniques. In order to do this, the communication paths             

between key residues (as established in the previous point) which are placed around the              

heme and belong to distinct subunits will be examined. With this information in hand,              

mutagenesis experiments could be arranged in the future to either test the importance of              

each communication pathway or increase hemoglobin’s stability in water (in this case,            

excluding the residues responsible of allosteric communications from mutagenesis,         

narrowing down the search).  
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5. A binding-focused strategy for laccases design based on         

the spin density 

 
In this chapter, a new computational strategy to boost laccases’ design is presented. In              

section 5.1, the motivations behind the choice of the spin density (SD) as activity descriptor is                

elucidated and a first proof of concept is furnished. Then, the computational methodology is              

explained in detail (section 5.2) and applied to several systems to highlight their functioning              

(sections 5.3-5.5). Finally, its successful application in a rational laccase design is reported. 

5.1 The spin density as a descriptor of laccases kinetics 

The SD, which has been used to study oxidation mechanisms ​(Johansson et al., 2002;              

Catlow et al., 2005) and estimate electron transfer (ET) pathways ​(Guallar & Wallrapp, 2008)​,              

shows whether an unpaired electron is energetically more stable in donor's or acceptor's             

molecular orbitals. Therefore, SD variations are expected to reflect changes in the ET driving              

force. This is confirmed in previous experimental studies, which reveal a linear relationship             

between the amount of SD on the donor and its reduction/oxidation potential in ET proteins ​(Artz                

et al., 1997) and small aromatic compounds ​(Meisel, Dan & Neta, 1975)​. As mentioned in the                

previous chapter, T1 copper reduction is (most of the times) the rate-determining step of the               

catalytic process, and its rate is regulated by the ET driving force due to the high reorganization                 

energy ​(Xu, 1996; Xu et al., 2000; Tadesse et al., 2008)​. It follows that a prompt evaluation of                  

the ET driving force through the SD could open the door for computational laccases design               

procedures. On the side, changes in electronic coupling and solvent reorganization energy can             

be qualitatively predicted in terms of donor-acceptor distance ​(Blumberger, 2015) and           

substrate's solvent accessible surface area (SASA) ​(Bortolotti et al., 2011)​. It should be noted              

that a rigorous calculation of Marcus’ equation parameters is possible ​(Wallrapp, Voityuk &             

Victor, 2013; Blumberger, 2015) but it is too slow for design purposes, which is the ultimate goal                 

of this thesis. 
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Scheme 5.1.​ Chemical structure of 4-X-PhOH. Prepared with MarvinSketch (​http://www.chemaxon.com​). 

 
Figure 5.1. Representative binding mode of a 4-X-PhOH, X = OH, OCH​3​, CH​3​, Cl. Figure prepared with Maestro 9.7                   

(​Schrödinger, LLC, New York, NY, 2014​) and modified with GIMP (​https://www.gimp.org/​). 

A stringent proof of concept for the SD would be to correctly score the kinetics of a set of                   

laccase-substrate pairs whose specificity constants (​k​cat​/K​M​) correlates with the redox potential           

(Eº) difference (​ΔEº) between the T1 copper and the substrate. In such a case, it would be clear                  

that catalysis is completely controlled by the ET driving force accompanying substrate oxidation;             

a possible failure of the SD to correlate with ​k​cat​/K​M would then highlight that the former is not a                   

good descriptor of the driving force. Incidentally, ​phenols with general formula 4-X-PhOH (where             

X is a para substituent) tend to display such k​cat​/K​M vs. ΔEº correlation ​(Tadesse et al., 2008)​.                 

Four of them, ​with X = {OH, OMe, Me, Cl}, were docked ​with Glide ​(Friesner et al., 2004)                  

(Figure 5.1) into the T1 cavity of the ​Pycnoporus cinnabarinus laccase (PcL) and the SD               

calculated with a quantum mechanics/molecular mechanics (QM/MM) scheme using several          
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density functionals (see Computational details). The experimental ​specificity constant values for           

Trametes villosa laccase ​(Tadesse et al., 2008)​, which shares 70% identity with PcL, are used               

to validate the methodology. As shown in Figure 5.2, a good correlation is observed for all the                 

density functionals used. Therefore, the SD is a promising tool to score the ET driving force in                 

laccases. 

 
Figure 5.2. Linear relationship between the spin population and experimental kinetic data. Figure prepared with               

LibreOffice Calc (​https://goo.gl/kdcCc8​). 

5.2 Computational details 

At the heart of the methodology is the combination of exhaustive enzyme-substrate            

conformational sampling provided by PELE with a QM/MM reactivity scoring based on the SD              

(PELE+QM/MM protocol). The enzyme-substrate conformational space nearby the T1 pocket is           

sampled with PELE. Then, 20-50 structures within 5 kcal/mol of the lowest binding energy pose               

are randomly selected and their reactivity scored evaluating the amount of SD localized on the               

substrate with QM/MM calculation.  

System setup. The ​Pycnoporus cinnabarinus laccase (PcL) structure (2XYB) was taken           

from the Protein Data Bank, while the ​Myceliophthora thermophila laccase (MtL) and PM1             

laccase structures were made available by Novozymes and Dr. Javier Medrano respectively.            

The PM1 laccase was used as a template to build a model of the 7D5 laccase (96% sequence                  
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identity) with Prime ​(Jacobson et al., 2002, 2004)​. These structures were prepared with Protein              

Preparation Wizard ​(Sastry et al., 2013)​, simulating pH 5 for PcL and MtL, while PM1 was                

modeled at pH 3, in order to compare with the experimental data. The protonation states of                

titratable residues were generated with PROPKA ​(Olsson et al., 2011) and double-checked with             

the H++ server ​(Gordon et al., 2005)​. All pertinent mutations were introduced and the new               

protein structure was relaxed with PELE. 

PELE sampling. The substrate, initially placed in front of the T1 cavity, was randomly              

translated and rotated within 20 Å of the T1 copper. The ANM perturbation was applied to all the                  

C​α in the system, the side chains of the residues within 10 Å of substrate were repacked and                  

everything within 20 Å was energy minimized. Such a reduced minimization is intended to              

speed up conformational sampling (see Appendix 1 for an example of input file). Along the               

thesis, (PELE) binding energies refers to protein-substrate interaction potential energies. 

Treatment of substrate and metal centers in PELE. Substrates’ geometries were           

optimized at the M06/6-31G* level of theory, modeling the solvent with the Poisson-Boltzmann             

model. The atomic ESP charges were calculated from the optimized structure and used for              

PELE. The OPLS parameters were assigned to the ligand with Schrödinger’s hetgrp_ffgen utility             

and a rotamer library was generated with Macromodel ​(Mohamadi et al., 1990)​. The copper ions               

and their coordination atoms plus their nearest neighbors were constrained during PELE            

sampling with 200 kcal mol​-1 Å​-2 harmonic constraints on their atomic positions. Unitary charges              

were assigned to each copper atom (to avoid tension in the TNC). 

QM/MM reactivity scoring.​ Structures were relaxed with five steps of geometry           

optimization using Qsite ​(Murphy, Philipp & Friesner, 2000) and the SD of the substrate was               

evaluated using Mulliken’s partitioning method. Substrate, T1 copper and its first coordination            

sphere were included in the quantum region, while the rest of the protein is treated classically.                

The density functional method with the M06 ​(Zhao, Yan & Truhlar, 2008) functional and the               

lacvp* basis set ​(Hay, Jeffrey Hay & Wadt, 1985) were used for the quantum region, while the                 

OPLS-AA ​(Kaminski et al., 2001) force field was used for the classical part. Other density               

functionals (B3LYP ​(Becke, 1988, 1993a,b; Lee et al., 1988)​, BP86 ​(Perdew, 1986; Becke,             

1988)​, PBE ​(Perdew, Kieron & Matthias, 1996)​, SVWN5 ​(Vosko, Wilk & Nusair, 1980)​) were              

sporadically employed and their use is highlighted in the text. A non bonded cutoff of 50 Å was                  

applied. The partial geometry optimization was found to be sufficient to let the SD virtually               

converge (Figure 5.3) and it was therefore adopted to save CPU time. Solvent effect were               

neglected in order to speed up the calculations (saving both CPU time of a single geometry                
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optimization and sensibly reducing the number of calculations, since the effect of water MM              

charges would need to be averaged on a much larger number of structures). Although this               

choice leads to errors on an absolute ground, the error is most likely comparable for all the                 

poses involving the same ligand, making relative estimation still reliable (while absolute values             

are not expected to be meaningful). Indeed, the final aim of this methodology is to screen the                 

activity of a large number of mutants toward the same substrate. Solvent effects can potentially               

be extrapolated and discussed inspecting changes in substrate's SASA ​(Bortolotti et al., 2011)​. 

 
Figure 5.3. Convergence of 4-X-PhOH spin population with QM/MM geometry optimization steps. Figure prepared              

with matplotlib (​http://matplotlib.org/​). 

5.3 Evolution of Pycnoporus cinnabarinus laccase 

In this section, the PELE+QM/MM protocol is applied to the wild type and evolved              

variants of the ​Pycnoporus cinnabarinus laccase (PcL) and the substrates employed to screen             

activity, namely the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and       

2,6-dimethoxyphenol (DMP) ​(Camarero et al., 2012)​. The objective is to understand how            

mutations accumulated through ​in vitro evolution lead to improved catalytic oxidation ​(Camarero            

et al., 2012)​,​ ​providing physico-chemical grounds for future rational design efforts. 
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5.3.1 Results and discussion 

As a result of the laboratory evolution, the turnover number significantly improved in the              

final mutant, 3PO, for both substrates (Table 5.1). The evolved laccase carries five mutations:              

P394H and N208S, which are located in the T1 pocket, N331D and D341N, relatively close to                

the substrate entrance, and R280H, located far away on the protein surface, affecting mainly              

protein expression in ​Saccharomyces cervisae​  ​(Camarero et al., 2012)​ (Figure 5.4). 

 
Scheme 5.2.​ Chemical structure of DMP and ABTS. Prepared with MarvinSketch (​http://www.chemaxon.com​). 

5.3.1.1. DMP oxidation  

The lowest energy bound structures reveal that PcL (wild type) has only one binding              

mode (​1​), also present in 3PO, depicted in red in Figures 5.5A and 5.5B. In this minimum DMP                  

is hydrogen bonded to H456 and D206 (Figure 5.7A). QM/MM scoring, gives a result of 0.37                

and 0.34 (Table 5.1) for PcL and 3PO, meaning that 37% and 34% of one electron charge                 

flowed from DMP to the T1 copper center. Therefore, no improvement is found on passing from                

the wild type to the mutant for binding mode ​1​. On the other hand, P394H and N208S made                  

room for an alternative enzyme-substrate conformation (​2​) in 3PO, represented in blue in Figure              

5.5B, forming a hydrogen bond with H394 (Figure 5.7B). Importantly, the SD of ​2 is now 0.66                 

(Table 5.1), significantly higher than the one found for the wild type. Taking into account all of                 

the 20 selected structures in 3PO (mixing ​1​ and ​2​), the average substrate's SD is 0.56. 

Structures within 3 Å root mean square deviation (RMSD) of ​2 represent only 0.2% of all                

the conformations generated during PELE simulation in PcL, none of them within 5 kcal/mol of               

the lowest binding energy structure. On the contrary the occurrence of ​2 is roughly 50% of the                 

best 5 kcal/mol binding energy interval in 3PO. (Figure 5.5B). Then, oxidation is improved in the                
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mutant by making this second and more reactive binding mode significantly available to the              

substrate. 

 

Figure 5.4. Structure of PcL where the active site T1 copper (and its coordination ligands) and mutated residues are                   

highlighted in blue and light brown, respectively. Figure prepared with Maestro 9.7 (​Schrödinger, LLC, New York, NY,                 

2014​) and modified with GIMP (​https://www.gimp.org/​). 

Although the Michaelis constant (K​M​) increased by almost the same amount as the             

catalytic rate constant (k​cat​), most industrial application of enzyme catalysts work at high             

substrate concentration. In such conditions, k​cat is the most crucial component of catalytic             

efficiency. This is especially true for laccases, where substrate oxidation uses to be the              

rate-determining step. For this reason, the aim is to efficiently score​ k​cat through the SD rather                

than estimate K​M​. In spite of that, K​M increase can be rationalized as well. As noted before,                 

protein-ligand interaction energies are virtually the same in PcL and 3PO (Figure 5.5A and              

5.5B). Meanwhile k​cat largely improved, increasing the Michaelis constant (from steady-state           

approximation, K​M = ( ​k​off + k​cat ​) / k​on​, where k​on and k​off are the association and dissociation rate                    
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constants). Moreover, having two highly accessible reacting binding modes that can be filled             

simultaneously (as shown with ligand docking using Glide, Figure 5.6) requires a higher             

concentration of substrate to reach half of the maximum reaction rate. 

 

Figure 5.5. Results of PELE conformational search for DMP (A: PcL, B: 3PO) and ABTS (C: PcL, D: 3PO). “Cu-Sub                    

distance” is the distance between the T1 copper and substrate's center of mass. In panels A and B, binding modes                    

similar to Figure 5.7A are represented in red while binding modes similar to Figure 5.7B are in blue. Only structures                    

within 5 kcal/mol of the best pose has been represented with colors. Numbers in parenthesis label the binding modes                   

depicted in Figure 5.7 and are used through the text. Figure prepared with matplotlib (​http://matplotlib.org/​) and                

modified with GIMP (​https://www.gimp.org/​). 
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Table 5.1. Experimental kinetic data, simulated average SD on substrate (ρ​substrate​) and copper with its coordinating                

axial atoms (ρ​CuSNN​), simulated enzyme-radical stabilization (E​radical​) of the oxidation of DMP and ABTS by PcL (wild                 

type) and 3PO (mutant) at pH 5. Values in parentheses represent uncertainties on the last significative digits. 

System K​M​ (mM)  k​cat​ (s​
-1​) ρ​substrate ρ​CuSNN E​radical​ (kcal/mol) 

PcL-ABTS 0.020(1) 35.1(9) 0.85(9) 0.15 -89 

PcL-DMP 0.012(2) 10.0(3) 0.37(12) 0.63 -81 

3PO-ABTS 0.024(2) 482(10) 0.96(11) 0.04 -112 

3PO-DMP 0.213(13) 197(3) 0.56(19) 0.44 -111 

 

 

 
Figure 5.6.​ Possible binding mode of two DMP molecules (in VdW spheres representation) in the T1 active site as 

provided with Glide. Figure prepared with Maestro 9.7 (​Schrödinger, LLC, New York, NY, 2014​) and modified with 

GIMP (​https://www.gimp.org/​). 

5.3.1.2 ABTS oxidation 

When simulating ABTS binding with PELE (240 independent trajectories, 48 hours           

each), a sharp minimum (​3​) is located next to the active site in the wild type Laccase (Figure                  
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5.5C). In the corresponding structures, ABTS forms multiple hydrogen bonds; one of ABTS             

negatively charged sulfonate groups interacts with N331 and N389 while the other one interacts              

with two backbone hydrogens (Figure 5.7C). QM/MM calculations yield an average substrate's            

SD of 0.85 for ​3​. Due to the N331D mutation, one stabilizing asparagine-sulfonate interaction no               

longer occurs in 3PO and the depth of above-mentioned minimum is sensibly reduced (Figure              

5.5D). Simultaneously the enzyme-substrate interaction inside the T1 pocket is stabilized, as            

can be seen by the clear appearance of a second minimum (​4​) within 8 Å of the T1 copper. As a                     

consequence, approximately one half of the 20 randomly picked structures populate this second             

minimum, interacting with S208 and H394 (Figure 5.7D). The overall substrate's SD for 3PO is               

0.96 (being 1.00 for ​4 and 0.86 for ​3​). Similarly to DMP, the most reactive pose, ​4​, is poorly                   

accessible to the native enzyme (5% occurrence) and never observed within 5 kcal/mol of the               

lowest binding energy value (Figure 5.5C). Therefore, ABTS oxidation is improved by refining             

substrate recognition, shifting the population in favor of the most reactive binding mode, as              

observed for DMP oxidation. Moreover, in ABTS the average decrease in donor-acceptor            

distance and solvent exposure is more accentuated (the substrate docks deeper inside the             

protein). Therefore, improved electronic coupling certainly has an important role in the increased             

activity as well. 

The experimental K​M did not change significantly for ABTS. This can be justified as a               

compensation between increased affinity at ​4 and higher rate constant since K​M = ( ​k​off + k​cat ​) /                   

k​on​. Moreover, contrary to DMP, at substrate saturation the coexistence of ​3 and ​4 is implausible                

since ABTS carries two negative charges that would repel each other at such a close distance. 

5.3.1.3 Determinants of the driving force improvement  

As mentioned before, the reaction rate is mostly driven by the free energy difference              

between product and reactant of the first oxidation step. This driving force is equal to the ​ΔEº                 

between T1 copper and the oxidized substrate. Since the mutations introduced are not expected              

to significantly affect the Eº​T1 (just one is placed on the T1 copper second coordination sphere)                

and the protein-reactant interaction energies remains nearly identical in the mutant, optimization            

of the enzyme pocket towards the oxidized substrate must play a major role. To assess this                

point, a new PELE simulation was set up (48 independent trajectories, 48 hrs each) in which the                 

substrate was modeled in its oxidized state. This was done using the atomic charges obtained               

from the quantum geometry optimization of the oxidized (radical) species. In such a way, the               

enzyme-substrate interaction energy represents the degree of stabilization of the oxidized           
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substrate by the protein environment. As shown in the last column of Table 5.1, 3PO turned out                 

to be clearly a more favorable host for the oxidized species than PcL, since the minimum                

substrate-enzyme classical (force field) interaction energy is significantly lower in the mutant            

(Table 5.1). Notably, these classical simulations results (improved enzyme-radical stabilization          

in 3PO, Table 5.1) agree with the increase in substrate's SD seen in the (slow/expensive)               

quantum mechanics simulations. Such scenario opens the door to implement fast computational            

screening of mutants using classical ligand sampling to improve the enzyme-radical interaction            

energy through several mutations cycles. Subsequent SD calculations could be used at the end              

of each cycle to rescore the most promising mutants. 
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Figure 5.7. Most reactive binding modes of the enzyme-substrate complexes with SD isosurfaces. Numbers in               

parentheses label each binding mode and are used through the text. Figure prepared with Maestro 9.7 (​Schrödinger,                 

LLC, New York, NY, 2014​) and modified with GIMP (​https://www.gimp.org/​). 

