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Abstract

We are living in a data deluge era where the dimensionality of the data gathered by
inexpensive sensors is growing at a fast pace, whereas the availability of independent re-
alizations of this observed data is rather limited. Therefore, classical statistical inference
methods relying on the assumption that the sample size is large, compared to the obser-
vation dimension, are su¤ering a severe performance degradation.
Within this general framework, this thesis focus on a problem that appears in a vast

number of signal processing applications. That is the estimation of an unknown parameter,
observed through a linear model. The inference of this parameter is commonly based on
a linear transformation of the available data, i.e. on a linear �ltering. For instance, the
aim of beamforming in array signal processing is to steer the beampattern of the antenna
array towards a given direction to obtain the signal associated to a desired source. This
is accomplished by means of a linear spatial �ltering. The design of the linear �lters is
based on the optimization of a measure of performance. In signal processing and in gen-
eral in statistical inference the Mean Square Error (MSE) and the Signal to Interference
plus Noise Ratio (SINR) are widely accepted as possible performance measures. Thus,
the optimal estimators are obtained by means of the optimization of these metrics and
constrained to the available statistical information about the parameter of interest. This
leads to obtain two notable estimators that will serve as a reference throughout this thesis.
On the one hand, when there is information about the �rst two moments of the parameter
of interest, the optimization of the MSE leads to obtain the Linear Minimum Mean Square
Error (LMMSE). On the other hand, when such statistical information is not available
one may force a no distortion constraint towards the signal of interest in the optimization
of the MSE, which is equivalent to maximize the SINR. This leads to obtain the Capon
or Minimum Variance Distortionless Response (MVDR) method. This is the Best Linear
Unbiased Estimator (BLUE) indeed.
Altough the LMMSE and MVDR are the optimal methods, they are not realizable

in general since they depend on the inverse of the correlation of the observations, which
is not known. The common approach to circumvent this problem is to substitute it for
the inverse of the sample correlation matrix (SCM), leading to the sample LMMSE and
sample MVDR. This approach is optimal whenever the number of available realizations of
the observed signal tends to in�nity for a �xed observation dimension or at least when the
number of samples is much greater than the observation dimension. Nonetheless, in a prac-
tical setting this large sample size regime scenario hardly holds and the sample methods
undergo large performance degradation as the sample covariance is not a well conditioned
estimator in the small sample size regime. The small sample size regime may be due to
short stationarity constraints or due to a system with a high observation dimension. These
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situations have appeared traditionally in applications such as radar or adaptive beamform-
ing, e.g. in radioastronomy or over-the-horizon-radar there are large arrays with hundreds
or thousands of sensors. Another example is environmental monitoring in wireless sensor
networks. In this case there may be a large number of nodes measuring a physical parame-
ter, though the number of available measures for inference purposes may be rather limited
as they are battery powered in general. That is, as it was mentioned above, we are living
in a data deluge era where a variety of sensors are generating high dimensionality data,
though the number of independent realizations of these random processes is rather limited.
Therefore, the aim of this thesis is to propose corrections of sample estimators, such

as the sample LMMSE and MVDR, that allow to circumvent their performance degra-
dation in the small sample size regime. To this end, we are equipped with two powerful
tools, shrinkage estimation and random matrix theory (RMT). On the one hand, shrinkage
estimation introduces a structure on the estimators that permits to take pro�t of the opti-
mality of the sample methods in the large sample size regime and force some corrections in
small sample size situations. In fact, historically since the time of Stein, shrinkage methods
have shown to be a mean to improve sample based estimators by optimizing a bias variance
tradeo¤. On the other hand, as direct optimization of these shrinkage methods leads to
unrealizable estimators then we propose to obtain a consistent estimate of these optimal
shrinkage estimators within the general asymptotics regime where both the observation
dimension and the sample size grow without bound, but at a �xed rate. That is, RMT is
used to obtain consistent estimates within an asymptotic regime that deals naturally with
small sample size situations. Moreover, another advantage is that this approach based on
shrinkage estimation and RMT does not rely on any assumptions about the distribution
of the observations.
The proposed shrinkage �lters deal directly with the estimation of the signal of interest

(SOI), which leads to performance gains compared to some related work methods based
on either optimizing a metric related to the data covariance estimate or proposing rather
ad-hoc regularizations of the sample covariance. Moreover, the next bene�ts are observed,
compared to state-of-the-art methods which also treat directly the estimation of the SOI
and which are based on a shrinkage of the sample covariance or diagonal loading. The
proposed shrinkage �lter structure is more general as it contemplates corrections of the in-
verse of the sample covariance and considers the related work methods as particular cases.
This leads to performance gains which are notable when there is a mismatch in the signa-
ture vector related to the SOI. This mismatch and the �nite sample size are indeed two
important sources of degradation of the sample LMMSE and MVDR methods. Thereby,
in the last part of this thesis, unlike the previous proposed �lters and the related work, we
propose a shrinkage �lter which treats directly both sources of degradation.
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Resumen

Estamos viviendo en una era en la que la dimensión de los datos, recogidos por sensores
de bajo precio, está creciendo a un ritmo elevado. Sin embargo, la disponibilidad de ob-
servaciones estadísticamente independientes de estos datos es relativamente limitada. Por
lo tanto, los métodos clásicos de inferencia estadística sufren una degradación importante
en sus prestaciones, ya que asumen que el tamaño muestral es grande en comparación con
la dimensión de los datos.

En este marco general, esta tesis se centra en un problema que aparece en un gran
número de aplicaciones en el procesado estadísitco de señales. Éste es la estimación de un
parámetro, observado a través de un modelo lineal. La inferencia de este parámetro se basa
normalmente en una transformación lineal de los datos, es decir en un �ltrado lineal. Por
ejemplo, el objetivo de la conformación de haz en procesado de agrupaciones de antenas es
enfocar el haz de la agrupación hacia una dirección para obtener la señal asociada a una
fuente de interés. Esto se consigue mediante un �ltrado espacial. El diseño de dichos �ltros
lineales se basa en la optimización de una medida de prestación. En procesado de señal y en
general en inferencia estadística el error cuadrático medio (MSE) y la relación señal a ruido
más interferente (SINR) son medidas de pretaciones ampliamente aceptadas. Esto lleva a
dos estimadores notables que servirán como referencia durante toda la tesis. Por una parte,
cuando hay información sobre los momentos de segundo orden del parámetro a estimar, la
optimización del MSE lleva a obtener el estimador lineal de mínimo error cuadrático medio
(LMMSE). Por otra parte, cuando esa información estadística no está disponible, se puede
forzar la restricción de no distorsión de la señal de interés en la optimización del MSE, lo
que es equivalente a maximizar la SINR. Esto conduce a obtener el estimador de Capon
(MVDR).

Aunque el LMMSE y el MVDR son los métodos óptimos no son realizables, ya que
dependen de la inversa de la matriz de correlación de los datos, que no es conocida. El
procedimiento habitual para solventar este problema es sustituirla por la inversa de la cor-
relación muestral (SCM), esto lleva al LMMSE y al MVDR muestral. Este procedimiento
es óptimo cuando el tamaño muestral tiende a in�nito o es muy grande en comparación
con la dimensión de los datos. Sin embargo, en la práctica este tamaño muestral elevado
no suele producirse y los métodos LMMSE y MVDR muestrales sufren una degradación
importante ya que la covarianza muestral no está bien condicionada en este régimen de
tamaño muestral pequeño. Este escenario se puede deber a periodos cortos de estacionar-
iedad estadística o a sistemas cuya dimensión sea elevada. Estas situaciones han aparecido
tradicionalmente en aplicaciones como radar o conformación de haz adaptativo, por ejem-
plo en radioastronomía o �over-the-horizon-radar�hay agrupaciones de antenas con cientos

iii



o miles de elementos. Otro ejemplo es en redes de sensores inalámbricas, donde un gran
número de nodos pueden tomar medidas de un parámetro físico a estimar, aunque el tamaño
muestral para la inferencia es limitado, debido a las restricciones de batería de los nodos.
Es decir, vivimos en la era de la inundación de los datos, donde sensores generan datos de
dimensión elevada, pero el tamaño muestral para el análisis de los datos es limitado.

Por lo tanto, el objetivo de esta tesis es proponer correcciones de los estimadores
muestrales de los métodos LMMSE y MVDR que permitan combatir la degradación en
el régimen de tamaño muestral pequeño. Para conseguir este objetivo se utilizan dos her-
ramientas potentes como son la teoría de las matrices aletorias (RMT) y la estimación
shrinkage. Por una parte, la estimación shrinkage introduce una estructura de los esti-
madores que permite forzar ciertas correcciones cuando el tamaño muestral es pequeño.
De hecho históricamente, promovidos por Stein, los métodos shrinkage han demostrado
mejorar los estimadores muestrales mediante la optimización del compromiso entre media
y varianza del estimador. Por otra parte, la optimización directa de los métodos shrinkage
lleva a métodos no realizables. Por eso, luego se propone obtener una estimación con-
sistente de ellos en el régimen asintótico en el que tanto la dimensión de los datos como
el tamaño muestral tienden a in�nito, pero manteniendo un ratio constante. Es decir
RMT se usa para obtener estimaciones consistentes en un régimen asintótico que trata
naturalmente las situaciones de tamaño muestral pequeño. Además otra ventaja de esta
metodología basada en RMT y estimación shrinkage es que no asume ninguna distribución
de probabilidad concreta sobre las observaciones.

Los �ltros shrinkage que se proponen tratan directamente la estimación del parámetro
de interés. Esto lleva a ganancias de prestaciones en comparación con otros métodos
basados en optimizar una métrica relacionada con la estimación de la covarianza de los
datos. También lleva a mejoras en comparación a métodos que proponen regularizaciones
ad hoc de la SCM. Además las siguientes ventajas se observan en comparación con metódos
que también tratan directamente la estimación del parámetro de interés y que se basan en
una regularización de tipo shrinkage de la SCM. La estructura de �ltro shrinkage propuesta
es más general ya que contempla correcciones de la inversa de la covarianza muestral y
contempla los métodos del estado del arte como casos particulares. Esto lleva a ganancias
en las prestaciones que son notables cuando hay una incertidumbre en el signature vector
que se presume asociado a la señal de interés. Esta incertidumbre en el signature vector
y el tamaño muestral pequeño son de hecho las dos degradaciones más importantes del
LMMSE y MVDR muestrales. Así, en la última parte de la tesis se propone un �ltro
shrinkage que trata esas dos degradaciones de forma directa, a diferencia de los �ltros
propuestos con anterioridad en la tesis y a diferencia de los métodos del estado del arte
mencionados anteriormente.
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Notation
In general, uppercase boldface letters, e.g. A, denote matrices, lowercase boldface letters,
e.g. a, denote column vectors and italics, e.g. a, denote scalars and generic random vari-
ables.

AT ;A�;AH Transpose, complex conjugate and complex conjugate transpose
of a matrix A; respectively.

A�1 Inverse of A.

A1=2 Positive de�nite Hermitian square-root of A, i.e. A1=2A1=2 = A.

Tr [A] Trace of a matrix A.

kAkF Frobenius norm of a matrix A, kAkF =
�
Tr
�
AHA

��1=2
.

kak, kak2 Euclidean norm of a vector a, kak , kak2 =
�
aHa

�1=2
:

[a]i ; ai i-th entry of a vector a:

[A]i;j
i; j-th entry of a matrix A, corresponding to the i-th row
and the j-th column.

[A]i;: i-th row of a matrix A:

[A]:;j j-th column of a matrix A:

R;C;C+ Denote, respectively, the set of real numbers, complex numbers
and fz 2 C : Im [z] > 0g .

RM ;CM The set of M -dimensional vectors with entries in R and
C, respectively.

RM�N ;CM�N The set of M �N matrices with real and complex valued entries,
respectively.
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IM The M �M identity matrix.

E [A] Expectation of a random matrix A.

j Imaginary unit, j =
p
�1:

# f�g Cardinality of a set.

a / b a is proportional to b, i.e. a =�b being � a given scalar.

! Convergence.

iid A set of random variables are independent and identically distributed.

N (�;�) Multivariate gaussian distribution with mean � and covariance �.

CN (�;�) Multivariate complex gaussian distribution with mean � and
covariance �.

jaj Modulus of a complex number a:

I	(!)
Indicator function. Suppose that 
 is a set with typical element !
and let 	 be a subset of 
. Then the indicator function of 	,
denoted by I	(!), is de�ned as 1 if ! 2 	 and 0 otherwise.

CWM(N;�)
Complex Wishart distribution with N degrees of freedom
and scale parameter � 2CM�M .

CW�1
M (N;�)

Inverse complex Wishart distribution with N degrees of freedom
and scale parameter � 2CM�M .

a � b a and b are asymptotically equivalent, i.e. ja� bj ! 0, where
the convergence is almost surely unless otherwise stated.

Refag and Imfag Denote the real and imaginary part of the complex number a,
respectively.
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BLUE Best Linear Unbiased Estimator

DL Diagonal Loading

DOA Direction of Arrival

ESD Empirical Spectral Distribution

GLRT Generalized Likelihood Ratio Test

GSA General Statistical Analysis

LMMSE Linear Minimum Mean Square Error

LS Least Squares

LSD Limiting Spectral Distribution

LW Ledoit and Wolf

MIMO Multiple Input Multiple Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MSE Mean Square Error

MUSIC MUltiple SIgnal Classi�cation

MVDR Minimum Variance Distortionless Response

RMT Random Matrix Theory

SCM Sample Correlation Matrix

SIR Signal to Interference Ratio

SMI Sample Matrix Inversion
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SOI Signal Of Interest

ULA Uniform Linear Array

WSN Wireless Sensor Network
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Chapter 1

Introduction: Research motivation,
State of the Art and Objectives

1.1 Introduction

1.1.1 Research motivation and introduction to the problem

As Donoho said in [1], this is the century of data. That is, we are gathering and processing
more data every day. From a signal processing point of view, one of the consequences
of this paradigm is the trend of analyzing high dimensional signals for di¤erent inference
purposes. As an illustration of this framework consider the next examples. The �rst one
is the data collected in the context of large sensor networks. These data are employed
for large dimensional covariance estimation in [2] or for failure and anomaly detection
of the sensor nodes in [3]. Another interesting example may be found in future wireless
communications systems, where large arrays of antennas are considered as a means of
potentially increasing, by orders of magnitude, the spectral and energy e¢ ciency of current
wireless cellular systems using relatively simple linear processing, see e.g. [4] or [5]. Other
examples of inference problems involving high dimensional signals are covariance matrix
estimation from genomic data in bionformatics [6] or classi�cation of hyperspectral images
in remote sensing [7]. Moreover, the number of available statistical samples to analyze
high dimensional signals is in general rather limited [8], this is the case of most of the
examples introduced above. This is a framework that in adaptive beamforming, in the
context of array signal processing, is well known and it is due to either arrays of large
antennas or to short stationarity properties of the underlying signal [9], [10]. In other
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words, the dimension of an antenna array may be comparable to the number of available
snapshots or even larger, e.g. in radioastronomy there may be large arrays with hundreds of
elements. Another example, in the context of cognitive wireless networks is [11], where the
authors consider that the number of available samples may be comparable to the number
of receiving antennas when estimating the energy of multiple sources. One of the reasons
is that the processing of dynamic information in secondary networks must be as fast as
possible to avoid disruption in the primary networks. This statistical framework where the
sample size is comparable to the observation dimension provokes that classical estimation
methods relying on sample moments, such as the sample covariance matrix (SCM), undergo
a severe performance degradation and that new methodologies be envisaged, see e.g. [9]
or [12]. In fact, even for a moderate dimension of the observed signal, if the sample size
is comparable to it then the sample methods su¤er a performance degradation. Within
this framework, the aim of this thesis is to design estimation methods that counteract the
degradation of methods relying on the SCM.

More speci�cally, herein the problem of linear estimation of an unknown parameter
observed through a linear model is considered, see section 1.2 for more details. This problem
is ubiquitous in signal processing [13], e.g. beamforming in array signal processing [14]. In
this case, given a set of observations at the output of the antenna array, one may seek to
estimate the signal associated to a given direction of arrival by means of a spatial �lter [15].
In order to design the estimator the aim is to optimize a measure of performance. In this
regard, among the statistical signal processing community, the mean square error (MSE) is
a widely accepted metric to measure the quality of an estimator, see e.g. [13]. Besides the
MSE, another popular metric, which is widely used in the communications literature, is the
Signal to Interference plus Noise Ratio (SINR), see e.g. [16]. In fact, when the parameters
of the model are perfectly known, the estimator obtained from optimizing the MSE leads
to maximize the SINR as well, though the converse is not true, see e.g. [17]. Nonetheless
under parameter model uncertainty the optimization of the SINR and the MSE cannot
be simultaneously attained see [18]. A myriad of estimators have been designed in the
literature with the common aim of obtaining a good MSE performance, see [13], [19] and
references therein. In this regard, assume that the �rst two moments of the parameter to
estimate are available. Then, among the linear estimators, the one achieving the lowest
MSE is the so-called Linear Minimum Mean Squared Error (LMMSE) estimator, see e.g.
[13]. This is indeed the minimum mean square error (MMSE) estimator when the joint
distribution between the parameter to estimate and the observations is gaussian. When
there is not a priori information about the �rst two moments of the parameter to estimate,
one can resort to the MVDR or Capon method [20] [14], which imposes a constraint that
removes the dependence on the unknown second moment of the parameter of interest. This
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constraint is interpreted as a distortionless constraint in the direction of interest in array
processing, and as an unbiasedness constraint when the parameter of interest is modeled as
deterministic [17]. Thereby, assuming the unbiasedness constraint, the MVDR optimizes
the variance of the estimation and corresponds to the well known Best Linear Unbiassed
Estimator (BLUE) in the statistical literature [13]. Nonetheless, the price to pay for the
lack of knowledge about the a priori information of the parameter to estimate, is that the
performance of the MVDR is worse than the one of the LMMSE in terms of MSE. In order
to improve the BLUE, attemps have been made to design methods that are biased but
closer to the MSE than the BLUE. For instance, the Tikhonov regularizer [21] [22], the
shrunken estimator [23], the covariance shaping least-squares estimator [24] and minimax
MSE estimators [25�30].

According to the discussion in the last paragraph, LMMSE and MVDR are the optimal
methods in linear estimation, depending on the available information about the parameter
to be estimated, see section 1.3 for further details. Unfortunately, they are not realizable
in general, as they depend on the correlation of the noise plus interference terms, through
the correlation of the observations, which is not known in most of practical applications.
In order to circumvent this problem, the standard approach is based on a two stage pro-
cedure. First, the correlation of the observations R is estimated by means of the sample
correlation matrix (SCM) R̂. Second, the true unknown correlation of the observations is
substituted for the SCM in the expressions of the LMMSE or the MVDR methods. In the
literature dealing with the MVDR implementation this technique is also known as sample
matrix inversion (SMI) technique [14]. The underlying rationale is based on the optimal
properties of the SCM. Namely, for Gaussian observations it is the maximum likelihood
(ML) estimator of the true correlation matrix, see [31, Theorem 4.1] and as a consequence
the MVUE of R for a su¢ ciently large number of samples N compared to the observation
dimension M .

Nevertheless, as it was mentioned above, in practical scenario conditions the assumption
that the sample size is large compared to the observation dimension, i.e. N � M , does
hardly hold. In factN may be comparable toM or even lower, leading to the so-called small
sample size regime. Unfortunately, when the sample size is comparable to the observation
dimension, the traditional implementation of the optimal estimators based on the SCM
leads to a severe performance degradation, see [9], [10], [14], [32] and references therein. In
fact, they may display worse performance than a matched �lter, also called conventional
beamformer in array processing, which is a naive strategy based on directly replacing the
theoretical covariance matrix by a scaled identity matrix. The reason for this performance
degradation may be explained as follows. The sample LMMSE and MVDR rely on directly
substituting R�1 for the inverse of the SCM in the expressions of the LMMSE and MVDR,
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respectively. Nonetheless, the SCM is not a well conditioned estimator, i.e. in the small
sample size regime inverting the SCM severely ampli�es the estimation error [33]. In
fact, random matrix theory (RMT) characterizes the asymptotic eigenvalue density of
the SCM and its relation to the eigenvalues of the true covariance matrix, see [34], [35]
or [36]. That characterization relies on the asymptotic regime where M;N ! 1 with
M=N ! c 2 (0;1), though it is a good approximation in a �nite regime as well. Namely,
RMT states that when N increases, compared to M , then the eigenvalue density tends
to concentrate around the true eigenvalues in the form of a narrow cluster. In fact, for
N ! 1 and a �nite M , the eigenvalue density tends to the true eigenvalues. However,
when N decreases (compared to M) then the eigenvalue density su¤ers a widening e¤ect.
That is to say, the clusters of eigenvalues tend to widen and if N keeps drecreasing then
a single cluster in the eigenvalue density of the SCM is observed. Therefore, in small
sample size situations, as the sample LMMSE and MVDR methods rely on the SCM, they
are no longer optimal and require a calibration that counteract their severe performance
degradation.

Another important source of degradation of the LMMSE and MVDR methods is an im-
precise knowledge of the vector that performs the linear transformation between the signal
of interest and the observations, that is the steering vector in array signal processing. This
imprecise knowledge can be viewed as a mismatch between the presumed and the actual
steering vector. In practice, in array processing, these mismatches may be due to array
calibration errors, distorted antenna shape, pointing errors towards the signal of interest
or source wavefront distortions among other reasons, see e.g. [37]. The consequence of this
mismatch is that the LMMSE and MVDR methods may interpret the signal of interest as
an interference and may tend to cancel it, which leads to an important degradation.

1.1.2 Related work

Several approaches have been suggested in the literature to deal with the severe perfor-
mance degradation that undergo the methods relying on the SCM, in the small sample size
regime. Most of them seek to obtain an estimation ofR that is better than the SCM or that
regularizes it. Perhaps, one of the �rst was a regularization technique applied in the �eld of
array signal processing. It is called diagonal loading (DL) and consists of adding a positive
real number � to the diagonal entries of the SCM, i.e. �R = R̂+�I, see [9], [10], [38�40] and
references therein. The rationale motivating this method may be analyzed from di¤erent
viewpoints. First, DL is a type of shrinkage estimation, see e.g. [33] or [41], where the
term �I is introducing a bias in the estimation of the covariance. The aim is to reduce
the overall estimation error, compared to the SCM, whose estimation error comes from the
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estimation variance. The family of shrinkage estimators of the covariance will be analyzed
in more detail below. In fact, the term �I permits to invert the estimation of the covari-
ance even whenM > N and it paves the way to obtain a well-conditioned estimator of the
covariance when M and N are comparable. That is, �R can be inverted without severely
amplifying the estimation error, though to achieve this aim � must be carefully selected to
avoid an excessive bias. The other interesting interpretation of DL comes from the �eld of
array signal processing, where this estimator has been thoroughly studied. The pioneering
papers [42�44] focused on the case where the signal of interest is not present in the training
set. They analyzed the SINR of the DL implementation of the MVDR normalized by the
SINR of the theoretical MVDR and they concluded that better performance than the SMI
technique can be achieved. However, due to several approximations done in that analysis,
they could not specify how to compute the optimal loading factor �. When the signal of
interest is present in the training set, other works, e.g. [45], concluded that DL o¤ers better
performance than the SMI technique as well, though still the optimal value of � was not
clear. Thereby, the correct choice of the loading factor has been historically controversial
and usually rather ad hoc methods depending on the practical setting of the application
have been used. For instance, in [14, p. 748] it was proposed � = 10�̂min, where �̂min is
the minimum eigenvalue of the SCM. However, more recently, the work of Mestre et al. [9]
shed light on how to obtain an approximation to the optimal loading factor. Namely,
they considered the Kolmogorov asymptotics where M;N ! 1 at a constant rate, i.e.
M=N ! c 2 (0;1), which considers implicitly the small sample size regime. Thereby,
relying on RMT results, they obtained the asymptotic expression of the SINR for the DL
implementation of the MVDR. This result paved the way to obtain the asymptotically
optimal loading factor as the one which maximizes the asymptotic SINR through a grid
search. Moreover, as that asymptotic loading factor depended on the unknown covariance,
they found a consistent estimation of it relying on RMT and the general asymptotics just
mentioned above. This consistent estimation of the asymptotically optimal loading factor
requires a grid search optimization procedure as well.

In order to complement the discussion about the DL methods, it is worth to mention
some algorithms which appeared within the �eld of robust beamforming in array signal
processing [37, 46, 47]. These methods arise from considering some type of mismatch be-
tween the presumed and the actual steering vector of the signal of interest. To face this
problem they assume that the actual steering vector lies within a region of uncertainty
which is incorporated as a constraint in the optimization problem of the MVDR. The
uncertainty region is modelled in a di¤erent manner in each of those works. In [37] a
spherical uncertainty set is considered for the error vector between the actual and the
presumed steering vector. On the other hand, in [46] and [47] ellipsoidal uncertainty sets
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where considered for the steering vector. Interestingly enough, all these works shown that
they can be interpreted as a DL technique were the loading factor depends clearly on the
parameters that model the uncertainty region, see [37, 46, 47] for further details. That
feature was important, as the pioneering works dealing with DL, see e.g. [48], shown that
adding a quadratic constraint in the MVDR, a.k.a. white noise gain constraint, permits to
deal with both the �nite sample size e¤ect on the SCM and the distortions in the steering
vector of the signal of interest. Nonetheless, the optimal loading factor to deal with those
e¤ects was not clear. Moreover, it is important to stress that as [37, 46, 47] can be inter-
preted as a DL technique, they o¤er some robustness to the �nite sample size e¤ect that
undergoes the SCM. However, unlike in [9], it is not clear that the loading factor selected
by [37,46,47] is the optimal value to combat the �nite sample size e¤ect.

Regarding the last discussion, there are other interesting techniques that deal with
uncertainties in the steering vector. Several works [18,49�51] modelled the steering vector
of the signal of interest as random with some known distribution. For instance, in [18] the
steering vector was assumed to follow a Gaussian distribution, and then they designed the
�lter by maximizing a performance metric (average SINR or MSE). This average SINR or
MSE is obtained after performing the expected value of the SINR or MSE with respect
to the random steering vector. Another interesting class of techniques are eigenspace-
based beamformers, which rely on using the projection of the presumed steering vector
onto the signal-plus-interference subspace [52] [53], instead of just the presumed steering
vector. The main shortcoming of eigenspace beamforming methods is that they perform
poorly when the dimension of the signal plus interference subspace is high and at low
SNR. This is mainly because at low SNR the estimation of the projection matrix onto the
signal plus interference subspace breaks down because of a high probability of subspace
swaps, see [54] and [55]. A di¤erent approach to the previous techniques is based on
steering vector estimation, see e.g. [56] [57]. Namely, the rationale behind these works
follows the next procedure. Estimate the actual steering vector as the one that maximizes
the power at the output of the beamformer subject to the constraint that the estimate
does not converge to any interference steering vector. The techniques [56] [57] require the
a priori knowledge of the angular sector where the signal of interest lies as well as the
array geometry. Moreover, they do not tackle the �nite sample size degradation in the
beamformer performance due to the use of the SCM. In [58], a method based on steering
vector estimation is presented, which deals with the �nite sample size through interference
covariance matrix reconstruction. However, the computational cost is signi�cantly higher
than the worst case optimization techniques explained above [37,46,47].

Let us now continue with the discussion of robust methods to the �nite sample size.
Recently, motivated by the data deluge framework mentioned above, estimation of high
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dimensional covariance matrices under small sample size regime has attracted the research
community. These works may be classi�ed in several categories. The �rst is shrinkage type
estimators of the covariance, whose aim is to reduce the estimation error based on a linear
combination of the SCM with an a priori information or guess of the covariance, denoted
as R0. Where R0 may be obtained from a priori knowledge stemming from the problem
at hand. Namely, the shrinkage estimator, �R, of the covariance of the observations, R,
reads �R =�1R̂+�2R0. Thereby, DL techniques can be regarded as a particular case of
linear shrinkage estimators. The idea of these estimators is to blend the SCM, whose
estimation error mostly comes from an estimation variance, with an estimator displaying
certain amount of bias but zero or very low variance, that is a constant estimator or
other type of a priori information about the parameter to estimate. This yields to a
gain in estimation variance that more than compensates the increase in bias and thus the
overall estimation error is diminished. This was the approach proposed by Ledoit and
Wolf (LW) in [33], where R0 is a scaling of the identity matrix and the shrinkage factors
�1; �2 are obtained as the ones that asymptotically optimize the MSE in the estimation
of R. This result was valid for any distribution of the observed data. Following this
idea, [59] improved LW for Gaussian distributed observations. Namely, they proposed two
strategies. The �rst one, uses the fact that LW is not a su¢ cient statistic for Gaussian data.
Then, according to the Rao-Blackwell theorem, by conditioning LW to a su¢ cient statistic
they can obtain an estimator that outperforms LW. The second one, approximates the
optimal though unrealizable shrinkage estimate of the covariance, i.e. the oracle, by using
an iterative procedure. In [60] the same authors study the shrinkage estimation of high
dimensional covariances for elliptically distributed samples, which include as a particular
case the Gaussian distribution. In the context of radar or space time adaptive processing,
in [41] the authors consider a shrinkage of the SCM with a general a priori covariance R0

obtained from prior knowledge of the terrain probed by the radar. Unlike the previous
references [41] considers complex valued data for their derivations. Also in [6] a shrinkage
of the SCM is considered with a focus on bioinformatics.

A second class of estimators that regularize large covariance matrices are based on in-
corporating a priori knowledge on the structure of the covariance or its inverse in the form
of sparsity. Also, when this a priori information is not available, one may force the sparsity
structure. That is they force some entries of the covariance or its inverse to be zero and as
a consequence reduce the e¤ective number of parameters to be estimated. In other words,
one may take advantage of the structure to perform the estimation in a reduced dimen-
sion. The precursor of this technique was probably Dempster in [61]. Since then, a lot of
research has been devoted to select the sparsity model and to estimate the covariance. In
this regard, operators such as thresholding [62], banding [63] and tapering [64] are worth to

7



be mentioned. Banding sets the entries far away from the main diagonal to zero and keeps
the entries within a band unchanged. Tapering is similar to banding, the only di¤erence
is that the o¤ diagonal elements within the band are gradually shrunken to zero. Thresh-
olding, as the two previous techniques introduces sparsity in the covariance though it does
not require a special structure of the covariance. These kind of estimators are consistent if
certain sparsity holds and the dimensionality grows at a subexponential rate of the sample
size. Nonetheless, if the sparsity assumption does not hold they are suboptimal. Moreover,
tapering and thresholding are minimax estimators of the covariance, see e.g. [64] or [65].
Other techniques that have been applied for both sparse model selection and covariance es-
timation are the penalization techniques that enforce sparsity in gaussian graphical models
(GGM). GGM represent the observed variables as nodes in a graph and their conditional
independence results in a zero in the inverse covariance. Examples of these penalization
techniques in GGM are [66] which uses the lasso technique [67]. Another example is [68],
which considered the Dantzig selector [69] as a penalization method. Finally, it is worth
to be mentioned [70], which uses the graphical lasso method [71]. Assuming that the spar-
sity structure is known, [72] and [2] dealt with the estimation of the covariance in GGM
obtaining the MVUE in the former and a method based on pseudolikelihood estimation in
the latter.

Finally, it is worth mentioning that random matrix theory (RMT) has been used in
several works as a tool for dealing with an estimation problem that is constrained by a
small sample size support. RMT studies, among other aspects, the asymptotic behavior of
spectral functions de�ned from random matrices. That is, the convergence of certain func-
tions depending on the eigenvalues and eigenvectors associated to a given random matrix.
An example is the empirical distribution of the eigenvalues of a random matrix. In fact
the asymptotic regime considered in RMT generalizes classical asymptotics as it considers
the regime where both M;N ! 1 at a constant rate M=N ! c 2 (0;1). Therefore,
RMT deals naturally with the small sample size regime and the high dimensionality of the
observations. What is more, it generalizes classical consistent estimation and paves the
way to obtain consistent estimates within the regime where M;N !1 at a constant rate
M=N ! c 2 (0;1). In the type of linear estimation problems involving the data covari-
ance and characterized by a limited sample size, the aim is to apply certain corrections to
the classical methods which rely directly on the SCM. The design of those corrections leads
usually to functions which depend on the SCM, the unknown covariance and certain design
parameters. In order to obtain a realizable estimator which is asymptotically optimal and
robust to the �nite sample size, a RMT approach can be applied. To this end, the next
procedure is usually followed. First, the asymptotic behavior of the functions involving the
SCM, the unknown covariance and some design parameters, are studied. Under certain
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assumptions this implies the convergence toward deterministic functions depending on the
unknown covariance R, and the design parameters. Then, relying on RMT results, the
�nal estimator is obtained as the one that asymptotically converges to that deterministic
function. Examples which follow this RMT procedure are the papers [33] and [9], men-
tioned above. Namely, [33] builds on RMT to obtain an estimate of the covariance, based
on a shrinkage estimation of the SCM, that is asymptotically optimal in an MSE sense.
On the other hand, recall that the DL method proposed in [9], builds on RMT to obtain
the loading factor which asymptotically maximizes the SINR. There are other methods,
which rely on RMT results, whose aim is to estimate functions involving R, though they
do not follow exactly the procedure described above. Among them, it is worth mentioning
the works in [34] and [73], which study the asymptotic behavior of the classical sample
estimates of eigenvalues of the covariance and the associated eigenvectors. They show that
these classical sample estimates are not consistent within the asymptotic regime where
M;N !1 at a constant rate M=N ! c 2 (0;1) and propose improved estimators which
show to be consistent or asymptotically optimal. In [8] an estimate of covariance matrices
when M > N is proposed. It is based on a dimensionality reduction through an ensemble
of random unitary matrices. Finally, it is worth mentioning that reduced rank techniques
building on RMT have been applied to LMMSE estimation for a limited sample size N per
observation dimension M , see [32], [74] and references therein.

1.2 Signal Model

Next, we present the general model of the observed data that will be considered through-
out all the thesis to design the proposed estimators of the unknown parameter x(n)2 C.
Namely, let x(n) be observed through the stochastic process y(n)2 CM by means of the
next a¢ ne transformation,

y(n) =x(n)s+ n(n); 1 � n � N (1.1)

Where s 2 CM is a deterministic vector with uniformly bounded norm1, n(n)2 CM is a
stochastic process and N is the number of available measurements. For instance, in the
context of array signal processing y(n) is the output of an antenna array, s is the steering
vector, n(n) contains the noise plus interference signals [14] and N is the sample size
or the number of available snapshots. In the sequel x(n) is considered to be a random
process, though for the estimators dealing with the MVDR the results will hold when x(n)

1In chapters 3 and 4 s is assumed to be precisely known. In chapter 5 an uncertainty in s is considered,
i.e. the actual signature vector ~s di¤ers from s.
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is modeled as a deterministic parameter. The next model assumptions are supposed to
hold for any of the designed estimators throughout all this thesis,

(a) x(n) and n(n) are independent. Moreover, E [n(n)] = 0, E
�
n(n)n(n)H

�
= Rn. Both

the entries of n(n) and x(n) have independent real and imaginary parts and bounded
moments and Rn is strictly positive de�nite.

(b) As a consequence of (a) R , E
�
y(n)y(n)H

�
= ssH + Rn;  , E

�
jx(n)j2

�
and

ksk2=1. Moreover it is assumed that the eigenvalues of R are uniformly bounded
from below and above for all M and they have a limiting distribution as M !1:

(c) The set of observations fy(n)gNn=1 are iid.
(d) All the estimators, except the ones in sections 3.4, 3.6 and 4.5, assume that the

number of samples is higher than the observation dimension, i.e. N > M or in other
words M=N 2 (0; 1). The ones in sections 3.4, 3.6 and 4.5 accept M=N 2 (0;1).

Moreover, for the estimators in chapter 3 the next assumption is also needed,

(e)  , E
�
jx(n)j2

�
is known.

Finally, a part from assumptions (a)-(e) the next assumption is also assumed to hold for
the estimator designed in section 3.3,

(f) The set of observations fy(n)gNn=1 is distributed according to a complex gaussian
distribution. Namely, y(n) � CN (0;R):

Remark: In general it will be assumed that the training data set fy(n)gNn=1, which is
used to build the proposed �lter, is statistically independent of the data to be processed.

1.3 Optimal Linear Estimators and their practical im-
plementation issues

In this thesis, the family of estimators of x(n) based on a linear transformation or linear
�ltering of y(n) is considered. Namely, denoting by x̂(n) the estimation of x(n) and w the
linear �lter, these estimators read,
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x̂(n) = wHy(n): (1.2)

The MSE can be taken into account, as a measure of performance, to design the optimal
linear estimator. In fact, the MSE has been widely used in signal processing to obtain linear
estimators that guarantee a good estimate of the unknown parameter [13]. Examples may
be found in subband beamforming in the context of array signal processing [10, Ch.5] [17]
or in wireless communications for the estimation of the transmitted symbols in MIMO
receivers [75] and references therein. Thereby, considering the optimization of the MSE for
the family of linear estimators in (1.2) leads to the next optimization problem,

wopt = argmin
w

MSE (w) , argmin
w

E
h��x(n)�wHy(n)

��2i : (1.3)

Furthermore, assume that the data model for the observed signal y(n) in (1.1) with the
assumptions (a)-(e) holds. Then, one obtains the well known LMMSE method [13],

x̂l(n) = w
H
l y(n); wl=R

�1s: (1.4)

Being  , E
�
jx(n)j2

�
the power of the signal to be estimated and R , E

�
y(n)y(n)H

�
the

correlation of the observed signal y(n). LMMSE possesses important optimality features.
Namely, �rst it is the method that achieves the lowest MSE among the set of linear es-
timators. Second, it is the minimum MSE estimator when the joint distribution between
x(n) and y(n) is gaussian. Nevertheless, the expression (1.4) highlights that LMMSE as-
sumes implicitly some a priori knowledge about the second moment of x(n). Therefore,
in the applications where such information is not available the LMMSE estimator is not
realizable.

In order to circumvent the lack of knowledge about  one may apply the popular Capon
method, also known as MVDR in the array signal processing literature, see e.g. [14] or [20].
The rationale behind this method can be interpreted from di¤erent viewpoints. First, to
establish the connection with the LMMSE, consider the design of the �lter based on the
optimization of the MSE. After some manipulations, the expression of the MSE in (1.3)
reads

MSE (w) = wHRnw+
��1�wHs

��2 : (1.5)

Therefore, imposing the constraint wHs =1 avoids the dependence of the cost function
on the unknown quantity . Indeed, when x(n) is modeled as a deterministic parameter
wHs =1 is actually an unbiasedness constraint in the MSE optimization. Thus, the MVDR
estimator arises from the next optimization problem

wc = argmin
w

wHRnw

s:t: wHs =1
(1.6)
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Interestingly enough, the latter equation connects with the second viewpoint in the design
of the MVDR, which is actually the most common interpretation in the literature. Namely,
the MVDR arises from the optimization of the SINR at the output of the linear �ltering
process subject to a constraint of no distortion of the signal of interest. This statement is
easily understandable by inspecting the expression of the SINR at the output of the �lter
w, whose expression is given by,

SINR =

��wHs

��2
wHRnw

:

In order to proceed, observe that under assumptions (a)-(e) exposed in (1.1) the opti-
mization in (1.6) is equivalent to the one where Rn is replaced by R. Thus, applying the
method of Lagrange multipliers to (1.6), it is easy to obtain the well known expression for
the MVDR estimator, see [14],

x̂c(n) = w
H
c y(n); wc=

R�1s

sHR�1s
: (1.7)

At this point, it is worth mentioning that when x(n) is modeled as a deterministic pa-
rameter, the MVDR method is the Best Linear Unbiased Estimator (BLUE) and if the
noise is Gaussian distributed it is the Minimum Variance Unbiased Estimator (MVUE),
see e.g. [13].

Before proceeding, it is important to remark that the LMMSE and MVDR methods,
exposed above, have been used interchangeably in several works, as they are equivalent
when the SINR is considered as the measure of performance, see e.g. [37] in the context
of beamforming in array signal processing. The rationale is that they di¤er in a scaling
which does not impact in the SINR. However, other authors have shown that this scaling
is important in applications where the aim is to obtain an estimate of the signal amplitude
and thereby they focused on the MSE as a measure of performance to guarantee a good
estimate, this is the case of e.g. subband beamforming [17]. Moreover, within the context of
wireless communications, this scaling can be interpreted as an automatic gain control which
is necessary in any real MIMO system [76]. In fact, in [18], under slightly di¤erent model
assumptions than herein, it was shown that optimizing the MSE leads to beamformers
that optimize the SINR as well, though the converse is not true. Moreover, [18] shown
that when there is an uncertainty in the steering vector s, then the maximum SINR and
minimum MSE cannot be attained simultaneously.

Therefore, the MVDR and LMMSE methods are the optimal linear estimators in terms
of MSE depending on whether the unbiasedness constraint wHs =1 is applied or not, re-
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spectively. Moreover, they are both the optimal methos from a SINR perspective. Nonethe-
less, in practice they are not realizable since they depend on the correlation of the obser-
vations R which on its turn depends on the unknown noise covariance Rn. In order to
circumvent this problem, the traditional approach is based on a two step strategy. First,
given the set of N available observations fy(n)gNn=1, the unknown R is estimated by means
of the SCM, R̂, which is de�ned by means of the next expression,

R̂ , 1

N

N�1X
n=0

y(n)yH(n): (1.8)

Second, the SCM is substituted in the theoretical expressions of the LMMSE and Capon
methods, (1.4) and (1.7) respectively. This yields the traditional sample implementations
of the LMMSE and MVDR estimators,

x̂l;t(n) = ŵ
H
l y(n); ŵl=R̂

�1s

x̂c;t(n) = ŵ
H
c y(n); ŵc=

R̂�1s
sHR̂�1s

(1.9)

This strategy relies on the optimal properties of the SCM. Namely, for Gaussian obser-
vations, R̂ is the ML estimator of R and it is also its MVUE for a su¢ ciently large number
of samples N compared to the observation dimension M , [31, Theorem 4.1]. Indeed, con-
sidering the asymptotic regime where M is �xed and N ! 1 the sample estimators are
consistent, i.e. ŵl=R̂

�1s! wl=R
�1s and ŵc=

R̂�1s
sHR̂�1s

! wc=
R�1s
sHR�1s . Unfortunately,

in practice N may be comparable to M . In these situations, the SCM is no longer a good
estimate. This problem is exacerbated by the inverse involved in the LMMSE and Capon
methods and leads to a large performance degradation of the sample based implementa-
tions. The reason for that behavior is that the SCM is not a well conditioned estimator in
the small sample size regime, see e.g. [33]. This means that even small estimation errors
in the SCM can lead to large errors in the inverse of the SCM, which are translated in
large estimation errors in the �nal estimate of the parameter of interest. In fact, RMT
results shed light on why the SCM is not a well conditioned estimator in the small sample
size regime. Namely, relying on [35], see also [73], it can be shown that for �nite sample
size situations the empirical eigenvalue density of the SCM undergoes a widening e¤ect.
The consequence of this impairment is that the condition number of the SCM worsens.
Indeed, in the low sample size regime the traditional implementations of the LMMSE and
MVDR may display worse performance than the matched �lter w = s [9], which does not
take pro�t of the available statistical samples fy(n)gNn=1. Therefore, the aim of this the-
sis is largely devoted to propose methods that counteract the degradations of the sample
LMMSE and MVDR methods in the small sample size regime.
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Another impairment that the LMMSE and MVDR methods may undergo, in practice,
is an uncertainty in the vector s that performs the linear tranformation in (1.1), i.e. the
steering vector in array signal processing. Namely, in practice a model mismatch between
the presumed steering vector s and the actual steering vector ~s = s + � may happen.
Where � is an unknown distortion which may arise from look direction errors, imperfect
array calibration, distorted antenna shape or source wavefront distortions among other
e¤ects, see [37]. The consequence of this model mismatch is a performance degradation
of the LMMSE and MVDR methods. In fact, both the mismatches in the steering vector
and in the covariance can lead the LMMSE and MVDR methods to the signal cancellation
e¤ect. This, implies that the practical implementation of the optimal methods confuse
the signal of interest with an interference and try to cancel it, which clearly leads to an
important performance degradation, see [9] [10] [37] and references therein. In chapter 5,
the mismatches on s (as well as those arising from the estimation of R) will be tackled by
proposing a robust method to those uncertainties.

1.4 Robust methods to the small sample size regime
and to model mismatches

In this section some of the related work presented in section 1.1.2 is explained in more
detail. These are methods that will be used later on for comparison purposes with the
shrinkage estimators proposed in this thesis. Two subsections are considered, the �rst one
is devoted to explain the state-of-the-art (SoA) methods whose main aim is to tackle the
small sample size degradation of the conventional sample LMMSE and MVDR techniques.
As it was explained above, this is the main objective of this thesis and SoA methods based
on a DL or shrinkage of the SCM are selected because these are the ones which allow a
more fair comparison to the type of shrinkage methods proposed in this thesis. The sec-
ond subsection presents a worst-case optimization method whose objective is to deal with
uncertainties in the model, namely the vector s in (1.1) a.k.a the steering vector in array
signal processing applications. This method also shows some robustness to the �nite sam-
ple size regime as it can be interpreted as a DL technique, though in this regard it is not
optimal in general. This robust method to the steering vector uncertainties is considered
for comparison purposes because in chapter 5 a method is proposed to deal both with the
uncertainties in the steering vector and the �nite sample size regime.
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1.4.1 Robust Techniques to the �nite sample size

DL techniques

The rationale behind DL methods is to obtain a better estimate of the signal of interest,
than the sample MVDR or LMMSE, based on a regularization technique. More speci�cally,
recall that in the small sample size regime the SCM is not a well conditioned estimator, or
in other words the condition number (which is the ratio between the maximal and minimal
eigvenalues of the SCM) can be very large. In addition, the estimation of the signal of
interest is a function os the SCM, i.e. x̂(n) = f(R̂) see (1.9), thus by the de�nition of
the condition number, this implies that even small estimation errors in the SCM can lead
to large errors in the estimation of the signal of interest x̂(n). A way of improving the
condition number of the SCM is by adding a positive real number � to its diagonal, which
clearly must be properly selected to obtain the desired e¤ect. The parameter � is known
in the literature as loading factor. Therefore, the DL approach leads to obtain the next
expressions for the practical implementations of the LMMSE and MVDR, respectively,

wdl;l = (R̂+�I)
�1s (1.10)

wdl;c=
(R̂+�I)�1s

sH(R̂+�I)�1s
(1.11)

and thus they are so called DL-LMMSE or DL-MVDR �lters herein. Note that they
reduce to the sample LMMSE and MVDR for � = 0, see (1.9). On the other hand, for
a large enough � they tend to a matched �lter w _ s. In fact, the expression of the
DL methods arise from adding a regularization or penalty term � kwk2 in the objective
function of the LMMSE and MVDR problems and thus as it was mentioned above is a
regularization technique. Note that the key point in DL methods is how to choose the
regularization parameter �. A lot of research was devoted to this end, though the choice
for � was traditionally controversial. Namely, the pioneering works [42�44] dealing with
DL in array processing tried to analyze the ratio between the output SINR of DL methods
and the SINR of the optimum beamformers (i.e. the ones with known covariance). When
the signal of interest is not present in the training set, they made the next assumptions
for their analysis. They assumed that the interefence sources where received with high
power, the loading factor (�) was chosen higher than noise power but much lower than the
minimum interference eigenvalue and N > K (where K is the dimension of the interference
subspace). Then, they concluded that the ratio between the output SINR of the DL and
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the output SINR of the MVDR is beta distributed with parameters (N �K+1; K), which
implies that N must be greater than 2K to achieve an average output SINR within 3 dB
of the optimal one. This means that under those assumptions DL methods converge much
faster to the optimum methods than the sample MVDR methods, which need N t 2M
to achieve the optimum performance. However, the probability distribution of the ratio
between the SINR of the DL and the optimum methods did not depend on � and as a
consequence the optimum value for the loading factor was not clear. When the signal of
intereset is present in the training set it was also shown, see e.g. [45], that DL converge
faster than the SMI technique to the MVDR, but still the value for � was not clear.
Therefore, rather ad-hoc values for � have been traditionally used. Based on the analysis
mentioned above, assuming that the signal of interest is not present in the training set, a
traditional approach [14, p. 748] has been to chose,

� = 10�̂min (1.12)

where �̂min is the minimum eigenvalue of the SCM. Unlike those ad hoc methods, herein
the analytical expression for the asymptotically optimal shrinkage �lters will be given.
Moreover, an improved performance will be obtained, as those methods rely on the sample
eigenvalues �̂, whose distribution su¤ers a spread in the small sample size regime [34], which
degrades the performance. An example is � = 10�̂min, due to the eigenvalue spread �̂min can
be smaller than expected, which implies that the bene�ts of regularization are worse than
expected and even may tend to vanish. More insights are given in the simulation results.
On the contrary we circumvent this problem using RMT tools. Namely, considering the
asymptotic regime where both M and N grow large at a constant rate, we design (M;N)-
consistent methods which implicitly use estimations of the real eigenvalues that are robust
to the small sample size regime.

Another choice for the DL factor was proposed in [77] and it was based on analyzing the
estimation error of the covariance. Namely, they assumed that the SCM is related to the
real covariance through the expression R̂ = R + �B, where B was a random matrix with
zero mean and unit variance entries and � was a positive constant indicating the estimation
error of the estimated covariance. This implies that the diagonally loaded covariance can
be expressed as �R = R + �B + �I. By analyzing this expression they concluded that
the loading factor is upper and lower bounded, � 6 � < R(i; i). Moreover, they proposed
to estimate those bounds yielding the next expression, std(diag(R̂)) 6 � < Trace(R̂)=M .
Finally, it was proposed to select � as the estimation of the lower bound,

� = std(diag(R̂)) (1.13)
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Therefore, this method is still rather ad hoc and it was based on enhancing the estimation
of the SCM. The methods proposed in this thesis deal directly with the estimation of the
parameter of interest and this leads to performance improvement compared to [77], as the
numerical simulations will highlight.

More recently, the work of Mestre et al. [9] proposed a more analytical methodology
to select the value of the loading factor, as they found an estimation of the asymptotically
optimal �. Namely, they considered the asymptotic regime whereM;N !1 andM=N !
c 2 (0;1), which implicitly takes into account the small sample size regime. Moreover,
they used results from RMT, this permited to found that the SINR of the DL-MVDR �lter
converges in probability to the next expression,

SINR =
�

1

(1� c�)
sH(R+ �I)�1R(R+ �I)�1s

(sH(R+ �I)�1s)2
� �

��1
(1.14)

where � = �(1 + cb), � = 1 if the signal of interest is present in the observations or zero
otherwise, � is given by the next expression

� =
1

M

MX
i=1

�
�i

�i + �

�2
and b is the unique positive solution to the following equation

b =
1

M

MX
i=1

�
�i(1 + cb)

�i + �

�
where �max = �1 � : : : � �M = �min are the eigenvalues of R. Note that the asymp-
totically optimal loading factor is obtained through the optimization of SINR in (1.14).
However, this expression depends on the unknown R. To overcome this problem, in [9]
they found an (M,N)-consistent estimate of SINR. That is, an estimate that tends to
(1.14) when M;N ! 1 and M=N ! c 2 (0;1). To obtain this estimate they relied on
results from random matrix theory. Thereby, they �nally obtained the next estimation of
the asymptotically optimal loading factor,

�̂ = argmin
�

sH(R̂+�I)�1R̂(R̂+�I)�1s

(1� c'̂(�))2(sH(R̂+�I)�1s)2
: (1.15)
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Where '̂(�) = 1=M Tr(R̂((R̂+�I)�1)). Note that �̂ requires a grid search. Compared to [9],
some of the methods proposed herein can obtain almost the same performance in terms
of SINR when the vector s is perfectly known and better performance when there is an
uncertainty in s. Moreover, we propose some estimators in this thesis, based on a shrinkage
of the sample LMMSE and the regularized sample LMMSE, which in terms of MSE obtain
better performance than [9]. Moreover, some of the methods proposed herein avoid the
grid search. All these statements will be studied in more detail in the next chapters.

Methods based on a Shrinkage of the SCM

This kind of methods enhance and regularize the SCM estimation by means of a shrink-
age, i.e. �R =�1R̂+�2I. That is, in some sense they are a generalization of DL. Within this
class it is worth mentioning the work of Ledoit and Wolf (LW), see [33]. They propose a
shrinkage of the SCM that not only regularizes and improves the estimation error of the
SCM, but also minimizes the asymptotic MSE of the data covariance, though they assume
real data. For the complex case, according to [78], one can stack the real and imaginary
parts of the data, then estimate the associated covariance using the LW method and �nally
obtain the complex covariance from it, though this may give suboptimal performance as the
circular symmetry property of complex data is not used. Substituting �R in the expressions
of the LMMSE and MVDR yields the so called LW-LMMSE, x̂lw;l(n), and LW-MVDR,
x̂lw;c(n), estimators herein, respectively,

x̂lw;l(n) = w
H
lw;ly(n); wlw;l=(�1R̂+�2I)

�1s (1.16)

x̂lw;c(n) = w
H
lw;cy(n);wlw;c=

(�1R̂+�2I)
�1s

sH(�1R̂+�2I)
�1s

(1.17)

�1 = 1� � ; �2 = �
Tr(R̂s)
2M

(1.18)

� =

NP
i=1

ys(i)yTs (i)�R̂s

2
F

N2
h
Tr(R̂2

s)�
Tr2(R̂s)
2M

i (1.19)

where R̂s =
1
N

NP
i=1

ys(i)y
T
s (i), k�kF denotes the Frobenius norm, ys(i) = [Re(y(i)); Im(y(i))]T

and Tr(�) denotes the trace operator. Other methods that stem or are related to LW
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are [41], [59] and references therein. In any case, all these methods aim to improve the
estimation of the SCM and they do not deal directly with the estimation of the parameter
of interest. Herein this fact is taken into account to obtain estimators with an improved
performance.

Another worth remarking method based on the shrinkage of the SCM is the one pro-
posed in [79]. Namely, they propose the next type of shrinkage �lter to counteract the
degradation of the sample LMMSE in the small sample size regime

w = (� 1R̂+� 2I)
�1s:

This is the same type of �lter structure than the LW method. However, in order to
design the shrinkage parameters � 1; � 2 [79] proposes to minimize the MSE in the estimation
of the parameter of interest x(n) in (1.1). To this aim, �rst they de�ne the parameter �
and the functions L1(�); L2(�) as

� =
� 2
� 1
; L1(�) = s

H(R̂+ �I)�1s; L2(�) = s
H(R̂+ �I)�1R(R̂+ �I)�1s:

Then, after some easy manipulations they obtain that the optimal shrinkage factors are
given by,

� 1 =
L2(�)

L1(�)
; � = arg max

�

(L1(�))
2

L2(�)
: (1.20)

Note that these optimal shrinkage factors depend on the unknown R. Thereby, they
use RMT results to obtain (M;N)-consistent estimates of the optimal shrinkage factors,
i.e. which tend to the values in (1.20) within the asymptotic regime whereM;N !1 and
M=N ! c 2 (0;1). The expression for these (M;N)-consistent estimates is given by

� 1 =
L̂2(�)

L1(�)
; � = arg max

�

(L1(�))
2

L̂2(�)

L̂2 =
sH(R̂+ �I)�1R̂(R̂+ �I)�1s�
1� 1

N
Tr[R̂(R̂+ �I)�1]

�2 : (1.21)

In section 3.6, a more general form of shrinkage than the one in [79] is proposed.
This leads to a performance gain in terms of MSE when the signature vector s is known.
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Moreover, when there is an uncertainty in s, this gain in performance increases. This is
thanks to the structure of the proposed �lter, as it combines a regularized LMMSE with
a matched �lter. The latter is more robust to the signal cancelation e¤ect than the sample
LMMSE or the regularized LMMSE, when the regularization does not tackle properly the
uncertainty in s. This is explained in detail in sections 3.6 and 5.2.

1.4.2 Robust Techniques to model mismatches

In this section some methods that deal with an uncertainty in the vector s of the signal
model (1.1), i.e. the steering vector in array processing, are reviewed. First of all, it is
interesting to comment that DL techniques are in some regard robust to model mismatches
in s. This was noticed in the seminal works dealing with DL, see e.g. [48], where it was
observed that many sources of error are in practice uncorrelated from sensor to sensor,
e.g. errors in the theoretical distance between sensors in the array. Thus, they degrade
the system performance in a similar way than adding spatially white noise to each sensor.
Therefore, DL can be viewed as a regularization technique, see e.g. [80], as it is based on
adding in the MVDR formulation a regularization term � kwk2 that penalizes the increment
of spatially white noise,

w = argmin
w

wHR̂w + � kwk2

s:t: wHs =1

This yields the DL MVDR �lter w / (R̂+�I)�1s. However, the main drawback of the
DL technique is how to choose a value for � that deals properly with the uncertainties in
s. For instance, in [48] it was proposed the white noise gain constraint methodology to
obtain reasonable values of �. This relies on adding a constraint for the white noise gain
kwk2 � �. One problem of this approach is that the relationship between the loading
factor � and the parameters of the white noise gain constraint is not simple. Namely, to
adjust � and ful�ll the constraint, a multistep iterative procedure is required to solve the
next equation, see e.g. [81],

sH(R̂+ �I)�2s

(sH(R̂+ �I)�1s)2
= �

Even more important is the fact that the choice of the DL factor � depends on the white
noise gain constraint through � and as a consequence this methodology does not clearly
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depend on the paramteres that model the uncertainty of the steering vector s. Therefore,
this is still a rather ad-hoc technique to deal with the uncertainties in s. To circumvent this
drawback, several works [37,46,47] appeared in the literature that incorporate explicitly an
uncertainty set for s in an optimization problem which arises from the modi�cation of the
original MVDR problem explained above in (1.6). These works di¤er in the way that they
model the uncertainty set for s. Both [46] and [47] considered ellipsoidal uncertainty sets
for the uncertain steering vector. On the other hand, in [37] a spherical uncertainty set
was considered for the error vector between the actual and the presumed steering vector.
Next, [37] is explained in more detail, as its notion of robustness to the steering vector
uncertainties is used to derive a new method, proposed in chapter 5, which is robust to
both the �nite sample size and to uncertainties in s. Unlike [37], the new method deals
explicitly with the small sample size regime and it improves the methods proposed in
chapters 3 and 4, because it relaxes the assumption of known s. Let us focus now on
explain [37]. This work, assumes that the true steering vector ~s di¤ers from the presumed
steering vector s in the signal model (1.1), i.e. ~s = s+�, where � describes the unknown
steering vector distortions. Moreover, they assume the next model for the uncertainty set
of the steering vector,

A(") = faja = s+ e; kek � "g; (1.22)

where " 2 [0; ksk) is a user parameter, see [37] [47]. Given this model, the Capon beam-
former is made robust by imposing a distortionless constraint for all the steering vectors
within A("),

min
w
wHR̂w subject to jwHaj > 1 for all a 2 A("): (1.23)

This is a non-convex problem, but [37] showed that (1.23) can be reformulated as the next
problem, which is convex as it can be cast as a second order cone program (SOCP),

minimize
w

wHR̂w

subject to wHs � "kwk+ 1;
ImfwHsg = 0:

(1.24)

Interestingly, it was shown in [37] that this beamformer belongs to the class of DL tech-
niques, as w / (R̂ + �"2I)�1s. Where � is a Lagrange multiplier and cannot be obtained
in closed form [37]. Moreover, unlike the DL technique based on the white noise gain
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constraint, the loading factor depends clearly on the amount of uncertainty considered for
the steering vector through ". Moreover, due to the DL interpretation, (1.24) o¤ers certain
protection against the small sample size e¤ect. However, the robustness will depend on the
choice of ", whose value is related to the uncertainty of the steering vector, but it has not
a clear relation with the covariance mismatches. Thereby, the RCB will require an ad-hoc
tuning of " to counteract properly the �nite sample size e¤ect. As (1.24), the new method
proposed in chapter 5 deals explicitly with the uncertainties in s through the inclusion of
the uncertainty set (1.22) in the formulation of the MVDR. However, unlike (1.24), the
new method deals directly with the �nite sample size impairments and it does not require
an additional tuning of ".