5.3.1.4 Closure 

Molecular simulations indicate that mutations accumulated during directed evolution         

increase laccases enzymatic activity by affecting substrate binding rather than Eº​T1​. Extensive            

conformational sampling revealed important changes in the protein-ligand energy landscape          

upon mutation. Then, quantum chemical calculations confirmed an oxidation (substrate's SD)           

increase as a result of an enhanced electrostatic stabilization of the radical species. Therefore,              

the oxidation rate of a target substrate can be improved by fine tuning the binding event. 

5.4 Oxidation of syringaldazine 

As reported in Chapter 4, there are some examples in literature where lower Eº​T1              

laccases display better ​k​ cat than their higher Eº​T1 counterparts. ​In particular, the oxidation of              

syringaldazine (SGZ), by MtL (Eº​T1​=​460 mV, ​k​ cat​=1100 min​-1​) has been shown to display             

improved kinetics over PcL (Eº​T1​=​790 mV, ​k​ cat​=180 min​-1​) ​(Li, Xu & Eriksson, 1999)​. Here,              

aiming at understanding these differences, the oxidation of SGZ by MtL and PcL is investigated               

using the PELE+QM/MM protocol (96 PELE trajectories, 20 structures selected). 

 

Scheme 5.3.​ Chemical structure of SGZ. Prepared with MarvinSketch (​http://www.chemaxon.com​). 

86 

https://www.gimp.org/
https://docs.google.com/document/d/1__hcnlAqFm0kfmwAzHtPLM4cOlC4oUPl4LfGL5rknS4/edit#heading=h.3dy6vkm
https://paperpile.com/c/IRIthz/iUXH
http://www.chemaxon.com/


 

5.4.1 Results and discussion 

An inspection of the selected structures shows that SGZ is optimally oriented for both              

electron and proton transfer in MtL and not in PcL (Figure 5.8). Such distinct binding of SGZ in                  

MtL and PcL derives from differences in the T1 pocket. MtL contains a large loop involving                

residues 445 and 468 hosting N454 that anchors the substrate in the position seen in Figure                

5.8A. PcL, on the contrary, has a much smaller loop of only 8 residues (opposed to the 23 in                   

MtL) involving residues 408 to 416. Another significant difference is the shorter loop hosting              

residues 332 to 336 in PcL (364 to 371 in MtL) that creates a favorable environment for the                  

docking the polar hydroxyl group of SGZ (Figure 5.8B). Finally, A192, which helps positioning              

the substrate in the correct orientation in MtL’s active site, is located at the end of a loop that is                    

preceded by an α-helix beginning in residue 179 which is not present in PcL (Figure 5.8). In                 

addition to the considerable differences seen both in the binding orientation, QM/MM            

calculations also indicate higher spin transfer from SGZ to MtL than in PcL (Figure 5.9). 

 
Figure 5.8. Representative binding modes for SGZ in A) MtL and B) PcL. Figure prepared with Pymol (​The PyMOL                   

Molecular Graphics System, Version 1.8 Schrödinger, LLC​) and modified with GIMP (​https://www.gimp.org/​). 

The computational results put in evidence the fact that counterintuitive differences in            

SGZ’s oxidation by these two proteins are highly related to the binding event. In MtL, SGZ                

favors configurations hydrogen bonded (H-bonded) to the first coordination H508 (ET) and            

simultaneously interaction with D235 where proton transfer is expected to occur. This will             

ensure optimal electronic coupling (shorter donor-acceptor distance) and ET driving force           

(higher substrate SD, likely due to the proximity to the catalytic D235). In PcL, however, SGZ                
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interacts with the backbone of residues G334 and N336 and with the side chain of F265                

anchoring the substrate about 3 Å away from any of the T1 ligands. In this higher redox protein,                  

ET must thus occur through a free space jump (as none of the coordinated residues is close                 

enough to the substrate) or alternatively use other residues (which necessary imply a longer ET               

path). These results advocate for improved kinetics in MtL, which is in good agreement with               

experimental observations. 

 

Figure 5.9.​ Distribution of SGZ spin densities in MtL and PcL. Figure prepared with R (​https://www.r-project.org/​). 

5.5 Oxidation of para-substituted phenols: a step further 

It has been shown in Section 5.1 that the SD correlates well with the kinetic data of four                  

4-X-PhOHs ​with X = {OH, OCH​3​, OCH​3​, Cl} (named from this point on as 4OH, 4MeO, 4Me and                  

4Cl, respectively). Here, the analysis is extended to MtL, whose T1 copper has a lower ​Eº​T1 than                 

PcL’s (0.46 vs. 0.79 V), aiming to check if the method can discriminate not only different                

substrates but also completely different active sites. The phenols were docked with PELE in the               

active site of the two laccases. 

5.5.1 Results and discussion 

Preliminary PELE+QM/MM simulations of 4-X-PhOH oxidation by PcL show poor          

correlation between the amount of SD computed on each substrate (20 structures selected) and              

the kinetic data (Figure 5.10). Further inspection of the most favorable minima evidenced an              
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important cluster of structures, for all complexes, that included interaction with the catalytic             

H456 but not with the catalytic aspartic acid D206 (Figure 5.11A). These structures exposed a               

region in PcL’s binding pocket with a volume comparable to that occupied by a water molecule.                

Further inspection of the available laccases’ crystal structures that contained a phenolic            

substrate showed, for example, that in ​Melanocarpus albomyces laccase (MaL) in addition to             

2,6-dimethoxyphenol (DMP) it has a crystal water molecule precisely in the position identified in              

the simulations (Figure 5.11B). For this reason, the calculations were repeated including an             

extra water molecule in this position. 

 

Figure 5.10​. Computed spin densities for 4-X-PhOH with PcL. Figure prepared with R (​https://www.r-project.org/​). 
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Figure 5.11. Binding pocket comparison between A) PELE minimum energy structure in ​Pycnoporus cinnabarinus              

and B) the T1 binding pocket of ​Melanocarpus albomyces​ complexed with 2,6-dimethoxyphenol (crystal structure).              

Figure prepared with Maestro 9.7 (​Schrödinger, LLC, New York, NY, 2014​) and modified with GIMP               

(​https://www.gimp.org/​). 

 

 

Figure 5.12​. Computed spin densities for 4-X-PhOH with PcL when a water molecule is placed in the active site.                   

Figure prepared with R (​https://www.r-project.org/​). 

 
Figure 5.13​. Computed spin densities for 4-X-PhOH with MtL when a water molecule is placed in the active site.                   

Figure prepared with R (​https://www.r-project.org/​). 
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For each laccase-substrate pair, 240 independent 48 hours trajectories were produced           

and 50 complex structures were randomly selected for QM/MM scoring. Computed spin            

densities for all systems (depicted in Figures 5.12 and 5.13) offer a qualitative picture where the                

overall improved oxidation of compound 4OH over 4Cl can be appreciated. Moreover, phenols             

with PcL display, in average, higher spin transfer than with MtL. Next, the site with maximum                

substrate SD was identified for each compound by clustering techniques. For this, computed             

spin densities were grouped using k-means and k-medoids (employing R,          

https://www.r-project.org/​) and the obtained clusters were then visually inspected. For both           

laccases, the highest SD cluster is also the one with optimal catalytic contacts. The substrate is                

H-bonded to the catalytic histidine (first electron acceptor, coordinated to the T1 copper) and to               

the water molecule present in the active site. This is in turn hydrogen bonded to the catalytic                 

Asp, the final proton acceptor (Figure 5.14). 

 

Figure 5.14. Binding positions for 4Cl-phenol in PcL. Figure prepared with Maestro 9.7 (​Schrödinger, LLC, New York,                 

NY, 2014​) and modified with GIMP (​https://www.gimp.org/​). 

It follows that such binding mode, besides from an excellent driving force (most likely due to the                 

proximity of the negatively charged catalytic base), provides both optimal electron tunneling and             

proton abstraction. If only this cluster of best oxidation position is taken into account, for each                

system, a good correlation (above 90%) between the computed SD and the logarithm of the               

experimental specificity constants is obtained (Figure 5.15). It is worth noting that, since             

specificity constants are not available for PcL, experimental data for a high Eº​T1 laccase from               
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Trametes villosa which shares 70% identity with PcL are employed. These small differences             

may be responsible for the lower correlation found for this system. 

 

Figure 5.15. Computed average spin densities in the sites identified as the best oxidation positions in the T1 copper                   

site for MtL and PcL vs. experimental specificity constants for MtL (blue) and TvL (cyan) extracted from ​(Tadesse et                   

al., 2008)​. Figure prepared with R (​https://www.r-project.org/​). 

In any case, results strongly assess the capability of the PELE+QM/MM protocol to             

score laccase reactivity even on a quantitative ground (although the problem is expected to be               

much more complex when comparing very structurally distinct substrates). The methodology           

can discriminate between distinct substrates and between diverse T1 pockets; for any substrate,             

the laccase with higher specific constant is the one that displays the larger SD (Figure 5.15).                

When aiming at quantitative precision, a correct description of the binding site, namely with the               

inclusion of essential water molecules, is fundamental. Furthermore, when multiple binding           

modes exist (within 5 kcal/mol of the minimum PELE binding energy pose), if they are               

non-competitive, then the oxidation is mainly driven by the best oxidation position and clustering              

methods can help finding it. 

5.6 First rational design attempt: improving aniline oxidation at low pH 

Aniline (ANL) and its derivatives have been traditionally used in the dyestuff industry, as              

precursors of aniline dyes and azo dyes for textiles, hair, leather or printing ​(Aftalion, 2001)​, and                
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also as components for engineering polymers, composites and rubbers. In particular, the            

synthesis of conductive polyaniline (PANI) has been widely investigated during the last two             

decades due to its wide range of applications (sensor devices, rechargeable batteries, etc.             

(Bhadra et al., 2009)​. Conducting PANI macromolecules have regular head-to-tail linked           

monomers (over 95%) but high conductive polymer is only produced in strongly acidic             

conditions (pH<2.5) using oxidants such as ammonium peroxydisulfate ​(Sapurina, Yu. Sapurina           

& Stejskal, 2012)​. To replace these processes by enzymatic bioconversion is thus a main goal.               

However, aniline (p​K​ a​=4.6) is mostly protonated at low pH, raising its Eº from 0.63 to 1.05 V.                 

Then, it becomes clear why laccases normally cannot oxidize this compound or reactions occur              

too slowly ​(Bornscheuer et al., 2012)​.  
Here, the PELE+QM/MM protocol was successfully applied to rationally re-design the           

active site of the 7D5 laccase, aiming to improve the oxidation of ANL at pH 3, with subsequent                  

formation of PANI. This result was achieved by enhancing ANL’s oxidation potential within the              

T1 pocket, creating a better electrostatic environment for the oxidized species. It is worth noting               

that the starting laccase was already engineered in the lab to improve aniline oxidation. 

 

Scheme 5.4.​ Chemical structure of ANL, DMPD and PPD. Prepared with MarvinSketch (​http://www.chemaxon.com​). 

5.6.1 Results and discussion 

Firstly, ANL was docked into the active site with 120 independent PELE simulations,             

each lasting 48 hours. The most favourable binding mode is illustrated in Figure 5.16A.              

Residues 263, 264, 207 and 205 have their side chains in proximity of ANL. Therefore, N263                

and N207 were mutated to Asp and Ser, aiming to either lower ANL’s highest occupied               
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molecular orbital (HOMO) energy (to increase its oxidation potential) or to re-adjust ANL deeper              

inside the pocket. D205, on the other hand, was mutated to Glu, trying to shorten the contact                 

between ANL and the carboxyl group. The PELE+QM/MM workflow was applied to such             

mutants, with N207S and N263D yielding the highest SD values (0.8 and 0.10 respectively,              

Table 5.2). However, PM1 (wild type) has a SD of 0.12 itself (Table 5.3), meaning that the two                  

single mutants have not improved over the wild type enzyme. One possibility is that these two                

mutations can synergistically reinforce each other, producing a better catalysts. Therefore, the            

N207S-N263D double mutant was prepared and subjected to the PELE+QM/MM protocol. It is             

worth noting that such mutations exist in a ​S. Cerevisiae Fet3 (PDB: 1ZPU), a multicopper               

oxidase which shares 29% sequence identity with PM1. Consequently, their introduction in the             

wild type protein should not affect stability dramatically.  

 
Figure 5.16. Most favourable binding mode for ANL in A) PM1 and B) DM. Figure prepared with Pymol (​The PyMOL                    

Molecular Graphics System, Version 1.8 Schrödinger, LLC​) and modified with GIMP (​https://www.gimp.org/​) 

Table 5.2.​ Simulated average substrate’s SD. 

Original residue Mutation SD 

D205 E 0.00 

N207 D 

S 

0.08 

0.03 

N263 D 

S 

0.10 

0.01 
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The ​in silico double mutant (DM) undergoes a two-fold improvement in SD, which was              

confirmed in the lab (by our collaborator at Centro Superior de Investigación Científica in              

Madrid) by measuring a two-fold improvement in k​cat​. Thanks to the double mutation, the binding               

mode is completely changed: N207S creates room for the substrate to rearrange in the active               

site while N263D introduces a negative charge, which increase the oxidation potential of ANL in               

the active site (Figure 5.16B). This result confirms the capability of the PELE+QM/MM protocol              

to design ​fit-for-purpose​  laccases. 

Table 5.3. Simulated average substrate’s SD and experimental kinetic data for the wild type (PM1) and the DM.                  

Values in parentheses represent uncertainties on the last significative digits.  

System SD k​cat​ (s​
-1​) K​M​ (mM)  

PM1-ANL 0.12(1) 10(1) 28(7) 

DM-ANL 0.26(5) 22(3) 59(16) 

PM1-DMPD 0.39(7) 459(18) 1.7(2) 

DM-DMPD 0.68(14) 741(48) 1.2(2) 

PM1-PPD 0.32(5) 14.7(6) 3.7(3) 

DM-PPD 0.46(14) 21(2) 3.(8) 

PM1-ABTS 0.23(14) 219(18) 0.004(1) 

DM-ABTS 0.40(7) 570(26) 1.001(1) 

While testing the DM ​in vitro​ , other substrates were oxidized and the following showed              

improved activity (Table 5.3): ABTS, N,N-dimethyl-p-phenylendiamine (DMPD) and        

p-phenylendiamine (PPD). In order to further cross validate the PELE+QM/MM protocol, the            

oxidation of these compounds was simulated, yielding an increased average substrate SD for             

the DM, in line with the experimental results (Table 5.3). 
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5.7 Closure 

Since substrate oxidation is characterized by large reorganization energies, this step is            

usually the slowest of the catalytic cycle and it is governed by the ET driving force. It follows that                   

the QM/MM SD, calculated in vacuum and with only five geometry optimization steps, can be               

used to score the oxidation rate constant of laccases variants, provided that donor-acceptor             

distances do not change dramatically among them. Incidentally, this method is conceptually            

valid for any oxidoreductase whose rate-determining step is controlled by the ET driving force.              

As a cautionary statement, it is worth noting that neglecting the solvent might exaggerate the               

SD of highly charged systems. For example, a substrate with two or more negative charges               

might carry all the SD of the system already in the wild type. In such cases, the inclusion of an                    

explicit solvent model might be necessary, requiring a higher number of structures to estimate              

the average SD. 

The PELE+QM/MM approach proposed here underlined that substrate binding is          

fundamental in laccases function and it can be fine tuned to improve catalysis. While stabilizing               

binding poses with optimized catalytic contacts can improve electronic coupling, enhancing the            

electrostatic stabilization of oxidized substrate can push the ET driving force toward lower             

values, increasing its match with the negative image of the reorganization energy. Such             

PELE+QM/MM binding-focused strategy has been employed to increase the oxidation of ANL at             

acidic pH, improving the production of PANI. At the best of my knowledge, this is the first                 

successful computational re-design of a laccase. 
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6. High-throughput computational evolution of a fungal 

laccase with PELE 

 
In the previous chapter, the development, testing and application of a computational            

methodology for rationally designing laccases has been presented. In particular, in Section 5.3,             

a correspondence between increased spin density and enhanced enzyme-oxidized substrate          

stabilization has been found in an evolved laccase toward two substrates. Such finding             

suggests that a fully classic design (using a molecular mechanics approach) of laccases could              

be undertaken; while reorganization energy and electronic coupling could be approximated with            

the solvent-accessible surface area (SASA) ​(Bortolotti et al., 2011) and donor-acceptor distance            

(Blumberger, 2015) respectively, optimizing the enzyme-oxidized substrate interaction energy         

could produce mutants with better (lower) electron transfer (ET) driving force values. It is worth               

noting that the interaction energy difference between product and reactant would be a more              

reliable parameter for the driving force (which is a free energy difference). However, its use               

implies two drawbacks: i) it doubles the number of calculations required; ii) the error of its                

estimation is the sum of the uncertainties of the single interaction energies, which requires a               

more exhaustive conformational sampling.  

Another design task could be the stabilization of the reactive poses, i.e. the ones with               

the right catalytic contacts (with the His and Asp electron and proton acceptors), targeting the               

electron tunnelling probability (electron coupling). The rationale behind this strategy is the            

prominent promiscuity of laccases, which is most likely the consequence of a superficial,             

shallow binding site. Thanks to this feature, laccases interaction with most of the putative              

substrates renders ET possible. Nonetheless, it cannot bind all of them optimally to maximize              

ET. Therefore, the T1 pocket could be modified ​tout court to lock the desired substrate in the                 

most reactive conformation, anchoring it with polar groups. This classical mechanics-based           

strategy is applied here to improve the oxidation of the 2,4-diamino-benzenesulfonic (2,4-dabsa)            

acid by POXA1b laccase. This is a fungal (​Pleurotus ostreatus​ ) laccase with an unusual high               

stability at alkaline pH ​(Giardina et al., 1999)​. The substrate of interest, 2,4-dabsa, is a dye                

precursor just like its constitutional isomer, 2,5-dabsa (Scheme 6.1). Although 2,4-dabsa is            

significantly cheaper than 2,5-dabsa, the latter is readily oxidized by POXA1b at neutral pH 8               
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and 60 ºC while the former is not. Therefore, there is interest in redesigning POXA1b to oxidize                 

2,4-dabsa, aiming to lower the cost of dye production. 

 

 

Scheme 6.1.​ Chemical structures of 2,5- and 2,4-dabsa. Prepared with MarvinSketch (​http://www.chemaxon.com​). 