1.5 Contribution and Problem Statement

The aim throughout this thesis is to propose corrections of the sample LMMSE and MVDR
that permit to deal with their sources of degradation. That is, the performance degradation
in the estimation of the SOI x̂(n) due to the �nite sample size e¤ect in the estimation of
the covariance and the imprecise knowledge of the steering vector of the SOI, i.e. s in
(1.1). Namely, the bulk of this thesis is devoted to propose methods that tackle the
degradation due to the small sample size limitation, when s is perfectly known. This is the
material presented in chapters 3 and 4, the associated contribution and problem statement
is presented next in section 1.5.1. Afterwards, in section 1.5.2, the contribution associated
to the case where both sources of degradation are present is exposed, this is the material
related to chapter 5.

1.5.1 Shrinkage of the sample LMMSE and MVDR to deal with
the small sample size

The proposed methods to deal with the �nite sample size limitation of the sample LMMSE
and MVDR rely on the concept of shrinkage estimation. Namely, this is used to de�ne the
structure of the �lters w that carry out the linear estimation of the parameter of interest,
i.e. x̂(n) = wHy(n). Shrinkage estimation is considered herein to de�ne the structure of the
estimators to be designed, as it leads to methods that are known to be robust to the small
sample size regime and they achieve in general a lower estimation error than the sample
estimators, see [82]. The inception of those methods can be traced back to the works of
Stein [83], [84] and later on of Brown [85], see [82] for a thorough discussion on this topic, see
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also the references above. The rationale behind shrinkage estimation can be summarized
as follows. In general in estimation theory, a large amount of methods rely on a function of
the sample moments, e.g. on a function of the sample mean or the sample covariance. The
foundations of that approach are based on the Glivenko-Cantelli theorem that states that
for a set of iid random variables, the empirical distribution tends to the true distribution
for a large number of observations [86]. Thus, as the sample estimators are moments of the
empirical distribution, when the sample size is large they tend to the moments of the true
unknown distribution and as a consequence they are optimal. Therefore, when the number
of samples is low, a large degradation of the sample based estimators may be expected.
Therefore, the idea of shrinkage estimation is to introduce a correction of this sample
methods. This correction can be a linear transformation of the sample estimators or more
in general a linear combination of them with an a priori information stemming from the
problem at hand. The aim of these corrections is to optimize the bias variance tradeo¤ of
the estimator and to diminish the overall MSE. Namely, in most cases the error of sample
methods comes from the estimation variance. Therefore, the idea of shrinkage estimation is
to diminish the estimation variance by introducing a bias such that the overall estimation
error is lower than that of the sample estimators. Herein, several shrinkage estimators are
proposed, whose aim is to propose corrections of the sample LMMSE and MVDR in the
small sample size regime.

Thus, following the shrinkage estimation philosophy, �rst the most basic structure of
a shrinkage estimator of the sample LMMSE is considered in this thesis to estimate the
parameter of interest. It is based on the next linear transformation of the sample LMMSE
and it is constrained to N > M ,

x̂(n) = wHy(n); w =�R̂�1s: (1.25)

Where, � is the parameter to be designed and it implements the correction of the sample
LMMSE. Namely, the aim of � is to optimize the bias variance tradeo¤to reduce the overall
MSE, compared to the sample LMMSE method. Note that the SINR is insensitive to this
scaling, and thus this type of �lter it is not considered as a correction of the sample MVDR,
which is based on optimizing that measure of performance. However, in terms of MSE,
� leads to obtain an improved performance, compared to the sample LMMSE, as it will
be shown in chapter 3. Moreover, it is important to stress that this scaling is important
in applications where the aim is to obtain an to guarantee a good estimate of the signal
amplitude, this is the case of e.g. subband beamforming [17]. Furthermore, within the
context of wireless communications, this scaling can be interpreted as an automatic gain
control which is necessary in any real MIMO system [76]. To design this scaling �, two
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strategies are proposed. The �rst one seeks to obtain the scaling that optimizes the MSE
of the parameter of interest after substituting (1.25) into the expression of the MSE stated
above in (1.5). As this leads to an estimate that depends on the unknown R, then RMT
is used to obtain a consistent estimate of the optimal though unrealizable scaling factor
within the regime where M;N ! 1 and M=N ! c 2 (0; 1). Note that this asymptotic
regime contemplates implicitly the small sample size regime, i.e. situations where N can
be comparable to M , though assuming that N > M .

The second strategy designs the scaling correction � in (1.25) by means of multivariate
statistical analysis tools. As the �lter depends on R̂, the MSE is a conditional expectation,
relying on the knowledge of R̂, and as a consequence a random quantity. That is, for each
possible value of R̂ a given MSE is obtained. Thus, in this case the proposed approach
is based on obtaining the shrinkage factor � which minimizes the average MSE. Provided
that the observed data be Gaussian, the solution is obtained by using the knowledge of the
summary statistics of a complex inverse Wishart distribution. Unlike the RMT approach,
which obtains an asymptotically optimal solution, this design obtains an optimal solution
for the �nite regime.

The numerical simulations in chapter 3 show that the shrinkage �lter (1.25) obtains
similar performance when the scaling factor � is designed using RMT or multivariate
analysis tools. Moreover, it outperforms the sample LMMSE, which was the target of this
initial basic shrinkage estimator. In addition, compared to other techniques that are robust
to the small sample size, its performance is comparable to that of the LW technique based
on the shrinkage of the SCM (1.16) and better than the ad-hoc DL technique in (1.13),
provided that M=N 2 (0; 1). Although the comparison of the proposed method to those
robust method is not simple, the rationale can be as follows. The proposed approach is
more analytical than the DL technique in (1.13) and unlike the ad-hoc DL, the proposed
method faces directly the estimation of the parameter of interest. This last statement can
be also the rationale for obtaining similar performance than the LW (1.16) method, whose
aim is to minimize the MSE in the estimation of the covariance.

Another contribution proposed in this thesis is a generalization of (1.25) to overcome
the limitation M=N 2 (0; 1), i.e. to support M > N , and to obtain more insights in
the comparison to the LW method. Namely, a scaling or shrinkage of a regularized sample
LMMSE �lter is proposed. That is to say, a double shrinkage is contemplated. The �rst one
regularizes the SCM, i.e considers a covariance of the type �R =�1R̂+�2I in the LMMSE
expression and permits to deal with cases whereM > N . The second shrinkage is a scaling
of the LMMSE implemented with �R and seeks to further reduce the MSE compared to
only considering w = �R

�1
s. Thus, the expression of the proposed estimator is,
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x̂(n) = wHy(n); w =��R�1s: (1.26)

where �R is a shrinkage of the SCM, i.e. �R =�1R̂+�2I. Intuitively (1.26) is better than
(1.25) as �R is a better estimate than the SCM. Moreover, thanks to the additional shrinkage
of the �lter one can improve the performance of an implementation of the LMMSE based
on a shrinkage of the SCM, such as the LW (1.16) and the ad-hoc DL (1.13). The rationale
for this improvement is that our method deals directly with the estimation of x(n), whereas
the ad-hoc DL and LW try to obtain a better estimation of the covariance. These intuitions
are con�rmed with the simulations in chapter 3, which show that the proposed approach
not only outperforms dramatically the sample LMMSE, but also the �rst shrinkage of the
sample LMMSE proposed above in (1.25) and the implementations of the LMMSE when
considering robust techniques to the small sample size regime such as the ad-hoc DL (1.13)
or LW estimations of the covariance (1.16). To achieve these results, the scalar �, which
controls the shrinkage of the �lter, is designed as the one minimizing the asympotic MSE
of the parameter of interest, given a shrinkage of the SCM. That is, �rst the optimal
shrinkage of the �lter is obtained for a given shrinkage of the covariance. Then, as the
optimal shrinkage depends on R, a RMT approach is proposed to obtain a consistent
estimate of the optimal shrinkage of the �lter within the regime where M;N ! 1 at a
constant rate M=N ! c 2 (0;1). Note that this asymptotic regime considers intrinsically
the small sample size situations. Regarding the scalars governing the shrinkage of the
SCM, the optimal approach would be to substitute the optimal shrinkage of the �lter,
obtained previously, in the MSE expression and optimize again respect to the shrinkage
factors of the SCM. Nonetheless, they could not be isolated due to their presence within
the inverse of the covariance in the expression of the LMMSE. Indeed, neither one can
use a numerical search method to propose a realizable estimator which obtain the optimal
shrinkage factors due to the unknown R in the expression of the MSE. To circumvent this
problem and to obtain a realizable �lter, one could proceed as in [9], �nd the consistent
estimate for the asymptotic MSE and �nd the �1;�2 minimizing it. Although a realizable
�lter is obtained, one still must carry out a numerical search to �nd �1 and �2. Instead of
that an alternative approach is proposed. Namely, the shrinkage factors �1;�2 of the SCM
are selected as the ones proposed by LW in [33], i.e. the ones minimizing the asymptotic
MSE of the data covariance, given by the expressions (1.18) and (1.19) described above.
This approach permits to obtain a more clear insight in the comparison of the proposed
shrinkage method to the LW method.

Next, assuming that M may be comparable to N , but M < N , a more general form
of shrinkage estimator is studied. Unlike the previous proposed methods, this shrinkage
applies not only for the sample LMMSE but also for the sample MVDR. It is based on a
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linear combination or weighted average between the sample �lters and an a priori guess
of the �lter. This a priori guess is obtained by substituting the unknown noise covariance
in the LMMSE and MVDR �lters by the identity matrix. In array processing this guess
�lter corresponds to the case where only the SOI and additive noise are presumed to be in
the scenario and thus corresponds to the conventional or Bartlett beamformer, i.e. it is a
kind of matched �lter. From a shrinkage point of view, with this strategy we are blending
by means of a weighted average the sample estimators of the LMMSE or MVDR �lters,
which take into account the available information of the samples, with the conventional
beamformer, which does not take into account the information of the samples and only
relies on the a priori information. The combination of these two type of informations seeks
to optimize the bias variance tradeo¤ and to diminish the overall MSE compared to just
considering the sample LMMSE or MVDR. Thus, the expression of the proposed shrinkage
�lter reads,

x̂s(n) = w
Hy(n); w =�1R̂

�1s+�2s (1.27)

The �lter (1.27) can be rewritten as w = (�1R̂
�1 + �2I)s. This highlights that (1.27)

is carrying out a shrinkage of the inverse of the SCM. Next, the shrinkage factors or
scalings that perform the linear combination are designed by optimizing the MSE and the
SINR, in the case of the LMMSE and the MVDR respectively. Direct optimization of
these metrics leads to optimal scalings dependent on the true but unknown correlation R,
i.e. to unrealizable methods. To overcome this problem RMT results are used to obtain
consistent estimates of the optimal weights within the regime where M;N ! 1 at a
constant rate M=N ! c 2 (0; 1). Note that this approach naturally deals with the small
sample size regime. Interesting enough, the numerical simulations in chapters 3 and 4 show
that the shrinkage of the sample LMMSE or MVDR towards the conventional beamformer
outperforms the sample counterparts. Moreover, they also improve robust techniques to
the small sample size regime such as LW (1.16) and the ad-hoc DL techniques (1.13) and
(1.12) provided thatM=N ! c 2 (0; 1). This is thanks to face directly the estimation of the
parameter of interest, instead of trying to enhance the covariance estimate. Also compared
to most of the DL techniques, that are rather ad hoc, here an analytical expression is
given for the optimal and asymptotically optimal �lters. Compared to the DL in [9],
which obtains an asymptotically optimal �lter in terms of SINR, the next conclusions
are obtained from the simulations of chapters 3 and 4. The proposed shrinkage of the
sample LMMSE obtains better performance in terms of MSE than the DL in [9], thanks to
focusing on the optimization of the MSE, recall that as stated above the MSE is important
in applications where the aim is to obtain a good estimate of the complex amplitude of
the SOI, e.g. in subband beamforming [17]. Moreover, the shrinkage of the LMMSE and
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MVDR obtain similar performance than the DL in [9] in terms of SINR. Moreover, in
the numerical simulations of chapter 5 it is observed that the proposed shrinkage �lters
are more robust to uncertainties in s in the small sample size regime than the DL in [9],
in terms of SINR. The reason is that the DL factor of [9] is designed to counteract the
small sample size regime though assumes a known s, thus it su¤ers a degradation when
the knowledge of s is imprecise as an additional tuning of the loading factor is required.
On the other hand, the proposed shrinkage �lters tend to a scaling of the conventional
beamformer in the small sample size. As the main lobe is wider than the one of the
MVDR or LMMSE it is less sensitive to uncertainties in s, though it has less resolution.
Or in other words, the DL �lters may undergo the signal cancelation e¤ect due to the
additional tuning required in the loading factors, i.e. they may tend to cancel the SOI as
they confuse it as an interference. On the other hand, the conventional beamformer can
attenuate the SOI when the knowledge of s is imprecise, though it does not undergo the
signal cancelation e¤ect.

The next contribution is the generalization of the type of shrinkage �lters proposed in
(1.27) to deal with cases where M > N . To achieve this aim, a regularization of the SCM
is considered in the type of shrinkage �lters proposed in (1.27). Thereby, the expression of
the shrinkage �lters reads as follows,

x̂(n) = wHy(n); w = �1(R̂+ �I)
�1s+ �2s (1.28)

In fact, note that this �lter leads to improve (1.27) even when M < N . This is
because it relies on a regularization of the SCM, which is a better estimate of R than
the SCM. Moreover, it is important to stress that the �lter proposed in (1.28) is the
most complete or general shrinkage �lter proposed in this thesis, as all the other �lters
proposed in (1.25)-(1.27) can be viewed as a particular case of (1.28). For any given �, the
shrinkage factors �1; �2 are obtained by optimizing the MSE or the SINR, in the case of
the shrinkage of the regularized LMMSE or the regularized MVDR, respectively. Moreover,
the regularization parameter � is obtained by �rst substituting the optimal �1; �2 in the
performance metrics, i.e. in the MSE or the SINR, and second by optimizing the resulting
expression of the metric. As the optimal expressions of �1; �2 and � depend on the
unknown R, then the next RMT approach is followed to obtain realizable �lters. (M;N)-
consistent estimates of the optimal �1; �2 and � are obtained within the asymptotic regime
where M;N ! 1 and M=N ! c 2 (0;1). That is the estimates tend to the optimal
�1; �2 and � within that asymptotic regime. The numerical simulations of chapter 3 show
that the proposed shrinkage of the regularized sample LMMSE outperforms the type of
DL �lter proposed in [9] and the regularized LMMSE in [79] in terms of MSE. These
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�lters are important because, bearing in mind the asymptotic regime M;N ! 1 and
M=N ! c 2 (0;1), [9] obtains the loading factor which optimizes asymptotically the
SINR and [79] optimizes asymptotically the regularization parameters in terms of the
MSE, see section 1.4.1. Furthermore in terms of SINR the proposed shrinkage of the
regularized LMMSE obtains similar performance than [9] and [79]. Moreover, in chapter 5
it is shown that the proposed shrinkage of the regularized LMMSE outperforms, in terms
of SINR, the DL in [9] and the regularized LMMSE in [79] when there is an uncertainty
in the signature vector of the SOI. With regard to the shrinkage of the regularized MVDR
it is shown in chapter 4 that it obtains the same performance in terms of SINR than the
DL [9] and better performance than the ad-hoc DL and LW techniques mentioned above
in (1.13) and (1.16), respectively. Moreover, in chapter 5 it is shown that the proposed
shrinkage of the regularized MVDR outperforms the DL [9] when there is an uncertainty
in the signature vector of the SOI. The rationale for the performance improvement of the
proposed methods compared to the related work estimators is detailed in the numerical
simulations of chapters 3, 4 and 5.

The design of the proposed shrinkage �lters in (1.25)-(1.28) involve to solve certain
problems that are tackled in detail in chapters 3 and 4. These problems can be summarized
in compact form, by means of the next problem statement.

Problem statement:

Assume that a set of observations fy(n)gNn=1 ful�lling the model in (1.1) is available.
Then, obtain an estimation of the unknown parameter x(n) in (1.1) that minimizes a
functional f(MSE (w)) of the MSE in (1.5) when the estimation is based on the type of
shrinkage �lters in (1.25), (1.26), (1.27) or (1.28) and subject to a set of constraints C on
w. This problem is mathematically formulated as follows,

x̂(n) = wHy(n); w = argmin
w

f(MSE (w))

s:t: w 2 C
(1.29)

where, according to (1.5), MSE (w) = wHRw+(1�wHs� sHw):
Remark 1: The di¤erent shrinkage methods of the sample LMMSE proposed in chapter

3, i.e. the ones arising from (1.25), (1.26), (1.27) or (1.28), impose the constraint w 2 C ,
w =�R̂�1s, w =��R�1s, w =�1R̂�1s+�2s or w = �1(R̂+ �I)�1s+ �2s respectively.

Remark 2: In the case of the �lters based on a shrinkage of the sample MVDR proposed
in chapter 4 and arising from (1.27) or (1.28), the next constraint is imposed w 2 C ,
wHs =1 andw =�1R̂�1s+�2s in the case of (1.27) orwHs =1 andw = �1(R̂+�I)�1s+�2s
in the case of (1.28). Moreover, note that this problem is equivalent to optimize the SINR
at the output of the shrinkage �lters.
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Remark 3: Moreover, f(MSE (w)) = MSE (w), for all the methods proposed in chapters
3 and 4, except for the shrinkage �lter proposed in section 3.3. As the optimization of
MSE (w) yields unrealizable methods, subsequently random matrix theory tools are used
to obtain (M;N)�consistent estimates of the optimal methods. That is, estimates that
tend to the optimal methods within the asymptotic regime where bothM;N tend to in�nity
at a constant rate. Unlike classical asymptotics where M remains �xed and N grows large
this general asymptotic regime deals naturally with the small sample size regime. Another
advantage of this RMT approach is that it does not rely on any assumption about the
distribution of the observations. On the other hand, the method proposed in section 3.3
is an alternative to the RMT approach used by the rest of the methods. Namely, for the
particular case where w =�R̂�1s, we consider the average MSE to design the proposed
method, provided that there are not other constraints in C and that the observations are
gaussian. Namely, note that the MSE in (1.5) is obtained for a generic �lter w and a
generic data sample y(n), whose optimization leads to the LMMSE depending on the
unknown R. To obtain a realizable �lter, one considers N available snapshots or training
samples Y = [y(1); : : : ;y(N)], which permit to build the SCM and the proposed �lter
w =�R̂�1s, which is substituted in the MSE to evaluate its performance. Thereby, the
MSE performance associated to the �lter w =�R̂�1s is a random quantity as it depends
on the available snapshots Y, which are samples of a random process. Thereby, one can
obtain the average MSE performance of w =�R̂�1s by means of the next expectation
EYYH

h
MSE

�
w =�R̂�1s

�i
, thereby f(MSE (w)) = EYYH

h
MSE

�
w =�R̂�1s

�i
in (1.29).

1.5.2 Shrinkage of the sample MVDR to cope with the small
sample size and steering vector uncertainties

The contribution summarized in this section, and exposed in detail in chapter 5, deals
with the two sources of degradation of the MVDR, the small sample size impairment and
uncertainties in the signature vector of the SOI s in (1.1). This permits to generalize the
contribution of the last section which assumes a known s.

Namely, in order to deal with the small sample size e¤ect, the shrinkage MVDR �lter
(1.27) is taken into account and randommatrix theory is used to obtain consistent estimates
of the expressions depending on R. Moreover, the shrinkage MVDR �lter is extended to
support a mismatch in the assumed s. To this end, following the approach of [37], the true
but unknown steering vector of the SOI, ~s = s+�, is assumed to lie within an uncertainty
region, where� is an unknown distortion vector. Namely, the type of uncertainty set A(")
described above in (1.22) is considered,
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A(") = faja = s+ e; kek � "g:

Thereby, the shrinkage MVDR method is made robust to uncertainties in s, by adding
a new constraint in the formulation of the MVDR problem. Namely, the new optimization
problem requires a no distortion constraint for all the steering vectors within the uncer-
tainty set A("). As it will be shown in chapter 5 this approach permits to outperform the
shrinkage MVDR method that assumes a known s, i.e. the one stemming from (1.29) and
dealt with in chapter 4. Moreover, it leads to improve the DL method [9], which obtains
the asymptotically optimal loading factor (1.15) to combat the small sample size regime,
though assuming a known s. Compared to the robust MVDR method [37], which was
the �rst proposing to deal with the uncertainties in s by incorporating the no distortion
constraint for all the steering vectors in A(") in the MVDR, our method o¤ers the next
bene�t. Thanks to the shrinkage structure of the �lter and to an approach based on RMT,
the �nite sample size e¤ect is dealt with directly, which avoids the parameter tuning re-
quired in [37] to treat properly this e¤ect. Namely, [37] can be interpreted as a DL, but
its loading factor only depends on the parameter " which models the uncertainty in s.
Therefore, [37] may o¤er an insu¢ cient protection against the small sample size regime in
some situations and it will require an ad-hoc parameter tuning of the loading factor.

According to the above description, the next optimization problem needs to be solved
to obtain the proposed robust shrinkage MVDR �lter, which permits to deal both with the
�nite sample size e¤ect and uncertainties in s.

Problem statement:

Consider a set of observations fy(n)gNn=1 ful�lling the model in (1.1). Moreover, assume
that the true signature vector of the SOI ~s di¤ers from the presumed signature vector s
in (1.1), namely ~s = s +� where � is an unknown distortion vector. In addition by
assumption ~s lies within an uncertainty set A(") = faja = s + e; kek � "g, where " is
a design parameter. Then, obtain an estimation of the unknown parameter x(n) in (1.1)
that maximizes the SINR subject to a no distortion constraint for all the signature vectors
within A(") and subject to the constraint that the �lter w ful�lls the shrinkage structure
in (1.27). This problem is mathematically formulated as follows,

x̂(n) = wHy(n); w = arg min
w

wHRw

subject to jwHaj > 1 for all a 2 A(");
w = �1R̂

�1s+ �2s:

(1.30)
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1.6 Organization of the Thesis and list of publications

The organization of the rest of this thesis is as follows. In chapter 2, an introduction to
the main tools, used herein to obtain the proposed corrections of the sample LMMSE and
MVDR methods to the small sample size regime, is presented. These tools are random
matrix theory and shrinkage estimation. Moreover, chapter 2 presents some RMT results
that are the cornerstone to obtain the proposed shrinkage �lters in the subsequent chapters
of this thesis. Chapter 3 obtains the shrinkage �lters that counteract the small sample size
degradation of the sample LMMSE. That is, it deals with the problem stated in (1.29) for
the particular cases exposed in the remarks 1 and 3. The work of this chapter is in part
available in the next conference and journal papers,

� J. Serra and F. Rubio, �Bias Corrections in Linear MMSE Estimation with Large Fil-
ters,�in Proceedings of the European Signal Processing Conference (EUSIPCO 2010),
23-27 August 2010, Aalborg (Denmark).

� J. Serra and F. Rubio, �Asymptotically optimal linear bias corrections in mini-
mum mean square error estimation,�Presentation at the International Conference
on Trends and Perspectives in Linear Statistical Inference (LinStat�2010), 27-31 July
2010, Tomar, (Portugal).

� J. Serra and M. Nájar,�Optimal Linear Correction in LMMSE Estimation Using
Moments of the Complex Inverse Wishart Distribution,� in Proc. IEEE Statistical
Signal Processing Conference (SSP 2012), 5-8 August 2012, Ann Arbor, MI, (USA).

� J. Serra and M. Nájar,�Double Shrinkage correction in sample LMMSE estimation".
in Proceedings of the European Signal Processing Conference (EUSIPCO 2013), 9-13
September 2013, Marrakech (Morocco).

� J. Serra and M. Nájar,�Asymptotically Optimal Linear Shrinkage of sample LMMSE
and MVDR �lters,� IEEE Transactions on Signal Processing, vol. 62, no. 14, pp.
3552-3564, July 2014.

� J. Serra and M. Nájar,�On the Shrinkage of regularized sample LMMSE and MVDR
�lters�, in preparation to be submitted to the IEEE Transactions on Signal Process-
ing.

Chapter 4 proposes optimal shrinkage corrections for large sample MVDR �lters, which
are based on RMT. That is it deals with the problem stated in (1.29) for the particular
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case exposed in the remark 2. The material of this chapter has been included in the next
journal papers,

� J. Serra and M. Nájar,�Asymptotically Optimal Linear Shrinkage of sample LMMSE
and MVDR �lters,� IEEE Transactions on Signal Processing, vol. 62, no. 14, pp.
3552-3564, July 2014.

� J. Serra and M. Nájar,�On the Shrinkage of regularized sample LMMSE and MVDR
�lters�, in preparation to be submitted to the IEEE Transactions on Signal Process-
ing.

The aim of chapter 5 is twofold. First, it evaluates the shrinkage �lters proposed in
chapters 3 and 4, as well as their related work, when there is both a �nite sample size
situation and a mismatch in the presumed signature vector of the SOI. This is important
as the �lters proposed in chapters 3, and 4 and their related work, assumed a known
signature vector. The second aim of chapter 5 deals with the problem stated in (1.30), i.e.
it proposes a shrinkage MVDR �lter which deals directly with both the �nite sample size
impairment and the imprecise knowledge of the signature vector of the SOI. The work of
this chapter can be found in,

� J. Serra and M. Nájar,�Robust Shrinkage MVDR beamforming,� submitted to the
IEEE Signal Processing Letters.

� J. Serra and M. Nájar,�On the Shrinkage of regularized sample LMMSE and MVDR
�lters�, in preparation to be submitted to the IEEE Transactions on Signal Process-
ing.

Finally, chapter 6 presents the concluding remarks and topics for future research.
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Chapter 2

Technical Background and Random
Matrix Theory results

2.1 Introduction

The aim of this chapter is twofold, �rst the tools used to design the proposed estimators
in the upcoming chapters are introduced. Namely, these are shrinkage estimation and
random matrix theory. Both tools cover extensive topics and not only have been applied
to signal processing and wireless communications, but also to other �elds of science, as
it will be commented below in this chapter. Therefore, herein the focus will be put on
introducing the most important features of these techniques in the context of this thesis.
Namely, certain de�nitions and propositions motivating the use of these tools for the design
of the proposed estimators will be dealt with. The second aim of this chapter is to present
several RMT results that are the cornerstone for the design of the proposed estimators.
The organization of this chapter is as follows. Section 2.2 introduces the RMT tool as well
as the important RMT results used to derive the proposed estimators in the next chapters.
Section 2.3 exposes the theory of shrinkage estimation.
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2.2 Random Matrix Theory

2.2.1 Introduction

The theory of random matrices is a vast �eld that studies the properties of matrices whose
entries follow a given joint probability distribution. Namely, within this �eld di¤erent topics
are addressed or have been addressed. These are the study of small size matrices with joint
Gaussian entries, e.g. see [87], [88] and [89]; the study of small and large random matrices
with invariance properties (e.g. free probability theory [90] [91], combinatronics [92] [93]
and Gaussian methods [94] [95]); And �nally the study of large random matrices with
independent entries [73], [96] and [97]. This latter topic is the one considered in this thesis.

The study of random matrices may be traced back within the mathematical �eld of
multivariate statistical analysis. Namely, due to the work that J. Wishart conducted on
�xed-size matrices with Gaussian entries in [87]. Nonetheless, the seed that subsequently
produced a plethora of research in random matrix theory stems from problems that ap-
peared within the �eld of nuclear physics in 1950s. Namely, in quantum mechanics, the
quantum energy levels are not observable, but may be characterized through the eigenval-
ues of a matrix of observations. It turns out that the empirical distribution function of the
eigenvalues, also known as Empirical Spectral Distribution (ESD), has a very complicated
form when the dimension of the matrix is high. Nonetheless, it was observed, by means of
numerical simulations that the ESD tends to a non-random limit when the dimensions of
the matrix increase without bound. Anyway these were conjectures, based on given obser-
vations, and it was not until 1958 that E. Wigner, with his pathbreaking publication [98],
showed that the expected value of the empirical eigenvalue distribution of a large random
matrix, called Wigner matrix nowadays, tends to a deterministic distribution function with
an associated density function known as the semi-circle law. With this work he founded the
�eld of random matrix theory, which deals with the asymptotic study of the eigenvalue and
eigenvector distribution of random matrices. Subsequently, another publication that was
of paramount importance for the development of the theory of large dimensional random
matrices, was presented by Marµcenko and Pastur in 1967, [96], which is commented below
in the next section. Since then, a plethora of research have been conducted by researchers
such as Bai or Silverstein, see [99] and references therein. For this thesis purposes, it is also
worth mentioning the work of Girko, as he developed a new statistical inference framework,
known as G-estimation, which is based on random matrix theory and complex integration,
see e.g. [100] or [101].

Random matrix theory has found applications in �elds as diverse as nuclear physics
[102], mathematical �nance [103] or computational biology [104]. In wireless communica-
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tions, information theory and signal processing, random matrix theory has found several
applications, see [105], [106] and references therein for a thorough description of them. In
this regard, the �rst contributions were probably the ones dealing with the multiplexing
gain of multiple antenna communications [107] and the performance analysis of multi-
user linear receivers in spread spectrum systems [108]. More in general, a possible, non-
exhaustive, classi�cation of the applications of RMT is described next. The �rst group
deals with the performance study of wireless communications technologies and systems.
The second and third group treat the signal detection and estimation problems in sen-
sor networks and wireless communications systems. Examples of the performance analyis
category are the studies of the capacity in multiple antenna systems for di¤erent types
of channel models, such as time varying Rayleigh channels [107], Rician channels [109], or
frequency selective channels [110]. An example of signal detection is [111], which deals with
the performance study of hypothesis testing methods in sensor arrays, such as the GLRT,
within the framework where the number of statistical samples may be comparable to the
number of sensors. Finally, examples of the application of RMT to parameter estimation
are the energy estimation of multiple sources in cognitive wireless networks [11], the perfor-
mance study of subspace based methods to propose new subspace algorithms such as the
G-MUSIC, see [12]. Also in this regard, it is worth mentioning the performance analysis of
the sample estimates of eigenvalues and eigenvectors of covariance matrices [34], and the
proposition of new estimators of them that cope with the performance degradation in the
small sample size regime, see [73].

2.2.2 Large Dimensional Random Matrix Theory

In order to begin this section it is important to clarify some points. First, it is interesting
to justify why it is attractive to study the distribution of eigenvalues associated to large
dimensional random matrices instead of just focusing on the case of �xed size random
matrices. In fact, probably the �rst result in RMT, i.e. [87], gave the expression of the
pdf of a random matrix consisting of a central Wishart distribution. However, in general
it is di¢ cult to obtain the expression of the pdf of the eigenvalues associated to a �xed
size random matrix and it requires extremely involved mathematical results [106]. This
is exempli�ed in e.g. [106, Theorem 2.7] where the joint pdf of the unordered eigenvalues
associated to a central Wishart matrix XXH is given, where the columns of X are iid
Gaussian with zero mean and non-negative de�nite covariance R. In contrast, in general
large dimensional random matrix theory leads to much simple results, in the study of
the distribution of the eigenvalues related to a random matrix. Moreover, as it is stated
in [106, p. 29] large dimensional RMT leads to stunningly precise approximations of �nite
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case scenarios stemming from random matrices.

The Stieltjes Transform

In this thesis, results from large dimensional random matrix theory will be used to derive
most of the proposed estimators. This discipline is devoted to study the asymptotic dis-
tribution of eigenvalues associated to random matrices, whose dimensions grow without
bound. In order to proceed, let X 2 CM�M be a Hermitian random matrix1 with asso-
ciated eigenvalues f�igMi=1. Then, the empirical distribution function of the eigenvalues,
also known as empirical spectral distribution (ESD) in the RMT literature, is de�ned as
follows2

FX(�) =
1

M
#f�m � �;m = 1; : : : ;Mg = 1

M

MX
m=1

I�m��(�) (2.1)

Where # denotes the cardinality of a set and I denotes the indicator function. Then,
one of the tasks of random matrix theory is to study the convergence, if it exists, of
the random ESD FX(�) towards a limiting non-random probability distribution function,
called limiting spectral distribution (LSD), when the dimensions of X increase without
bound. In this regard, a tool of paramount importance is the Stieltjes transform, which is
de�ned as follows,

De�nition 2.1 Let F be a real-valued distribution function and z 2 C be taken outside the
support of F . Then the Stieltjes transform of F at point z, denoted by mF (z), is de�ned
as3,

mF (z) ,
Z

1

t� zdF (t) (2.2)

�
Even more interesting for our purposes is the expression of the Stieltjes transform for

the eigenvalue distribution of hermitian matrices, which is shown in the next de�nition.
1The Hermitian property is needed to ensure that all the eigenvalues of X are real, though the extension

to non-Hermitian matrices has been considered sometimes e.g. in [99, (1.2.2)].
2Although here X is de�ned as random, the ESD is de�ned for non random matrices in the same

way [106].
3In general , the Stieltjes transform can be applied when F is a real valued bounded measurable function

over R, see [106].
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De�nition 2.2 Let X 2 CM�M be an hermitian matrix with eigenvalues �1; : : : ; �M .
Moreover, let FX be the empirical eigenvalue distribution function of X as de�ned in (2.1).
Then, the Stieltjes transform of FX, denoted by mX is given by,

mX ,
1

M

MX
k=1

1

�k � z
=
1

M
Tr
�
(X�zI)�1

�
(2.3)

�
The Stieltjes transform allows to simplify the asymptotic analysis of the eigenvalue

distribution. That is, it plays an analogous role to the Fourier transform, which simpli�es
the study of signals in the frequency domain instead of the temporal domain. Namely, in
order to study the convergence of the eigenvalue distribution function, say FB, towards a
limiting eigenvalue distribution function, say FL, a possible procedure is as follows. First,
the Stieltjes transform of FB, saymB, is found. Then, one founds thatmB converges to the
Stieltjes transform of FL, i.e. mL. Finally, one obtains the limiting distribution FL from
mL. This last step can be based on applying the inverse Stieltjes transform, de�ned below,
and the next property of the Stieltjes transform [106, Theorem 3.10], where ) denotes
weakly convergence and a:s:�! denotes almost sure convergence,

FB ) FL , mB
a:s:�! mL: (2.4)

De�nition 2.3 For all distribution functions F (x) which admit a Stieltjes Transform, then
the inverse Stieltjes Transform is de�ned for all x where F (x) is continuous as follows,

F (x) =
1

�
lim
y!0+

Z x

�1
ImfmF (x+ iy)gdx (2.5)

�
The procedure just described above to �nd the LSD FL, based on �nding the conver-

gence of the Stieltjes transform associated to the ESD, is applied for instance to obtain the
Marµcenko-Pastur law, which is exposed next. The Marµcenko-Pastur law is one of the most
remarkable and seminal works in RMT and it illustrates the spreading phenomenon of the
eigenvalues associated to a Gram matrix built from a random matrix with iid entries with
zero mean and unit variance. That is, a basic sample covariance matrix associated to a
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population covariance given by the identity matrix. This spreading phenomenon is more
pronounced as the sample size becomes smaller as it is shown below in �gure 2.1 and it
can be viewed as a motivation to propose corrections of estimators relying on the SCM in
the small sample size regime, which is the topic treated in this thesis.

Proposition 2.1 (Marµcenko Pastur Law) [96] [35, Theorem 1.1]. Let B be a random
matrix ful�lling the next structure B , 1

N
XXH 2 CM�M with X 2 CM�N . Moreover, let

X be a random matrix with i.i.d entries such that the real and imaginary parts of the
entries are independent with zero mean and variance 1/2. Then, as M;N ! 1 with
M=N ! c < +1, the Stieltjes transform of the empirical eigenvalue distribution function
FB associated to B, denoted by mB, converges almost surely to the Stieltjes transform mL,
associated to the LSD of B. Moreover, the ESD of B converges weakly and almost surely
to a non-random distribution function FL with an associated pdf fL described next.

mL(z) =
1� c� z +

p
(z � 1� c)2 � 4c
2cz

;8z 2 C+ (2.6)

fL(x) =

�
max(0; 1� c�1)�(x) + 1

2�cx

p
(b� x)(x� a) if a � x � b

0; otherwise
(2.7)

Where a = (1�
p
c)2 and b = (1 +

p
c)2.

�
Indeed, the Marµcenko-Pastur law is a particular case of [35, Theorem 1.1], which pro-

vides the Stieltjes transform associated to the limiting eigenvalue distribution function of
random matrices of the form B = 1

N
R1=2XXHR1=2. WhereR is assumed to be a hermitian

square positive-de�nite matrix, whose eigenvalues are uniformly bounded for all M , and
the entries of X are assumed to be iid with zero mean, variance 1/2 and with bounded mo-
ments. Nonetheless, in general one may not obtain a close analytical form for the limiting
pdf of the eigenvalues fL(x) and has to resort to numerical methods such as the �xed-point
method.

In �gure 2.1 the Marµcenko-Pastur law is exempli�ed by displaying the eigenvalue pdf
in (2.7) for di¤erent values of c, namely c =0.1, 0.2 and 0.5. One can see that when
c! 0 the support of the limiting pdf tends to concentrate in a single mass in 1. This case
corresponds to classical asymptotic analysis where the observation dimension M is �xed,
whereas the sample size N ! 1, and by the law of large numbers in this case B ! IM ,
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Figure 2.1: Marµcenko-Pastur Law: Limiting eigenvalue pdf in (2.7) for di¤erent values of
c =M=N .

i.e. the eigenvalues are all equal to 1 with multiplicity M . On the other hand, when both
M and N grow large and their limiting ratio c increases, the eigenvalue density no longer
concentrates in a single mass, namely it tends to spread.

Following with the illustration of the Marµcenko-Pastur law, in �gure 2.2 we represent
the histogram of the eigenvalues ofB, de�ned in proposition 2.1, and the associated limiting
pdf predicted by the Marµcenko-Pastur law (2.7), when M = 500, N = 5000 and c = 0:1.
One can observe that the limiting pdf envisaged by the Marµcenko-Pastur law is a good
match of the empirical histogram as both M and N grow large at a �xed rate c.

The Stieltjes transform presented in (2.3) is appropiate to study the asymptotic be-
havior of eigenvalues. Nonetheless, for the purposes of this thesis it is more convenient to
study both the asymptotic properties of the eigenvalues and the eigenvectors associated to
a given random matrix. To this end, let de�ne the next spectral function associated to the
square hermitian random matrix X 2 CM�M , which was introduced by Girko in e.g. [112]
and it is a generalization of the empirical eigenvalue distribution function in (2.1),
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Figure 2.2: Comparison between eigenvalue pdf of B and its limiting pdf given by Marµcenko
Pastur law in (2.7), when M = 500, N = 5000 and c = 0:1:

GX(�) =
MX
m=1

aHeme
H
mbI�m��(�) (2.8)

where em and �m are the m-th eigenvector and eigenvalue of X, respectively. Moreover,
a 2 CM and b 2 CM are two generic deterministic vectors. Interestingly enough, this
spectral function has an associated Stieltjes transform given by the next expression, see
[112],

aH(X�zIM)�1b =
MX
m=1

aHeme
H
mb

�m � z
(2.9)

Now we can see the importance of (2.9). It resembles the quadratic forms that usually
appear in statistical signal processing and that depend on the sample correlation matrix
R̂, e.g. sHR̂�1s. Therefore, (2.9) paves the way to study the asymptotic properties of
quadratic forms depending on R̂.
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G-estimation

G-analysis, also known as G-estimation or general statistical analysis (GSA) is an statistical
inference framework that builds on randommatrix theory and complex integration methods
and was introduced by Girko in e.g. [100]. It provides a framework to derive estimators that
are consistent in the doubly asymptotic regime where both the observation dimension M
and the sample sizeN grow large at the same rate, i.e. M;N !1 andM=N ! c 2 (0;1).
For instance, in array signal processing M may be the number of antennas and N the
number of available snapshots to design a given estimation algorithm. This new statistical
inference framework di¤ers from classical estimation that considersM �xed and N !1 to
derive a consistent estimator. Therefore, the estimators derived under the GSA framework
are usually called (M;N)-consistent. Moreover, GSA naturally deals with the small sample
size regime, i.e. situations whereM and N are comparable, and where classical estimators
tend to perform poorly. Also due to this reason GSA paves the way to obtain estimators
that converge much faster when M grows large than classical estimators.

A great deal of results in G-estimation build upon the so-called "G25-estimator" pro-
posed by Girko in e.g. [101]. Namely, let consider a given covariance matrix R 2 CM�M

and its sample estimate, i.e. the sample covariance matrix R̂. Moreover, let de�ne the
next function, which is a real Stieltjes transform of a certain spectral function, analogous
to its complex counterpart in (2.9),

TR(x) = aH(IM + xR)�1b =
MX
m=1

aHeme
H
mb

1 + x�m
; x 2 R+ (2.10)

with a;b 2 CM two generic deterministic vectors and em; �m the m-th eigenvector and
eigenvalue of R 2 CM�M , respectively. Then, an (M;N)-consistent estimator of (2.10)
when M;N !1 and M=N ! c 2 (0;1) reads as follows [101],

T̂R(x) = aH(IM + �(x)R̂)�1b (2.11)

where �(x) is the positive solution to the next equation,

�(x)
h
1� c+ c

M
Tr
h
(IM + �(x)R̂)

�1
ii
= x:

The importance of the G25-estimator in our framework is that a lot of signal processing
and communications expressions can be expressed in terms of (2.10). As a consequence, the
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G25-estimator paves the way to obtain the (M;N)-consistent estimators of those quantities.
For instance, the inverse correlation matrix R�1 or quadratic forms of Rk; k > 0, see [9],

�
R�1�

i;j
= lim

x!1
xuHi (IM + xR)

�1uj (2.12)

aHRkb =
(�1)k
k!

�
dk

dxk
aH(IM + xR)

�1b

�
jx=0

(2.13)

Where uj is an all zeros column vector with a 1 in the j-th position. In general,
the common procedure in G-estimation to obtain (M;N)-consistent estimators of a given
quantity is as follows. First, one expresses the parameter to be estimated, say �, as a
function of the Stieltjes transform associated to a deterministic matrix T hidden in the
signal model, i.e. � = f(mT). Second, one �nds thatmT is asymptotically equivalent to the
Stieltjes transform associated to the available matrix of observations Y, i.e. mT � g(mY),
where � denotes usually almost surely convergence. Finally, one estimates � as �̂ =
f((g(mY)).

2.2.3 Random Matrix Theory Results

In this section asymptotic equivalences that pave the way to obtain (M;N)-consistent
estimators in the subsequent chapters of this thesis are presented. Namely, they build upon
large dimensional random matrix theory and they are based on �nding the convergence
of certain random quantities depending on the sample estimate of the correlation matrix,
under the doubly asymptotic regime where both M and N grow large at a given rate.

Lemma 2.1 Let an denote a sequence of random variables and b denote a deterministic
quantity. Let an � b mean that an and b are asymptotic equivalents, i.e. jan � bj ! 0 in
probability. Let s 2 CM be a generic deterministic vector with uniformly bounded norm.
Moreover, assume that R 2 CM�M denotes a generic positive de�nite correlation matrix
whose eigenvalues are uniformly bounded for all M and they have a limiting spectral distri-
bution. Let R̂ 2 CM�M denote the sample estimate of R as de�ned in (1.8). Moreover, let
assume that sHs =1. Then, within the framework of general asymptotics, i.e. M;N !1
at a constant rate M=N ! c 2 (0; 1), the next equivalences hold,

sHR̂�1s � (1� c)�1sHR�1s (2.14)

sHR̂�1Rs � (1� c)�1 � sHRR̂�1s (2.15)
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sHR̂�1RR̂�1s � (1� c)�3sHR�1s (2.16)

sHR̂s � sHRs (2.17)

Proof: The proofs are presented in the Appendix of this chapter.

�

Lemma 2.2 Let a � b mean that a and b are asymptotic equivalents, i.e. ja� bj !
0 in probability. Let s 2 CM be a generic deterministic vector with uniformly bounded
norm. Moreover, assume that R 2 CM�M denotes a generic positive de�nite correlation
matrix whose eigenvalues are uniformly bounded for all M and they have a limiting spectral
distribution. Let R̂ 2 CM�M denote the sample estimate of R as de�ned in (1.8). Finally,
let denote �R = R̂ + �I, with � a deterministic real positive value. Then, considering the
asymptotic regime where M;N ! 1 at a constant rate M=N ! c 2 (0;1), the next
equivalences hold,

sH �R�1R �R�1s � 1�
1� c

M
Tr[R̂ �R�1]

�2 sH �R�1R̂ �R�1s (2.18)

sHRs � sHR̂s: (2.19)

sHR �R�1s � 1

1� c+ c �
M
Tr[ �R�1]

sHR̂ �R�1s (2.20)

sH �R�1Rs � 1

1� c+ c �
M
Tr[ �R�1]

sH �R�1R̂s (2.21)

Proof: The proofs are presented in the Appendix of this chapter.

�

2.3 Shrinkage Estimation

2.3.1 Introduction: the James-Stein method

Among the methods that estimate the moments of a given distribution, the sample estima-
tors are one of the most widely used. The rationale behind is that the sample estimates are
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moments of the empirical distribution, which converges almost surely to the true distribu-
tion when the number of iid observations tends to in�nity and the observation dimension
is �xed, according to the Glivenko-Cantelli theorem. Indeed, it is well known that, when
the data is Gaussian, the sample mean and the sample covariance are the ML estimators
of the mean and the covariance of the true distribution, respectively.

Nonetheless, in a pathbreaking and astonishing publication [83], Stein proved that
the sample mean is not an admissible estimator of the mean of a multivariate gaussian
distribution, when the observation dimension is larger than one. Namely, he proposed an
estimator, which is called nowadays James-Stein estimator, which displays lower MSE than
the sample mean. This seminal work of Stein was so-called Stein�s phenomenon and it was
the foundation of shrinkage estimation. Notable contributions to the understanding of this
phenomenon were [84], [85] and [113�117]. See also [82] for a thorough discussion about
this topic and in general about shrinkage estimation.

The main idea behind shrinkage estimation may be summarized as follows. The bulk of
error (MSE) of the sample estimators comes from their estimation variance, i.e. their bias
is quite limited. Therefore, if one intends to outperform the sample estimators, a possible
approach is to design methods that have larger bias than them but a lower variance such
that the overall MSE is lower than the one of the sample estimators. Stein gave expression
to this idea by means of an estimator consisting of a linear scaling of the sample mean.
Subsequently, Stein and James generalized this concept conceiving the so-called James-
Stein estimator. It is based on blending, by means of a weighted average, the sample mean,
which displays much higher estimation variance than bias, with a constant estimator of the
mean, which displays high bias but no variance. Thus, by optimally combining the bias
variance tradeo¤, the James-Stein estimator obtains a lower MSE than the sample mean.
This concept may be generalized to the estimation of any parameter and it is the basis of
shrinkage estimation. Next, we provide the expression of the James-Stein estimator, by
means of the next proposition. Namely it is the expression exposed in [82], which is more
general than the original method proposed by James and Stein.

Proposition 2.2 (James-Stein estimator) Let x 2 RM be a multivariate Gaussian random
variable x � N (�;�) and M > 1. Moreover, let N realizations of x be available, i.e.

fxngNn=1, and let denote by �̂ the sample estimator of �, namely �̂ = 1
N

NP
n=1

xn. Then, the

James-Stein estimator of � reads as follows,

�̂s=(1� �)�̂+�b (2.22)
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Where � is the shrinkage factor and it depends on the largest eigenvalue and the average
of the eigenvalues of � denoted by �1 and ��, respectively,

� =
1

N

M��� 2�1
(�̂� b)T (�̂� b)

And b is a constant estimator of �. Namely, it can be any M-dimensional �xed vector
stemming from a priori information of the problem at hand. Moreover, the James-Stein
estimator dominates the sample mean for any choice of b.

Proof: For a proof of the dominance of the James-Stein estimator on the sample mean
we refer the reader to [118, Appendix 4.5].

�
Indeed, there are other possible choices for b other than a constant vector. E.g. Jorion

in [119] proposed to use an estimator based on the grand mean, namely b =1T �̂�1�̂
1T �̂�11

1,

where 1 is anM-dimensional vector of all ones and �̂ is an estimator of �, e.g. the sample
covariance matrix. Moreover, although for a generic constant vector b, the James-Stein
method dominates the sample mean, its choice is important. Namey, the smaller kb� �k
the better the performance. Regarding this method, another important remark is that
other authors have shown that shrinkage type estimators dominate the sample mean for a
broader class of distributions other than the Gaussian, see e.g. Evans and Stark [120].

In order to get more insights on shrinkage estimation it is worth analyzing the shrinkage
factor �. Usually the constraint that � 2 (0; 1) is imposed. Thus, on the one hand when
� ! 0, the James-Stein method tends to the sample mean �̂s ! �̂. On the other hand,
�! 1 implies that �̂s ! b, i.e. the estimator is shrunken toward �the target�b. This is
a phenomenon that happens in general in these type of estimators and this is the reason
of calling them shrinkage estimators. Indeed, � controls the amount of shrinkage. Namely,
according to (2.22), when the sample sizeN tends to in�nity and the observation dimension
M remains �xed, the shrinkage factor tends to vanish, i.e. � ! 0 and the James-Stein
tends to the sample mean �̂s ! �̂. Which is logic as in this situation the sample mean
is the optimal estimator. On the other hand, when M tends to be comparable or even
higher than N , the shrinking factor � tends to increase and �̂s is shrunken towards b. This
supports the intuition that in the small sample size regime the performance of sample mean
method is considerably degraded. Or in other words, �̂s is shrunken towards b because
the information obtained from the measured samples is worse than the a priori information
embedded in b. This behavior also highlights the robustness of shrinkage estimators to
the small sample size regime. Indeed, as the interpretation of the shrinkage factor has
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glimpsed, the James-Stein estimator and in general shrinkage estimation can be explained
within the context of Bayesian estimation, e.g. Efron in [121] showed the empirical Bayes
derivation of the James-Stein method.

The paradigm initiaded by the James-Stein estimator has been applied in several works
among the community of signal processing. Poor in [122] applied it to adaptive �ltering,
other authors applied the Stein�s Unbiased Risk Estimator (SURE) principle, which stems
from James-Stein estimation, to obtain methods having lower MSE than the ML, see [123]
and references therein. Moreover, James-Stein estimation has been applied to other �elds
of science such as quantitative �nance [119].

2.3.2 Shrinkage estimators of the sample covariance

Although shrinkage estimation arose in the context of estimating the mean of a Gaussian
distribution, it has been applied to the estimation of other parameters, e.g. to the esti-
mation of the covariance of a given distribution. Originally it was also Stein who studied
the shrinkage of the SCM in [84]. More recently, Ledoit and Wolf proposed in [33] a
shrinkage estimator of the SCM R̂, consisting of shrinking R̂ towards a scaled identity
matrix by means of a linear combination. The contribution of that method is that it deals
with the case where the sample size N may be lower than the observation dimension M
and that does not require any assumption about the distribution of the data used for the
estimation. Considering as a reference the work of Ledoit and Wolf, recently the signal
processing community has proposed other shrinkage estimators of the SCM. For instance,
Stoica, Guerci et al. [41], in the context of radar, extended the work of Ledoit and Wolf
to complex data and to a shrinkage target consisting of a general matrix which expresses
a priori information about the SCM, which is obtained from the problem at hand. In this
regard, another contribution was proposed by Eldar, Hero et al. in [59], where assuming
a Gaussian distribution of the data, the authors proposed two shrinkage estimators of the
SCM that outperform the Ledoit and Wolf method. In order to get more insights, the
Ledoit and Wolf estimator is exempli�ed in the next proposition.

Proposition 2.3 (Ledoit and Wolf Shrinkage estimator of the covariance) Let X 2 RM�N

be a matrix of N iid observations of M random variables with mean zero and covariance
�. Let denote by �̂ = XX

T
=N the SCM. Consider the problem of estimating � based on

a shrinkage estimator of the SCM towards a scaling of the identity matrix, �0 =
Tr[�̂]
M
IM ,
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which minimize the MSE, namely,

min
�
E
h����2

F

i
s:t:�� =(1� �)�̂+��0

(2.23)

Where k�kF denotes the Frobenius norm. Then, an (M,N)-consistent estimator of
the optimal, though unrealizable, solution to (2.23) within the general asymptotics where
M;N ! 1 at a constant rate M=N ! c 2 (0;1), is given by the Ledoit and Wolf
estimator,

��LW=(1� �̂LW )�̂+�̂LW�0

�̂LW =

NP
n=1
kxnxTn��̂k2F

N2 Tr[�̂2]�
Tr2[�̂]
M

(2.24)

Where xn is the n-th column of X.

Proof: For a proof of this proposition the reader is referred to [33].

�

Appendix: Proof of the useful equivalences

Proof of (2.14) and (2.15).

The proofs of these asymptotic equivalences are based on [34, Theorem 1]. First, note

that sHR̂�1Rs, sHRR̂
�1
s and sHR̂�1s can be expressed in terms of a Stieltjes transform

m̂(z) as follows,

m̂(z) = aH(R̂�zIM)�1b =
MX
m=1

aH êmê
H
mb

�̂m � z

sHR̂�1Rs = lim
z!0

m̂(z)

m̂(z) s.t. a = s; b = Rs
(2.25)

sHRR̂
�1
s = lim

z!0
m̂(z)

m̂(z) s.t. a = Rs; b = s
(2.26)
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sHR̂�1s = lim
z!0

m̂(z)

m̂(z) s.t. a = s; b = s
(2.27)

Therefore, in order to proof (2.14) and (2.15) the asymptotics of m̂(z) must be studied.
This is provided by means of [34, Theorem 1], which states that m̂(z) converges almost
surely to a function �m(z) when M;N !1 and M=N ! c with 0 < c <1,

m̂(z) � �m(z)

�m(z) =
MX
m=1

aHeme
H
mb

�m(1� c� cz�b(z))� z
(2.28)

Being �b(z) the positive solution to the next equation,

�b(z) =
1

M

MX
m=1

1

�m(1� c� cz�b(z))� z
(2.29)

Now, recalling the relations in (2.25), (2.26), (2.27) and applying the limit z ! 0 in
the expression of �m(z) and assuming sHs =1, we obtain the convergence of the desired

quantities sHR̂�1Rs, sHRR̂
�1
s and sHR̂�1s which concludes the proof,

sHR̂�1Rs � lim
z!0

�m(z) = 1
1�c

�m(z) s.t. a = s; b = Rs

sHRR̂
�1
s � lim

z!0
�m(z) = 1

1�c

�m(z) s.t. a = Rs; b = s

sHR̂�1s � lim
z!0

�m(z) = 1
1�cs

HR�1s

�m(z) s.t. a = s; b = s

�
Proof of (2.18)

The proof of the equivalence in (2.18) is based on the results obtained in [9, Appendix
I] and [124]. Namely, the proof is divided in two parts. In the �rst part, the convergence
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of sH �R�1R�R�1s towards a deterministic function of R is obtained. This result was found
in [9, Appendix I] and it relies on expressing sH �R�1R�R�1s in terms of a Stieltjes transform
associated to the type of random matricesB = �R�1+��H , where� is anM�N random
matrix with iid complex entries with zero mean and variance 1=2N . The second part of
the proof obtains the (M,N)-consistent estimate of the function of R obtained in the �rst
part of the proof. Thereby it paves the way to obtain the (M,N)-consistent estimate of
sH �R�1R�R�1s. This result was obtained in [124]. Next, we give the details of the overall
proof. First the next de�nition is used,

�n(�) = s
H �R�1R�R�1s (2.30)

where recall that �R = R̂ + �I. Now, assume that the SCM can be related to the
theoretical covariance R through the expression,

R̂ = R
1=2
��HR1=2 (2.31)

where � 2 CM�N is a random matrix with iid entries and whose real and imaginary
parts are independent, have zero mean and variance 1=2N . The assumption that the
equality (2.31) holds is usually accepted in the random matrix theory literature, see e.g.
[9, 34, 73]. Namely, as it is pointed out in [9, Appendix I], which has the same data
model than the one assumed herein in (1.1), it can be easily shown that (2.31) holds
if the next two assumptions are ful�lled. First, the signal of interest x(n) in (1.1) is
a sequence of iid complex random variables with independent real and imaginary parts,
which have zero mean, variance =2 and bounded moments. Second, the interference plus
noise n(n) in (1.1) is a sequence of iid complex random vectors, which are statistically
independent of x(n), whose real and imaginary parts are independent, have zero mean,
posititve de�nite covariance matrix Rn=2 and bounded moments. Taking into account
(2.31) in the expression (2.30), it is easily shown that (2.30) can be expressed in terms of
the next function,

m(z) = sHR�1=2(��H+�R�1 � zIM)�1R�1=2s: (2.32)

Namely, the next relation holds between �n(�) and m(z),

�n(�) =
dm(z)

dz
jz=0: (2.33)
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It turns out that (2.32) has the form of a Stieltjes transform of the type aH(M�zI)�1a
introduced above in (2.9). Thereby, due to the relation in (2.33), the convergence of the
expression of interest �n(�) = s

H �R�1R�R�1s implies �nding the convergence of the Stieltjes
transform m(z) associated to the type of random matrices M = ��H+�R�1. This result
was found in [9, Lemma 1 in Appendix I], which is stated in the next lemma.