6.1 Computational details 

Homology modeling and system setup. POXA1b structure was generated through Prime           

homology modeling ​(Jacobson et al., 2002, 2004)​, using 1GYC.pdb (60% sequence identity) as             

a template. POXA1b is characterized by a longer C-terminal tail, which could be placed outside               

the oxygen cavity (model_out, calculated in this thesis) or inside (model_in, previously            

calculated by the collaborators of this study at Università degli Studi di Napoli ​(Festa et al.,                

2008)​) (Figure 6.1). The POXA1b structures (model_out and model_in) were prepared with            

Protein Preparation Wizard ​(Sastry et al., 2013)​. The protonation states of titratable residues             

were generated with PROPKA ​(Olsson et al., 2011) and double-checked with the H++ server              

(Gordon et al., 2005)​, simulating pH 8.  

Molecular dynamics (MD)​ . MD simulations were performed with GROMACS ​(Pronk et           

al., 2013) for model_out and model_in, aiming at a refinement of the initial homologous              

structures. The enzymes were solvated with a 10 Å buffer of waters in an dodecahedral box,                

adding enough ions for neutralization and a 0.15 M NaCl buffer. The systems prepared were               

equilibrated as follow: i) solvent minimization; ii) system minimization; iii) 200 ps system warm              

up from 15 to 298 K at constant volume; iv) 200 ps NVT simulation; v) 200 ps NpT simulation.                   

Then, a 200 ns NpT production run was performed at 298 K for each model. The AMBER99                 

force-field ​(Duan et al., 2003) and the SPC explicit water model ​(Toukan, Kahled & Aneesur,               
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1985) were used. The copper ions, modeled in their reduced (+1) state to attenuate charge               

repulsion in the trinuclear cluster of copper ions (TNC). The coordinating atoms and their              

nearest neighbours were restrained to their initial positions with stiff 10,000 kJ mol​-1 nm​-2              

harmonic constraints. The temperature was regulated with velocity rescaling ​(Bussi, Donadio &            

Parrinello, 2007) with a relaxation time of 0.1 ps, and the pressure was controlled with the                

Parrinello-Rahman barostat ​(Parrinello, 1981) with isotropic coupling and a relaxation time of            

2.0 ps. The LINCS algorithm ​(Hess et al., 1997) was employed to constrain all bond lengths,                

allowing a time step of 2.0 fs. A 10 Å cutoff was used for non bonded interactions together with                   

the particle mesh Ewald method ​(Essmann et al., 1995)​. It is well known that homology models                

can fall apart when subjected to MD ​(Raval et al., 2012)​, thus a 1,000 kJ mol​-1 nm​-2 harmonic                  

constraint was applied to the secondary structure elements (helices and sheets) for the first 40               

ns and lowered to 10 kJ mol​-1​ nm​-2​ for the rest of the simulation. 

PELE sampling. PELE sampling was applied to the POXA1b-2,4-dabsa system. The           

substrate, initially placed in front of the T1 cavity, was randomly translated and rotated within 15                

Å of the T1 copper. The ANM perturbation was applied to all the C​α in the system, the side                   

chains of the residues within 10 Å of substrate were repacked and everything within 20 Å was                 

energy minimized (see Appendix 1 for an example of input file). Along the text, tables and                

figures, (PELE) binding energies refer to protein-substrate interaction potential energies.  

PELE design. The initial conformation for the design was selected from PELE sampling             

among the structures that exhibit catalytic contacts. Then, every residue within 10 Å of the               

substrate was mutated to all the possible remaining 19 amino acids. The mutated residues are:               

T160, G161, V162, P163, H164, C204, S206, N207, A239, N263, S264, F331, P333, A336,              

A391, G392, P393, P395, W455, P510, L511. The ligand was perturbed with very small              

translations and rotations while the protein backbone was subjected to small ANM            

displacements. Every residue within 10 Å of the substrate was energy minimized (see Appendix              

2 for an example of input file). The simulation of each mutant (and the wild type) lasted 1 hour,                   

accumulating ~30 Monte Carlo steps (~20 accepted). The enzyme-substrate interaction energy           

was used to score each mutant, while keeping an eye on substrate’s SASA. 

Treatment of substrate and metal centers in PELE. Substrates’ geometries were           

optimized at the M06/6-31G* level of theory, modeling the solvent with the Poisson-Boltzmann             

model. The atomic ESP charges were calculated from the optimized structure and used for              

PELE. The OPLS parameters were assigned to the ligand with Schrödinger’s hetgrp_ffgen utility             

and a rotamer library was generated with in-house PELE’s scripts using Macromodel            
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(Mohamadi et al., 1990)​. The copper ions and their coordination atoms plus their nearest              

neighbors were constrained during PELE sampling with 200 kcal mol​-1 Å​-2 harmonic constraints             

on their atomic positions. Unitary charges were assigned to each copper atom (to avoid tension               

in the TNC). 

6.2 Results and discussion 

6.2.1 Refinement of POXA1b models  

As mentioned in Section 6.1, POXA1b shares only 60% sequence identity with its homology              

modeling template and it is characterized by a longer C-terminal tail, which could be placed               

outside (model_out) or inside (model_in) the oxygen cavity (Figure 6.1). For this reason, MD              

simulations were performed to refine the models and establish whether model_out or model_in             

(or none of them) is the best representation of the system. As a result, model_out converges in                 

~50 ns (Figure 6.2B, stopped at ~160 ns), keeping the C-terminal away from the oxygen cavity                

(Figure 6.2A). On the contrary, model_in is rather unstable (Figure 6.2B), resulting in the escape               

of the C-terminal from the protein interior, roughly matching model_out (Figure 6.2A). It follows              

that, according to the simulation, the C-terminal is more stable on the protein surface than in its                 

interior. This is somewhat surprising, since ​Melanocarpus albomyces laccases, which are also            

resistant at alkaline pH, accommodate their C-terminal tail inside the oxygen cavity. Moreover,             

the C-terminal of model_out directly interacts with the active site, adding a further degree of               

complexity to the design. 

 

Figure 6.1. A) 1GYC.pdb; B) model_out; C) model_in. C-terminal tail and Cu ions are represented in VDW spheres.                  

Figure prepared with VMD ​(Humphrey et al., 1996)​ and modified with GIMP (​https://www.gimp.org/​). 
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6.2.2 PELE sampling and design  

Binding of 2,4-dabsa into the T1 pocket was simulated with 96 independent 48 hours              

lasting trajectories. Inspection of the structures within 5 kcal/mol of the lowest PELE binding              

energy value (within 12 Å) reveals that no catalytic contact (i.e. H-bonds with the catalytic His                

and Asp) is engaged (Figure 6.3). In order to find a pose that displays catalytic interactions, it is                  

necessary to climb the PELE binding energy ladder by ~20 kcal/mol (note that this value is a                 

protein-ligand interaction energy, not a proper binding energy). Such energy difference poses a             

great obstacle to oxidation, since the enzyme severely selects unproductive poses. For this             

reason, the reactive-like pose was selected as initial template for the design, aiming at              

improving the enzyme-substrate interaction energy of such binding mode, hence its statistical            

importance in the active site. 

 

Figure 6.2. A) Final snapshot from the MD simulation of model_out (blue) and model_in (red). The C-terminal tail is                   

represented in VDW spheres. B) RMSD plots from the MD simulations of model_out (blue) and model_in (red).                 

Figure prepared with VMD ​(Humphrey et al., 1996)​, matplotlib (​http://matplotlib.org/​) and modified with GIMP              

(​https://www.gimp.org/​). 
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Figure 6.3. Favored (best binding) and reactive-like (catalytic contacts) poses from PELE sampling. Figure prepared               

with VMD ​(Humphrey et al., 1996)​ and modified with GIMP (​https://www.gimp.org/​). 
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Figure 6.4. Evolutionary strategy and results of POXA1b design toward 2,4-dabsa oxidation. The first round               

produced two branches, introducing S or H at position 162. Figure prepared with Google Slides               

(​https://www.google.com/slides/about/​). 

Since it was intended to test only a few POXA1b variants in the lab, an evolutionary                

strategy was employed to accumulate beneficial mutations at each computational mutagenesis           

round (Figure 6.4). During an evolution round a mutation was considered beneficial if the              

binding energy improved by 5 kcal/mol or more; then, one candidate was selected and used as                

starting template for the next round. It should be noted that, at each of these rounds, the                 

mutants showing improved PELE binding energy were all visually inspected, bringing chemical            

intuition into play. In the first round, two mutations among the others looked promising due to a                 

great increase in PELE binding energy and, in one case, a significant drop in SASA (hence a                 

possible decrease in reorganization energy): V162H and V162S (Figure 6.4 and Figure 6.5A             

and B, respectively). Although other mutations present interesting values (Appendix 6), they            

were discarded (or postponed) in favor of V162H and V162S for one of the following reasons: i)                 

they involved Gly/Pro (as starting amino acid), which might trigger important loop conformational             

changes due to its flexibility/rigidity which cannot be captured at this level of sampling (they               

would need extensive sampling to confirm their reliability); ii) unless they introduce an             

outstanding improvement, positive charges are avoided as they might inhibit oxidation; iii) they             

were located on the C-terminal tail, whose conformation is the most fragile aspect of the model;                

iv) visual inspection and “chemical intuition” suggested caution. 

 

Figure 6.5. Structure of the designed triple mutants (A: V162H branch; B: V162S branch). Figure prepared with VMD                  

(Humphrey et al., 1996)​ and modified with GIMP (​https://www.gimp.org/​). 
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After the first round, computational evolution was branched, further designing both the            

V162H and V162S variants (Figure 6.4). In the second round of both the V162H and V162S                

branches, F331Y was chosen (Figure 6.4). In round3_H162 and round3_S162, A335N was            

selected (Figure 6.4). Computational evolution was stopped at this point. In both branches,             

three new H-bonds with the sulfonate group of 2,4-dabsa were introduced (Figure 6.5),             

increasing the binding energy by more than 20 kcal/mol (SASA is also significantly reduced in               

the H162 branch). Therefore, the evolved active sites should be able to select the substrate in a                 

reactive conformation with higher frequency. In order to test this hypothesis, a new PELE              

sampling run was carried out for the evolved triple mutants, as previously done for the POXA1b                

(see Computational details); the catalytic and designed contacts were then checked in the             

structures within 5 kcal/mol of the lowest binding energy value. Nicely, for the S162 branch, all                

the designed H-bonds and the catalytic His-sulfonate contact were retained in all the binding              

modes, while the catalytic Asp-amino contact was formed in 40% of the cases. 

  

Figure 6.6. PELE sampling result for the H162 branch triple mutant. Figure prepared with VMD ​(Humphrey et al.,                  

1996)​ and modified with GIMP (​https://www.gimp.org/​). 

On the contrary, this last contact is never formed in the H162 branch. On top of that,                 

although the catalytic His and N336 interact with the sulfonic group, the other designed contacts               
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did not form as planned: the side chains of Y331 and H162 interact with the amino groups                 

instead (Figure 6.6). Still, the resulting binding mode is more reactive than POXA1b’s (Figure              

6.3): an efficient through bond (sulfonate-His) electron tunnelling path is stable, while the aminic              

proton could be abstracted by a water molecule (if proton transfer occurs simultaneously),             

although it is not the optimal path. Therefore, it was decided to test also the His branch triple                  

mutant in the lab.  

6.2.3 Experimental validation, computational rationalization and repurposing  

Regardless the promising mutant validation with PELE sampling, the evolved variants           

were inactive towards 2,4-dabsa, just as POXA1b. The possible motivations behind this            

unsatisfactory result are several: i) the homology model is inaccurate in the active site              

description due to the presence of the C-terminal; ii) no explicit water molecules were simulated,               

which have proved to be valuable in Chapter 5 ; iii) 2,4-dabsa is not oxidizable by the T1 copper                   

(i.e. the driving force is positive and too large). The first point is very difficult to verify and the                   

second strictly depends on the first: although MD simulations could have suggested the possible              

persistent placement of water molecules in the active site (especially H-bonded to the catalytic              

Asp), the reliability of such analysis strongly depends on the quality of the homology model. On                

the other hand, the third point can be addressed by comparing the energy of the HOMO orbitals                 

of 2,4- and 2,5-dabsa, since the latter is readily oxidized by POXA1b. In fact, according to                

Koopmans’ theorem, the negative of the HOMO energy, calculated with the restricted Hartree             

Fock (RHF) method, of a molecule corresponds to its ionization energy ​(Koopmans, 1934)​,             

assuming no subsequent orbital relaxation and neglecting electronic correlation. 

Table 6.1.​ Computational ionization energy of 2,4- and 2,5- dabsa. 

Chemical species Ionization energy (eV) 

2,4-dabsa -4.44008397 

2,5-dabsa -4.26511468 

The geometry optimization of both isomers at the RHF/6-31G* level revealed that the ionization              

energy of 2,4-dabsa is larger by ~175 meV, suggesting that their different reactivity (null for               

2,4-dabsa) could be just a matter of ionization potential. Therefore, the driving force should have               

been targeted with a procedure analogous to the one presented at the beginning of this chapter                
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(possibly followed by QM/MM spin density rescoring). These triple mutants, which, according to             

PELE sampling, anchor the substrate similarly as designed, could be the starting point for future               

efforts involving such design methodology. 

 

Scheme 6.2. Chemical structures of syringic, caffeic and sinapic acid. Prepared with MarvinSketch             

(​http://www.chemaxon.com​). 

Table 6.2. Experimental kinetic constants and population of low binding energy structures exhibiting catalytic              

carboxyl-catalytic His during PELE sampling for the oxidation of caffeic acid by POXA1b and the designed triple                 

mutants. 

 K​M  ​(mM) k​cat ​ (s​
-1​) k​cat ​/K​M​ (mM​-1​s​-1​) Sub-His H-bonds (%) 

POXA1b 3.5±0.5 1262±60 360±60 0 

H162 b. 0.40±0.05 1122±54 2805±54 50 

S162 b. 3.6±0.5 4184±35 1162±35 29 

Although the designed variants failed to oxidize the target substrate, their putative            

capability to lock in place 2,4-dabsa’s sulfonic group could be exploited to improve the oxidation               

of other negatively charged substrates. In order to test this possibility, the oxidation of caffeic,               

syringic and sinapic acid (Scheme 6.2) was studied in the lab. As a result, the efficiency                

constant (​k​ cat​ /K​ M​ ) of the triple mutants is always higher than the one of POXA1b (Table 6.2-6.3).                

Interestingly, sinapic acid substrate inhibition is also attenuated in the evolved variants, as             

reflected by the larger inhibition constant (​K​ I​ ) values, ​while an overall tendency of increasing ​K​ M               

and ​k​ cat can be observed ​(Table 6.4). Since the kinetic data for this substrate are obtained from                 
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a competitive inhibition model (the substrate binds unproductively to the enzyme while hindering             

the formation of productive enzyme-substrate adducts ​(Bugg, 2012)​), the trend of the kinetic             

constants implies that either the unproductive poses are destabilized or the productive            

conformations are stabilized in the mutant. The second hypothesis could be true despite the              

larger ​K​ M​  values, since this constant would increase with ​k​ cat​  in a steady-state kinetic regime. 

Table 6.3. Experimental kinetic constants and population of low binding energy structures exhibiting catalytic              

carboxyl-catalytic His during PELE sampling for the oxidation of syringic acid by POXA1b and the designed triple                 

mutants. 

 K​M  ​(mM) k​cat ​ (s​
-1​) k​cat ​/K​M​ (mM​-1​s​-1​) Sub-His H-bonds (%) 

POXA1b 1.2±0.1 1775±87 1400±87 0 

H162 b. 1.3±0.2 2700±54 2000±54 60 

S162 b. 0.8±0.2 6997±87 8000±87 50 

 

Figure 6.7. PELE sampling result for the binding of sinapic acid in the active site of the S162 branch triple mutant.                     

Figure prepared with VMD ​(Humphrey et al., 1996)​ and modified with GIMP (​https://www.gimp.org/​). 

Binding of these three substrates in the T1 pocket of POXA1b and its evolved variants               

was simulated with PELE (48 independent 48 hours lasting simulations). The objective was to              

verify whether such improved catalytic performance is related to larger population of            

conformations in which the carboxyl group (which is deprotonated at pH 8) is H-bonded to the                
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catalytic His. As a matter of fact, POXA1b never shows H-bonds between the catalytic His and                

the substrates, forcing an inefficient through-space electron tunnelling between the substrate           

and the T1 center. On the other hand, H-bonds between the substrate and the catalytic His                

have a significant population for every mutant-substrate pair, which ranges from 29 to 81%              

(Tables 6.2-6.3) among the structures within 5 kcal/mol of the binding energy minima and within               

10 Å of the T1 copper. This contact ensures a through-bond electron tunnelling, which greatly               

facilitates ET. Remarkably, the sinapic acid-S162 branch mutant pair, the one that experiences             

the largest improvement in ​k​ cat (~15 fold, Table 6.4), exhibits the highest population of this               

contact (81%) and forms all the designed H-bonds in 61% of the cases (Figure 6.7). Finally, it is                  

worth noting that no contact is formed between the substrate and the catalytic Asp in any                

variant-substrate pair, meaning that such contact is not indispensable (water molecules can            

assist deprotonation), although design toward the instauration of such interaction could further            

improve oxidation (especially due to the further vicinity of a negative charge that could shift up                

the HOMO energy of the substrates). The reason behind the success of repurposing are likely               

the surface exposure and flexibility (since the substrate mostly interacts with loops) of the T1               

pocket. 

Table 6.4. Experimental kinetic constants and population of low binding energy structures exhibiting catalytic              

substrate-His H-bonds during PELE sampling for sinapic acid by POXA1b and the designed triple mutants. 

 K​M  ​(mM) k​cat ​ (s​
-1​) k​cat ​/K​M​ (mM​-1​s​-1​) K​I  ​(mM) % Sub-His H-bonds 

POXA1b 0.13±0.05 6681±100 51392±100 0.7±0.1 0 

H162 b. 0.41±0.03 39113±500 95397±500 1.4±0.3 66 

S162 b. 0.67±0.02 97126±600 144964±600 1.2±0.2 81 

6.2.4 Consequences for laccases design  

Although the initial design was not successful, the repurposing effort suggests (both in its              

experimental and computational validation) that the non specific reaction site of laccases can be              

a valuable template to build specificity toward a target substrate. This can be implemented with               

the presented computational methodology, increasing the affinity of the substrate for the            

enzyme in the reactive conformation. Nonetheless, laccases design proved to be a delicate             

multidimensional problem which requires to always take the ET driving force into account. This              

is especially true for non reactive substrates. With this in mind, the oxidability of the target                
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substrate should be always assessed beforehand with ionization potential measurement or           

calculation (which could be qualitatively guessed by comparison with a reactive substrate, as             

done here). If the target substrate were poorly oxidizable, the ET driving force would become a                

crucial design parameter.  

Repurposing should not be a mere safety net (as it was in this case) but rather an                 

effective strategy for industrial production. Computational design toward a given substrate could            

be accompanied on-the-fly by the ​in silico evaluation of a database of putative substrates,              

possibly selecting a subset based on target molecular similarity ​(Maggiora & Veerabahu, 2010)​.             

In this way, several processes could be improved at the cost of one or a new design line for a                    

particular promising substrate could be opened. Ideally, variant search should not be fossilized             

on a fixed laccase neither. These enzymes present great diversity in the T1 pocket that could be                 

exploited to design the best host as possible for a (class of) substrate(s). Even if a very                 

promising laccase did not function at the desired working conditions (pH, temperature, presence             

of ions and/or cosolutes, etc.), the enzyme could be designed to adapt to them. As a matter of                  

fact, we were able to significantly change the reaction conditions of an oxidoreductases for              

Novozymes, the world leader company in enzyme production, with the same approach            

presented here (results cannot be revealed before patenting). Therefore, a future where several             

laccases are computationally evolved against many substrates can be envisioned. The number            

of laccases tested will depend on the resources and know-how of each laboratory. Pushing              

further, efficient chimeric laccases might be designed by conveniently stitching portions of            

protein from different laccases with computational techniques ​(Jacobs et al., 2016)​. 

6.2.5 Future development  

Although the results shown in this and in the previous chapter represent a clear opening               

for future computer-aided laccases design, a lot of work remains to be done. In particular, it will                 

be crucial to benchmark computational methods over a suitable set of experimental kinetic data,              

which will imply a considerable synergistic computational and experimental effort ​(Carlin et al.,             

2016)​. In such way, the discovery of structural and energetic features that correlate with kinetic               

constants will be possible ​(Carlin et al., 2016)​. 

112 

https://paperpile.com/c/N6kXwy/05pR
https://paperpile.com/c/N6kXwy/924A
https://paperpile.com/c/N6kXwy/p0J2
https://paperpile.com/c/N6kXwy/p0J2
https://paperpile.com/c/N6kXwy/p0J2


 

6.3 Closure 

The T1 site is a promiscuous template to build specificity toward a target substrate,              

through the design of stabilizing interactions enzyme-substrate interactions in a highly reactive            

conformation. The experimental and computational validation of mutant repurposing suggests          

that this task could be achieved with the computational protocol proposed in this work.              

Nonetheless, laccases design is an intricate multidimensional problem in which the ET driving             

force is a crucial factor that should never be overlooked: if the ionization potential of the target                 

substrate is too low to give one electron to the T1 copper, building a perfect electron tunnelling                 

path will not work. 

Likely due to the superficial and shallow nature of the T1 site, mutant repurposing              

proved to be effective. In the future, repurposing might be carried out computationally and              

subsequently validated experimentally, transforming laccases into more efficient multitasking         

enzymes.  

In any case, the collection of experimental kinetic data to benchmark computational            

strategies, aiming at finding parameters that correlate with the kinetic constant, will be crucial to               

improve the predictive power over laccase. 
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7. Design of a hybrid laccase/photosensitizer system 
 

As discussed in Chapter 4, the standard redox potential (Eº) of the T1 copper (Eº​T1​) is                

the main limit to laccases applications. Its increase remains a difficult challenge which still does               

not guarantee any improvement in activity. The visible-light-driven reduction of laccases through            

a photosensitizer renders oxidation of inert substrates possible by virtually increasing Eº​T1​. The             

same strategy could also be used to efficiently reduce oxygen in a biofuel cell, connecting the                

photosensitizer to the cathode.  

In this chapter, the electron transfer (ET) between tris(bipyridine)ruthenium(II)         

([Ru(bpy)​3​]​
2+​, Scheme 7.1A) and LAC3, a fungal laccase with Eº​T1 = 0.68 V ​(Simaan et al.,                

2011)​, is modelled. The final purpose is to redesign the LAC3/[Ru(bpy)​3​]​
2+ system to improve ET               

directionality from the substrate to the trinuclear cluster of copper ions (TNC). In section 7.1, the                

experimental data available are presented and discussed. Then, the computational          

methodology is explained in detail in section 7.2 and applied to understand and redesign the               

LAC3/[Ru(bpy)​3​]​
2+​ system in the subsequent section. 

 

Scheme 7.1. Two-dimensional structure of A) [Ru(bpy)​3​]​2+ and B) chemically modified [Ru(bpy)​3​]​2+ that covalently              

binds exposed K residues. Source: provided by collaborators at Aix Marseille Université. 

7.1 Experimental background 

The photoexcitation of [Ru(bpy)​3​]​
2+ produces a strong reductant, [Ru(bpy)​3​]​

2+* (Table 7.1           

and Figure 7.1). This complex, in a 1:1 LAC3/[Ru(bpy)​3​]​
2+ bimolecular solution, donates one             

electron to the T1 copper (assumed to be the first electron acceptor, as in nature) with a                 

measured ET rate constant (k​ET​) of 8.1x10​8 M​-1​s​-1 ​(Simaan et al., 2011)​, forming [Ru(bpy)​3​]​
3+​.              
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This is a strong oxidant (Eº = 1.29 V, Table 7.1) that allows to oxidize more challenging                 

compounds (Figure 7.1). On the other hand, due to its high E°, the back-transfer (BT) rate (k​BT​)                 

is a limiting factor in the catalytic efficiency of the hybrid [Ru(bpy)​3​]​
2+​/laccase system. Indeed,              

using Marcus’ equation (Eq. 2.49) it turns out that k​ET​/k​BT​~10​3​. This ratio is estimated taking into                

account the Eº​T1 of LAC3 and assuming: i) negligible differences in reorganization energy (λ)              

and electron coupling (T​DA​) between ET and BT; ii) that the ET driving force depends only on                 

Eº(acceptor) - Eº(donor) and iii) λ~1.7-2.0 eV (taken from other substrate/laccase pairs            

(Tadesse et al., 2008; Galli et al., 2013; Pardo et al., 2016)​). 

 

Figure 7.1.​ Photocatalytic oxidation of olefins by the laccase/[Ru(bpy)​3​]​2+​ system. Source: ​(Schneider et al., 2015)​. 

Table 7.1.​ Redox potentials relevant to this chapter ​(Juris et al., 1981​, ​Simaan et al., 2011)​. 

Redox couple Eº (V) 

Cu​2+​
(T1, LAC3)​ + e​-​ → Cu​+​(T1, LAC3) 0.68 

[Ru(bpy)​3​]​
3+​ + e​-​ → [Ru(bpy)​3​]​

2+  1.29 

[Ru(bpy)​3​]​
3+​ + e​-​ → [Ru(bpy)​3​]​

2+*  -0.81 

Farver and co-workers experimentally determined a value of 25 s​-1 for the rate constant (k​IET​)               

associated to the internal ET (IET) from the T1 copper to the TNC in a ​Trametes hirsuta laccase                  

(ThL, 70.4% identity with LAC3) ​(Farver et al., 2011)​). This value is expected to increase by only                 

a factor of 5 when oxygen binds to the TNC ​(Farver, Wherland & Pecht, 1994)​, keeping k​IET ~10​2                  

s​-1​. Consequently, the large k​BT pulls the electron back to [Ru(bpy)​3​]​
2+ before it can reach the                

TNC. To circumvent this limitation, ET can be tuned by changing how [Ru(bpy)​3​]​
2+ and LAC3               

interact to decrease T​DA​, therefore both k​ET and k​BT​, until k​IET and k​BT are close enough to                 

enhance [Ru(bpy)​3​]​
2+​ to TNC ET directionality. 

117 

https://paperpile.com/c/Lkdrj5/Aq1H+I4fl+0J8V
https://paperpile.com/c/Lkdrj5/tQd5
https://paperpile.com/c/Lkdrj5/13IG
https://paperpile.com/c/Lkdrj5/sSmx
https://paperpile.com/c/Lkdrj5/ldl9
https://paperpile.com/c/Lkdrj5/rqdz


 

 

Figure 7.2. Tridimensional structure of LAC3 with the copper centers (T1 and TNC), native Lys (K40 and K71) and                   

two Arg (R157 and R161) are highlighted. Figure prepared with VMD ​(Humphrey et al., 1996) and modified with                  

GIMP (​https://www.gimp.org/​). 

One way to tune ET is to selectively attach [Ru(bpy)​3​]​
2+ to the enzyme surface,              

controlling its distance from the copper centers by forming unimolecular species, e.g. binding it              

(chemically modified, Scheme 7.1B) to a Lys with reductive amination ​(McFarland & Francis,             

2005)​. Having only two native Lys at positions 40 and 71, LAC3 is the ideal laccase for this task                   

(Figure 7.2). With this purpose, an experimental team at Aix Marseille Universitè attached             

[Ru(bpy)​3​]​
2+ to three LAC3 variants: the wild type (containing K40 and K71) and two mutants               

displaying only one Lys at position 157 (UNIK157) and 161 (UNIK161) respectively. While the              

native Lys positions are next to the TNC, at the entrance of the water channel, positions 157                 

and 161 are closer to the T1 pocket (Figure 7.2). The bimolecular (LAC3+Ru) and unimolecular               

(LAC3-, UNIK157- and UNIK161-Ru) laccase/[Ru(bpy)​3​]​
2+ adducts were photo-reduced in two          

conditions: i) in absence of oxygen, using ethylenediaminetetraacetic acid (EDTA) as electron            

donor; ii) with p-styrene sulfonate as substrate, in an open to air solution. While oxygen allows                

to reoxidize the enzyme at each catalytic cycle, its exclusion was meant to assess how quickly                

the T1 copper was photo-reduced at different [Ru(bpy)​3​]​
2+ grafting positions (LAC3-RU and            

UNIK-Ru variants) or in a non covalent (LAC3+Ru) assembly. 
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Figure 7.3.​ Catalytic cycle of laccases. Source: ​(Morozova et al., 2007)​. 

The results are summarized in Table 7.2. The incorporation of [Ru(bpy)​3​]​
2+ enhances            

laccases reduction and renders the oxidation of p-styrene sulfonate possible. The T1 copper is              

completely reduced in LAC3+Ru, while it is only partially reduced in the other systems. Despite               

the reduction of the T1 copper is significantly slower in the UNIK-Ru variants, UNIK161-Ru              

oxidizes the substrate as much as LAC3+Ru, possibly due to the lower BT rate (assuming for                

both system that the T1 copper is the first electron acceptor). LAC3-Ru exhibits the lowest T1                

copper reduction and it can oxidize p-sulfonate-styrene roughly five times slower than the other              

systems. In this system, the TNC is most likely the first electron acceptor, due to the positions of                  

K40 and K71 (Figure 7.2). In such case, in presence of oxygen, the electrons would not be                 
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transferred to the T1 copper but rather withdrawn by oxygen during the formation of the               

peroxide intermediate (Figure 7.3). Indeed, the rate constant (k​O-O​) of this last process is large,               

~10​6 M​-1​s​-1 ​(Cole, Ballou & Solomon, 1991; Palmer et al., 2002)​. Direct ET from different               

electrodes to the TNC has been measured in several experiments ​(Shleev et al., 2005, 2006;               

Pita et al., 2006; Ramírez et al., 2008)​. Therefore, this alternative ET pathway is grounded on                

previous experimental evidences. 

Table 7.2. Estimated percentage of reduced T1 copper and product formation after 60 minutes, in deoxygenated and                 

oxygenated conditions, respectively. 

System % T1 reduction % product formation 

LAC3 10 0 

LAC3+Ru 100 3.4 

LAC3-Ru 30 0.7 

UNIK161-Ru 50 3.9 

UNIK157-Ru 60 Not performed 

7.2 Computational details 

Homology modeling and system preparation.​ A three-dimensional model of LAC3 was           

built with homology modeling and the loops refined using Prime ​(Jacobson et al., 2002, 2004)​,               

chosing 3kw7.pdb as a template (75.4% identity, 84.1% similarity, 2.9% gaps). The final             

structure was then prepared with the protein preparation wizard software ​(Sastry et al., 2013)​.              

The protonation state of titratable residues were assigned at pH 4 with PROPKA ​(Olsson et al.,                

2011)​ and double-checked with the H++ server ​(Gordon et al., 2005)​. 

Docking.​ In order to simulate the bimolecular system, the surface cavities of LAC3 were              

detected with the FPocket server ​(Schmidtke et al., 2010) and [Ru(bpy)​3​]​
2+ docked in both its               

enantiomeric forms with AutoDock Vina ​(Trott & Olson, 2010)​. The search space was a cubic               

grid with a 30 Å side, centered in the geometrical center of each cavity previously detected.                

Default values were chosen for all search parameters and one decoy was printed for each               

cavity. No significant changes were found between the binding modes of the two enantiomers.              

The output structures were refined with PELE (see Appendix 3 for an example of input file),                

using small ligand and backbone ANM perturbations. The side chains of the residues within 5 Å                

of substrate were repacked and all the residues within 10 Å were subjected to energy               
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minimization. For each pose, seven independent simulations were run for 10 hours. In an              

attempt to simulate the unimolecular system, covalent docking was performed with Glide ​(Zhu et              

al., 2014) to K40, 71, 157 and 161, producing four UNIK-Ru variants (40, 71, 157 and 161).                 

Although K40 and 71 are both bonded to [Ru(bpy)​3​]​
2+ in LAC3-Ru, they were treated separately               

as UNIK40- and UNIK71-Ru for the sake of simplicity. The search space for covalent docking               

was defined as a cubic grid with a side of 30 Å centered on the grafting residue. 

Treatment of [Ru(bpy)​ 3​ ]​ 2+ and metal centers in PELE. [Ru(bpy)​3​]​
2+ geometries were           

optimized at the M06/lacvp* level of theory, modeling the solvent with the Poisson-Boltzmann             

model. The atomic ESP charges were calculated from the optimized structure and used for              

PELE. The OPLS parameters were assigned with Schrödinger’s hetgrp_ffgen utility. The same            

procedure was implemented to create a [Ru(bpy)​3​]​
2+​-containing Lys-based amino acid and           

model the UNIK-Ru variants. A rotamer library for this new amino acid was generated with               

in-house PELE’s scripts using Macromodel ​(Mohamadi et al., 1990)​. The copper ions and their              

coordination atoms plus their nearest neighbors were constrained during PELE sampling with            

200 kcal mol​-1 Å​-2 harmonic constraints on their atomic positions, placing a +1 charge on each                

copper atom (to avoid tension in the TNC).  

Molecular dynamics (MD). The laccase/[Ru(bpy)​3​]​
2+ variants subjected to MD or          

metadynamics were solvated with a 10 Å buffer of waters in an orthorhombic box, neutralized               

and 0.15 M NaCl is added. After equilibration (default settings), a 50 ns long NpT production for                 

both UNIK161- and UNIK157-Ru was run with Desmond ​(Bowers et al., 2006)​, using the              

OPLS-2005 force-field ​(Kaminski et al., 2001) and the SPC explicit water model ​(Toukan,             

Kahled & Aneesur, 1985)​. The temperature was kept constant at 300 K with the Nosé−Hoover               

chain thermostat ​(Nosé & Shuichi, 1984) with a relaxation time of 1.0 ps, and the pressure was                 

controlled with the Martyna−Tobias−Klein barostat ​(Martyna, Tobias & Klein, 1994) with           

isotropic coupling and a relaxation time of 2.0 ps. The RESPA integrator ​(Tuckerman, Berne &               

Martyna, 1992) was employed with bonded, near, and far time steps of 2.0, 2.0, and 6.0 fs,                 

respectively. A 9 Å cutoff was used for non bonded interactions together with the smooth               

particle mesh Ewald method ​(Essmann et al., 1995)​. 

Metadynamics.​ In order to assess if [Ru(bpy)​3​]​
2+ tends to stay on the surface or hide into                

the protein interior (as covalent docking suggested), LAC3-Ru was simulated with           

metadynamics ​(Laio & Parrinello, 2002)​. Despite K40 and K71 are simultaneously bonded to             

[Ru(bpy)​3​]​
2+ in LAC3-Ru, the system was modeled separately as UNIK40- and UNIK71-Ru to             

keep the number of collective variables (CVs) tractable. Two distances were chosen as CVs: (i)               
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between Ru and T2 copper and (ii) between CA and NZ atoms belonging to the lysine.                

Metadynamics was also employed to simulate the bimolecular laccase/[Ru(bpy)​3​]​
2+ systems. In           

that case, the distance between Ru and T2 copper was the only CV. The free energy surface                 

(FES) was constructed depositing a gaussian every 0.09 ps for 20 ns. The width of each                

gaussian along a CV was 0.05 Å and the height 0.03 kcal/mol. 

Treatment of [Ru(bpy)​ 3​ ]​ 2+ and copper centers in MD and metadynamics. The parameters            

for [Ru(bpy)​3​]​
2+ were generated with the hetgrp_ffgen utility of Schrödinger, inputting charges            

and geometries from QM calculations. Since the distance between [Ru(bpy)​3​]​
2+ and the copper             

centers was always abundantly beyond the 9 Å cutoff for non bonded interactions ([Ru(bpy)​3​]​
2+              

cannot get closer for steric hindrance), the copper centers were parametrized classically.            

Unitary charges were assigned to each copper atom.  

PELE design of new UNIK-Ru variants​ . The incorporation of the [Ru(bpy)​3​]​
2+​-containing           

Lys-based amino acid took two steps. First, the target native residue was mutated to Lys. Then,                

if the introduced Lys was sufficiently exposed to the solvent (i.e. at least the nitrogen exposed                

and pointing toward the solvent), it was mutated to the [Ru(bpy)​3​]​
2+​-containing amino acid. The              

protein backbone was subjected to ANM displacements and all residues were included in             

energy minimization. The simulation of each mutant (and of UNIK40-, UNIK71-, UNIK161- and             

UNIK157-Ru for the sake of comparison) lasted 1 hour, accumulating ~30 Monte Carlo steps              

(see Appendix 4 for an example of input file). The final result was visually inspected before ET                 

rate calculations averaged over all the generated structures. 