Lemma 2.3 Let M = ��H+�R�1 with �R�1 a positive de�nite Hermitian matrix of
dimensions M � M , whose eigenvalues are strictly positive and uniformly bounded (i.e.
there exists a constant that bounds all the eigenvalues) and they have a limiting distribution
function as M grows large. Moreover, assume that � 2 CM�N is a complex random matrix
with iid entries and whose real and imaginary parts are independent, have zero mean,
variance 1=2N and bounded moments. Let denote A = �R�1 and �M(A) the maximum
eigenvalue of A. Moreover, consider D� an open disk centered at z = 0 with radius � <
�M(A)=3. Finally, suppose that the vector a = R�1=2s has a uniformly bounded norm and
it ful�lls the next assumption, sup

M
sup
z2D2�

jaH(�R�1 � zI)�1aj < 1. Then, assuming the

asymptotic regime where M;N !1 and M=N ! c 2 (0;1),

lim
M;N!1

sup
z2D�

jm(z)� �m(z)j = 0 (2.34)

almost surely, where

m(z) = sHR�1=2(��H+�R�1 � zIM)�1R�1=2s: (2.35)

�m(z) =
MX
m=1

sHR�1=2eme
H
mR

�1=2s(1 + cb(z))

1 + (���1m � z)(1 + cb(z))
: (2.36)

With em and �m being the m-th eigenvector and eigenvalue of R, respectively, and b(z)
being the positive solution to the next equation,

b(z) =
1

M

MX
m=1

(1 + cb(z))

1 + (���1m � z)(1 + cb(z))

Proof: The proof is shown in [9, Appendix I] and references therein.

�
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At this point, recall that the quantity of interest �n(�) = sH �R�1R�R�1s is related to
m(z) through a derivative operation, see equation (2.33). Moreover, observe that m(z)
is an holomorphic function and convergence of holomorphic functions implies convergence
of all its derivatives (by the Weierstrass theorem). Thereby, from Lemma 2.3 it is easily
deduced that �n(�) converges in probability towards a function ��n(�). More speci�cally

lim
M;N!1

j�n(�)� ��n(�)j = 0 in probability. (2.37)

Where

��n(�) =
d �m(z)

dz
jz=0 =

MX
m=1

��sHem��2 �m((1 + cb)2 + cb0)
(�m + �(1 + cb))

2 : (2.38)

Note that b = b(z)jz=0, b(z) was de�ned in lemma 2.3 and b0 =
db(z)
dz
jz=0 has the next

expression,

b0 =
db(z)

dz
jz=0 =

"
1� 1

M

MX
m=1

c�2m
(�m + �(1 + cb))

2

#�1 "
1

M

MX
m=1

�2m(1 + cb)
2

(�m + �(1 + cb))
2

#
: (2.39)

Therefore at this point the �rst part of the proof, which aimed to �nd the convergence of
�n(�) towards a deterministic function of R is �nished. More speci�cally, equations (2.37)
and (2.38) yield the next asymptotic equivalence, where the convergence is in probability,

sH �R�1R�R�1s = �n(�) � ��n(�) =
MX
m=1

��sHem��2 �m((1 + cb)2 + cb0)
(�m + �(1 + cb))

2 : (2.40)

In order to proceed, note that the right hand side of equation (2.40) can be rewritten
in terms of R, just taking into account the eigendecomposition of R and its properties.
This leads to rewrite (2.40) as follows,

sH �R�1R�R�1s � [(1 + cb)2 + cb0]sH(R+ �(1 + cb)I)�1R(R+ �(1 + cb)I)�1s (2.41)

Now note that (2.41) can be rewritten in a more compact form. To this end �rst,
observe that the term b0 in (2.39) can be expressed in terms of a new parameter �,
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b0 =
(1 + cb)2�

1� c�

� =
1

M

MX
m=1

�
�m

�m + �(1 + cb)

�2
:

(2.42)

This permits to rewrite (2.41) as follows,

sH �R�1R�R�1s �
�
(1 + cb)2

�
1

1� c�

��
sH(R+ �(1 + cb)I)�1R(R+ �(1 + cb)I)�1s (2.43)

This equation establishes the beginning of the second part of the proof, which consists
of obtaining an (M,N)-consistent estimate of the right hand side of (2.43) and thereby of
the expression of interest herein which is the left hand side of (2.43). More speci�cally, to
achieve this aim one can see that one must estimate the next three expressions,

b =
1

M

MX
m=1

�m(1 + cb)

�m + �(1 + cb)

� =
1

M

MX
m=1

�
�m

�m + �(1 + cb)

�2
��n = s

H(R+ �(1 + cb)I)�1R(R+ �(1 + cb)I)�1s:

These estimates are given in [124, Appendix A] and the rationale relies on expressing
b, �, ��n in terms of the next functions t(x) and s(x), which are particular cases of a real
Stieltjes transform m'k(x), see e.g. [100,101]

m'k(x) =

MX
k=1

'k
1 + x�k

; x 2 R+

t(x) = m'k(x)j'k=jsHekj2 =
MX
k=1

��sHek��2
1 + x�k

; x 2 R+

s(x) = m'k(x)j'k=1=M =
1

M

MX
k=1

1

1 + x�k
; x 2 R+:

(2.44)

Thereby it can be shown that b, � and ��n can be expressed as follows, where the
relation between b and s(x) is readily obtained by using the matrix inversion lemma, the
eigendecomposition of R and the properties of the trace operator.
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� = 1� s(x)jx=(�(1+cb))�1 + (�(1 + cb))�1
ds(x)

dx
jx=(�(1+cb))�1

b

(1 + cb)
= 1� s(x)jx=(�(1+cb))�1

��n = �
�
x2
dt(x)

dx

�
jx=(�(1+cb))�1

(2.45)

Therefore, one can see that the estimation of the quantities of interest b, � and ��n
requires to obtain the estimation of the Stieltjes transforms t(x) and s(x). The (M,N)-
consistent estimator of m'k(x) and thereby of t(x) and s(x) was obtained in e.g. [100,101].
These are summarized in the next equation,

m'k(x) � m̂'k(x) =
MX
k=1

'k

1 + �(x)�̂k

t(x) � t̂(x) =
MX
k=1

��sH êk��2
1 + �(x)�̂k

s(x) � ŝ(x) = 1

M

MX
k=1

1

1 + �(x)�̂k
:

(2.46)

where �(x) is the positive solution to the next equation,

�(x)

�
1� c+ c 1

M
Tr
h
(I+�(x)R̂)

�1i�
= x; x > 0: (2.47)

As a consequence, considering (2.46) into (2.45) one obtains the desired estimates, i.e.
b, � and ��n, which are expressed in the next equations.

4

b � b̂ =
1� �

M
Tr[(R̂+�I)�1]

1� c
�
1� �

M
Tr[(R̂+�I)�1]

� (2.48)

4The key to obtain these expressions is to note that in (2.47) 1=MTr[(I+ �(x)R̂)�1] = ŝ(x) and to use

that
b̂

(1 + cb̂)
= 1� ŝ(x)jx=(�(1+cb̂))�1 , which leads to obtain that �(x)jx=(�(1+cb̂))�1 = 1=�.
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� � �̂ =
1

M
Tr[R̂2(R̂+�I)�2]� c

M2
(Tr[R̂(R̂+�I)�1])2

1� c+ c�2 1
M
Tr[(R̂+�I)�2]

(2.49)

��n � �̂n =

�
1� c

�
1� �

M
Tr[(R̂+�I)�1]

��2
1� c+ c

M
Tr[(��1R̂+ I)�2]

sH(R̂+�I)�1R̂(R̂+�I)�1s (2.50)

In order to �nish the proof, it only remains to substitute the quantities b, � and ��n of
(2.43) by their estimates obtained in (2.48), (2.49) and (2.50), respectively. After some
manipulations, which mainly require the matrix inversion lemma and the identity displayed
in the footnote 5, one obtains the (M,N)-consistent estimation of the quantity of interest,

sH �R�1R�R�1s � 1�
1� c

M
Tr[R̂�R�1]

�2 sH �R�1R̂�R�1s: (2.51)

Where recall that �R = R̂ + �I. Equation (2.51) coincides with the identity (2.18)
thereby the proof is now concluded.

�
Proof of (2.16)

This proof is a particular case of the proof for (2.18), i.e. it is mainly based on the
proof provided in [9, Appendix I], (cf. [10, Chapter4], [32] and [125]). First, let us de�ne
the next random quantity,

�n(�) = s
H(R̂+�IM)

�1R(R̂+�IM)
�1s (2.52)

Hence, we can express the quantity of interest sHR̂�1RR̂
�1
s as a function of �n

sHR̂�1RR̂
�1
s =lim

�!0
�n(�) (2.53)

Therefore, in order to proof (2.16), the convergence of �n must be obtained. But, this
was obtained above in (2.37)-(2.38)

5 1
M Tr[R̂2(R̂+�I)�2] = 1� 2

M Tr[(��1R̂+ I)�1] + 1
M Tr[(��1R̂+ I)�2]. [10, p. 248]
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�n(�) � ��n(�)

��n(�) =
MX
m=1

��sHem��2 �m((1 + cb)2 + cb0)
(�m + �(1 + cb))

2 (2.54)

With b = b(0) the positive solution to the next equation,

b =
1

M

MX
m=1

�m(1 + cb)

�m + �(1 + cb)
(2.55)

and b0 = db(z)
dz
jz=0 having the next expression,

b0 =
db(z)

dz
jz=0 =

"
1� 1

M

MX
m=1

c�2m
(�m + �(1 + cb))

2

#�1 "
1

M

MX
m=1

�2m(1 + cb)
2

(�m + �(1 + cb))
2

#
(2.56)

Now, recalling the relation between sHR̂�1RR̂
�1
s and �n(�) shown in (2.53) and con-

sidering the asymptotic equivalent of �n(�) in (2.54),

sHR̂�1RR̂
�1
s � lim

�!0
��n(�) (2.57)

According to (2.55) and (2.56) b �!0�! (1 � c)�1 and b0 �!0�! (1 � c)�3, respectively.
Therefore, after operating the limit �! 0, we can rewrite (2.57) as follows,

sHR̂�1RR̂�1s � 1

(1� c)3
MX
m=1

��sHem��2
�m

Finally, recalling the eigendecomposition properties ofR, we obtain the next asymptotic
equivalence, which concludes the proof for (2.16),

sHR̂�1RR̂�1s � (1� c)�3sHR�1s

�
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Proof of (2.17) and (2.19)

We will begin by giving the proof of (2.19), as (2.17) is a particular case of it. The
proof is based on [9], cf. also [126, Proposition 1]. First, note that according to (2.13),
sHRs can be expressed as,

sHRs =�
�
d

dx
sH(IM + xR)

�1s

�
jx=0 (2.58)

Now, the key in the proof is to recall the G-25 estimator of the real Stieltjes transform
of R stated in (2.10) and (2.11), which states the next almost sure convergence within the
asymptotic regime where M;N !1 and M=N ! c 2 (0;1)

sH(IM + xR)
�1s � sH(IM + �(x)R̂)�1s (2.59)

Where �(x) is the positive solution of the next equation,

�(x)
h
1� c+ c

M
Tr
h
(IM + �(x)R̂)

�1
ii
= x

Now considering the asymptotic equivalence (2.59) in (2.58) we obtain the next relation,

sHRs � �
�
d

dx
sH(IM + �(x)R̂)

�1s

�
jx=0 = sH(IM +�(x)R̂)�1

d�(x)

dx
R̂(IM +�(x)R̂)

�1
sjx=0:

Where the second equality follows from the chain rule and the next property. Given a
matrixX which depends on a parameter p, then d[Tr(X�1A)]=dp = �Tr[(X�1AX�1)dX=dp],
see [14, p. 1401]. Finally, after easy manipulations it is easy to check that �(0) = 0 and
that d�(x)

dx
jx=0 = 1 and as a consequence we obtain the next relation, which concludes the

proof,

sHRs � sHR̂s

The proof of (2.17) is a particular case of the proof of (2.19) shown above. Namely,
in the proof of (2.19) the next almost surely convergence within the asymptotic regime
M;N !1 and M=N ! c 2 (0;1) was shown, sHRs � sHR̂s. Thereby, (2.17) is shown
directly from (2.19), as recall that (2.17) proposed that sHRs � sHR̂s within the regime
M;N !1 and M=N ! c 2 (0; 1).
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�
Proof of (2.20) and (2.21)

The proof of (2.21) can be separated in two parts, as in the proof of (2.18). The �rst
part obtains the convergence of (2.20) and (2.21) towards a deterministic function that only
depends on R and the regularization parameter �. To do so, it interprets (2.20) and (2.21)
as a type of Stieltjes transforms associated to the random matrix B = �R�1+��H , where
� is anM�N random matrix with iid complex entries with zero mean and variance 1=2N .
In the second part, all the unknown quantities of the deterministic function obtained in the
�rst part are estimated. To this end, it is observed that all the quantities can be expressed
as a function of the real Stieltjes transform,

m'k(x) =
MX
k=1

'k
1 + x�k

; x 2 R+

whose (M,N)-consistent estimate is known.

In order to begin the �rst part of the proof, the quantities of interest are denoted as
follows for the sake of the clarity.

�1 = s
H �R�1Rs

�2 = s
HR�R�1s

(2.60)

with �R = R̂ + �I. Next, bear in mind the relation between R̂ and R, already discussed
above in (2.31), see also [9,34,73].

R̂ = R1=2��HR1=2: (2.61)

where � 2 CM�N is a random matrix with iid entries and whose real and imaginary parts
are independent, have zero mean and variance 1=2N . Taking into account (2.61) into (2.60)
one obtains that both �1 and �2 can be expressed in terms of the next function

h(z) = cH1 (��
H + �R�1 � zI)�1c2: (2.62)

Where c1 and c2 are two deterministic vectors. More speci�cally,

�1 = s
HR�1=2(��H + �R�1 � zI)�1R�1=2Rs = h(z)jz=0;cH1 =sHR�1=2;c2=R�1=2Rs: (2.63)
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�2 = s
HRR�1=2(��H + �R�1 � zI)�1R�1=2s = h(z)jz=0;cH1 =sHRR�1=2;c2=R�1=2s: (2.64)

Therefore, in order to obtain the convergence of the quantities of interest �1 and �2, one
must �nd the convergence of h(z). Note that h(z) has the form of the Stieltjes Transform
introduced above in (2.9). Thereby, the convergence of the Stieltjes transform associated
to the type of matrices M = ��H + �R�1 must be found. This convergence is actually
found in [127], [9, Appendix I] and references therein for the case where c1 = c2. Though
analyzing the proofs in [127], see also [9, Appendix I], it is easily shown that the results
hold for two generic deterministic complex vectors c1; c2 with uniformly bounded norm for
allM. Thereby, from [9, Lemma I,Appendix I], one obtains that considering the asymptotic
regime where M;N !1;M=N ! c 2 (0;1) the next almost surely convergence for h(z)
holds,

h(z) = cH1 (��
H + �R�1 � zI)�1c2 � �h(z) =

MX
m=1

cH1 eme
H
mc2(1 + cb(z))

1 + (���1m � z)(1 + cb(z))
: (2.65)

Where, recall that �m is the m-th eigenvalue of R and em the associated eigenvector.
Furthermore, b(z) is the positive solution to the next equation

b(z) =
1

M

MX
m=1

(1 + cb(z))

1 + (���1m � z)(1 + cb(z))
:

Thus, for the particular case of z = 0, and bearing in mind the eigendecomposition of
R and its properties, one obtains the next expression

�h(z)jz=0 = (1 + cb)cH1 (I+ �(1 + cb)R�1)�1c2: (2.66)

Where b = b(z)jz=0. As a consequence, taking into account (2.63)-(2.66) into (2.60) one
obtains the next convergence in probability for the quantities of interest �1, �2 within the
asymptotic regime where M;N !1;M=N ! c 2 (0;1)

�1 = s
H �R�1Rs � (1 + cb)sH(R+ �(1 + cb)I)�1Rs;

�2 = s
HR�R�1s � (1 + cb)sHR(R+ �(1 + cb)I)�1s: (2.67)

Where recall that �R = R̂+ �I. Therefore, the �rst part of the proof is concluded. The
second part of the proof aims to �nd the (M,N )-consistent estimate of the unknown terms
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in (2.67). To this end, �rst bear in mind the property (AB)�1 = B�1A�1 of two generic
invertible complex matrices A and B. Then, it is easy to show that

sH(R+ �(1 + cb)I)�1Rs = sH(I+ �(1 + cb)R�1)�1s
sHR(R+ �(1 + cb)I)�1s = sH(I+ �(1 + cb)R�1)�1s:

(2.68)

Thereby, it is enough to estimate the next unknown terms in the right hand side of
(2.67)

b
sHR(R+ �(1 + cb)I)�1s:

(2.69)

The rationale to obtain the (M,N )-consistent estimators of these quantities relies on a
twofold approach. First, the quantities in (2.69) are expressed in terms of the real Stieltjes
transforms t(x) and s(x), de�ned above in (2.44). Then, the (M,N )-consistent estimators
of t(x) and s(x) obtained by Girko in [100, 101], and summarized above in (2.46), are
used. This approach lead to obtain the estimate for b in [124, Appendix A], recall that this
procedure was exposed above in equations (2.45)-(2.48). Namely, recall that according to
(2.48),

b � b̂ =
1� �

M
Tr[(R̂+�I)�1]

1� c
�
1� �

M
Tr[(R̂+�I)�1]

� (2.70)

It remains to obtain the (M,N )-consistent estimator of sHR(R + �(1 + cb)I)�1s. To
this end, �rst note that applying the matrix inversion lemma and the property (AB)�1 =
B�1A�1 of two generic invertible complex matrices A and B, one can write sHR(R+�(1+
cb)I)�1s as follows,

sHR(R+ �(1 + cb)I)�1s = sHR
�
R�1 �R�1�(1 + cb)

�
I+R�1�(1 + cb)

��1
R�1

�
s

= sHs� sH((�(1 + cb))�1R+ I)�1s
(2.71)

At this point, recall the expression of the real Stieltjes transform t(x) in e.g. (2.46).
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t(x) = sH(I+ xR)�1s; x 2 R+:

Thereby, it is clear that the expression of interest (2.71) can be rewritten in terms of
the real Stieltjes transform t(x) as follows,

sHR(R+ �(1 + cb)I)�1s = sHs� t(x)jx=(�(1+cb))�1 : (2.72)

As a consequence, in order to obtain the (M,N )-consistent estimator of sHR(R+ �(1+
cb)I)�1s, one must obtain the (M,N )-consistent estimator of t(x), which is denoted as t̂(x).
This estimator was obtained by Girko in e.g. [100, 101], its expression is given above in
(2.46). Considering t̂(x) in (2.72) the next almost surely convergence within the asymptotic
regime where M;N !1 and M=N ! c 2 (0;1) is obtained

sHR(R+ �(1 + cb)I)�1s � sHs� t̂(x)jx=(�(1+cb))�1
= sHs� sH(I+ �(x)R̂)�1sjx=(�(1+cb̂))�1 :

(2.73)

Where �(x) is the unique positive solution to

�(x)

�
1� c+ c 1

M
Tr
h
(I+ �(x)R̂)�1

i�
= x: (2.74)

Next, the expression for �(x)jx=(�(1+cb̂))�1 must be found. To this end, observe that
according to (2.45) and (2.46)

ŝ(x) = 1
M
Tr
h
(I+ �(x)R̂)�1

i
b̂

(1 + cb̂)
= 1� ŝ(x)jx=(�(1+cb̂))�1 :

(2.75)

Therefore, taking into account (2.75) into (2.74) one arrives at the conclusion that
�(x)jx=(�(1+cb̂))�1 = 1=�. Considering this result, the expression (2.73) can be rewritten as
follows,

sHR(R+ �(1 + cb)I)�1s � sHs� sH(I+ 1
�
R̂)�1s

= sHR̂(R̂+ �I)�1s:
(2.76)
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Where the second equality follows after bearing in mind the matrix inversion lemma
and after easy manipulations. Therefore, taking into account (2.76), (2.70) and (2.68) in
(2.67) one obtains the next (M,N )-consistent estimators, which concludes the proof.

sH(R̂+ �I)�1Rs � 1

1� c+ c �
M
Tr[(R̂+ �I)�1]

sH(R̂+ �I)�1R̂s

sHR(R̂+ �I)�1s � 1

1� c+ c �
M
Tr[(R̂+ �I)�1]

sHR̂(R̂+ �I)�1s:
(2.77)

�
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Chapter 3

Shrinkage of the sample LMMSE to
tackle the �nite sample size e¤ect.

3.1 Introduction

This chapter deals with shrinkage corrections of the sample LMMSE �lter. They permit to
obtain robust methods to the small sample size regime and maintain the optimal properties
of the sample LMMSE for a large sample size situation. First, in section 3.2 the most basic
shrinkage correction of the sample LMMSE is considered, i.e. a linear transformation
of the sample LMMSE of the type w =�R̂�1s is considered. Where the aim of � is to
reduce the MSE induced by the sample LMMSE �lter in the estimation of the parameter
of interest x(n) by means of optimizing the bias variance tradeo¤. That is, a bias in the
estimation is allowed with the aim of reducing the overall MSE. Thereby, � is designed to
optimize the MSE, which leads to an optimal expression depending on the unknown R. To
circumvent this problem random matrix theory tools are used to obtain an asymptotically
optimal estimator, i.e. which tends to the optimal estimator in the asymptotic regime
whereM;N !1 andM=N 2 (0; 1). This regime permits to deal naturally with the small
sample size situation. Next, in section 3.3 the type of shrinkage estimator w =�R̂�1s is
considered as well. However, an alternative approach to the method described in section
3.2 is proposed to obtain the shrinkage factor �. Instead of a direct minimization of the
MSE, it is suggested to minimize the average MSE. Then, assuming that the observed
data is Gaussian distributed, it turns out that the optimal shrinkage factor depends on
the summary statistics of a complex inverse Wishart distribution, namely on the �rst
two moments. Therefore, as this information is known we come up with a shrinkage
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estimator of the sample LMMSE that is optimal when considering that the observed data
is Gaussian and the average of the MSE as a cost function. In section 3.4 the previous
�lters are extended to support the cases where M > N and to improve in general their
performance for any sample size. To this end a regularization of the SCM is considered,
i.e. the �lter has the expression w =��R�1s, with �R =�1R̂+�2I. The scalar � controlling
the shrinkage of the �lter is designed as the one which minimizes the MSE of the signal
of interest for any regularization of the SCM, i.e. for any �1; �2. And as the optimal �
depends on the unknown R, then random matrix theory results are used to obtain an
estimation that tends to the optimal � in the asymptotic regime where M;N ! 1 and
M=N 2 (0;1). Moreover, the scalars �1; �2 governing the shrinkage of the SCM are the
ones proposed by Ledoit and Wolf in [33], i.e. the ones minimizing the asymptotic MSE
in the estimation of the data covariance. Next, in section 3.5, a more general version of
the previous shrinkage �lter is considered, namely the next shrinkage correction of the
sample LMMSE, w =�1R̂�1s+�2s, is considered. This is a linear combination of the
sample LMMSE and a matched �lter or conventional beamformer. That is, it combines
the available information of the observations in the sample LMMSE with a kind of prior
information represented by the matched �lter, as this conventional beamformer is obtained
by estimating the unknown noise covariance by just the identity matrix. Moreover, on
the one hand the sample LMMSE has better rejection against the interference than the
matched �lter and on the other hand, the conventional beamformer is not a¤ected by
a small sample size situation, i.e. the signal cancelation e¤ect in the sample LMMSE.
Thereby, the shrinkage coe¢ cients �1, �2 try to obtain the bene�ts of both �lters and they
are designed to optimize a bias variance tradeo¤ by means of the optimization of the MSE
in the estimation of the signal of interest. As in the previous shrinkage �lters this leads
to expressions of �1, �2 which depend on the unknown data covariance R. To circumvent
this problem a random matrix theory approach is proposed. This paves the way to obtain
an (M;N)�consistent estimator of the optimal shrinkage �lter for M=N 2 (0; 1), or in
other words a method that is asymptotically optimal in the regime where M;N !1 and
M=N 2 (0; 1). In section 3.6, the previous shrinkage �lter of section 3.5 is extended to
support the situations whereM > N and to improve in general its performance thanks to a
regularization of the SCM, thereby the proposed �lter has the structure w =�1 �R�1s+�2s,
with �R =R̂+�I. This is the more complete form of shrinkage proposed in this chapter, in
the sense that all the shrinkage �lters presented in the previous sections are a particular
case of it. The shrinkage factors �1; �2 are designed to minimize the MSE of the signal of
interest for a given �. Then, after inserting the optimal �1; �2 in the MSE, the optimal � is
obtained as the argument which minimizes the MSE. Those optimal �1; �2 and � depend
on the unknown covariance R. Thereby, random matrix theory results are used to obtain
estimators that tend to the optimal �1; �2 and � in the regime where M;N ! 1 and
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M=N 2 (0;1), which deals explicitly with the small sample size regime. Section 3.7 deals
with the numerical simulations. They highlight that the most simple forms of shrinkage
proposed in sections 3.2 and 3.3 outperform the sample LMMSE in terms of MSE provided
that M=N 2 (0; 1). Moreover, the shrinkage of a regularized LMMSE in 3.4 outperforms
other robust methods to the small sample size regime such as the LW and the ad-hoc DL
methods explained in section 1.4.1 for any sample size regime in terms of MSE. The more
general form of shrinkage in 3.5 outperforms the LW and the ad-hoc DL methods both
in terms of SINR and MSE provided that M=N 2 (0; 1). Moreover, it outperforms the
asymptotically SINR optimal DL method proposed in [9] in terms of MSE and it gives
almost the same performance in SINR, provided that M=N 2 (0; 1). Finally the most
complete form of shrinkage proposed in 3.6 outperforms the asymptotically SINR optimal
DL method proposed in [9] in terms of MSE and it gives similar performance in terms of
SINR for any sample size regime. The method in 3.6 also gives some performance gains
in terms of MSE compared to the asymptotically MSE optimal DL method in [79]. Even
more important in chapter 5 it will be shown that when there is an uncertainty in the
signature vector of the SOI, the proposed shrinkage �lters in 3.5 and 3.6 outperform [9]
and [79] in terms of SINR. Finally, in the appendix the proofs of the lemmas and theorems
of this chapter are presented.

3.2 Shrinkage of the sample LMMSE

Next we study the shrinkage of the sample LMMSE relying on the class of �lters expressed
as w =�R̂�1s. This type of shrinkage estimators introduce a shrinkage coe¢ cient �. This
is a correction or calibration term whose aim is to counteract the degradation of the sample
LMMSE in the small sample size regime and keep its optimal properties in large sample
size situations. Indeed note that these type of methods have the structure of a basic
linear shrinkage estimator which are based on a scaling of a sample estimator. In our
case the sample estimator is the sample LMMSE due to the presence of the SCM, i.e.
x̂(n) = wHy(n) = (R̂�1s)Hy(n). Thereby, the role of � is to modify the bias and variance
in such a way that the MSE in the estimation of the SOI is reduced, compared to the
sample LMMSE.

Next, the shrinkage factor � is designed as the one which minimizes the MSE in the
estimation of the signal of interest. This is formally stated in the next lemma.

Lemma 3.1 Assume that a set of observations fy(n)gNn=1 ful�lling the model in (1.1),
with assumptions (a)-(e) is available. Given fy(n)gNn=1, consider the problem of estimating
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the unknown x(n) in (1.1), based on minimizing the MSE, when the estimator x̂l;s(n) =
wH
l;sy(n) is a linear shrinkage of the sample LMMSE, i.e. wl;s=�lR̂

�1s. This problem is
mathematically formulated as follows,

x̂l;s(n) = w
H
l;sy(n); wl;s = argmin

w
E
h��x(n)�wHy(n)

��2 j R̂i
s:t:w =�R̂�1s

(3.1)

Then, the optimal solution for this problem is given by the next shrinkage factor,

�l =
sHR̂�1s

sHR̂�1RR̂
�1
s

(3.2)

Proof: See section 3.8.

�
In fact, � has di¤erent interpretations that are explained next. First, � can be inter-

preted as an automatic gain control, which is needed in any MIMO communication system
according to [76], note that the system model in (1.1) corresponds to the particular case
of a SIMO system. Next, another interpretation is given for �. Note that x̂ is a function
of R̂, which on its turn is an estimation of R. Thereby, the estimation errors of R̂ are
translated in x̂. Therefore, the role of � is to control how sensitive is x̂ due to the errors
provoked by R̂ or in other words how much errors in the output result from errors in the
input.

Moreover, the type of shrinkage �lters w =�R̂�1s in (3.1), which use the MSE as a
design criterion, are important in applications where the complex amplitude of the signal
of interest is important. This is the case of subband beamforming, see e.g. [17]. In this
kind of applications a wideband signal is decomposed, at each antenna of the array, into
a number of frequency bands and decimated by means of a �lter bank. Thereby, the n-th
snapshot of the signal at the k-th subband associated to the m-th antenna is a narrowband
signal denoted by ykm. Then, stacking the signals associated to each antenna at the k-
th subband, one would have the vector yk(n) = [yk1(n); : : : ; y

k
M(n)]

T . After that one can
apply a narrowband beamformer, such as the one in lemma 3.1, to the signal yk(n) =
[yk1(n); : : : ; y

k
M(n)]

T associated to the k-th subband. The output of this beamforming is
upsampled and interpolated, which yields the estimation of the signal of interest at the k-
th subband. Finally, the estimation of the signal of interest is obtained as the summation of
the estimations at each subband. This highlights that a proper estimation of the magnitude
of the signal of interest at each subband is fundamental to obtain a good estimation of
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the signal. This is accomplished thanks to the scaling � of the proposed shrinkage �lter
w =�R̂�1s and the design based on minimizing the MSE.

Interestingly enough (3.2) highlights that the sample LMMSE is not in general an
optimal estimator in the MSE sense. Indeed, it is obtained when substituting the unknown
R for the SCM in the optimal shrinkage factor (3.2) and as a consequence is only optimal in
the large sample size regime. This is because the SCM tends to the theoretical covariance
when N ! 1 for a �xed M , but obviously this is not the case in a small sample size
situation. In fact, this highlights the necessity of the proposed shrinkage correction herein.
In order to proceed, consider the asymptotic regimeM;N !1, M=N ! c 2 (0; 1), which
has appealing properties. It permits to study the convergence of the optimal shrinkage
factor in (3.2) within an asymptotic regime which deals naturally with the small sample
size regime. Moreover, it paves the way to obtain an asymptotically optimal estimation of
�l in (3.2) by means of RMT tools. By means of the next theorem we present the consistent
estimate for the optimal shrinkage of the sample LMMSE method in (3.1). That is, for
the class of �lters w =�R̂�1s.

Theorem 3.1 A realizable and consistent estimate of the optimal shrinkage of the sample
LMMSE �lter (3.1), within the general asymptotics where M;N !1, M=N ! c 2 (0; 1),
reads as follows,

�xl;s(n) = �wH
l;sy(n); �wl;s=��lR̂

�1s

��l = (1�c)2
(3.3)

Proof: See section 3.8.

�
The proposed estimator in Theorem 3.1 not only is realizable and consistent, but also

robust to the small sample size regime. This is due to its shrinkage structure and to rely
on the RMT approach, as it was discussed previously. Moreover, the numerical simulations
section, will highlight that it outperforms the conventional sample LMMSE in any of the
sample size regimes considered herein, i.e. M=N 2 (0; 1). It is also worth mentioning that
in the large sample size regime the performance of the proposed method tends to the one
of the sample LMMSE, which in turn tends to the one of the LMMSE.
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3.3 Shrinkage of the sample LMMSE for Gaussian
distributed data.

Next, as in the previous section, the type of shrinkage �lter w =�R̂�1s is considered to
counteract the degradation of the sample LMMSE method in the small sample size regime.
However, instead of a design of � based on RMT a di¤erent approach is presented in this
section. First of all, let us begin this section by recalling that the MSE in the estimation
of x(m), when considering the linear model in (1.1) for the observed signal y(m) and a
linear estimator x̂(m) = wHy(m) of x(m), reads as follows for the generic �lter w,

MSE (w) , E
h��x(m)�wHy(m)

��2i = wHRw+(1�wHs� sHw) (3.4)

Now, consider the shrinkage �lter w =�R̂�1s. Note that R̂ relies implicitly on the
availability of N samples of the random process y(n). Or in other words, note that by
de�nition R̂ = 1

N
YYH, where Y stacks in its columns the vectors y(n), n = 1; : : : ; N .

Thereby, Y and R̂ = 1
N
YYH are both random matrices. Observe that the index of the

random process y(n) used to build R̂ is denoted n, whereas in the estimation of x̂(m) in
(3.4) it is denoted bym. This is for the sake of the clarity and can be intrepreted as follows.
In a training period of N samples R̂ is built from y(n), n = 1; : : : ; N , and in the evaluation
period the signal of interest x̂(m) is estimated from y(m), by means of x̂(m) = wHy(m).
Thereby, if one considers a realization of the random matrix Y and constructs the �lter
w =�R̂�1s , then one can subsitute this �lter in the expression of the MSE to obtain the
performance associated to the �lter w =�R̂�1s for a given realization of the underlying
random matrix Y. Thereby, actually the MSE is in this case a conditional expectation,
i.e. the expectation of the squared error conditioned to a given realization of the random
matrix Y or analogously to a given realization of R̂

MSE
�
w =�R̂�1s

�
, E

h��x(m)�wHy(m)
��2 j R̂i (3.5)

Thus, by taking the expectation of (3.5) over YYH , or in other words over all the
possible realizations of the underlying random matrix, we obtain a statistical average of
the outcomes of the MSE, which arise from the values of the support of the random matrix
R̂. That is, an average MSE is obtained. Therefore, next statement proposes to design a
shrinkage �lter w =�R̂�1s, which optimizes the average MSE.
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Problem statement:
Consider that a set of N samples of the random process y(n), i.e. fy(n)gNn=1, is available
to build R̂. Moreover, assume that the samples are modeled according to (1.1) when as-
sumptions (a)-(f) hold, i.e. they are i.i.d gaussian distributed. Then, obtain an estimate
of x(m) in (1.1) by solving the next optimization problem,

x̂ls;s(m) = ŵ
H
ls;sy(m)

ŵls;s = argmin
w

EYYH

h
Ex;n

h��x(m)�wHy(m)
��2 j R̂ii

s:t: w =�̂ls;sR̂
�1s

(3.6)

Observe that this problem formulation is a particular case of the general problem posed
in (1.29) which aims to summarize all the problems discussed in this thesis. Namely, the
functional f(�) corresponds to the expectation operator E [�], which is taken over R̂.
The solution to the problem stated in (3.6) is exposed by means of the next theorem.

Then the proof of this theorem and the corresponding comments are exposed.

Theorem 3.2 Let consider that a set of N observations fy(n)gNn=1, modeled according to
(1.1) with assumptions (a)-(f), are available. Moreover, let consider a linear estimator
of the parameter x(m) in (1.1), based on shrinking the sample LMMSE and let de�ne
cf = M=N . Then, the estimator that optimizes the average MSE, i.e. that solves the
problem stated in (3.6), reads as follows,

x̂ls;s(m) = ŵ
H
ls;sy(m); ŵls;s=�̂ls;sR̂

�1s

�̂ls;s = ((1�cf )2 � 1
N2 )

(3.7)

Proof: The proof is provided below in this section.

�
Remark: As the estimator proposed in section 3.2 in (3.3), the method proposed herein in
(3.7) relies on a shrinkage of the sample LMMSE, i.e. on a �lter of the type w =�R̂�1s.
Nonetheless, the shrinkage factor � is obtained following a di¤erent procedure. On the one
hand, the method in (3.3) was obtained by direct optimization of the MSE and then using
an asymptotic approximation, relying on RMT results, of the optimal though unrealizable
shrinkage factor (3.2). On the other hand, the method proposed in this section in (3.7),

68



optimizes the average MSE and does not require any asymptotic approximation. Never-
theless, the price to pay is that the observed data is assumed to be Gaussian distributed,
as assumption (f) in (1.1) is presumed to hold. On the contrary, the method (3.3), based
on RMT, does not require any assumption about the type of probability distribution of
the observations.

Proof of Theorem 3.2

Next, the proof that the proposed shrinkage LMMSEmethod in (3.7) solves the problem
stated in (3.6) is provided. To this end, observe that (3.6) may be rewritten as follows, after
introducing the signal model for y(m) in (1.1) into (3.6), after solving the inner conditional
expectation, which is operated upon the joint pdf of x(m) and n(m) and bearing in mind the
model of R in assumption (b) of (1.1). Moreover, obviously the type of �lter w =�sR̂�1s
must be considered.

�̂ls;s = argmin
�s

j�sj2 E
h
sHR̂�1RR̂�1s

i
+  � (��s + �s)E

h
sHR̂�1s

i
(3.8)

Where with some abuse of notation, the subindex in the expectation, indicating that it is
operated upon YYH has been dropped. The solution to (3.8) is found after setting the
�rst derivative of the cost function equal to zero and after straigthforward manipulations,

�̂ls;s =
E
h
sHR̂�1s

i
E
h
sHR̂�1RR̂�1s

i (3.9)

Therefore, in order to obtain the proposed shrinkage LMMSE estimator (3.6), the sum-
mary statistics, namely the �rst moment, of the random quantities sHR̂�1s and sHR̂�1RR̂�1s
must be speci�ed. To this end, let de�neY as the juxtaposition of the available realizations
of y(n) in (1.1), i.e. y(n) is the n-th column of Y. Moreover, let X 2 CM�N be a random
matrix, whose columns are iid according to a standard complex Gaussian distribution,
namely [X]:;k � CN (0; IM) 8k. Then, we can write the available data as a function of X,
indeed Y d

= R1=2X, where d
= denotes equality in distribution. Moreover, as R̂ = 1

N
YYH

we can rewritte the SCM as a function of X. Namely, applying the property of the inverse
of a multiplication of matrices we obtain,

R̂�1 d
= NR�1=2(XXH)�1R�1=2 (3.10)
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Substituting (3.10) into (3.9) the next equalities can be readily veri�ed,

E
h
sHR̂�1s

i
= NsHR�1=2E

h
(XXH)�1

i
R�1=2s (3.11)

E
h
sHR̂�1RR̂�1s

i
= N2sHR�1=2E

h
(XXH)�1(XXH)�1

i
R�1=2s (3.12)

Now, let 
 , XXH , then as [X]:;k � CN (0; IM) 8k, 
�1 is distributed according to
a complex inverse Wishart distributions with N degrees of freedom and scale parameter
IM , see [128], i.e. 
�1 � CW�1

M (N; IM). Therefore, it turns out that in order to obtain the
optimal shrinkage factor (3.9) the �rst and second moments of a complex inverse Wishart
distribution must be found. Namely, in (3.11) the �rst moment is needed, which according
to [128, eq. 39] reads component-wise E[ [
�1]i;j] = 1=(N �M) if i = j 8i 2 f1; : : : ;Mg
and 0 otherwise. That is, E[
�1] = 1=(N �M)IM , which substituted in (3.11) yields,

E
h
sHR̂�1s

i
=

N

N �M sHR�1s (3.13)

In order to obtain the proposed estimator it remains to obtain an expression for (3.12),
namely for E[
�1
�1]. To this end, the second moment of the complex inverse Wishart is
needed, which according to ( [128, eq. 41]) reads component-wise as follows,

E[[
�1]i;j[
�1]l;k] =
[IM ]i;j [IM ]l;k +

1
N�M [IM ]l;j [IM ]i;k

(N �M)2 � 1 (3.14)

Now, observe that the p-th element of the main diagonal of E[
�1
�1] reads
MP
i=1

E[[
�1]p;i[

�1]i;p]

8p. Moreover, according to (3.14),

E[[
�1]p;i[

�1]i;p] =

(
1

(N�M)((N�M)2�1) ; p 6= i
N�M+1

(N�M)((N�M)2�1) ; p = i

Therefore the elements of the main diagonal of E[
�1
�1] read 8p 2 f1; : : : ;Mg,

MX
i=1

E[[
�1]p;i[

�1]i;p] =

N

(N �M)((N �M)2 � 1) (3.15)

With regard to the elements of E[
�1
�1] out of the main diagonal, they are charac-

terized by the expression
MP
j=1

E[[
�1]i;j[

�1]j;k] with i 6= k 8i; k 2 f1; : : : ;Mg. Therefore
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according to (3.14) we can conclude that 8i; k 2 f1; : : : ;Mg with i 6= k the next equality
holds,

MX
j=1

E[[
�1]i;j[

�1]j;k] = 0 (3.16)

As a consequence, considering (3.15) and (3.16), E[
�1
�1] is given by,

E[
�1
�1] =
N

(N �M)((N �M)2 � 1)IM (3.17)

Recalling that 
 , XXH and inserting (3.17) in (3.12) we obtain the desired expression
for the denominator of the optimal shrinkage factor (3.9),

E
h
sHR̂�1RR̂

�1
s
i
=

N3

(N �M)((N �M)2 � 1)s
HR�1s (3.18)

Finally, substituting (3.13) and (3.18) in the expression of the optimal shrinkage factor
in (3.9) and after straightforward manipulations we obtain the optimal shrinkage LMMSE
estimator for our problem statement in (3.6).

x̂l;s(m) = w
H
l;sy(m)

wl;s=
�
(1� M

N
)2 � 1

N2

�
R̂�1s

(3.19)

This concludes the proof as (3.19) coincides with the proposed shrinkage estimator in (3.7).

�

3.4 Shrinkage of the regularized sample LMMSE

The shrinkage methods proposed in last sections assume that the observation dimensionM
is smaller than the sample size N , i.eM=N 2 (0; 1). The aim of this section is to propose a
shrinkage method which may deal with any sample size regime, i.e. M=N 2 (0;1). Thus
we extend the proposed shrinkage framework to cases whereM � N . As an example, such
situations may happen for instance in array processing in applications with large arrays,

71



where there may be up to hundreds or thousands of sensors, e.g. in radioastronomy or
over-the-horizon radar [9]. Also it may happen due to a short sample size N produced by
a short stationarity of the signal of interest. Regarding the methods that involve inverting
the covariance such as the LMMSE, or the MVDR in the next chapter, the conventional
approach to deal with M � N has been to regularize or shrink the sample covariance
matrix, see section 1.4. That is, one substitutes the unknown covariance R for the next
linear combination or shrinkage of the SCM, �R =�1R̂+�2I, which permits to invert �R even
when M � N: This leads to the next type of regularized sample LMMSE,

w =(�1R̂+�2I)
�1s:

For instance, DL techniques consider �1 = 1 and focus on the design of �2 under
di¤erent criteria, whereas shrinkage techniques are more general as they consider the design
of both �1 and �2, see section 1.4. On the other hand, recall that the shrinkage �lters
proposed in the last sections have the form w =�R̂�1s and their rationale is as follows. A
correction factor � is introduced to diminish the MSE, achieved by the sample methods
such as the sample LMMSE, in the estimation of the parameter of interest. In other words
� faces directly the estimation of the parameter of interest and controls the bias variance
tradeo¤ to diminish the MSE respect to the one achieved by the sample LMMSE.

Therefore, one may think of the next double shrinkage or shrinkage of the regularized
sample LMMSE. The shrinkage of the SCM �R =�1R̂+�2I is considered in the LMMSE
to deal with the cases where M � N and because it is a better estimate than the SCM,
thanks to its shrinkage structure. Moreover, we explore the possibility to improve further
the estimators of the type w =(�1R̂+�2I)

�1s by shrinking the �lter, i.e. by introducing a
correction on this type of regularized methods which reduces further the MSE by controlling
the bias variace tradeo¤. Therefore, next we deal with the type of �lters which are based
on a shrinkage of a regularized sample LMMSE

w =�(�1R̂+�2I)
�1s: (3.20)

Next, the design of the shrinkage coe¢ cients �, �1 and �2 of the proposed �lter in
(3.20) is dealt with. Namely, �rst the optimal � is obtained for a given value of �1 and �2
by means of the minimization of the MSE. The result is presented in the next lemma.

Lemma 3.2 Consider a set of observations fy(n)gNn=1 ful�lling the model in (1.1) with
assumptions (a)-(e). Given fy(n)gNn=1, consider the problem of estimating the parameter of
interest x(n) in (1.1), based on minimizing the MSE, when the estimator x̂ds(n) = wH

dsy(n)
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is a shrinkage of the regularized sample LMMSE, i.e. wds=��R
�1s with �R =�1R̂+�2I.

Then the shrinkage � which minimizes the MSE x̂ds(n) for given �1, �2 has the next
expression,

�o = argmin
�

E
h��x(n)�wHy(n)

��2 j R̂; �1; �2i =  sH �R�1s

sH �R�1R�R
�1
s

(3.21)

Proof: The proof follows easily from the proof of lemma 3.1 by considering �R instead
of R̂.

This highlights that the shrinkage of the �lter is not super�uous, i.e. �o 6= 1 and
thereby does not lead to the case of just considering wds=(�1R̂+�2I)

�1s. In other words,
one may further reduce the MSE of an estimate relying on a regularized sample LMMSE
�lter wds=(�1R̂+�2I)

�1s. Nonetheless, the optimal �o in (3.21) leads to an unrealizable
�lter, as it depends on the unknown R. To circumvent this problem, an (M;N)-consistent
estimate of (3.21), denoted by �̂o will be obtained by means of RMT and G-estimation tools,
i.e. �̂o will converge in probability towards �o when M;N !1 and M=N ! c 2 (0;1);
in compact notation �̂o � �o. Thereby �̂o will minimize the asymptotic MSE for any
given �1; �2. Note that this general asymptotic regime naturally deals with small sample
size situations. Moreover, the asymptotic regime M=N ! c 2 (0;1) highlights the claim
stated above where it was said that the proposed method of this section generalizes the
shrinkage methods of last section, which are restricted to M=N ! c 2 (0; 1). To achieve
our aim, i.e. the (M;N)-consistent estimate of (3.21), the procedure is as follows,

1. Find the asymptotic deterministic expressions of sH �R�1s and sH �R�1R�R�1s,
denoted by f(R;�1;�2) and g(R;�1;�2), respectively.

2. Obtain (M;N)-consistent estimates of f(R;�1;�2) and g(R;�1;�2), denoted by f̂(R̂;�1;�2)
and ĝ(R̂;�1;�2):

3. Estimate sH �R�1s and sH �R�1R�R�1s using f̂(R̂;�1;�2) and ĝ(R̂;�1;�2), respectively,

i.e. �̂o = 
f̂(R̂;�1;�2)

ĝ(R̂;�1;�2)
� �o.

Therefore, in order to achieve our aim we �rst found the asymptotic deterministic
expressions of sH �R�1s and sH �R�1R�R�1s, which are given in the next lemma.

73



Lemma 3.3 Let consider the general asympotic regime where M;N ! 1 and M=N !
c 2 (0;1). Then �o in (3.21) converges in probability towards the next deterministic
expression,

�o � �1
1� c�
1 + cb

sH(R+�I)�1s

sH(R+�I)�1R(R+�I)�1s
(3.22)

where � = 1
M

MP
i=1

�2i
(�i+�)2

, �i are the eigenvalues of R, � = �(1 + cb), � , �2=�1 and b is the

positive solution to the next equation b = 1
M

MP
i=1

�i(1+cb)
�i+�(1+cb)

.

Proof: See section 3.8.

Next step towards obtaining the (M;N)�consistent estimate of the optimal shrink-
age coe¢ cient �o in (3.21) is obtaining the (M;N)�consistent estimate of b, �, �d =
sH(R+�I)�1s and �n = sH(R+�I)�1R(R+�I)�1s in (3.22). These are obtained in [124,
Appendix A], and summarized in the next lemma.

Lemma 3.4 Let consider the general asympotic regime where M;N ! 1 and M=N !
c 2 (0;1). Then, an (M;N)-consistent estimate of b, �d , sH(R+�I)�1s, � and �n ,
sH(R+�I)�1R(R+�I)�1s in (3.22) is given, respectively, by the next expressions,

b̂ =
1� �

M
Tr[(R̂+�I)�1]

1� c(1� �
M
Tr[(R̂+�I)�1])

�̂d = (1� c+ c �M Tr[(R̂+�I)
�1])sH(R̂+�I)�1s

�̂ =
1
M
Tr[R̂2(R̂+�I)�2]� c

M2 Tr
2[R̂(R̂+�I)�1]

1� c+ c�2 1
M
Tr[(R̂+�I)�2]

�̂n =
(1� c(1� �

M
Tr[(R̂+�I)�1]))2

1� c+ c
M
Tr[(��1R̂+ I)�2]

sH(R̂+�I)�1R̂(R̂+�I)�1s

Proof: The proof is provided in [124, Appendix A], a sketch of the proof is available in
section 3.8.
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Now, in order to obtain the (M;N)-consistent estimate of the optimal shrinkage factor
�o, one needs to substitute the estimates of b, �, �n and �d into (3.22). After this step, one
needs some manipulations based on the matrix inversion lemma and the next identity [10, p.
248],

1

M
Tr[R2(R+�I)�2] = 1� 2

M
Tr[(��1R+ I)�1] +

1

M
Tr[(��1R+ I)�2]. (3.23)

Thus, in the next theorem the expression of the (M;N)-consistent estimate of �o is
given.

Theorem 3.3 The (M;N)-consistent estimate of the MSE optimal shrinkage factor �o in
(3.21), within the doubly asymptotic regime where M;N !1 and M=N ! c 2 (0;1); is
given by the next expression,

�o � �̂o = �1(1�
c

M
Tr[R̂(R̂+�I)�1])2 � sH(R̂+�I)�1s

sH(R̂+�I)�1R̂(R̂+�I)�1s
(3.24)

Proof: The proof is obtained by substituting the asymptotic equivalences of lemma 3.4 into
(3.22) and after some manipulations by taking into account the equality in (3.23).

Note that �̂o is asymptotically optimal in an MSE sense for any value of �1 and �2.
At this point, the design of �1 and �2 must be tackled. The optimal approach would be
to substitute (3.21) into (3.20) and to minimize the MSE (1.5) with respect to �1 and �2.
Nonetheless, �1,�2 could not be isolated due to their presence within the inverse. Indeed,
neither one can use a numerical search method to propose a realizable estimator which
obtain the optimal �1,�2 due to the unknown R in the expression of the MSE (1.5). To
circumvent that and to obtain a realizable �lter, one could proceed as in [9], �nd the
(M;N)-consistent estimate for the asymptotic MSE(� = �o;�1; �2) and �nd the �1; �2
minimizing it. Although a realizable �lter is obtained, one still must carry out a numerical
search to �nd �1 and �2. Instead of this, an alternative approach is to substitute �1 and �2
by the estimates proposed by Ledoit and Wolf in [33], i.e. �lw1 and �lw2 in (1.18). Although
this is a suboptimal approach, in this way the numerical search is avoided. Moreover this
�ts perfectly in our framework and some optimality properties are still kept. That is, �lw1
and �lw2 are asymptotically optimal, as they are (M;N)-consistent estimates of the �1 and
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�2 that optimize the MSE in the estimation of the covariance, when using the shrinkage
estimator �R = �1R̂+�2I, �2 = (1� �1) Tr(R̂s)=2M , and R̂s de�ned above in (1.19). The
numerical results in section 3.7 compare this approach to the theoretical lower MSE bound
when considering the optimal �o in (3.21) and �1, �2 obtained by a 2D search in (1.5) for a
given R, which in practice is unknown, but for simulation purposes is available. Recalling
that �R = �1R̂+�2I and that � = �2=�1, we can manipulate (3.24) to obtain the �nal
expression of the proposed algorithm, which is summarized next.

Proposed estimator

Theorem 3.4 Consider a set of observations fy(n)gNn=1 ful�lling the model in (1.1) with
assumptions (a)-(e). Given fy(n)gNn=1, consider the problem of estimating the parameter
of interest x(n) in (1.1) based on a shrinkage of the regularized sample LMMSE. That
is, x̂ds(n) = wH

dsy(n) with wds=�̂o �R
�1s and �R =�1R̂+�2I. Then, the next estimator

asymptotically minimizes the MSE of x̂ds(n) for given �
lw
1 ; �

lw
2 : And �

lw
1 ; �

lw
2 asymptotically

optimize the MSE of the data covariance �R = �1R̂+�2I, �2 = (1� �1) Tr(R̂s)=2M .

x̂ds(n) = w
H
dsy(n);wds=�̂o �R

�1s

�̂o = (1�
c�lw1
M

Tr[R̂�R
�1
])2

sH �R�1s

sH �R�1R̂�R�1s
(3.25)

�R =�lw1 R̂+�
lw
2 I

where the expression of �lw1 , �
lw
2 and R̂s are given in (1.18).

Proof: The proof follows from the asymptotic optimality of �̂o, which is proven in Theorem
3.3 and the asymptotic optimality of �lw1 �

lw
2 , which is proven in [33].

The simulation results in section 3.7 show that the proposed shrinkage method in
(3.25) outperforms other robust methods to the small sample size such as the ad-hoc DL
techniques and the LW-LMMSE implementation exposed in section 1.4.1. This is thanks
to the additional shrinkage � of the regularized LMMSE �lter and thanks to the approach
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based on dealing directly with the estimation of the parameter of interest. Moreover, in
the numerical results section it is shown that the shrinkage of the regularized LMMSE in
(3.25) outperforms the shrinkage of the sample LMMSE proposed in the previous sections.
The reason is that in order to estimate R, the former uses a shrinkage of the SCM, which
is a better estimator than the SCM, which is the one used in the shrinkage of the sample
LMMSE.

3.5 Shrinkage of the sample LMMSE towards a matched
�lter

Next, a more general shrinkage of the sample LMMSE is introduced. Namely, a common
fact in shrinkage estimation is to combine the sample method to be corrected with some a
priori information about the parameter to be estimated, which is called shrinkage target.
In the problem at hand, we know that the signal of interest is observed through a known
signature vector s, as recall that the signal model is y(n) = x(n)s+ n(n). For instance
in the context of beamforming in array processing s is the steering vector associated to
the direction of arrival of the signal of interest [14]. A conventional �lter to recover x(n)
is w _ s. This is called conventional or Bartlett beamformer in array processing [129]
and corresponds to a kind of matched �lter. Indeed it maximizes the SINR provided that
the term n(n) only contains additive white noise. Note that in fact it corresponds to an
estimate of the LMMSE where one substitutes the unknown covariance Rn for I1. That
is, the conventional beamformer can be interpreted as an initial guess of the LMMSE
where one assumes that only additive white noise and the signal of interest are present in
the scenario. Therefore, one can think of a shrinkage �lter where the sample LMMSE is
combined with an initial guess or a priori information of the LMMSE �lter consisting of
the conventional beamformer, i.e. w =�1R̂�1s+�2s. In fact, note thas this �lter is a linear
combination of an estimator which takes into account the available observations, with some
a priori information which does not take the observations into account. This is more clear
if one rewrites the shrinkage �lter as w = (�1R̂�1+�2I)s. This expression highlights that
the proposed �lter is estimatingR�1 by means of a shrinkage of the inverse of the SCM, i.e.
�1R̂

�1+�2I, which is a better estimate of R�1 than R̂�1. Or even more precisely, consider
the eigendecomposition of the SCM R̂�1 = Ê�̂�1ÊH , where Ê is a matrix which stacks in
its columns the eigenvectors of the SCM and �̂ is a diagonal matrix which contains the

1Using the Woodbury�s identity and noting that R = ssH + Rn it is easy to show that w =
R�1sjRn=I

= 
1+sHs

s _ s
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eigenvalues of the SCM in its main diagonal. Then, it is clear that the proposed �lter can
be expressed as w = Ê(�1�̂�1+�2I)ÊHs. Therefore the proposed �lter is implementing a
correction of the sample LMMSE which consists of a shrinkage of the eigenvalues of R̂�1.
Another interpretation is that the linear combination takes into account the bene�ts of the
sample LMMSE and the matched �lter. On the one hand, the sample LMMSE is optimal
for a large sample size regime and it has better rejection against the interference than the
matched �lter. On the other hand, the conventional beamformer may give in general better
performance than the sample LMMSE in small sample size situations, as it is not a¤ected
by the signal cancelation e¤ect arising from the scarcity of available observations.

Note that the shrinkage method proposed in Lemma 3.1 is indeed a particular case of
w =�1R̂

�1s+�2s with �2 = 0. Thus, the �lter that we are now introducing incorporates
more a priori information or in other words is a more general form of shrinkage �lter than
the one of Lemma 3.1. Thereby, the �lter proposed in this section is expected to give
better performance than the �lter introduced in lemma 3.1. Next, we study the estimation
of the parameter of interest x(n) when using the type of shrinkage �lter w =�1R̂�1s+�2s.
Namely, �rst the optimal shrinkage factors �1 and �2 are designed to optimize the MSE
in the estimation of the parameter of interest. This is presented in the next lemma.

Lemma 3.5 Assume that a set of observations fy(n)gNn=1 ful�lling the model in (1.1),
with assumptions (a)-(e) is available. Given fy(n)gNn=1, consider the problem of esti-
mating the unknown x(n) in (1.1), based on minimizing the MSE, when the estimator
x̂lb;s(n) = w

H
lb;sy(n) is a linear shrinkage of the sample LMMSE towards a matched �lter.

This problem is mathematically formulated as follows,

x̂lb;s(n) = w
H
lb;sy(n); wlb;s = argmin

w
E
h��x(n)�wHy(n)

��2 j R̂i
s:t:w =�1R̂

�1s+�2s
(3.26)

Then, de�ning �lb , (�1 ; �2)T , the optimal solution for this problem is given by the
next shrinkage factors,

�lb =



�
sHRssHR̂�1s� sHR̂�1Rs

sHR̂�1RR̂�1s� sHR̂�1ssHRR̂�1s

�
sHR̂�1RR̂�1ssHRs� sHR̂�1RssHRR̂�1s

(3.27)

Proof: See section 3.8.

�
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The expression of the optimal shrinkage LMMSE estimator in (3.27) highlights the de-
pendance on the unknown R. As a consequence it is not a realizable estimator. A possible
approach to circumvent this problem is to substitute the unknown R for its sample esti-
mate. This point of view is proposed by some authors dealing with analogous shrinkage
estimation problems, e.g. [130] in the context of optimal portfolio allocation in quantitative
�nance. Nonetheless, that approach entails an estimation risk that may lead to a perfor-
mance degradation. Indeed, applying this strategy to the proposed shrinkage estimator of
the sample LMMSE in (3.27) leads to the conventional sample LMMSE method (1.9), as
�lbjR=R̂ = (; 0)

T , and as a consequence the potencial bene�ts of the shrinkage approach
are lost.