ET rate calculations.​ T​DA​, the pre-exponential factor of Marcus’ equation, was estimated            

using the VMD Pathways plugin ​(Balabin, Hu & Beratan, 2012) over the last frame of each of                 

the seven independent PELE simulations of the LAC3-Ru decoys. The same calculation was             

performed on UNIK40-, UNIK71-, UNIK-157 and UNIK161-Ru, using ten snapshots from           

metadynamics and MD, and on the PELE design results (taking the last ten snapshots). In the                

Pathways model, T​DA is quantified following continuous paths between donor (the Ru atom) and              

acceptor (each Cu atom), where the electron tunnels through space, hydrogen bond or covalent              

bond. The number and nature of tunneling events determines T​DA according to Eq. 7.1 ​(Beratan,               

Betts & Onuchic, 1991)​: 

 

TDA = A∏
 

 
ε 
C∏

 

 
ε 
H∏

 

 
ε 
S Eq. 7.1 

.6  ε 
C = 0 Eq. 7.2 
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.36 exp[− .7(R .8)]  ε 
H = 0 1 − 2 Eq. 7.3 

0.6 exp[− .7(R .4)]  ε 
S =  1 − 1 Eq. 7.4 

 

Where ε​C > ε​H > ε​S are the through covalent bond, hydrogen bond and space contributions, A is                  

a constant and R is the distance in Å between donor and acceptor for a single tunnelling event. 

It should be noted that only one ​T​DA value is considered for the TNC, the highest one.                 

The reason is straightforward. I​n these calculations, LAC3 was modeled in the resting state, i.e.               

the TNC ions were not bridged by any oxygen atom (Figure 7.3). However, during the catalytic                

cycle, the TNC is fully reduced in the so called native state, where the copper ions are all                  

bonded to one bridging oxygen atom (Figure 7.3). If this atom had been included in the model,                 

the same tunnelling pathway used to reach the copper ion displaying the largest T​DA value could                

have been exploited by the other copper ions. For them, T​DA would have been decreased by a                 

0.36 factor with respect to the highest value, since tunnelling would have been extended to two                

more covalent bonds (Cu-O-Cu, see Figure 7.3 and Eq. 7.2). Conversely, the absence of              

oxygen makes the Cu-Cu ET inefficient, decreasing T​DA by roughly two orders of magnitude (as               

can be verified inputting R=4 to Eq. 7.4, since the Cu-Cu distances in TNC are all above 4 Å).  

7.3 Results and discussion 

7.3.1 Simulation of LAC3+Ru 

Surface pocket analysis, rigid docking and PELE all-atom refinement produced several           

distinct binding modes over LAC3’s surface. Among these, one resides in the T1 cavity (Figure               

7.4B) and shows the highest T​DA with the T1 copper, ~10​-4 eV (Table 7.3). Inputting this value in                  

Marcus’ equation (Eq. 2.49) gives k​ET​~10​8-9 s​-1​, which is in good agreement with the              

experimental data (8.1x10​8 M​-1​s​-1 ​(Simaan et al., 2011)​). Therefore, as expected, ET from             

[Ru(bpy)​3​]​
2+​ to the laccase occurs mostly through such conformation. 

Among the other binding modes, a second one in proximity of the TNC (Figure 7.4A)               

catches the eye for its appealing features. According to the calculation, this alternative pose              

transfers electrons to the TNC with T​DA​~10​-6 eV (Table 7.3). Inserting T​DA​~10​-6 eV in Marcus’               

equation, setting λ ~1.8 eV, Eº​T3 ~0.8 V ​(Farver et al., 2011) and Eº​T2​~0.4 V ​(Shleev et al.,                  

2006)​, yields k​ET​~10​4 s​-1​, which implies k​ET​/k​BT​~10 and 10​2 for T2 and T3 respectively. Since               

oxygen uptake by TNC and the formation of the so-called peroxide intermediate (k​O-O​) are              
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orders of magnitude faster than BT (~10​6 M​-1​s​-1 ​(Cole, Ballou & Solomon, 1991; Palmer et al.,                

2002) vs. ~10​2-3 s​-1​), ET directionality would be largely improved if the electrons were directly               

delivered from [Ru(bpy)​3​]​
2+ to TNC through the binding mode depicted in Figure 7.4A. However,              

such conformation is (most likely) not significantly populated in solution to affect ET, otherwise              

the experimental k​ET would be several orders of magnitude lower than 8.1x10​8 M​-1​s​-1 ​(Simaan et               

al., 2011)​ and the reduction of the T1 copper would be significantly reduced (Table 7.2). 

 

Figure 7.4. Closest binding modes to A) TNC and B) T1. K40 and K71 are shown in CPK style in A. ​Figure prepared                       

with VMD ​(Humphrey et al., 1996)​ and modified with GIMP (​https://www.gimp.org/​). 

Table 7.3. Results of T​DA calculation between Ru and all Cu atoms belonging to LAC3 for the T1 and TNC binding                     

modes. 

Binding mode T​DA​
(Ru,T1)​ (eV)  T​DA​

(Ru,TNC)​ (eV) 

T1 pocket 3​·​10​-4 8​·​10​-8 

TNC cavity 9​·​10​-9 5​·​10​-6 

A closer look to the structure reveals that two Lys, K40 and K71, are positioned next to                 

[Ru(bpy)​3​]​
2+ when this is closer to the TNC (Figure 7.4A). This electrostatic environment might              

preclude the formation of such binding mode since [Ru(bpy)​3​]​
2+ carries two positive charges. To              

assess this possibility, the LAC3-Ru system was simulated, starting from the conformation of             

Figure 7.4A, in the wild type and in the LAC3_K40S-K71S variants with metadynamics ​(Bussi,              
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Laio & Parrinello, 2006)​. The choice of replacing Lys with Ser has no particular reason apart                

from preserving some polarity. The distance between Ru and T2 was chosen as the only CV. As                 

expected, the presence of K40 and K71 pushes [Ru(bpy)​3​]​
2+ to visit other areas where the free                

energy is considerably lower (Figure 7.5). On the contrary, [Ru(bpy)​3​]​
2+ binding is more             

favorable when K40 and K71 are mutated, as reflected in the better FES with respect to the wild                  

type (Figure 7.5). It should be noted that the simulated time, 20 ns, does not allow an accurate                  

FES calculation as the exploration is (most likely) not fully converged. However, these             

simulations are intended to provide relative and semi-quantitative FES estimation rather than            

accurate absolute calculations. Moreover, when a second 20 ns run is performed the outcoming              

FES is consistent, at least on a qualitative ground. 

 
Figure 7.5. Free energy profiles of the [Ru(bpy)​3​]​2+​/laccase system as function of the Ru-TNC distance for the wild                  

type and K40S-K71S enzymes. Figure prepared with Desmond ​(Bowers et al., 2006) and modified with GIMP                

(​https://www.gimp.org/​). 

This result does not imply that mutating only K40 and K71 would increase the statistical               

weight of the alternative binding mode ​(Figure 7.4A) enough to alter the macroscopic properties              
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of the system. It only suggests that it would be a good start to redesign LAC3, especially if                  

combined with the elimination of the T1 copper (mutating the coordinating Cys to, for example,               

Ser), aiming to test how the TNC itself can sustain catalysis. 

7.3.2 Simulation of UNIK40-, UNIK71-, UNIK157- and UNIK161-Ru 
UNIK40- and UNIK71-Ru were built with covalent docking and MD ​(see Appendix 7 for              

the root mean square deviation plots)​. Ten frames, equi spaced in time over the last 10 ns of the                   

MD runs, were taken and ​T​DA between ​[Ru(bpy)​3​]​
2+ ​and the Cu ions was calculated. In               

agreement with the experiment, ET to the T1 copper is similar in these two UNIK variants and                 

slower than in LAC3+Ru (Table 7.2, 7.3 and 7.4). Nonetheless, ​[Ru(bpy)​3​]​
2+ m​ay transfer             

electrons to both copper centers with virtually the same ​T​DA value (Table 7.4). Therefore, the ET                

mechanism might be quite complex for these two hybrid variant. Again, it would be interesting to                

produce a T1 copper depleted versions of these variants in the lab and test how catalysis is                 

affected when ET is only sustained by the TNC. As mentioned above, a direct supply of                

electrons to the TNC should increase ET directionality thanks to the fast peroxide intermediate              

formation. 

Table 7.4.​ Calculated T​DA​ values between Ru and Cu ions for LAC3-, UNIK161- and UNIK157-Ru. 

System T​DA​
(Ru,T1)​ (eV)  T​DA​

(Ru,TNC)​ (eV) 

UNIK157-Ru 1·10​-7 1·10​-7 

UNIK161-Ru 1·10​-7 5·10​-8 

LAC3-Ru (K40) 2·10​-13 2·10​-10 

LAC3-Ru (K71) 6·10​-11 3·10​-9 

For the sake of simplicity, LAC3-Ru was modelled splitting the contributions from            

positions K40 and K71 in UNIK40- and UNIK71-Ru. According to metadynamics simulations,            

[Ru(bpy)​3​]​
2+ is ​more stable outside the TNC cavity (Figure 7.6 and 7.7) than in a buried                

conformation (as suggested by covalent docking). ​T​DA was calculated for the former            

conformation, randomly picking ten representative snapshots from the simulation. As expected,           

[Ru(bpy)​3​]​
2+ primarily transfers electrons to the TNC, observing higher efficiency from position            

71 (Table 7.4). In accord with the experiment, ET to the T1 copper is the slowest among all the                   

hybrid laccase/​[Ru(bpy)​3​]​
2+​ ​systems (Table 7.2 and 7.4). 
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Figure 7.6. Result of the metadynamics simulation of UNIK40-Ru. CV1 is the Ru-T2 copper distance, CV2 is the                  

distance between the N and CA atoms of K40. ​Figure prepared with VMD ​(Humphrey et al., 1996)​, Desmond                  

(Bowers et al., 2006)​ and modified with GIMP (​https://www.gimp.org/​).

Figure 7.7. Result of the metadynamics simulation of UNIK71-Ru. CV1 is the Ru-T2 copper distance, CV2 is the                  

distance between the N and CA atoms of K40. ​Figure prepared with VMD ​(Humphrey et al., 1996)​, Desmond                  

(Bowers et al., 2006)​, and modified with GIMP (​https://www.gimp.org/​). 
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It is worth noting that, despite the very low ​T​DA value between Ru and the TNC ions (the                  

first electron acceptors), LAC3-Ru catalytic oxidation of p-styrene sulfonate is not dramatically            

inferior to that of LAC3+Ru and UNIK161-Ru (Table 7.2). This finding reinforces the hypothesis              

that highly efficient T1 copper depleted UNIK-Ru species could be designed, screening the             

protein surface for the larger ​T​DA​ values. 

7.3.3 Design of UNIK-Ru variants 
The UNIK-Ru variants were designed with PELE and T​DA scored with the VMD Pathways              

plugin. The most promising variants are listed in Table 7.5. The T1 copper was not considered,                

since it was decided to pursue a direct ET to the TNC, aiming to increase ET directionality. For                  

this reason, these variants should be experimentally tested after removing the T1 copper from              

the laccase. The results are presented as relative T​DA values, using UNIK71-Ru as reference.              

Indeed, K71 outperforms K40 in carrying electrons to the TNC in LAC3-Ru (Table 7.4). 

Table 7.5.​ N-fold improvement of the computational designs relative to UNIK71-Ru of T​DA​ between Ru and the TNC. 

System T​DA​
(Ru,TNC)​ improvement factor 

UNIK83-Ru 100 

UNIK349-Ru 50 

UNIK157-Ru 33 

UNIK75-Ru 25 

UNIK69-Ru 20 

UNIK161-Ru 17 

UNIK76-Ru 15 

UNIK73-Ru 10 

UNIK405-Ru 10 

For all the variants listed in Table 7.5, ​T​DA between ​[Ru(bpy)​3​]​
2+ and the TNC is greatly                

improved, from 10 to 100 times, which means that ET should be 100-10,000 times faster (Eq.                

2.49). The designed ​[Ru(bpy)​3​]​
2+ attach points are distributed in correspondence of the oxygen             

entry channel (83, 349, Figure 7.8A) and in/next to the water exit channel (69, 73, 75, 76, 405,                  

Figure 7.8B). Residues 157 and 161, which are not a proper design but rather a repurposing of                 
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existing mutants, are located in between the oxygen channel and the T1 pocket. The water               

channel is also where the binding mode of Figure 7.4A was found when LAC3+Ru was               

simulated. In that case, T​DA is estimated to be more than 1,000 times greater than in UNIK71-Ru                 

(comparing data from Table 7.3 and 7.4), thanks to the buried position of ​[Ru(bpy)​3​]​
2+​. Testing               

LAC3-Ru, after T1 copper removal and mutation of K40 and K71 into neutrally charged              

residues, is suggested. However, a more exhaustive redesign might be necessary to express             

the full potential of this variant. 

 

Figure 7.8. ​[Ru(bpy)​3​]​2+ grafting position in the UNIK-Ru designs (positions 157 and 161 excluded). Figure prepared                

with VMD ​(Humphrey et al., 1996)​ and modified with GIMP (​https://www.gimp.org/​). 

7.4 Closure 

A computational methodology that combines docking, PELE sampling and design, free           

energy calculations (metadynamics) and quick empirical T​DA estimations was adopted here to            

redesign a LAC3/[Ru(bpy)​3​]​
2+ hybrid photocatalyst. Such protocol was firstly benchmarked over           

a small set of available experimental data and it proved to be capable of discriminating between                

the different LAC3/[Ru(bpy)​3​]​
2+ variants, producing results in agreement with the experiment. At            

this stage, knowing that the fast BT is the major problem of the photocatalyst, it was                
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hypothesized to directly convey the electrons to the TNC, skipping the T1 copper. This              

alternative ET pathway is likely the most promising way to fight BT since k​ET​/k​BT​~10​1-2 and k​O-O                

>> k​BT assure ET directionality and k​IET would no longer be the upper limit of k​ET​. With this task in                    

mind, several mutants with significantly improved ET to the TNC were designed and are              

currently being validated in the labs of Aix Marseille Université. 
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8. Simulation of hemoglobin in silica gel 

 
According to the tertiary two-state (TTS) model, hemoglobin’s (Hb) ligand affinity is            

directly controlled by the tertiary structure of each subunit, which can exists in two states r and t                  

with high and low affinity respectively. Recently, Spiro and coworkers measured the evolution of              

the heme-His stretching frequency (νFe-His) of Hb trapped in a silica gel after carbon monoxide               

(CO) binding/release. In fact, νFe-His was found to correlate with Hb’s oxygen affinity             

(Matsukawa et al., 1985)​) and it is used here to follow heme’s reactivity. The conformational               

mobility of the protein is significantly slowed down in the silica gel, practically freezing its               

quaternary structure while subunits’ conformations can rearrange internally upon CO release           

(Jones, Gurusamy & Spiro, 2012)​. It follows that tertiary and quaternary structures are             

uncoupled. Spiro and coworkers found that νFe-His shifts from high- to low-affinity values within              

the starting quaternary structure. Therefore, heme’s reactivity can be uncoupled from the            

tetramer arrangement ​(Jones, Gurusamy & Spiro, 2012)​, showing a r to t transition within the R                

state, in accord with the TTS model. Furthermore, they were able to isolate the contributions of                

α and β chains and found that they have a diverse response to CO release: νFe-His shifts from                  

220 to 212 cm​-1​ and from 221 to 218 cm​-1​ in α and β respectively ​(Jones et al., 2014)​. 

Here, the experiment was simulated by modeling carboxy-hemoglobin (HbCO) CO          

release using appropriate restraints to mimic its behavior in the silica gel, aiming to characterize               

the structure of the r and t affinity states within the R2 quaternary structure (which is in                 

equilibrium with the R structure in solution ​(Hub, Kubitzki & de Groot, 2010; Fan et al., 2013)​). 

8.1 Computational details 

System Setup and molecular dynamics (MD). The following structures were taken from            

the Protein Data Bank (PDB): 1A3N ​(Tame & Beatrice, 2000) (T, deoxyHb), 1BBB ​(Silva,              

Rogers & Arnone, 1992) (R2, HbCO) and prepared with Protein Preparation Wizard ​(Sastry et              

al., 2013) in the Schrödinger suite of programs. After appropriate solvation, charge            

neutralization and 0.15 M NaCl addition, a short MD simulation was performed with Desmond              

(Bowers et al., 2006) for each structure, in order to obtain some conformational sampling.              

Heme’s OPLS parameters were generated with the hetgrp_ffgen utility of Schrödinger. More in             

detail, the systems were equilibrated with Desmond’s default protocol followed by a 1 ns NpT               
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production phase at 300 K (this short MD was intended to keep the initial quaternary/tertiary               

arrangements). Along equilibration and short production, the Cα RMSD from the initial crystal             

structures stays below 1.3 Å. The OPLS-2005 force-field ​(Kaminski et al., 2001) and the SPC               

water model ​(Toukan, Kahled & Aneesur, 1985) were used. The temperature is regulated with              

the Nosé−Hoover chain thermostat ​(Nosé & Shuichi, 1984) with a relaxation time of 1.0 ps, and                

the pressure is controlled with the Martyna−Tobias−Klein barostat ​(Martyna, Tobias & Klein,            

1994) with isotropic coupling and a relaxation time of 2.0 ps. The RESPA integrator              

(Tuckerman, Berne & Martyna, 1992) is employed with bonded, near, and far time steps of 2.0,                

2.0, and 6.0 fs, respectively. A 9 Å cutoff is used for non bonded interactions together with the                  

smooth particle mesh Ewald method ​(Essmann et al., 1995)​. For each system, six snapshots, at               

times 0, 0.2, 0.4, 0.6, 0.8, and 1 ns were selected for the quantum mechanics/molecular               

mechanics (QM/MM) study.  