Next, in order to tackle this problem, i.e. to obtain a realizable estimator, a strategy
based on RMT is proposed. This approach is based on obtaining a consistent estimator of
the shrinkage coe¢ cients in (3.27). That is, it leads to obtain an asymptotically optimal
shrinkage estimator. More speci�cally, in order to obtain the consistent estimate, the
asymptotic regime where M;N ! 1 with M=N ! c 2 (0; 1) is considered. Note that
this general asymptotics considers implicitly the small sample size regime when c! 1 and
as a consequence the proposed method is robust to this regime. Indeed, this generalizes
classical consistent methods based on classical asymptotics where M remains �xed and
N tends to in�nity. Thereby, in the next theorem the consistent estimate of the optimal
shrinkage coe¢ cients �1, �2 in (3.27) is presented.

Theorem 3.5 Let de�ne ��lb , (��lb;1 ; ��lb;2)
T , then a realizable and consistent estimate

of the optimal shrinkage of the sample LMMSE towards a matched �lter (3.26), within the
general asymptotics where M;N !1, M=N ! c 2 (0; 1), reads as follows,

�xlb;s(n) = �wH
lb;sy(n); �wlb;s=��lb;1R̂

�1s+��lb;2s

��lb =



�
(1�c)2sHR̂ssHR̂�1s�(1� c)

csHR̂�1s

�
sHR̂ssHR̂�1s�1

(3.28)

Proof: See section 3.8.

�
The proposed estimator in (3.28) is robust to the small sample size regime. E¤ectively,

on the one hand it incorporates a shrinkage correction through the coe¢ cients �1, �2. On
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the other hand, the RMT approach implicitly considers this scenario through c ! 1.
In the numerical results section, more insights about the robustness to the small sample
size regime will be given. Moreover, in that section, it will be demonstrated that (3.28)
outperforms the traditional sample LMMSE estimator (1.9) in any sample size regime,
i.e. M=N 2 (0; 1). This makes sense as the design of the proposed estimator, based on
minimizing the MSE, embraces both the large and small sample size regimes, i.e. N �M
and M t N , respectively. More speci�cally it is valid for any ratio M=N 2 (0; 1). On
the contrary, the conventional sample LMMSE is a rather ad hoc method, as it does not
consider the minimization of the MSE when having the SCM instead of the true correlation
R in the expression of the LMMSE method. Indeed, the presence of the SCM entails an
estimation risk, which leads to a performance degradation in any sample size regime.
Obviously, this performance degradation is more evident when we approach the small
sample size regime. Interestingly enough, the numerical results section shows that provided
that M=N 2 (0; 1) the proposed shrinkage method in Theorem 3.5 outperforms other
methods that are robust to the small sample size regime, such as ad-hoc DL techniques or
the LW implementation of the LMMSE, cf. chapter 1 and section 1.4.1. This is because on
the one hand the DL methods in (1.12) and (1.13) are rather ad-hoc. On the other hand,
the LW technique in (1.16) relies on a shrinkage estimator of the sample covariance which
minimizes asympotitcally the MSE in the estimation of the data covariance. Though this
is a better estimate than the SCM it is not the �nal target, as here we are interested in
estimating x(n). On the other hand, the proposed method faces directly the estimation
of the parameter of interest x(n) by obtaining the shrinkage coe¢ cients that minimize
asymptotically its MSE. The numerical simulations will also highlight that compared to [9],
which proposes a DL which optimizes asymptotically the SINR, the proposed shrinkage in
Theorem 3.5 obtains almost the same SINR performance and better MSE performance.

In order to gain more insights about how the shrinkage estimation framework a¤ects
the method proposed in Theorem 3.5 it is interesting to study the asymptotic values of the
shrinkage factors when c tends to its extreme values, i.e. c! 1 and c! 0 which denote a
small and large sample size regime, respectively. Thereby, when the sample dimension is
much larger than the observation dimension, i.e. c! 0, the next expression of ��lb reveals
that the performance of the shrinkage �lter tends to the one of the traditional LMMSE
implementation.

c! 0) ��lb ! (; 0)T : (3.29)

This behavior makes sense as in this situation, R̂ is the optimal estimator of R and as
a consequence the performance of the traditional sample implementation of the LMMSE
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tends to the one of the optimal LMMSE �lter in (1.4). With regard to the case where
c! 1 , i.e. in the small sample size regime, it is easy to check that the following relation
for the shrinkage factors holds,

c! 1) ��lb !
 
0; 

sHR̂�1s

sHR̂ss
H
R̂�1s�1

!T
: (3.30)

That is, in the small sample size regime, the performance of the shrinkage �lter tends
to the one of a type of matched �lter, or conventional beamformer, and it disregards the
contribution of the sample LMMSE, as it has in general worse performance than a matched
type �lter. The expressions (3.29) and (3.30) highlight the rationale behind the shrinkage
estimation paradigm, which optimally combines, by means of a weighted average, a sample
based estimator with an estimator based on available a priori information. Thus, on the
one hand, in the large sample size regime, as the sample LMMSE is optimal, the proposed
shrinkage method tends to it. On the other hand, as in the small sample size regime an
estimator based on a type of matched �lter may behave better than the sample LMMSE,
the proposed shrinkage �lter tends to a scaling of a matched �lter.

It is also worth observing that the method proposed in Theorem 3.1 is likely to behave
worse than the one in Theorem 3.5, especially in the small sample size regime. This will
be con�rmed in the numerical simulations section. The reason for that behavior is that
the method in Theorem 3.5 incorporates more a priori information in the structure of the
estimator, through the presence of the matched �lter w _ s, which may in general behave
better than the sample LMMSE in the small sample size regime.

3.6 Shrinkage and regularization of the sample LMMSE
towards a matched �lter

The �lter presented in this section is the most general among the methods that are proposed
in this chapter. It arises from the same shrinkage philosophy than the method proposed
in section 3.5, though it is more general as it avoids the assumption that N > M . That
is, an estimator of the LMMSE relying on the information available from the samples is
combined with an estimator which does not take this information into account and only
relies on the a priori information. More precisely, on the one hand the unknown inverse
covariance in the LMMSE is estimated from the available samples and on the other hand
it is linearly combined with the a priori information, i.e. with a matched �lter, which
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arises after substituting the unknown noise covariance within the inverse data covariance
by just the identity matrix. This is mathematically expressed as w =�1 �R�1s+�2s, where
�R�1 is an estimator of R�1 based on the available samples. In the previous section R�1

was estimated by considering the inverse of the SCM matrix. Herein, in order to cope
with the cases where M � N , a regularization of the SCM is considered thereby �R�1 =
(R̂ + �I)�1. In fact, this may lead to performance improvements for the rest of the cases
where N > M , as �R�1 is a better estimator of R�1 than just considering the inverse of
the SCM. Thereby, the shrinkage �lter proposed in this section has the next structure,

w =�1(R̂+ �I)
�1s+�2s (3.31)

The expression (3.31) may be interpreted as follows if one rewrites this expression
as w = (�1(R̂ + �I)�1+�2I)s. On the one hand, a shrinkage estimation of the inverse
covariance is carried out by means of the shrinkage factors �1, �2. On the other hand,
the covariance is estimated from the available samples by means of the sample covariance
matrix, which on its turn is regularized through � to allow its inversion when N > M .
Interestingly enough, chapter 5 highlights another appealing feature of this �lter. Namely,
on the one hand the regularized sample LMMSE has better rejection capabilities against
the interference than the matched �lter. On the other hand, when there is an uncertainty
in s, the regularized sample LMMSE designed to cope with the �nite sample size may still
undergo a notable performance degradation due to the signal cancellation e¤ect. That is
it may tend to cancel the signal of interest, whereas the matched �lter will not have this
behavior, i.e. may experiment a degradation due to the uncertainty in s, but it will not
lead to cancel the signal of interest. Thereby, the type of �lter (3.31) will obtain better
performance than just considering a type of DL �lter w =�1(R̂+ �I)�1s designed to cope
in an asymptotically optimal manner with the �nite sample size, e.g. [9] and [79].

Next, the design of the proposed �lter in (3.31) is tackled. Namely, this implies how to
obtain a value for the shrinkage factors �1, �2 and the regularization parameter �. In order
to achieve this aim, the values of �1, �2 and � are obtained as the ones which minimize
the MSE in the estimation of the parameter of interest x(n) in (1.1). Recall that given the
signal model (1.1), the expression of the MSE for a linear estimation of x(n) based on a
generic �lter w is given by,

MSE = wHRw + (1�wHs� sHw) (3.32)

With  = E[jxj2]. Thereby, the design of the shrinkage factors �1, �2 and the regular-
ization parameter � are obtained by means of the next optimization problem,
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min
w

wHRw + (1�wHs� sHw)
s.t. w = �1(R̂+ �I)�1s+�2s:

Namely, this problem is solved following a two step approach. First, the optimal value
for � = (�1; �2)

T is obtained for any given �. Then, the optimal � is substituted in the
expression of the MSE (3.32) to obtain the optimal �. This result is formally presented in
the next lemma.

Lemma 3.6 Assume that a set of observations fy(n)gNn=1 ful�lling the model in (1.1),
with assumptions (a),(b),(c) and (e) is available. Given fy(n)gNn=1, consider the problem
of estimating the unknown x(n) in (1.1) based on minimizing the MSE, when the estimator
x̂(n) = wHy(n) is a shrinkage of a regularized sample LMMSE towards a matched �lter,
i.e. w =�1(R̂+ �I)�1s+�2s. This problem can be mathematically expressed as

x̂(n) = wHy(n); w = argmin
w

wHRw + (1�wHs� sHw)

s.t. w = �1(R̂+ �I)
�1s+�2s

(3.33)

Then, de�ning �R = R̂ + �I, the optimal shrinkage factor �o , (�1 ; �2)T for any
given regularization � is given by,

�o = 

�
sHRssH �R�1s� sH �R�1Rs

sH �R�1R�R
�1
s� sH �R�1ssHR�R

�1
s

�
sH �R�1R�R�1ssHRs� sH �R�1RssHR�R�1s

: (3.34)

Moreover, the optimal regularization �o is obtained by means of the next optimization,

�o = argmin
�

�Ho

�
sH �R�1R �R�1s sH �R�1Rs
sHR �R�1s sHRs

�
�o+



�
1��Ho

�
sH �R�1s
sHs

�
�
�
sH �R�1s; sHs

�
�o

�
(3.35)

Proof: The proof for �o follows easily from the proof for Lemma 3.5, just considering
�R instead of R̂. The proof for Lemma 3.5 is detailed in the appendix of this chapter,
section 3.8. On the other hand, �o is obtained after easy manipulations by considering the
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type of �lter w = �1(R̂+ �I)�1s+�2s and by substituting the optimal shrinkage �o in the
expression of the MSE, i.e. in (3.32).

�
At this point, note that the optimal values of the shrinkage and regularization parame-

ters, i.e. �o and �o in Lemma 3.6 depend on the unknown data covariance R. Namely, �o
and �o depend on the next quantities,

sH �R�1R �R�1s
sHR �R�1s
sH �R�1Rs
sHRs:

(3.36)

Thereby, the next task is to estimate these unknown quantities to obtain a realizable
estimator of �o and �o in Lemma 3.6. To this end, a random matrix theory approach is
considered. This permits to obtain estimators that tend to the optimal �o and �o within
the asymptotic regime where (M;N) ! 1 and M=N ! c 2 (0;1). This framework
permits to obtain consistent estimators that take into account the �nite sample size regime.
The consistent estimation for the terms in (3.36) within the asymptotic regime where
(M;N)!1 and M=N ! c 2 (0;1) is provided in Lemma 2.2 and they are stated next
for the sake of the clarity in the exposition,

sH �R�1R �R�1s � 1�
1� c

M
Tr[R̂ �R�1]

�2 sH �R�1R̂ �R�1s

sHR �R�1s � 1

1� c+ c �
M
Tr[ �R�1]

sHR̂ �R�1s

sH �R�1Rs � 1

1� c+ c �
M
Tr[ �R�1]

sH �R�1R̂s

sHRs � sHR̂s:

(3.37)

Where �R = R̂+�I. The results in (3.37) pave the way to obtain an estimator that tends
to the optimal shrinkage of the regularized LMMSE in Lemma 3.6. This is summarized in
the next theorem.
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Theorem 3.6 Let denote ��o = (��o;1; ��o;2)T = �̂oj�=�̂o and
�R = R̂+ �I. Then, a realizable

and (M,N)-consistent estimate of the optimal shrinkage LMMSE estimator in lemma 3.6,
within the general asymptotic framework where M;N !1 and M=N ! c 2 (0;1), reads
as follows,

�x(n) = wHy(n);w=��o;1(R̂+ �̂oI)
�1s+��o;2s (3.38)

�̂o =



0@ sHR̂ssH �R�1s� 1
1�c+c �

M
Tr[ �R�1]
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(3.40)

Proof: The proof is based on Lemma 2.2, as it provides the (M;N)-consistent estimates
of the unknown quantities in Lemma 3.6.

�
Remark 1: In (3.39) and (3.40) it has been used sHR̂s as an estimate of the unknown

sHRs in Lemma 3.6. An alternative estimate for sHRs is sH(R̂+ �̂oI)s. In numerical sim-
ulations it has been observed that this latter approach leads to slightly better performance
in the estimation of the parameter of interest x(n).

Remark 2: In order to �nd the optimal value for �̂o, a one dimensional search is needed,
as �̂o is the argument optimizing (3.40). This requires matrix inversions for each iteration
of the search due to the expressions involved in (3.39) and (3.40). Fortunately, these matrix
inversions can be avoided, which leads to reduce the computational cost of the numerical
search. To achieve this aim, �rst the next identities can be considered, where �̂m and êm
denote the m-th sample eigenvalue of R̂ and its associated eigenvector, respectively,
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sH(R̂+ �I)�1s =
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:

(3.41)

Moreover, note that f�̂mgMm=1 and the expression jsH êmj2 need to be computed and
stored only once, i.e. there is no need to recompute these values for each iteration of the
numerical search.

3.7 Numerical simulations

This section is devoted to study the performance of the proposed estimators by means of
numerical simulations. Namely, these methods are the shrinkage of the sample LMMSE
proposed in (3.3), the shrinkage of the sample LMMSE for gaussian data in (3.7), the
shrinkage of the regularized sample LMMSE in (3.25), the shrinkage of the sample LMMSE
towards a matched �lter in (3.28) and the shrinkage of the regularized sample LMMSE
towards a matched �lter in (3.38). The performance of these methods is compared to that
of the optimal LMMSE and its traditional sample based implementation in (1.4) and (1.9),
respectively. Moreover, the proposed methods are also compared to other methods which
are robust to the small sample size regime. These are the ad-hoc choices of the DL in
section 1.4.1. Also the LW method, which obtains the asymptotically optimal shrinkage of
the sample covariance in terms of the MSE in the estimation of the covariance. Another
robust method considered in the comparisons is the DL method in [9], which obtains the
asymptotically optimal loading factor in terms of the SINR at the ouput of the �lter. And
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�nally the regularized sample LMMSE in [79], which obtains the shrinkage factors of the
regularization of the SCM which optimize asymptotically the MSE in the estimation of the
parameter of interest x in (1.1). Recall that all these related work methods are summarized
in section 1.4.1.

In order to de�ne the simulations to be carried out observe that the general expression of
the MSE in (1.5) depends onRn,  and s, whereas the estimators to be compared depend on
c, M

N
, R̂,R,  and s. Beamforming in array signal processing is considered as an application

to specify the models for these parameters. Nonetheless, they are �exible enough to be
applied to other �elds of signal processing, e.g. in spectrum analysis. According to the
assumptions in (1.1),

R =ssH +Rn.

Without loss of generality  , E
�
jx(n)j2

�
is set to 1 in all the simulations. Regarding s,

which represents the steering vector associated to the parameter of interest x(n), a uniform
linear array (ULA) is considered i.e.,

[s]m =
1p
M
ej� sin �0m

where �0 is the Direction of Arrival (DOA) of the signal of interest and
p
M is just a

normalization factor yielding ksk2 = 1, see [14]. Moreover, for the simulation purposes �0
is set to 0, unless stated otherwise. With regard to Rn, a standard model, see [14], is

Rn = SPS
H + �2I

where S is the matrix of steering vectors of the interferers. [S]m;k =
ej� sin �kmp

M
, m =

0; : : : ;M � 1 is the antenna index, k = 1; : : : ; K de�nes a set of interferers and �k
is the DOA of the k-th interferer. For the simulations, from �gure 3.1 to �gure 3.4
�k = (2 + 10(k � 1)) �

180
, from �gure 3.5 to 3.6

�
�k

180�

�

	4
k=1

= f45�;�45�; 85�;�85�g and
from �gure 3.7 to 3.10

�
�k

180�

�

	8
k=1

= f8�;�15�; 23�;�21�; 46�;�44�;�85�; 74�g. P is the
covariance matrix of the interferers and �2 is the power of an AWGN. P is considered
to be diagonal and the elements of the diagonal are set according to �2k = 10�SIRk=10

8k = 1; : : : ; K. Where SIRk is the ratio, in dB, between the power of the signal of interest
and the power of the k-th interferer. With regard to �2 it is set to �2 = 10�SNR=10, where
SNR is the signal to noise ratio in dB. The value for SIRk and SNR is set to 0 dB and to
5 dB, respectively, unless stated otherwise. With regard to c it is set to c = M

N
. M is �xed

in the simulations and N varies ful�lling di¤erent sample size regimes. Finally, the sample
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correlation is R̂ =
1

N

N�1X
n=0

y(n)yH(n) and y(n) is generated according to the data model in

(1.1) and taking into account the comments of the last paragraph, i.e.

y(n) = x(n)s+
KX
k=1

xk(n)sk+�(n); 1 � n � N

where sk is the k-th column of S, xk(n) is the signal associated to the k-th interferer
and �(n) is the noise vector. Moreover, y(n) is assumed to be iid among samples and
distributed according to a multivariate complex gaussian, namely,

y(n) � CN (0;R)
x(n) � CN (0; ); xk(n) � CN (0; �2k);�(n) � CN (0; �2I):

Next, with the simulation conditions at hand, the performance of the proposed estima-
tors is assessed. The �rst set of simulations in �gures 3.1 to 3.4 assess the performance of
the proposed methods based on the most basic form of shrinkage presented in this chapter,
i.e. w = �R̂�1s. These methods are on the one hand, the shrinkage of the sample LMMSE
based on optimizing the MSE and using RMT tools, i.e. with (3.3). On the other hand, the
estimator in (3.7), based on a shrinkage of the sample LMMSE, which optimizes the aver-
age MSE and which uses summary statistics of the complex inverse Wishart distribution.
As these methods intend to overcome the performance degradation of the sample LMMSE,
in the small sample size regime, we compare their performance with that of the sample
and the theoretical LMMSE methods in (1.9) and (1.4), respectively. Given a �xedM , the
MSE of the estimators is displayed as a function of N , which varies to simulate di¤erent
sample size regimes. Moreover, the MSE is computed by substituting the expression of the
�lter of each estimator in (1.5).

Figure 3.1, compares the sample LMMSE method, the theoretical LMMSE and the
proposed Shrinkage LMMSE method in (3.7) when M = 5. It can be observed that
the proposed method dramatically outperforms the sample LMMSE in the small sample
size regime. This behavior is due to the robustness of the shrinkage methods to the small
sample size regimes. Moreover, �gure 3.1 shows that the proposed method outperforms the
conventional sample LMMSE for any of the sample sizes considered herein, i.e. M

N
2 (0; 1)

and it remains close to the theoretical LMMSE estimator. Another comment worth
mentioning is the evolution as the sample size tends to be large. It can be observed that in
this situation all the estimators tend to converge to the optimal method, i.e. the theoretical
LMMSE. The rationale for that behavior in the case of the sample LMMSE is that in this
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situation the SCM is the MVUE of R and it is well conditioned. Thereby, the performance
of the sample LMMSE tends to the one of the theoretical LMMSE. With regard to the
proposed shrinkage of the sample LMMSE, it is easy to check that when N grows large
compared to M , then the shrinkage factor in (3.7) ful�lls

�̂ls;s ! :

Thereby, the performance of the proopsed shrinkage tends to the one of the sample
LMMSE, which on its turn tends to the performance of the LMMSE, as it was just men-
tioned.
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Figure 3.1: Performance comparison between proposed Shrinkage LMMSE based on summary
statistics (3.7), theoretical LMMSE estimator (1.4) and sample LMMSE (1.9) when M = 5,
SNR = 5 dB and SIRi = 10 dB.

The next set of simulations is presented in �gures 3.2 to 3.4. They compare, forM = 3,
M = 5 and M = 10 respectively, the performance of the two proposed methods based on
shrinking the sample LMMSE. The one based on RMT, proposed in (3.3), and the one
based on optimizing the average MSE proposed in (3.7). For the simulation purposes, the
theoretical LMMSE is also considered and all the simulation parameters, except M , are
the same than in �gure 3.1. This set of simulations highlight that both shrinkage methods

89



are robust to the small sample size regime, though the method proposed in (3.7) is slightly
better. This behavior is due to the fact that the shrinkage method based on RMT is
optimum when M;N !1 and M

N
2 (0; 1), see Theorem 3.1. That is to say, that method

is obtained by �nding an estimator which tends asympotically to the optimal though
unrealizable method (3.2) by means of RMT tools. As a consequence as in these �guresM
and N are �nite, a degradation in performance may arise. On the contrary, the shrinkage
method (3.7), based on averaging the MSE and using the summary statistics of the complex
inverse Wishart distribution, does not need any asymptotic approximation. Therefore,
it makes sense that it behaves better than the one based on RMT. The same rationale
explains why as M becomes larger both methods tend to have the same performance,
e.g. see �gure 3.4. Anyway, it is important to observe that the performance degradation
of the method based on RMT, due to the fact of having a �nite M and N , is rather
small, compared to an alternative shrinkage estimator as (3.7) that does not assume any
asymptotic approximation.
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Shrinkage LMMSE based on RMT

Figure 3.2: Performance comparison between proposed Shrinkage LMMSE based on summary
statistics (3.7), theoretical LMMSE estimator (1.4) and Shrinkage LMMSE based on RMT
(3.3) when M=3 , SNR = 5 dB and SIRi = 10 dB.

Next, in �gures 3.5 and 3.6 the performance of the shrinkage of the regularized LMMSE
(3.25) is studied. Recall that this method generalizes the shrinkage of the sample LMMSE
in (3.3) to support any sample size regime, i.e. M=N 2 (0;1). The proposed shrinkage
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Figure 3.3: Performance comparison between proposed Shrinkage LMMSE based on summary
statistics (3.7), theoretical LMMSE estimator (1.4) and Shrinkage LMMSE based on RMT
(3.3) when M=5, SNR = 5 dB and SIRi = 10 dB.
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Figure 3.4: Performance comparison between proposed Shrinkage LMMSE based on summary
statistics (3.7), theoretical LMMSE estimator (1.4) and Shrinkage LMMSE based on RMT
(3.3) when M=10, SNR = 5 dB and SIRi = 10 dB.
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of the regularized sample LMMSE (3.25) is compared to the theoretical LMMSE (1.4), its
sample implementation (1.9) and the shrinkage of the sample LMMSE (3.3). Moreover as
a lower bound the optimal though unrealizable shrinkage of regularized sample LMMSE
is considered. This is obtained considering the optimal shrinkage (3.21) in (3.20) and
obtaining �1 and �2 that minimize the MSE (1.5) by means of a grid search. M is set to
16 and N 2 [16; 300], because (1.9) and (3.3) can not deal with M > N . The proposed
shrinkage of the sample LMMSE and regularized sample LMMSE dramatically outperform
the sample LMMSE in the small sample size regime. In the large sample size regime
all the methods converge, as in this situation the SCM becomes a good estimate of R.
Moreover, the shrinkage of the regularized sample LMMSE (3.25) improves the shrinkage
of the sample LMMSE (3.3), since it relies on the shrinkage of the SCM, which is a better
estimate of R than the SCM, the one used by (3.3). Indeed (3.25) may be viewed as a
generalized version of (3.3) to support M=N 2 (0;1).
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Figure 3.5: Performance comparison between proposed shrinkage of regularized sample
LMMSE (3.25), theoretical LMMSE estimator (1.4), sample LMMSE (1.9) and shrinkage of
sample LMMSE (3.3).

In �gure 3.6, the proposed shrinkage of the regularized sample LMMSE (3.25) is com-
pared to the DL-LMMSE (1.10) and the LW-LMMSE (1.16), i.e. to other methods that
are robust to the small sample size and that support M > N , thus in this �gure M = 16
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and N 2 [4; 300]. In order to implement the DL-LMMSE, the DL factor considered is the
one proposed in [77], which arises from analyzing the estimation error of the covariance,
i.e. � is chosen to be equal to the standard deviation of the diagonal entries of the SCM,
see section 1.4.1. Moreover as a lower bound the LMMSE (1.4) is considered and also
the optimal though unrealizable shrinkage of regularized sample LMMSE. This is obtained
considering the optimal shrinkage (3.21) in (3.20) and obtaining �1 and �2 that minimize
the MSE (1.5) by means of a grid search. The estimator proposed clearly outperforms the
other alternative methods, i.e. LW and DL implementations. This is due to the additional
shrinkage of the �lter governed by �̂o (3.25) and a design based on facing the minimization
of the MSE in the estimation of x(n). On the other hand, recall that the ad-hoc DL-
LMMSE and LW-LMMSE aim to enhance the data covariance estimate which is not the
�nal target. Moreover, LW-LMMSE outperforms DL-LMMSE as its regularization of R̂ is
asymptotically optimal in terms of the MSE in the estimation of the data covariance.
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Figure 3.6: Performance comparison between shrinkage of regularized sample LMMSE (3.25),
theoretical LMMSE estimator (1.4), LW-LMMSE (1.16) and DL-LMMSE (1.10).

In �gure 3.7, the performance of the shrinkage of the sample LMMSE towards matched
�lter in (3.28) is evaluated for a small value ofM = 10, whereas in �gure 3.8 the same type
of simulation than in �gure 3.7 is carried out, but for a relative high value of M = 50. For
comparison purposes the more basic shrinkage of the sample LMMSE proposed in (3.3) is
considered as well as the theoretical LMMSE in (1.4) and the conventional sample LMMSE
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in (1.9). The �rst aim of these two �gures is to assess the performance degradation of the
proposed methods for a small value of M compared to a large value of this parameter.
This is interesting as the proposed methods are optimal for a large M , because they
are (M;N)-consistent estimates. Comparing �gures 3.7 and 3.8 one can see that the
degradation is small and as a consequence the proposed shrinkage LMMSE methods o¤er
a good performance even for rather small values of M . In fact one can observe that the
performance of the shrinkage of the sample LMMSE towards matched �lter is very close
to the optimal LMMSE.
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Figure 3.7: Performance comparison between the shrinkage of the sample LMMSE (3.3), the
shrinkage of the sample LMMSE towards a matched �lter (3.28), the LMMSE (1.4) and the
sample LMMSE (1.9), when SNR=5 dB, SIRi=0 dB and M=10.

Furthermore, �gures 3.7 and 3.8 highlight that the proposed methods are robust to the
small sample size regime thanks to the shrinkage correction and the design based on random
matrix theory. Indeed they outperform the sample LMMSE for any sample size, specially in
the small sample size regime where the improvement is huge. It is also interesting to observe
that for N growing large, compared to M , the shrinkage, the theoretical and the sample
estimators tend to converge. This is because in this case the SCM is the MVUE of R and it
is well conditioned. As a consequence, the sample LMMSE tends to be optimal, i.e. tends
to the LMMSE. The shrinkage estimators are aware of this situation and re�ect it by means
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of the shrinkage factors, which lead to obtain the sample LMMSE. This was noted in (3.29)
and also in section 3.2. This behavior will be more clear in the upcoming �gures. Finally, it
is worth remarking the comparison between the two proposed shrinkage methods. Figures
3.7 and 3.8 highlight that the shrinkage of the sample towards the matched �lter obtains
better performance than the more simple direct shrinkage of the sample LMMSE. The
reason is that the former incorporates more a priori information about the problem or is
more general. This can be easily observed from the structure of both �lters. The shrinkage
of the sample LMMSE has the form w = �R̂�1s, which is a particular case of the shrinkage
of the sample LMMSE towards a matched �lter w = (�1R̂�1+�2I)s. Note that this latter
�lter incorporates more a priori information, because it combines the sample LMMSE with
a scaling of a matched �lter. Namely, on the one hand, the sample LMMSE relies on an
estimation of the inverse covariance obtained from the available samples, i.e. the inverse
of the SCM. On the other hand, the scaling of the matched �lter can be interpreted as an
initial guess of the LMMSE where one assumes that only AWGN and the signal of interest
are present in the scenario, thereby it ignores the available statistical samples.
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Figure 3.8: Performance comparison between the shrinkage of the sample LMMSE (3.3),
shrinkage of the sample LMMSE towards a matched �lter (3.28), the LMMSE (1.4) and the
sample LMMSE (1.9), when SNR=5 dB, SIRi=0 dB and M=50.