QM/MM Calculations. Structures were optimized followed by frequency calculations         

using Qsite ​(Murphy, Philipp & Friesner, 2000)​. The heme, the proximal histidine and the sixth               

ligand (molecular oxygen or carbon monoxide, if present) of a given chain subunit (either α of β)                 

were included in the QM region. The rest of the subunit containing the QM region, the other                 

chains and a 12 Å water layer were treated classically (the remainder of the solvent was                

removed). The MM minimization included the chain under study, containing the QM region, plus              

all other residues within 5 Å. The density functional method with the B3LYP ​(Hertwig & Wolfram,                

1997) functional and the lacvp* ​(Hay, Jeffrey Hay & Wadt, 1985) basis set was used for the                 

quantum region, while the OPLS-AA ​(Kaminski et al., 2001) force field was used for the               

classical part. A non bonded cutoff of 50 Å was applied. In the case of R2, the sixth ligand was                    

removed after geometry optimization and re-optimized before frequency calculation. In doing so,            

the five-coordinated R2​α​, R2​β​, T​α​,T​β were obtained, allowing direct comparison with the Raman             

data, which is limited to five-coordinate heme. Quintet and singlet states were used for five- and                

six-coordinated heme, respectively. As expected, along the QM/MM optimizations, there were           

no substantial structural changes except for residues in direct contact with the QM region. Thus,               

significant tertiary changes require a wider level of sampling, which can be achieved with PELE. 

PELE Simulation. The five-coordinated states obtained after QM/MM geometry         

optimizations were used as initial models for the PELE simulation, aiming to reproduce tertiary              

changes that accompany CO release of HbCO. Heme’s OPLS parameters were generated with             

the hetgrp_ffgen utility of Schrödinger, and the QM/MM ESP charges were used to model its               

electron distribution. Importantly, the ANM perturbation was applied only to the chain under             
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study. Furthermore, only residues within 25 Å of the heme were minimized in order to avoid                

quaternary rearrangement of the tetramer, while allowing relaxation of the intersubunit interface            

(see Appendix 5 for an example of input file). Some intermediates generated by PELE were               

then subjected to QM/MM geometry optimization and frequency calculation to track the            

dependence of heme’s reactivity on tertiary changes. 

8.2 Results and discussion 

8.2.1 Validation of the computational methodology 

Although QM/MM frequencies are systematically below the experimental values (Table          

8.1), the 7 cm​−1 frequency difference between the β and α chains in deoxyHb is in quantitative                 

agreement with the experimental data. Moreover, as observed experimentally, the frequency           

shift caused by CO release is much larger for the α than for the β chains, 16 vs 6 cm​−1​,                    

respectively. 

Table 8.1. ​Average QM/MM Fe–His bond distances (​d​ ) and stretching frequencies (νFeHis) for five-coordinated α               

(R2​α​ and T​α​) and β (R2​β​ and T​β​) Hb subunits.  

structure d​a​, Å  νFe-His​a​, cm​-1 νFe-His, cm​-1​ (exp) 

R2​α 2.20(1) 213(2) 220​b 

T​α 2.24(1) 197(2) 212​b 

R2​β 2.22(1) 210(2) 221​b 

T​β 2.21(1) 204(2) 218​b 

a​Values averaged over six snapshots taken from the 1 ns molecular dynamics simulation. The number in parentheses                 

is the uncertainty of the mean, estimated as σ/​N​ 1/2​, where σ is the standard deviation and ​N is the number of values                      

used to calculate the mean values (N=6). 
b​Sol–gel encapsulated HbCO from Jones et al. (Jones et al. 2014). 

In order to verify that these results are not biased by the initial structure, the calculations were                 

repeated with 2dn1 (R, oxyHb) and 2dn2 (T, deoxyHb) ​(Park et al., 2006)​. As expected, the                

frequency values obtained with these crystals are ​comparable (the R–T shifts are 11 and 7 cm​–1                

in α and β respectively). These results show that the QM/MM methodology is sufficiently              

accurate to monitor the evolution of the individual chain frequencies following CO release. 
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Table 8.2. ​Evolution of structure and the QM/MM-derived νFeHis of the unligated α subunit during the PELE                 

Simulation​. 

step νFe-His, cm​-1 d, Å θ​, deg Oop, Å RMSD​R​, ​Å RMSD​T​, ​Å 

0 213 2.20 95 0.07 1.59 0.00 

1 210 2.21 99 0.10 1.62 0.77 

10 205 2.23 102 0.15 1.48 0.74 

20 200 2.23 105 0.18 1.46 0.93 

30 199 2.23 103 0.17 1.53 0.87 

40 201 2.22 102 0.16 1.46 0.88 

50 195 2.25 105 0.18 1.45 0.89 

T 197(2) 2.24(1) 102(2) 0.20 0.00 1.59 

Table 8.3. ​Evolution of structure and the QM/MM-derived νFeHis of the unligated β subunit during the PELE                 

Simulation​. 

step νFe-His, cm​-1 d, Å θ​, deg Oop, Å RMSD​R​, ​Å RMSD​T​, ​Å 

0 215 2.19 96 0.08 3.98 0.00 

1 213 2.19 101 0.11 3.77 0.84 

10 203 2.20 97 0.16 3.67 0.88 

20 204 2.20 100 0.14 3.68 0.94 

30 204 2.20 99 0.18 3.70 0.80 

40 205 2.21 98 0.15 3.65 0.90 

50 206 2.20 101 0.14 3.69 0.82 

T 204(2) 2.21(1) 102(2) 0.18 0.00 3.68 
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Figure 8.1. Dependence of the computed Fe–His stretching frequency (values in cm–1) on the Fe–His bond distance                 

and tilt angle (NC–Fe–Nε angle, where NC is in heme pyrrole “C” and Nε is in the proximal histidine), and with the                      

heme out-of-plane distortion (measured as the average displacement of heme’s atoms from their least-squares              

plane), for Hb α chains (red diamonds) and β chains (blue circles). ​Figure prepared with Google Sheets                 

(​https://goo.gl/APF6tL​) and modified with GIMP (​https://www.gimp.org/​). 

8.2.2 νFeHis evolution in α and β Chains  

Table 8.2 and 8.3 show the νFeHis evolution of the unligated chain along a PELE               

conformational. Just as it does in the experiment (Table 8.1), νFeHis decreases (Table 8.2 and               

8.3) and its variation is greater for the α chain (Table 8.2 and 8.3). Twenty steps are sufficient to                   
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reach a value around which it subsequently fluctuates. This value is essentially the same as that                

computed for the T structure, 197 and 204 cm​−1 for the α and β chains respectively. Thus, in                  

striking agreement with the gel experiments, νFeHis evolves from high- to low-affinity values             

solely as a result of tertiary forces initiated by CO release, in the absence of quaternary                

changes. However, the tertiary structure itself does not evolve very far in the direction of that                

found in the T quaternary structure. For each chain, the root-mean square deviation (RMSD)              

between the evolving PELE structures and the initial unligated structure never exceeds 0.94 Å              

(Table 8.2 and 8.3). The RMSD between the initial conformation and the T structure is much                

larger, 1.59 and 3.68 Å in the α and β chains. More importantly, the RMSD of successive PELE                  

intermediates relative to the T structure diminishes very little from these values, fluctuating             

around 1.47 Å (α) and 3.67 (β) (Table 3). 

 

Figure 8.2. Overlay of heme, the proximal histidine, and relevant contacting residues for the initial (light brown) and                  

intermediate (green) PELE structures, and for deoxyHb. ​Figure prepared with Maestro 9.7 (​Schrödinger, LLC, New               

York, NY, 2014​) and modified with GIMP (​https://www.gimp.org/​). 

It is clear that the PELE intermediates, although displaying νFeHis frequencies           

characteristics of a low-affinity state, have tetramer conformations that are distinct from the T              

quaternary structure. The factors controlling νFeHis must therefore be of local nature. For the              

same reason stated above, the calculations were repeated with 2dn1 and 2dn2 crystal             

structures. Consistently, νFeHis shifted after PELE from 210 to 199 cm​−1 for the α chain, and                

from 212 to 206 cm​−1​ in the β chain. 
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Figure 8.3. ​Cross-correlation matrix for successive residue Cα displacements along the trajectory between initial and               

intermediate PELE structures. Successive helices are indicated by black bars with letter labels. ​Figure prepared with                

matplotlib (​http://matplotlib.org/​) and modified with GIMP (​https://www.gimp.org/​). 

8.2.3 Structural determinants of νFeHis evolution 

It can be observed that three structural parameters of the heme are most consistently              

correlated to νFeHis in the α chain: the Fe−His bond length, the out-of-plane distortion of the                

heme, measured as the average displacement of heme’s atoms from their least-squares plane,             

and the tilt angle of the Fe−His bond with respect to the heme plane (Figure 8.1). Notably, the                  

first two parameters have been directly related to oxygen affinity by quantum mechanical             

calculations ​(Capece et al., 2006; Bikiel et al., 2010)​. Moreover, Friedman and co-workers             

linked νFeHis to the Fe−His bond tilt within a general model for allostery ​(Friedman et al., 1982;                 
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Scott & Friedman, 1984)​, and a tilted Fe−His bond has long been noted as a feature of the                  

T-state α chain ​(Perutz, 1970; Baldwin & Chothia, 1979)​. On the other hand, the out-of-plane               

distortion of the heme is the only parameter that correlated with νFeHis for the β chain, for which                  

bond tilt and elongation are lower along the PELE trajectory.  

 
Figure 8.4. Ribbon diagram of the E and F helices for the PELE intermediate (green helices; Valα62/β67 in cyan) and                    

initial (light brown helices; Valα62/β67 in orange) structures with hemes superposed. The remaining helices are               

represented by cylinders. Also shown are packing residues (blue) at the EF corner, and residues (magenta) forming                 

key interhelical H-bonds and salt-bridges. Source: Jones et al. 2014 ​(Jones et al., 2014)​. 

It is then clear that heme’s reactivity is controlled differently in Hb’s subunits, consistently with               

their different νFeHis shift. In the β chain, the heme distortion, enforced by the packing               

interactions with nearby side chains, is the likely determinant of its oxygen affinity. On the other                

hand, such property is regulated through both proximal and ring strain in the α chain. Figure 8.2                 
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illustrates the differing heme-associated changes between the two chains, and the similar local             

structures in the PELE intermediate and deoxyHb. 

 

Figure 8.5. Cross-correlation of heme’s nitrogen atoms with the rest of the subunit. ​Figure prepared with matplotlib                 

(​http://matplotlib.org/​). 

In order to investigate the origin of these structural differences between the evolving α              

and β chains, the cross-correlation matrix was calculated for both PELE trajectories. The C​α              

cross-correlation shows quite different patterns for the two chains (Figure 8.3). In the α chains,               

the displacements are positively correlated for the first 75 residues (A, B, C and E helices and                 

the EF corner), but they correlate poorly with the next 25 amino acids, which contain the F and                  

part of the G helices. In particular the correlation between the E (55−70) and F (75−90) helices                 

is essentially null. In contrast, the E and F helix displacements are positively correlated in the β                 

chains, while the E and B helices are anticorrelated with the A helix. Figure 8.4 illustrates the                 

differing displacements of the E and F helices, which sandwich the heme group. Two              

orientations are shown, in the EF plane (left), and perpendicular to it (right), with the hemes                

superposed. In the β chain, the E and F helices move in the same direction between the initial                  

(light brown) and intermediate (green) PELE structures, toward the protein exterior (right view)             

and also toward the EF corner (left view). However, they move “oppositely” in the α chain, the F                  
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helix again moving out and toward the EF corner, while the E helix moves in and away from the                   

EF corner. This difference may be partly due to packing constraints in the EF corner, which are                 

more pronounced for the β chain (represented in Figure 8.4 by the F85β and L81β side chains)                 

than for the α chain. In addition, the H helix may play a role, via H-bonds from the penultimate                   

residue, Y140α and Y145β to the F helix residues P77α and V98β, respectively, and              

salt-bridges from E116α and E121β to the A helix residues K16α and K17β, respectively.              

Indeed, these regions are significantly correlated in the α chain (Figure 8.3). The differing              

orientations of these connections (Figure 8.4) may guide the E and F helices in different               

directions, as reflected in the E and A helices being correlated for the α chains but anticorrelated                 

in the β chains. In the β chain, the concerted helix displacements lead to steric contacts with the                  

heme that induce out-of-plane distortions (Figure 8.2), especially F103β which was identified in             

earlier QM/MM computations as making an important contribution to T−R oxygen affinity            

difference in Hb ​(Alcantara et al., 2007)​. Corresponding contacts are attenuated in the α chain,               

although the α heme also distorts, perhaps in response to the proximal strain. 

Displacements of the heme are strongly correlated with those of the E helix in the β                

chain, but less so for the α chain (Figure 8.5). In the latter, the non concerted motion of the E                    

and F helices induces tilting of the Fe−His bond, due to the proximal His residue, Hisα87,                

becoming displaced relative to the heme. The tilting is largely mediated by the H-bond              

connecting Hisα87 with the backbone carbonyl of the upstream residue, Leuα83. When the             

strength of this H-bond was lowered in silico, by reducing the atomic charge of the donor (from                 

0.42 to 0.1) and increasing that of the acceptor (from −0.5 to −0.1), the Fe−His tilt did not                  

exceed 95º. An important role of this H-bond in regulation of oxygen affinity has previously been                

found for other globins and on the basis of computational studies ​(Capece et al., 2006)​. 

8.3 Closure 

The differences between r and t states are located in close proximity to the heme and                

they are distinct from the tertiary structures found in the oxy- and deoxy-Hb crystal structure. In                

the α chain, heme’s reactivity is modulated by both ring (out-of-plane distortion) and proximal              

strain (Fe-His elongation and tilting), while only the former is relevant in the β subunit. The                

different control of heme’s reactivity in Hb’s subunits is likely dictated by their distinct tertiary               

dynamics and of their diverse packing between the E and F helices. At the best of my                 

knowledge, this is the first computational study that supports the TTS model. 
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9. Allosteric signalling paths in hemoglobin 

 
In the previous chapter, it has been shown that heme reactivity is modulated by ring               

(out-of-plane distortion) and proximal strain (heme-His bond lengthening and tilting) in the α             

subunit, while only the former effect is important in the β chain. Furthermore, such modulation               

can take place with no need to alter the quaternary structure of hemoglobin (Hb) and with                

minimal tertiary rearrangement. Apart from ring and proximal strain effects, affinity is also             

regulated in the distal pocket, where the ligand coordinates Fe ​(Unzai et al., 1998)​. This might                

be more important in β since its low-affinity heme-His stretching frequency is significantly higher              

than the α’s despite these subunits have similar O​2​ affinities ​(Unzai et al., 1998)​. 

Here, the pathways connecting important residues belonging to different chains are           

explored analyzing molecular dynamics (MD) trajectories. The residues are: H87α and H92α            

(proximal and ring strain), F103β (ring strain ​(Alcantara et al., 2007; Jones et al., 2014)​), H58α,                

V62α, H63β and V67β (distal pocket regulation). The aim is to understand: (i) which of these                

amino acids are more responsible for inter-subunit communication; (ii) how they are connected;             

(iii) which subunits exchange more information. In this way, the sequence search space for              

future stability designs (to develop better blood substituents) can be narrowed down. 

9.1 Computational details 

System setup and molecular dynamics.​ The 2dn1.pdb Hb’s R (ligated) structure was            

prepared with the protein preparation wizard software ​(Sastry et al., 2013)​. The protonation             

states of the titratable residues were assigned at pH 7 with PROPKA ​(Olsson et al., 2011) and                 

double-checked with the H++ server ​(Gordon et al., 2005)​. After that, the following variants were               

prepared: (i) full-ligated (carboxy-hemoglobin, HbCO); (ii) α1 unligated; (iii) β1 unligated;           

full-unligated. The systems were solvated with a 10 Å buffer of waters in an orthorhombic box,                

neutralized and 0.15 M NaCl was added. After equilibration (default settings), 1 μs NpT              

production runs were performed with Desmond ​(Bowers et al., 2006) at 310 K for all the                

variants. The OPLS-2005 force-field ​(Kaminski et al., 2001) and the SPC explicit water model              

(Toukan, Kahled & Aneesur, 1985) were used. The heme parameters were generated with the              

hetgrp_ffgen utility of Schrödinger, inputting charges and geometries from the QM/MM           

calculations carried out in Chapter 8 (for the R2 and T states, not for the PELE intermediates).                 
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The temperature was regulated with the Nosé−Hoover chain thermostat ​(Nosé & Shuichi, 1984)             

with a relaxation time of 1.0 ps, and the pressure was controlled with the Martyna−Tobias−Klein               

barostat ​(Martyna, Tobias & Klein, 1994) with isotropic coupling and a relaxation time of 2.0 ps.                

The RESPA integrator ​(Tuckerman, Berne & Martyna, 1992) was employed with bonded, near,             

and far time steps of 2.0, 2.0, and 6.0 fs, respectively. A 9 Å cutoff was used for non bonded                    

interactions together with the smooth particle mesh Ewald method ​(Essmann et al., 1995)​. 

Allosteric signalling paths analysis.​ The Weighted Implementation of Suboptimal Paths          

(WISP) ​(Van Wart et al., 2014) program was used to analyze the MD trajectories. After each                

residue was represented by its center of mass, the correlation (with elements C​ij​) and              

contact-map (with elements M​ij​) matrices were calculated. These are both NxN matrices, where             

N is the number of residues. Each element of the contact-map matrix is either 0 or 1 depending                  

on the number of times the respective residues are within 4.5 Å. The functionalized correlation               

matrix (F) has -log|C​ij​| as elements if M​ij = 1 or ∞ if M​ij = 0. F represents a network where each                      

residue is a node; if F​ij is finite, the i-th and j-th nodes are connected by an edge of distance F​ij​.                     

The higher the absolute correlation between two residues, the lower the distance between two              

nodes. For any pair of nodes, a set of connecting paths can be traced, whose distance is the                  

sum of the distances of each edge. Therefore, such paths can be ranked according to the                

distance covered. After the Dijkstra’s algorithm ​(Dijkstra, 1959) is used to calculate the optimal              

pathway (i.e. the one with the lowest distance covered) between two user defined nodes, the               

suboptimal pathways are computed in a recursive fashion whose details are explained in van              

Wart et al. ​(Van Wart et al., 2014)​. In the same paper, the allosteric interaction in the HisH-HisF                  

dimer was studied; binding at the allosteric site produced a shift from 3.1-4.0 to 2.8-3.6 of the                 

length distribution of the top 100 shortest paths that link the allosteric site to the binding pocket.                 

Here, the top 100 shortest paths between α1-β1, α1-β2, β1-α2, α1-α2 and β1-β2 were              

calculated using default settings, choosing the following residues as possible end-points: F103β,            

H63β, V67β, H92β, H87α, H58α and V62α. While F103β, H92β and H87α account for ring and                

proximal strain, the remaining residues aim at describing the dynamics of the distal pocket. 

Principal component analysis (PCA).​ MD data are hard to analyze due to their             

high-dimensionality. PCA is a common dimensionality reduction technique which consists in           

diagonalizing the covariance matrix of the atomic coordinates ​(Hayward, Steven & Groot, 2008)​,             

rotating the cartesian axis in the direction along which the data display the largest variation. The                

lower an eigenvalue, the larger the collective motion described by the associated eigenvector. In              

particular, the first two eigenvectors (principal components) usually describe most of the            
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collective motion along a conformational transition pathway ​(Amadei et al., 1993)​. Therefore,            

large scale protein dynamics can be represented with reasonable accuracy taking into account             

only the first two components. Here, the covariance matrix of the C​α coordinates was built out of                 

the superimposed oxy- (R, 2dn1) and deoxy-Hb (T, 2dn2) crystal structures and the MD              

trajectories were projected along its first two principal components. In such a way, the extent of                

R to T transition could be monitored in time. 

9.2 Results and discussion 

 
Figure 9.1. Projection of the 1 μs MD trajectory over the first two principal components of the R (2dn1) to T transition                      

(2dn2). The color of the points (frames) gradually change from black (initial frame, 0 μs) to white (final frame, 1 μs).                     

A) HbCO; B) α1-unligated; C) β1-unligated; D) full-unligated. 

PCA (Figure 9.1) shows that, independently of the ligation state, the system is far away               

from reaching the T quaternary structure after 1 μs (although it seems to slowly go in that                 
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direction). As previously reported by computational ​(Hub, Kubitzki & de Groot, 2010) and             

experimental studies ​(Fan, Yang & Choy, 2013)​, PCA indicates that the tetramer is highly              

flexible. Comparing the three simulations, a broader exploration by HbCO while a more             

pronounced R-to-T directionality can be appreciated for α1- and β1-unligated. 

Table 9.1.​ Range of lengths for the best 100 signalling paths. 

System α1-β1 α1-β2 α1-α2 β1-α2 β1-β2 

HbCO 3.0-3.1 2.0-2.5 3.8-4.0 2.4-2.9 2.9-3.6 

α1-unligated 3.9-4.2 2.0-2.7 3.7-4.1 N.C. N.C. 

β1-unligated 3.7-4.0 N.C. N.C. 2.4-2.8 3.3-3.8 

full-unligated 3.1-3.3 2.1-2.6 3.5-3.7 2.3-2.9 2.5-2.9 

Despite none of the four simulations reached the T state, inter-subunit communication is             

differently channelled according to the WISP analysis. Common to all systems, α1-β2 (α2-β1)             

seems to be a privileged heme-heme signalling channel (Table 9.1). While α1-β2 (α2-β1) has              

H87α1 as sole source/sink of allosteric signal in HbCO, signalling is enriched upon CO              

unbinding in the α1 chain, involving also H58α1 and V62α1 (Table 9.2). Therefore, the response               

of both proximal and distal pockets to unbinding in the α1 chain are successfully propagated to                

the β2 subunit. When CO leaves the β1 monomer, F103β1 is the main source of the allosteric                 

signal among the selected residues. On the other hand, β1’s distal pocket has a limited role in                 

the β1-α2 allosteric signalling, at least in the amount of time simulated here; perhaps further               

quaternary rearrangement is necessary to get it more significantly involved in the β1-α2             

communication. Finally, when all the subunits are unligated, the communication between           

proximal sites seems to dominate the scene. 

Regardless the ligation state, it turns out that α1-β2 (α2-β1) communication is mostly             

mediated by the FG corners (see Figures 8.3 and 8.4 for the illustration of the secondary                

structure elements) of both chains and the B, C helices of the α subunit (as a consequence of                  

the marginality of β’s distal pocket role in heme-heme allosteric interaction, these helices are              

less important in this subunit), as shown in Figures 9.2-9.4. More in detail, H87α’s response to                

CO unbinding is transmitted to F103β through αFG-βFG correlated motion, while the dynamical             

response of α’s distal pocket is communicated through the αB-αC-βFG path down to F103β.              
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When β1 loses the ligand, also the αC helix becomes crucial to convey the allosteric information                

to both heme’s pockets, differentiating the β-to-α and α-to-β paths. 

Table 9.2.​ End-points of the best 100 signalling paths. 

System α1-β1 α1-β2 β1-α2 β1-β2 

HbCO H58α1 (100) 

H92β1 (68) 

F103β1 (32) 

H87α1 (100) 

F103β2 (68) 

H63β2 (13) 

H92β2 (19) 

F103β1 (96) 

H92β1 (4) 

H87α2 (100) 

F103β1 (85) 

H92β1 (15) 

F103β2 (68) 

H92β2 (32) 

α1-unligated H58α1 (58) 

H87α1 (34) 

V62α1 (8) 

H63β1 (71) 

F103β1 (29) 

H87α1 (70) 

H58α1 (25) 

V62α1 (5) 

F103β2 (100) 

N.C. N.C. 

β1-unligated H63β1 (51) 

F103β1 (49) 

H87α1 (58) 

V62α1 (26) 

H58α1 (16) 

N.C. F103β1 (89) 

H92β1 (8) 

H63β1 (3) 

H87α2 (85) 

H58α2 (14) 

V62α2 (1) 

F103β1 (50) 

H92β1 (50) 

F103β2 (80) 

H92β2 (20) 

full-unligated V62α1 (97) 

H87α1 (3) 

H63β1 (100) 

H87α1 (100) 

H92β2 (81) 

H63β2 (9) 

F103β2 (8) 

V67β2 (2) 

H92β1 (74) 

F103β1 (26) 

H87α2 (97) 

H58α2 (3) 

F103β1 (60) 

H92β1 (40) 

H92β2 (95) 

F103β2 (5) 
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Figure 9.2. Residues that are more involved in the α1-β2 (AD) signalling in α1-uniligated. Bin heights represent the                  

frequency at which such residues take part to the signalling process. Figure prepared with Google Sheets                

(​https://goo.gl/APF6tL​) and modified with GIMP (​https://www.gimp.org/​). 

 
Figure 9.3. Residues that are more involved in the β1-α2 (BC) signalling in β1-uniligated. Bin heights represent the                  

frequency at which such residues take part to the signalling process. Figure prepared with Google Sheets                

(​https://goo.gl/APF6tL​) and modified with GIMP (​https://www.gimp.org/​). 
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Figure 9.4. Illustration of the residues that are more involved in the α1β2 (AD) and β1α2 (BC) signalling in α1- and                     

β1-uniligated Hb (directly obtained from Figures 9.2 and 9.3). The α chain is shown in blue, the β chain in yellow.                     

Figure prepared with VMD ​(Humphrey et al., 1996)​ and modified with GIMP (​https://www.gimp.org/​). 

Once α1 and β2 (α2 and β1) lose CO, the ligated β chain is most likely influenced by the                   

unligated one through a β1-β2 signalling, which come next in importance (Table 9.1). In such               

information exchange channel, F103β and H92β are the most frequent signal source/sinks            

(Table 9.2). Therefore, conversely to α1-β2 (α2-β1), H92β has a significant role in this allosteric               

communication route, while the distal pocket does not influence such signalling path (which             

seems reasonable looking at the β1-β2 relative orientation, Figure 9.6). The N-terminal residue             

seems to be crucial for β1-β2 signalling, along with the rest of the H and F helices (Figures 9.5                   

and 9.6). 
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Figure 9.5. Residues that are more involved in the β1-β2 (BD) signalling in β1-unligated. Bin heights represent the                  

frequency at which such residues take part to the signalling process. Figure prepared with Google Sheets                

(​https://goo.gl/APF6tL​) and modified with GIMP (​https://www.gimp.org/​). 

 
Figure 9.6. Illustration of the residues that are more involved in the β1β2 (AD) signalling in β1-unligated (directly                  

obtained from Figure 9.5). The β1 chain is shown in red, the β2 chain in yellow. Figure prepared with VMD                    

(Humphrey et al., 1996)​ and modified with GIMP (​https://www.gimp.org/​). 
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The intra-dimer signalling paths, whose impact on cooperativity is comparable to that of              

the β1-β2 interaction, get more variegate upon CO unbinding from either the α1 or the β1 chain                 

(Table 9.2). H87α takes an important role as signal source/sink, which is instead monopolized              

by the distal His when CO is bound. Therefore, Fe’s out-of-plane motion is successfully              

transmitted to the other chain. Moreover, H63β starts acting as a signal source/sink as well,               

propagating/inducing dynamical changes from/in the distal pocket. 

 

 

Figure 9.7. Residues that are more involved in the α1-β1 (AB) signalling in α1-unligated. Bin heights represent the                  

frequency at which such residues take part to the signalling process. Figure prepared with Google Sheets                

(​https://goo.gl/APF6tL​) and modified with GIMP (​https://www.gimp.org/​). 
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Figure 9.8. Residues that are more involved in the β1-α1 (BA) signalling in β1-unligated. Bin heights represent the                  

frequency at which such residues take part to the signalling process. Figure prepared with Google Sheets                

(​https://goo.gl/APF6tL​) and modified with GIMP (​https://www.gimp.org/​). 

Despite the richer number of signalling options, intra-dimer communication drops in the α1- and              

β1-unligated variants. Possibly, such drop might help to focus inter-subunit communication           

toward the most efficient allosteric channel, namely α1-β2 (α2-β1), although further studies are             

necessary to confirm it. However, the intra-dimer communication channel gains importance           

when all the subunits are unligated (Table 9.1), although it is still not as efficient as inter-dimer                 

signalling is. Intra-dimer signalling is largely mediated by the following helices: αG, αE, αH, βG,               

βB (Figures 9.7-9.9). In particular, the distal pockets are mediated through the αE-αH-βB path,              

while H87α and F103β are linked by a αG-βG medium. 
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Figure 9.9. Illustration of the residues that are more involved in the α1β1 (AD) signalling in α1-uniligated (directly                  

obtained from Figures 9.7 and 9.8). The α1 chain is shown in blue, the β1 chain in red. Figure prepared with VMD                      

(Humphrey et al., 1996)​ and modified with GIMP (​https://www.gimp.org/​). 
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Figure 9.10. Residues that are more involved in the α1-α2 (AC) signalling in α1-unligated. Bin heights represent the                  

frequency at which such residues take part to the signalling process. Figure prepared with Google Sheets                

(​https://goo.gl/APF6tL​) and modified with GIMP (​https://www.gimp.org/​). 

 
Figure 9.11. Illustration of the residues that are more involved in the α1α2 (AD) signalling in α1-uniligated (directly                  

obtained from Figure 9.10). The α1 chain is shown in blue, the α2 chain in black and the β2 chain in orange. Figure                       

prepared with VMD ​(Humphrey et al., 1996)​ and modified with GIMP (​https://www.gimp.org/​). 

Finally, α1-α2 communication is weak (Table 9.1) and mediated by a β chain (Figures              

9.10, 9.11), therefore its contribution to cooperativity should be marginal. The proximal His of              

the ligand-free chain communicates heme’s response to the proximal and distal pockets of the              

other subunit through the α1FG-β2C-α2H and α1FG-β2C-α2H-α2E routes respectively. The          

latter, and therefore the involvement of the distal pocket, is less probable though. 

9.3 Closure 

According to the results obtained, whether or not the first ligand unbinding event occurs              

in an α or β chain, the preferential route for allosteric signalling should be the inter-dimer α-β                 

correlation path. This involves both the proximal and distal pockets of the α chain, while the β                 
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heme mostly uses F103 to communicate with the rest of the protein. In this signalling route, the                 

following protein fragments act as bridges: αFG-βFG and αB-αC-βFG. 

The β-β and intra-dimer α-β paths seem to be less important. The former connects F103               

and H92 of both chains to each other through the F and H helices, the latter serves as main                   

communication channel for β’s distal pocket. In this last case, these are the bridging moieties:               

αE-αH-βB and αG-βG. It should be noted that intra-dimer α-β signalling is more important in fully                

ligated and unligated forms than in the intermediate ligation states. Finally, α-α communication             

is not expected to influence cooperativity. 

Collecting all the results, it can be seen that, for both chains, the following secondary               

structure elements are never involved in inter-subunit communication paths: the A helix and the              

first residues of the B helix, the EF loops and the residues within helices C and E. Therefore,                  

their modifications for design purposes (stability in water) should not impact Hb’s cooperativity. 
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10 Laccases: conclusions 

 

● Quantum mechanics/molecular mechanics (QM/MM) spin densities can efficiently score         

the electron transfer (ET) driving force in laccases. Quantitative accuracy can be            

obtained for similar substrates if water molecules with an active role in catalysis are              

retained. The PELE+QM/MM approach underlined that substrate binding is fundamental          

in laccases function and it can be fine tuned to improve catalysis. While stabilizing              

binding poses with optimized catalytic contacts can improve electronic coupling (T​DA​),           

enhancing the electrostatic stabilization of the oxidized substrate can push the ET            

driving force toward lower values, increasing its match with the negative image of the              

reorganization energy.  

● The PELE+QM/MM binding-focused strategy has been employed to increase the          

oxidation of aniline at acidic pH, improving the production of polyaniline. The engineering             

efforts showed that the T1 site is a promiscuous template to build specificity toward a               

target substrate. This can be achieved through the design of stabilizing interactions in             

highly reactive enzyme-substrate conformations. Laccases promiscuity is at the basis of           

the proved success of mutant repurposing. In the future, repurposing might be carried             

out computationally and subsequently validated experimentally, transforming laccases        

into more efficient multitasking enzymes.  

● Laccases design proved to be a multidimensional problem; both the driving force and T​DA              

should be taken into account. The collection of experimental kinetic data to benchmark             

computational strategies, aiming at finding parameters that correlate with the kinetic           

constant, will be crucial to improve the predictive power of laccases reactivity in the              

future. 

● A computational methodology that combines classical conformational sampling and         

quick empirical T​DA estimations was capable of producing results in agreement with the             

experiment for a hybrid laccase/[Ru(bpy)​3​]​
2+ photocatalyst. Knowing that the fast electron           

back-transfer is the major problem the hybrid laccase/[Ru(bpy)​3​]​
2+​, it was hypothesized           

to directly convey the electrons to the trinuclear cluster of copper ions (TNC), skipping              

the T1 copper. Several mutants with significantly improved ET to the TNC were designed              

and are being validated in the lab. 
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11 Hemoglobin: conclusions 

● The tertiary two-state (TTS) model was supported by the simulation (at the best of my               

knowledge, for the first time). The differences between r and t states are located in close                

proximity to the heme and they are distinct from the tertiary structures found in the oxy-                

and deoxy-hemoglobin crystal structure. In the α chain, heme’s reactivity is modulated            

by both ring (out-of-plane distortion) and proximal strain (Fe-His elongation and tilting),            

while only the former is relevant in the β subunit. The different control of heme’s               

reactivity in hemoglobin’s subunits is likely dictated by their distinct tertiary dynamics and             

of their diverse packing between the E and F helices. 

● The preferential route for allosteric signalling should be the inter-dimer α-β correlation            

path. This involves both the proximal and distal pockets of the α chain, while the β heme                 

mostly uses F103 to communicate with the rest of the protein. In this signalling route, the                

following protein fragments act as bridges: the FG of the β chain and either the FG                

corner or the B and C helices of the α chain. The β-β and intra-dimer α-β paths seem to                   

be less important, while α-α communication should not influence cooperativity. For both            

chains, these secondary structure elements are never involved in inter-subunit          

communication paths: the A helix and the first residues of the B helix, the EF loops and                 

the residues within helices C and E. Their modifications for design purposes (stability in              

water) should not impact cooperativity. 
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Appendix 1 - PELE protein-ligand sampling input file 
 

This is an example of PELE protein-ligand sampling analogous to those used to produce              

part of the work of chapters 5 and 6. PELE can be used for free at ​https://pele.bsc.es/pele.wt​. 

 
## POXA1b-2,4-dabsa sampling  
 
file datadir /home/bsc72/bsc72328/plop/data 
file log dyn_24dabsa.log 
energy params solvent vdgbnp 
energy params ionic 0.15 
load pdb poxa1b-24dabsa_fixed.pdb waters no ions no het yes  
 
constraint atom A:597:CU__ current 200 0.0 & 
atom A:451:_SG_ current 200 0.0 & 
atom A:451:_CB_ current 200 0.0 & 
atom A:456:_ND1 current 200 0.0 & 
atom A:456:_CB_ current 200 0.0 & 
atom A:456:_CG_ current 200 0.0 & 
atom A:394:_ND1 current 200 0.0 & 
atom A:394:_CB_ current 200 0.0 & 
atom A:394:_CG_ current 200 0.0 & 
atom A:453:_CD1 current 200 0.0 & 
atom A:453:_CG1 current 200 0.0 & 
atom A:461:_CE1 current 200 0.0 & 
atom A:461:_CD1 current 200 0.0 & 
atom A:461:_CG_ current 200 0.0 & 
atom A:598:CU__ current 200 0.0 & 
atom A:599:CU__ current 200 0.0 & 
atom A:600:CU__ current 200 0.0 & 
atom A:399:_NE2 current 200 0.0 & 
atom A:111:_NE2 current 200 0.0 & 
atom A:450:_NE2 current 200 0.0 & 
atom A:452:_NE2 current 200 0.0 & 
atom A:109:_NE2 current 200 0.0 & 
atom A:66:_ND1 current 200 0.0 & 
atom A:397:_NE2 current 200 0.0 & 
atom A:64:_NE2 current 200 0.0 & 
 
pele & 
 het L:1 & 

pdbmodel yes & 
top_side 10 & 
init_min no & 
task & 

 show bind_ene 1 & 
 show SASA 1 & 
 if random 1 gt 0.5 then rot_r 0.02 else rot_r 0.25 endif & 
 if random 2 gt 0.5 then tra_r 2.0 else tra_r 0.75 endif & 
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 spawn atom 1 A:597:CU__ within 15.0 & 
exit steps gt 2000 & 

end_task & 
temp 1000 & 

 tries 1 & 
anmfreq 1 & 
spfreq 1 & 
mifreq 1 & 
wrfreq 1 & 

 omit_sp A:394 A:394 & 
 omit_sp A:451 A:451 & 
 omit_sp A:456 A:456 & 
  omit_sp A:453 A:453 & 
 omit_sp A:461 A:461 & 

side & 
randomize no & 
verbose no & 
failsafe no & 

sideend & 
path traj_24dabsa_ & 
mirad 20  & 
sprad 10  & 
min & 

rmsg 0.02 & 
nbup yes & 
gbup yes & 
alphaup yes & 

minimend & 
caconst 0.05 & 
lcom_con 0.1 & 
rem_bulk_mov 3 & 
anm_eig_freq 100000 & 
anm_altm_freq 1 & 
anm_altm_type 3 & 
lanmanm neig 6 & 

 lanmanm ualig YES & 
lanmanm move_ca 0.2 & 
lanmanm mix_modes 0.75 & 
lanmmin & 

mxitn 100 & 
iter 1 & 
rmsg 0.02 & 
nbup yes & 
alphaup no & 

minimend 
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Appendix 2 - PELE design input file 
 

This is the PELE design input file used to produce part of the work of chapter 6. PELE                  

can be used for free at ​https://pele.bsc.es/pele.wt​. 

 
## POXA1b-2,4-dabsa design 
 
file datadir /home/bsc72/bsc72328/plop/data 
file log dyn.log 
energy params solvent vdgbnp 
energy params ionic 0.15 
load pdb candidate_refined.pdb waters no ions no het yes  
 
constraint atom A:597:CU__ current 200 0.0 & 
atom A:451:_SG_ current 200 0.0 & 
atom A:451:_CB_ current 100 0.0 & 
atom A:456:_ND1 current 200 0.0 & 
atom A:456:_CB_ current 100 0.0 & 
atom A:456:_CG_ current 100 0.0 & 
atom A:394:_ND1 current 200 0.0 & 
atom A:394:_CB_ current 100 0.0 & 
atom A:394:_CG_ current 100 0.0 & 
atom A:453:_CD1 current 100 0.0 & 
atom A:453:_CG1 current 100 0.0 & 
atom A:461:_CE1 current 100 0.0 & 
atom A:461:_CD1 current 100 0.0 & 
atom A:461:_CG_ current 100 0.0 & 
atom A:598:CU__ current 200 0.0 & 
atom A:599:CU__ current 200 0.0 & 
atom A:600:CU__ current 200 0.0 & 
atom A:399:_NE2 current 100 0.0 & 
atom A:111:_NE2 current 100 0.0 & 
atom A:450:_NE2 current 100 0.0 & 
atom A:452:_NE2 current 100 0.0 & 
atom A:109:_NE2 current 100 0.0 & 
atom A:66:_ND1 current 100 0.0 & 
atom A:397:_NE2 current 100 0.0 & 
atom A:64:_NE2 current 100 0.0 & 
 
pele & 
 het L:1 & 

pdbmodel yes & 
top_side 10 & 
init_min no & 
task & 

 show bind_ene 1 & 
 show SASA 1 & 
 spawn atom 1 A:597:CU__ within 15.0 & 

exit steps gt 2000 & 
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end_task & 
 rot_r 0.1 & 
  tra_r 0.05 & 

temp 1000 & 
 tries 1 & 

anmfreq 1 & 
spfreq 1 & 
mifreq 1 & 
wrfreq 1 & 

 omit_sp A:394 A:394 & 
 omit_sp A:451 A:451 & 
 omit_sp A:456 A:456 & 
 omit_sp A:453 A:453 & 
 omit_sp A:461 A:461 & 

side & 
randomize no & 
verbose no & 
failsafe no & 

sideend & 
path traj_24dabsa_ & 
mirad 20  & 
sprad 10  & 
min & 

rmsg 0.02 & 
nbup yes & 
gbup yes & 
alphaup yes & 

minimend & 
caconst 0.05 & 
lcom_con 0.1 & 
rem_bulk_mov 3 & 
anm_eig_freq 100000 & 
anm_altm_freq 1 & 
anm_altm_type 3 & 
lanmanm neig 6 & 

 lanmanm ualig YES & 
lanmanm move_ca 0.5 & 
lanmanm mix_modes 0.75 & 
lanmanm omit_sp A:597 A:600 & 

 lanmmin & 
mxitn 100 & 
iter 1 & 
rmsg 0.02 & 
nbup yes & 
alphaup no & 

minimend 
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Appendix 3 - PELE protein-ligand local refinement input file 
 

This is the PELE protein-ligand local refinement input file used to produce part of the               

work of chapter 7. PELE can be used for free at ​https://pele.bsc.es/pele.wt​. 

 
## LAC3+RU local refinement 
 
file datadir /home/bsc72/bsc72328/plop/data 
file log Kdyn.log 
energy params solvent vdgbnp 
energy params ionic 0.1 
load pdb final.pdb ions no waters no het yes 
load native final.pdb 
 
constraint atom A:502:CU__ current 200 0.0 & 
atom A:503:CU__ current 200 0.0 & 
atom A:504:CU__ current 200 0.0 & 
atom A:505:CU__ current 200 0.0 & 
atom A:453:_SG_ current 200 0.0 & 
atom A:453:_CB_ current 200 0.0 & 
atom A:458:_ND1 current 200 0.0 & 
atom A:458:_CE1 current 200 0.0 & 
atom A:458:_CG_ current 200 0.0 & 
atom A:397:_ND1 current 200 0.0 & 
atom A:397:_CE1 current 200 0.0 & 
atom A:397:_CG_ current 200 0.0 & 
atom A:455:_CD1 current 200 0.0 & 
atom A:455:_CG1 current 200 0.0 & 
atom A:455:_CB_ current 200 0.0 & 
atom A:463:_CD2 current 200 0.0 & 
atom A:463:_CE2 current 200 0.0 & 
atom A:463:_CG_ current 200 0.0 & 
atom A:66:_ND1 current 200 0.0 & 
atom A:66:_CE1 current 200 0.0 & 
atom A:66:_CG_ current 200 0.0 & 
atom A:64:_NE2 current 200 0.0 & 
atom A:64:_CE1 current 200 0.0 & 
atom A:64:_CD2 current 200 0.0 & 
atom A:109:_NE2 current 200 0.0 & 
atom A:109:_CE1 current 200 0.0 & 
atom A:109:_CD2 current 200 0.0 & 
atom A:111:_NE2 current 200 0.0 & 
atom A:111:_CE1 current 200 0.0 & 
atom A:111:_CD2 current 200 0.0 & 
atom A:400:_NE2 current 200 0.0 & 
atom A:400:_CE1 current 200 0.0 & 
atom A:400:_CD2 current 200 0.0 & 
atom A:402:_NE2 current 200 0.0 & 
atom A:402:_CE1 current 200 0.0 & 
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atom A:402:_CD2 current 200 0.0 & 
atom A:452:_NE2 current 200 0.0 & 
atom A:452:_CE1 current 200 0.0 & 
atom A:452:_CD2 current 200 0.0 & 
atom A:454:_NE2 current 200 0.0 & 
atom A:454:_CE1 current 200 0.0 & 
atom A:454:_CD2 current 200 0.0 & 
 
pele & 

het L:999 & 
pdbmodel yes & 
init_min no & 
steric_tr 500 & 
steered 1 & 
waitfor 2 & 
task & 

show bind_ene 1 & 
 show adist A:502:CU__ L:999:RU1_ & 
 show adist A:503:CU__ L:999:RU1_ & 
 show adist A:504:CU__ L:999:RU1_ & 
 show adist A:505:CU__ L:999:RU1_ & 
 show SASA 1 & 

show rmsd_sys calpha & 
show rmsd_lig 1 heavy 0 & 
spawn rmsd_lig 1 heavy 0 within 10 & 
if random 1 gt 0.5 then tra_r 0.4  else tra_r 0.2  endif & 
if random 2 gt 0.5 then rot_r 0.25  else rot_r 0.05 endif & 
exit steps gt 200 & 

end_task & 
tries 40 & 
temp 2000 & 
anmfreq 1 & 
spfreq 1 & 
mifreq 1 & 
wrfreq 1 & 
sprad 5.0 & 
lcom_con 0.1 & 
side & 

randomize no & 
iter 1 & 
verbose no & 
failsafe no & 

sideend & 
path traj_ & 
min & 

rmsg 0.04 & 
nbup yes & 
gbup yes & 
alphaup yes & 

minimend & 
mirad 10 & 
caconst 0.5 & 
rem_bulk_mov 3 & 
anm_eig_freq 100000 & 
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anm_altm_freq 3 & 
anm_altm_type 3 & 
lanmanm move_ca 0.5 & 
lanmanm mix_modes 0.75 & 
lanmmin & 

mxitn 100 & 
iter 1 & 
rmsg 0.04 & 
nbup yes & 
alphaup no & 

minimend 
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Appendix 4 - PELE design input file (no ligand) 
 

This is the PELE design input file used to produce part of the work of chapter 7. PELE                  

can be used for free at ​https://pele.bsc.es/pele.wt​. 

 
## LAC3+RU local refinement 
 
file datadir /home/bsc72/bsc72328/plop/data 
file log Kdyn.log 
energy params solvent vdgbnp 
energy params ionic 0.1 
load pdb final.pdb ions no waters no het yes 
 
constraint atom A:502:CU__ current 200 0.0 & 
atom A:503:CU__ current 200 0.0 & 
atom A:504:CU__ current 200 0.0 & 
atom A:505:CU__ current 200 0.0 & 
atom A:453:_SG_ current 200 0.0 & 
atom A:453:_CB_ current 200 0.0 & 
atom A:458:_ND1 current 200 0.0 & 
atom A:458:_CE1 current 200 0.0 & 
atom A:458:_CG_ current 200 0.0 & 
atom A:397:_ND1 current 200 0.0 & 
atom A:397:_CE1 current 200 0.0 & 
atom A:397:_CG_ current 200 0.0 & 
atom A:455:_CD1 current 200 0.0 & 
atom A:455:_CG1 current 200 0.0 & 
atom A:455:_CB_ current 200 0.0 & 
atom A:463:_CD2 current 200 0.0 & 
atom A:463:_CE2 current 200 0.0 & 
atom A:463:_CG_ current 200 0.0 & 
atom A:66:_ND1 current 200 0.0 & 
atom A:66:_CE1 current 200 0.0 & 
atom A:66:_CG_ current 200 0.0 & 
atom A:64:_NE2 current 200 0.0 & 
atom A:64:_CE1 current 200 0.0 & 
atom A:64:_CD2 current 200 0.0 & 
atom A:109:_NE2 current 200 0.0 & 
atom A:109:_CE1 current 200 0.0 & 
atom A:109:_CD2 current 200 0.0 & 
atom A:111:_NE2 current 200 0.0 & 
atom A:111:_CE1 current 200 0.0 & 
atom A:111:_CD2 current 200 0.0 & 
atom A:400:_NE2 current 200 0.0 & 
atom A:400:_CE1 current 200 0.0 & 
atom A:400:_CD2 current 200 0.0 & 
atom A:402:_NE2 current 200 0.0 & 
atom A:402:_CE1 current 200 0.0 & 
atom A:402:_CD2 current 200 0.0 & 

179 

https://pele.bsc.es/pele.wt


 

atom A:452:_NE2 current 200 0.0 & 
atom A:452:_CE1 current 200 0.0 & 
atom A:452:_CD2 current 200 0.0 & 
atom A:454:_NE2 current 200 0.0 & 
atom A:454:_CE1 current 200 0.0 & 
atom A:454:_CD2 current 200 0.0 & 
 
pele & 

top_side 25 & 
pdbmodel yes & 
init_min no & 
task & 

exit steps gt 200 & 
end_task & 
temp 2000 & 
anmfreq 1 & 
spfreq 1 & 
mifreq 1 & 
wrfreq 1 & 
side & 

randomize no & 
iter 1 & 
verbose no & 
failsafe no & 

sideend & 
path traj_ & 
min & 

rmsg 0.04 & 
nbup yes & 
gbup yes & 
alphaup yes & 

minimend & 
caconst 0.5 & 
rem_bulk_mov 3 & 
anm_eig_freq 100000 & 
anm_altm_freq 3 & 
anm_altm_type 3 & 
lanmanm move_ca 0.75 & 
lanmanm mix_modes 0.75 & 
lanmmin & 

mxitn 100 & 
iter 1 & 
rmsg 0.04 & 
nbup yes & 
alphaup no & 

minimend 
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Appendix 5 - PELE protein sampling input file 
 

This is an example of PELE protein sampling input file used to produce part of the work                 

of chapter 8. PELE can be used for free at ​https://pele.bsc.es/pele.wt​. 

 
## unligated beta chain 
 
file datadir /home/Life/victorg/plop/data 
file log dyn_beta.log 
energy params solvent vdgbnp 
energy params ionic 0.3 
load pdb beta_fixed.pdb waters no exp no seqres no het yes & 
 
constraint atom D:147:FE__ atom D:92:_NE2 200 2.28 & 
atom B:147:FE__ atom B:92:_NE2 200 2.12 & 
atom C:142:FE__ atom C:87:_NE2 200 2.12 & 
atom A:142:FE__ atom A:87:_NE2 200 2.12 & 
atom B:147:FE__ atom B:148:_O1_ 200 1.76 & 
atom C:142:FE__ atom C:143:_O1_ 200 1.76 & 
atom A:142:FE__ atom A:143:_O1_ 200 1.76 & 
 
pele & 
 het D:142 & 

pdbmodel yes & 
top_side 25 & 
init_min no & 
task & 

exit steps gt 200 & 
end_task & 
anmfreq 1 & 

 tra_r 0.0 & 
 rot_r 0.0 & 

temp 1000 & 
ldfreq 10000 & 
spfreq 1 & 
mifreq 1 & 
wrfreq 1 & 
side & 

randomize no & 
verbose no & 
failsafe no & 

sideend & 
path traj_beta_ & 
mirad 25  & 
min & 

rmsg 0.02 & 
nbup yes & 
gbup yes & 
alphaup yes & 
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minimend & 
caconst 10.0 & 
rem_bulk_mov 3 & 
anm_eig_freq 100000 & 
anm_altm_freq 3 & 
anm_altm_type 3 & 
lanmanm neig 6 & 

 lanmanm ualig YES & 
 lanmanm omit_no C:1 C:141 & 
 lanmanm omit_no C:142 C:143 & 
 lanmanm omit_no B:1 B:146 & 
 lanmanm omit_no B:147 B:148 & 
 lanmanm omit_no A:1 A:141 & 
 lanmanm omit_no A:142 A:143 & 

lanmanm move_ca 1.0 & 
lanmanm mix_modes 0.5 & 
lanmmin & 

mxitn 100 & 
iter 1 & 
rmsg 0.02 & 
nbup yes & 
alphaup no & 

minimend 
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Appendix 6 - POXA1b variants with improved PELE binding 

energy in each ​in silico​  evolution round 
 

Table A6.1.​ Variants from round 1 showing improved descriptor values. 

Protein variant Binding energy (kcal/mol) SASA 

Wild type -8 0.19 

A336R -22 0.10 

A336Q -13 0.17 

A336K -15 0.14 

G161R -16 0.12 

G161Q -20 0.11 

G161K -16 0.11 

G161M -15 0.09 

G161S -19 0.13 

G161Y -14 0.10 

G392R -18 0.10 

G392F -14 0.04 

G392W -15 0.02 

G392Y -13 0.04 

L511R -18 0.13 

L511N -18 0.18 

L511Q -17 0.17 

L511H -14 0.16 

L511K -14 0.15 

L511T -17 0.17 
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F331R -16 0.12 

F331Q -15 0.17 

F331K -15 0.17 

F331Y -19 0.15 

P163R -17 0.18 

P163N -20 0.19 

P163Q -16 0.14 

P163K -14 0.13 

V162N -20 0.10 

V162C -18 0.09 

V162H -20 0.09 

V162S -16 0.17 

V162T -18 0.21 
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Table A6.2.​ Variants from round 2 of the H162 branch showing improved descriptor values. 

Protein variant Binding energy (kcal/mol) SASA 

V162H_A336N -28 0.09 

V162H_A336K -26 0.10 

V162H_L511R -28 0.08 

V162H_L511Q -27 0.10 

V162H_F331Y -29 0.09 
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Table A6.3.​ Variants from round 2 of the S162 branch showing improved descriptor values. 

Protein variant Binding energy (kcal/mol) SASA 

V162S_A336R -22 0.16 

V162S_A336Q -21 0.16 

V162S_A336K -22 0.17 

V162S_G161R -22 0.10 

V162S_G392R -22 0.05 

V162S_G392Q -22 0.12 

V162S_G392F -23 0.03 

V162S_G392W -23 0.03 

V162S_G392Y -23 0.03 

V162S_L511R -25 0.14 

V162S_L511N -25 0.20 

V162S_L511Q -24 0.17 

V162S_L511T -24 0.18 

V162S_F331R -23 0.13 

V162S_F331K -23 0.16 

V162S_F331Y -26 0.14 

V162S_P163R -24 0.14 

V162S_P163N -28 0.18 

V162S_P163K -23 0.14 

V162S_P163M -21 0.17 
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Table A6.4.​ Variants from round 3 of the H162 branch showing improved descriptor values. 

Protein variant Binding energy (kcal/mol) SASA 

V162H_F331Y_A336R -36 0.08 

V162H_F331Y_A336N -35 0.07 

V162H_F331Y_G392R -35 0.10 

V162H_F331Y_L511R -35 0.08 

V162H_F331Y_L511N -36 0.10 

V162H_F331Y_P163K -35 0.03 

V162H_F331Y_P510R -35 0.08 
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Table A6.5.​ Variants from round 3 of the S162 branch showing improved descriptor values. 

Protein variant Binding energy (kcal/mol) SASA 

V162S_F331Y_A336N -31 0.15 

V162S_F331Y_G161K -34 0.15 

V162S_F331Y_P163R -33 0.10 

V162S_F331Y_P163N -35 0.13 

V162S_F331Y_P163Q -32 0.13 

V162S_F331Y_P163H -32 0.10 

V162S_F331Y_P163K -33 0.09 
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Appendix 7 - RMSD plots of molecular dynamics simulations from          

Chapter 7 

Figure A7.1. Protein backbone RMSD profile of UNIK161-Ru MD run​. Figure prepared with ​Desmond ​(Bowers et al.,                 

2006)​. 
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Figure A7.2. RMSD profile of the heavy atom belonging to the Ru-containing “amino acid” from UNIK161-Ru MD run​.                  

Figure prepared with ​Desmond ​(Bowers et al., 2006)​. 
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Figure A7.3. Protein backbone RMSD profile of UNIK157-Ru MD run​. Figure prepared with ​Desmond ​(Bowers et al.,                 

2006)​. 
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Figure A7.4. RMSD profile of the heavy atom belonging to the Ru-containing “amino acid” from UNIK157-Ru MD run​.                  

Figure prepared with ​Desmond ​(Bowers et al., 2006)​. 
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