Next, in �gure 3.9 the shrinkage e¤ect is exempli�ed. Namely, in �gure 3.9 we run a
Monte Carlo simulation to plot j��lb;1j2 and j��lb;2j2 of the proposed shrinkage method in
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(3.28). Recall that the proposed shrinkage �lter reads �wlb;s=��lb;1R̂
�1s+��lb;2s. Moreover,

recall that the behavior of this �lter is as follows. On the one hand when the sample size
increases, i.e. M

N
decreases, �wlb;s tends to give more weight to the sample LMMSE than

to the matched �lter. Indeed when N � M the proposed �lter �wlb;s tends to disregard
the matched �lter and give most of the weight to the sample LMMSE. This is because
the sample LMMSE is the optimal �lter for the large sample size regime, see also (3.29).
And e¤ectively, �gure 3.9 highlights this behavior, as M

N
decreases j��lb;1j2 tends to increase

whereas j��lb;2j2 tends to decrease. On the other hand, as in general in the small sample
size regime the matched �lter yields better performance than the sample LMMSE, �wlb;s

has the next behavior. As M
N
increases, �wlb;s tends to give more weight to the matched

�lter than to the sample LMMSE. Indeed in the extreme case where M
N
is close to 1, the

proposed �lter �wlb;s tends to disregard the sample LMMSE and give most of the weight to
the matched �lter, see (3.30). And e¤ectively �gure 3.9 highlights this behavior as well.
Namely, As M

N
increases, j��lb;2j2 tends to increase whereas j��lb;1j2 tends to decrease.
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Figure 3.9: Shrinkage factors of the proposed shrinkage of the sample LMMSE towards
mathced �lter in (3.28) when M = 10, SNR=5 dB and SIRi=0 dB.

Next, in �gure 3.10 the performance of the proposed shrinkage of the sample LMMSE
methods in (3.3) and (3.28) is compared to the LW and ad-hoc DL implementations of the
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LMMSE, see (1.10) and (1.16), which are robust to the small sample size as well. M is set
to 30 and N 2 (30; 600). In these plots we consider the DL factor proposed in [77] based on
analyzing the estimation error of the covariance, i.e. � is chosen to be equal to the standard
deviation of the diagonal entries of the SCM, see section 1.4.1. Figure 3.10 shows that the
proposed shrinkage of the sample LMMSE towards a matched �lter (3.28) outperforms the
DL and LW implementations of the LMMSE provided that M < N , indeed in some cases
the gain is signi�cant. The reason for this improvement is as follows.
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Figure 3.10: Performance comparison between the proposed shrinkage of the sample LMMSE
towards a mathced �lter (3.28), the shrinkage sample LMMSE (3.3), the LMMSE (1.4), the
LW-LMMSE (1.16) and the DL-LMMSE (1.10), implemented with � equal to the standard de-
viation of the diagonal entries of R̂. SNR=5 dB, SIRi=0 dB and M=30.

On the one hand, both DL and LW implementations seek to enhance the covariance
estimate, but they do not deal directly with the estimation of the parameter of inter-
est. DL regularizes the SCM by analyzing the error bounds in the estimation of the
covariance, whereas LW proposes a shrinkage of the SCM that seeks to optimize asymp-
totically the MSE in the estimation of the covariance. On the other hand, the method
suggested herein faces directly the estimation of the parameter of interest x by obtaining
an (M;N)�consistent estimate of the MSE optimal, though unrealizable, estimator of x
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in lemma 3.5. Actually the same rationale can be applied to explain why the more basic
shrinkage of the sample LMMSE (3.3) also obtains performance gains compared to the
ad-hoc DL.
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Figure 3.11: Empirical cdf of the SINR at the output of the next beamformers. The proposed
shrinkage of the sample LMMSE towards a matched �lter (3.28), the theoretical LMMSE
(1.4), the LW-LMMSE (1.16), the ad-hoc DL-LMMSE implemented with � equal to the stan-
dard deviation of the diagonal entries of R̂ (1.13) and the DL-LMMSE implemented with the
asymptotically SINR optimal DL factor (1.15) in [9]. SNR=20 dB, SIRi=0 dB, M=50 and
N=70.

Figure 3.11 assesses the SINR achieved at the output of the proposed shrinkage �lter
in (3.28) as well as other related work methods. As it was commented above the SINR is
an important metric widely used in beamforming an other signal processing and commu-
nications applications. Thereby it is interesting to give insights on the performance of the
proposed shrinkage �lter in (3.28) in terms of SINR. To this end, the proposed method is
compared to the DL method in [9]. This is an important state-of-the-art method, as it
obtains, for the type of diagonally loaded �lters, the DL factor which optimizes asymptot-
ically the SINR at the output of the �lter, see section 1.4.1 for further details. In order
to complete the comparison the ad-hoc DL method based on the DL factor (1.13) and the
LW-LMMSE (1.16) are incorporated in the simulation as well.
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The simulation conditions are similar than the ones of the previous �gures, but taking
into account the values in [9] to allow a fair comparison for the DL method in [9]. Thereby,
in �gure 3.11 M = 50 and N = 70, which corresponds to a small sample size regime.
Moreover, 29 interferers are considered, whose power is the same than the one of the signal
of interest, and the SNR=20 dB. At each iteration of the simulation the DOA of the
interferers and the SOI are generated according to a uniform distribution within the range
[�90�; 90�]. This permits to allow variability in the scenario and permits to generalize the
results of the previous �gures, which considered �xed values of DOA for both the interferers
and the SOI.

Given these simulation conditions, �gure 3.11 displays the empirical cdf of the SINR
at the output of the �lters. It can be observed that the proposed shrinkage outperforms
both the ad-hoc DL and the LW method. This corroborates the result obtained in �gure
3.10 for a more general scenario in terms of DOA values, as �gure 3.11 considers di¤erent
DOA values at each iteration of the simulation, whereas in �gure 3.10 they were �xed.
The proposed shrinkage LMMSE method obtains better performance than the ad-hoc DL
and the LW algorithms because it deals directly with the estimation of the parameter of
interest. That is, it obtains the shrinkage factors which optimize asymptotically the MSE
in the estimation of the parameter of interest. On the contrary, as it was commented in the
previous �gure, the ad-hoc DL and the LWmethods try to obtain a better estimation of the
covariance, than the SCM, by analyzing or optimizing metrics related to the covariance,
which is not the �nal target herein.

Figure 3.11 highlights that the proposed shrinkage LMMSE obtains a performance
which is close to the one of the asymptotically optimal DL method proposed in [9]. More-
over, in chapter 5 it is shown that the proposed shrinkage LMMSE (3.28) outperforms the
DL method in [9], in terms of SINR, when there is an uncertainty in the steering vector
of the SOI. The rationale is that the DL method in [9] obtains an asymptotically optimal
DL factor to cope with the small sample size regime. However, if there is an uncertainty in
the steering vector, an additional tuning of that DL factor is required. Otherwise the DL
method undergoes a performance degradation due to the signal cancelation e¤ect, where
the �lter may confuse the SOI with an interference and may tend to cancel it. On the
contrary, the proposed shrinkage LMMSE �lter in the small sample size regime tends to
give more weight to the matched �lter and to disregard the sample LMMSE. Thereby, it
circumvents the degradation due to the signal cancelation e¤ect when there is an uncer-
tainty in the steering vector. That is, it may attenuate the SOI due to e.g. pointing errors,
but it will not try to cancel the SOI as it was an interference.

In �gure 3.12, in order to complement the previous �gure, the same type of simulation is
carried out, but in this case the MSE is considered as the performance metric, namely the
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empirical cdf of the MSE related to each �lter is displayed. This is a more fair comparison
for the proposed shrinkage LMMSE in (3.28) as it obtains the shrinkage factors as the
ones that optimize asymptotically the MSE in the estimation of the parameter of interest.
Moreover, as it was comented above, the MSE is an important metric in applications where
the complex amplitude of the signal of interest is important, e.g. in subband beamforming
[17] see further details in section 3.2. Figure 3.12 shows that the proposed shrinkage
LMMSE in (3.28) clearly outperforms the DL method proposed in [9]. This is because
the proposed method designs the shrinkage factors to minimize the MSE, whereas the DL
method in [9] obtains a DL factor which optimizes asymptotically the SINR, which does not
guarantee a good estimation performance in terms of MSE, as it was pointed out in [17].

20 15 10 5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10log(MSE)

Em
pi

ric
al

 c
df

Shrink. LMMSE
 towards matched f ilter
Asy mp. SINR Optimal DL
Theoretical LMMSE

Figure 3.12: Empirical cdf of the MSE associated to the next beamformers. The proposed
shrinkage of the sample LMMSE towards a matched �lter (3.28), the theoretical LMMSE
(1.4) and the DL-LMMSE implemented with the asymptotically SINR optimal DL factor (1.15)
in [9]. SNR=20 dB, SIRi=0 dB and.M=50, N=70.

Figures 3.13 to 3.15 assess the performance of the shrinkage of the regularized sample
LMMSE towards a matched �lter proposed in (3.38). Recall that this �lter can be viewed
as a generalization of the shrinkage �lter proposed in (3.28) to support the scenarios where
M is higher than N . Thereby it is the more elaborate �lter proposed in this chapter. In
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order to study the performance of the proposed �lter similar type of simulations than in the
previous �gures are used. That is, the DOA of the SOI and the interferences are generated
according to a uniform distribution within the range [�90�; 90�] at each iteration and then
the cdf of the MSE and the SINR achieved by the �lters are displayed. In the next plots the
SOI and the interferences have the same power and the SNR is set to 20 dB. The shrinkage
of the regularized LMMSE towards a matched �lter proposed in (3.38) is compared to the
next methods. The theoretical LMMSE in (1.4), which is the lower bound in terms of
MSE or the upper bound in terms of SINR. The method proposed in [9], which obtains
the asymptotically SINR optimal DL factor � in (1.15) for the type of DL-LMMSE �lters
given by w = (R̂+ �I)�1s. Finally for comparison purposes, the method proposed in [79]
is also considered, as it obtains the asymptotically MSE optimal shrinkage factors � 1; � 2
which characterize the type of regularized LMMSE �lters given by w = (� 1R̂+ � 2I)�1s.
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Figure 3.13: Empirical cdf of the MSE associated to the next beamformers. The proposed
shrinkage of the regularized sample LMMSE towards a matched �lter (3.38), the theoretical
LMMSE (1.4), the DL-LMMSE implemented with the asymptotically SINR optimal DL factor
(1.15) proposed in [9] and the regularized LMMSE in [79], which obtains the asymptotically
MSE optimal shrinkage of the SCM. SNR=20 dB, SIRi=0 dB, M=20 and N=19.

Thereby, �rst in �gures 3.13 and 3.14 the cdf of the MSE is taken into account as
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a performance metric. Namely, in �gure 3.13 M = 20, N = 19 and the number of
interferences plus the SOI, i.e. K, is set to 12, whereas in �gure 3.14 M = 10, N = 9
and K is set to 6. In both �gures it can be observed that the proposed shrinkage of the
regularized sample LMMSE towards a matched �lter clearly outperforms the DL-LMMSE
method proposed in [9].
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Figure 3.14: Empirical cdf of the MSE associated to the next beamformers. The proposed
shrinkage of the regularized sample LMMSE towards a matched �lter (3.38), the theoretical
LMMSE (1.4), the DL-LMMSE implemented with the asymptotically SINR optimal DL factor
(1.15) proposed in [9] and the regularized LMMSE in [79], which obtains the asymptotically
MSE optimal shrinkage of the SCM. SNR=20 dB, SIRi=0 dB, M=10 and N=9.

The rationale is that the proposed method seeks to optimize the MSE whereas the
DL-LMMSE method proposed in [9] focuses on the optimization of the SINR. Moreover,
�gures 3.13 and 3.14 show that the proposed shrinkage in (3.38) obtains some performance
gains compared to the regularized LMMSE proposed in [79], which also seeks to optimize
the MSE. The rationale relies on the structure of the �lters, as the proposed �lter is more
general than the regularized LMMSE in [79] from the next point of view. Namely, the
proposed �lter in (3.38) has the structure w = (�1(R̂+ �I)�1+�2I)s, thereby it considers
the shrinkage of the inverse sample covariance, which is properly regularized to permit to
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deal with situations whereM > N . On the other hand [79] only considers the regularization
of the SCM and it does not consider the shrinkage of the inverse sample covariance matrix.
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Figure 3.15: Empirical cdf of the SINR at the output of the next beamformers. The proposed
shrinkage of the regularized sample LMMSE towards a matched �lter (3.38), the theoretical
LMMSE (1.4), the DL-LMMSE implemented with the asymptotically SINR optimal DL factor
(1.15) proposed in [9] and the regularized LMMSE in [79], which obtains the asymptotically
MSE optimal shrinkage of the SCM. SNR=20 dB, SIRi=0 dB, M=20 and N=19.

Next, in �gure 3.15 the same type of simulation than in �gure 3.13 is considered, though
in this case the cdf of the SINR is displayed as a performance metric instead of the cdf
of the MSE. It can be observed that in this case the proposed method and the other
robust methods display almost the same performance. In this regard, more insights are
given in chapter 5 for the situations where the signature vector of the SOI is not known
precisely. Namely, in those situations, it will be shown in chapter 5 that the shrinkage of
the regularized LMMSE towards a matched �lter proposed in (3.38) clearly outperforms
both the DL-LMMSE proposed in [9] and the regularized LMMSE proposed in [79].
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3.8 Appendix: proofs

Proof of Lemma 3.1

Let de�ne  = R̂
�1
s, then the MSE optimization problem in (3.1) may be reformulated

as,

�l=argmin
�

MSE (w =  �) = argmin
�

E
h��x(n)� ( �)Hy(n)��2 j R̂i

Bearing in mind the expression of the MSE in (1.5) and recalling that according to
assumption (b) in our data model (1.1), R =ssH +Rn, this problem can be rewritten as,

�l=argmin
�

�� HR �+(1� �� Hs� sH �) (3.42)

At this point, the optimal solution is found by setting to zero the derivative of the
argument in (3.42) with respect to ��, i.e. it is the solution to @MSE(�)

@�� = 0, which yields,

�l =
�
 HR 

��1
 Hs (3.43)

Now, recalling that  = R̂
�1
s, (3.43) leads to the next expression,

�l =
sHR̂�1s

sHR̂�1RR̂�1s
(3.44)

Which concludes the proof as (3.44) coincides with (3.2).

Proof of Theorem 3.1

The statement that the estimator is realizable is clear from the expression of its shrink-
age factors (3.3), as they do not depend on any unknown parameter. With regard to the
consistency, it su¢ ces to proof that the shrinkage factor ��l in (3.3) is a consistent estimate
of the theoretical factors �l in (3.2), i.e. we have to demonstrate that ��l � �l within the
general asymptotics framework where M;N ! 1 at a constant rate M=N ! c 2 (0; 1),
where recall that � denotes almost sure convergence. To this end, let use the asymptotic
equivalences presented in Lemma 2.1, in the theoretical LMMSE shrinkage vector (3.2).
Namely, the results sHR̂�1RR̂�1s � (1� c)�3sHR�1s and sHR̂�1s � (1� c)�1sHR�1s are
considered. This yields the next asymptotic deterministic equivalent expression for �l,
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�l � (1�c)2 (3.45)

Which concludes the proof as according to (3.3) ��l = (1�c)2 and as a consequence �l � ��l.

Proof of Lemma 3.3

Let us de�ne � = �2=�1, then one can express the numerator and the denomina-
tor in (3.21) as ��11 s

H(R̂+�I)�1s and ��21 s
H(R̂+�I)�1R(R̂+�I)�1s, respectively. The

convergence of these expressions was obtained in [9, appendix I] in terms of the eigen-
vectors, ei, and eigenvalues, �i, of R. A sketch of the proof for the convergence of
sH(R̂+�I)�1R(R̂+�I)�1s is also found in the appendix of chapter 2. Thereby, in [9, ap-
pendix I] it was shown that considering the asymptotic regime where M;N ! 1 and
M=N ! c 2 (0;1), the desired quantities converge in probability to the next determinis-
tic expressions,

��11 s
H(R̂+�I)�1s � ��11

MX
i=1

(1 + cb)
��sHei��2

�i + �

��21 s
H(R̂+�I)�1R(R̂+�I)�1s � ��21 ((1 + cb)2 + cb0)

MX
i=1

��sHei��2 �i
(�i + �)2

where � , �(1 + cb), b , b(z) pz=0 is the positive solution to the next equation,
b0 =db(z)

dz
pz=0 is de�ned next and b(z) is de�ned in [9, eq. 25],

b =
1

M

MX
i=1

�i(1 + cb)

�i + �

b0 =

 
1� 1

M

MX
i=1

c�2i
(�i + �)2

!�1
1

M

MX
i=1

�2i (1 + cb)
2

(�i + �)2
:

Finally, bearing in mind the next equalities,

MX
i=1

��sHei��2
�i + �

= sH(R+�I)�1s

MX
i=1

��sHei��2 �i
(�i + �)2

= sH(R+�I)�1R(R+�I)�1s

105



one obtains that the numerator and the denominator in (3.21) convergence to the next
expressions,

��11 s
H(R̂+�I)�1s � ��11 (1 + cb)sH(R+�I)

�1s

��21 s
H(R̂+�I)�1R(R̂+�I)�1s � ��21 ((1 + cb)2 + cb0)

�sH(R+�I)�1R(R+�I)�1s

Substituting these expressions in (3.21), and after some manipulations, one obtains
(3.22).

Proof of Lemma 3.4

The consistent estimates of these parameters is given in [124, App.A] and it is based
on expressing b, �, �n and �d in terms of the next real Stieltjes transforms t(x) and s(x),

� = 1� s(x) px=��1+��1
ds(x)

dx
px=��1

b=(1 + cb) = 1� s(��1(1 + cb)�1)
�d = �

�1t(��1); �n= �[x
2dt(x)=dx] px=��1

t(x) =
MX
k=1

��sHek��2
1 + x�k

; s(x) =
1

M

MX
k=1

1

1 + x�k
; x > 0

The (M;N)-consistent estimators of t(x) and s(x) were obtained in [101], see [124,
App.A], considering the asymptotic regime where M;N ! 1 and M=N ! c 2 (0;1),
and are given by

t̂(x) =

MX
k=1

��sH êk��2
1 + �(x)�̂k

; ŝ(x) =
1

M

MX
k=1

1

1 + �(x)�̂k

where �(x) is the positive solution to the next equation,

�(x)[1� c+ c 1
M
Tr[(I+�(x)R̂)

�1
]] = x; x > 0

Thereby, this paves the way to obtain the next (M;N)-consistent estimates of b, �, �n
and �d,
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b̂ =
1� �

M
Tr[(R̂+�I)�1]

1� c(1� �
M
Tr[(R̂+�I)�1])

�̂d = (1� c+ c �M Tr[(R̂+�I)
�1])sH(R̂+�I)�1s

�̂ =
1
M
Tr[R̂2(R̂+�I)�2]� c

M2 Tr
2[R̂(R̂+�I)�1]

1� c+ c�2 1
M
Tr[(R̂+�I)�2]

�̂n =
(1� c(1� �

M
Tr[(R̂+�I)�1]))2

1� c+ c
M
Tr[(��1R̂+ I)�2]

sH(R̂+�I)�1R̂(R̂+�I)�1s

Proof of Lemma 3.5

Let us de�ne � , (�1 ; �2)T and 
 ,
�
R̂�1s ; s

�
and let �lb be the vector of optimal

shrinkage factors, then the MSE optimization problem in (3.26) may be reformulated as,

�lb=argmin
�

MSE (w = 
�)

Bearing in mind the expression of the MSE in (1.5) and recalling that according to
assumption (b) in our data model (1.1), R =ssH +Rn, this problem can be rewritten as
follows,

�lb=argmin
�

�H
HR
�+(1��H
Hs� sH
�) (3.46)

Observe that in (3.46) a real scalar function is optimized with respect to a complex
vector. Therefore, in order to �nd the optimal solution @MSE(�)

@�H
= 0 must be solved,

[14]. Indeed, the optimization problem in (3.46) is analogous to the one involved in the
theoretical LMMSE method, see (1.3), (1.5) and recall that R =ssH + Rn. Therefore,
bearing in mind these statements and after easy manipulations, it is easy to check that the
optimal shrinkage factors read,

�lb =
�

HR


��1

Hs (3.47)

Now, recalling that 
 ,
�
R̂�1s ; s

�
and taking into account the property of multipli-

cation of partitioned matrices [14], the expression (3.47) yields,
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�lb = 

�
sHR̂�1RR̂�1s sHR̂�1Rs

sHRR̂�1s sHRs

��1�
sHR̂�1s
1

�
At this point, applying the de�nition of the inverse of a matrix and again applying the

property of multiplication of partitioned matrices we obtain that the optimal shrinkage
factors read,

�lb =



�
sHRssHR̂�1s� sHR̂�1Rs

sHR̂�1RR̂�1s� sHR̂�1ssHRR̂�1s

�
sHR̂�1RR̂�1ssHRs� sHR̂�1RssHRR̂�1s

(3.48)

which concludes the proof as (3.48) coincides with (3.27).

Proof of Theorem 3.5

The proof for Theorem 3.5 is readily obtained from Lemma 3.5 and Lemma 2.1. Namely,
the claim that the estimator is realizable is evident from the expression of its shrinkage
factors in (3.28). With regard to the consistency of the estimator it su¢ ces to prove that
the shrinkage factor ��lb in (3.28) is a consistent estimate of the optimal shrinkage vector
�lb in (3.27), i.e. ��lb � �lb within the general asymptotics framework where M;N ! 1
at a constant rate M=N ! c 2 (0; 1).
In order to prove that ��lb � �lb, let us use the asymptotic equivalences presented

in Lemma 2.1, in the theoretical LMMSE shrinkage vector (3.27). This yields the next
asymptotic equivalent expression for ��lb,

�lb �


�
sHR̂ssHR̂�1s�(1� c)�1

(1� c)�2sHR̂�1s� sHR̂�1s(1� c)�1
�

(1� c)�2sHR̂ssHR̂�1s�(1� c)�2
(3.49)

And, after straightforward manipulations, expression (3.49) may be rewritten as follows,

�lb �


�
(1�c)2sHR̂ssHR̂�1s�(1� c)

csHR̂�1s

�
sHR̂ssHR̂�1s�1

= ��lb: (3.50)

This concludes the proof, as it highlights that the shrinkage factor in (3.28) is a con-
sistent estimate of the optimal shrinkage factor in (3.27).
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Chapter 4

Shrinkage of the sample MVDR
method to deal with the small
sample size degradation

4.1 Introduction

The aim of this chapter is to design an estimator that overcomes the drawbacks of the
sample MVDR method exposed in (1.9). Namely, the aim is to obtain estimators which
are robust to the small sample size regime and that preserve the optimality of the sample
MVDR in the large sample size. To this end, we have at our disposal two powerfool tools,
shrinkage estimation and random matrix theory, namely G-estimation. More speci�cally,
the approach is analogous to the design of the estimators proposed in chapter 3 to over-
come the drawbacks of the sample LMMSE, and can be summarized as follows. First,
in section 4.2 we propose to use a shrinkage of the sample MVDR estimator towards a
shrinkage target consisting of a matched �lter or conventional beamformer. In other words
a linear combination of the sample MVDR and the conventional beamformer. As it has
been mentioned in the previous chapters, this structure implements a correction of the
sample MVDR �lter in the small sample size regime, whose aim is to diminish the overall
estimation error by optimizing the bias variance tradeo¤. The proposed �lter combines the
information obtained by the observations, which is embedded in the sample MVDR, with
a priori information, which is represented by the conventional beamformer. The optimal
shrinkage factors, i.e. the coe¢ cients of the linear combination, are obtained as the ones
which maximize the SINR associated to the proposed �lter. Unfortunately, this optimal
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shrinkage factors depend on the unknown correlation matrix. In order to circumvent this
problem, in section 4.3, we propose to apply random matrix theory to obtain a consistent
estimate of that shrinkage factors in the doubly asymptotic regime where both the sample
size N and the observation dimension M grow at a �xed rate. Thus, by means of the use
of random matrix theory not only we are obtaining a consistent and realizable estimator,
but also we are implicitly tackling the situation whereM and N may be comparable. That
is, the robustness of the designed estimator to the small sample size regime is due to both
the shrinkage and the RMT tools. Indeed, random matrix theory permits to obtain an
optimal shrinkage factor when both M and N tend to in�nity at a �xed rate. In section
4.5, the shrinkage method proposed in sections 4.3 is generalized to support small sample
size situations where M > N . To this end, a regularization of the SCM is considered
in the shrinkage of the sample MVDR towards the matched �lter. That is the type of
�lter w =�1 �R�1s+�2s, where �R = R̂+�I, is proposed. The design of the shrinkage factors
�1; �2 and the regularization parameter � relies on optimizing the SINR at the output
of the �lter and then applying RMT tools to obtain (M;N)-consistent estimates of the
uknown terms within the regime where (M;N)!1 and M=N ! (0;1). Provided that
M=N 2 (0; 1), the numerical simulations highlight that the �rst shrinkage method pro-
posed in section 4.3 outperforms the conventional sample MVDR method and also other
robust techniques to the small sample size regime explained in section 1.4.1. Namely, the
ad-hoc implementations of the DL technique and the LW-MVDR method, which is based
on shrinking the SCM by minimizing the MSE in the estimation of the data covariance. In
addition it displays almost the same performance than the DL technique [9] which asymp-
totically optimizes the SINR, which is also exposed in section 1.4.1. Moreover, regarding
the more general shrinkage method proposed in section 4.5, the numerical simulations
highlight that it permits to extend the contributions of the shrinkage method in 4.3 to
M=N 2 (0;1). That is, on the one hand it clearly outperforms the LW-MVDR method,
which had better performance than the ad-hoc implementations of the DL technique in the
previous simulations. And on the other hand, the shrinkage method proposed in section
4.5 obtains the same performance than the asymptotically optimal DL technique proposed
in [9]. Moreover, as it is shown in chapter 5, the shrinkage MVDR methods proposed in
sections 4.3 and 4.5 outperform the asymptotically optimal DL method proposed in [9],
when there is an uncertainty in the signature of the SOI or steering vector s of the data
model (1.1).

110



4.2 Optimal shrinkage of the sample MVDR estima-
tor

As it was pointed out in chapter 1, the performance of the sample MVDR (1.9) is rapidly
degraded when the sample size N is compared to the observation dimensionM . This is due
to its strategy of replacing R�1 by its sample estimate R̂�1. This approach relies on the
fact that the sample correlation is the ML estimator of the correlation. Nonetheless, when
N is comparable toM , the sample estimate R̂�1 is no longer a good estimate. Indeed, it is
an ill conditioned estimator, see e.g. [33], this means that when N is comparable toM and
M 6 N inverting R̂ dramatically ampli�es the estimation error. Moreover, when M > N
the sample correlation matrix is not even invertible. On the other hand, when N � M
the sample MVDR is optimal as R̂ is the MVUE estimator of R. In order to overcome
the small sample size degradation, the �rst proposed estimator is the next shrinkage of the
sample MVDR �lter towards a matched �lter,

w =�1R̂
�1s+�2s:

A more general form of this estimator is tackled in section 4.5. Note that the original
expression of the sample MVDR is w = R̂�1s

sHR̂�1s
, but the denominator is just a normaliza-

tion quantity. Therefore for the shrinkage structure purposes, we can consider �1R̂�1s or
� R̂�1s
sHR̂�1s

and we prefer to use the former to avoid cumbersome calculations. The rationale
for the proposed �lter is as follows. According to the shrinkage estimation theory, in order
to improve a sample estimator, whose estimation error mostly comes from the estimation
variance, we may introduce a bias such that the overall estimation error is diminished.
Note that this role is played by the linear combination coe¢ cients �1, �2 and the term s.
That is, we are shrinking the sample MVDR �lter w = R̂�1s

sHR̂�1s
towards w = s. This latter

�lter can be regarded as an initial guess of the MVDR where one assumes that only the
SOI and additive white noise are present in the scenario, i.e. one disregards the available
statistical samples and estimates the unknown noise covariance within R by just I. Af-
ter applying the Woodbury�s identity this leads to a scaling of a matched �lter. Another
interesting interpretation of the proposed �lter is obtained by rewriting the expression of
the proposed �lter, after applying the distributive property of matrices, as

w = (�1R̂
�1+�2I)s , �R

�1
s:

That is, the proposed method is implementing a correction of the sample MVDR which
relies on a shrinkage of the inverse of the SCM, �R�1 = �1R̂

�1+�2I which is a better
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estimate of R�1 than R̂�1. Or even more precisely, consider the eigendecomposition of the
SCM R̂�1 = Ê�̂�1ÊH , where Ê is a matrix which stacks in its columns the eigenvectors
of the SCM and �̂ is a diagonal matrix which contains the eigenvalues of the SCM in
its main diagonal. Then, it is clear that the proposed �lter can be expressed as w =
Ê(�1�̂

�1 + �2I)Ê
Hs. Therefore the proposed �lter is implementing a correction of the

sample MVDR which consists of a shrinkage of the eigenvalues of R̂�1.

With the �lter structure at hand, w =�1R̂�1s+�2s, we may formulate the problem
that permits the design of the optimal linear estimator of x(n) in (1.1) in terms of the
optimization of the SINR at the output of the �lter. That is, the aim is to solve the
problem stated in (1.29), when f(MSE (w)) = MSE (w) and when the constraint wHs =1
is imposed, which is equivalent to optimize the SINR at the output of the �lter. This is
more clear if one observes the expressions of the MSE and the SINR

MSE(w) = wHRnw + jwHs� 1j2

SINR(w) =
jwHsj2
wHRnw

:

Moreover, the assumptions about the linear model of the observed signal (1.1) are
(a)-(d). This problem and its solution are formalized in the next lemma.

Lemma 4.1 Assume that a set of observations fy(n)gNn=1 ful�lling the model in (1.1), with
assumptions (a)-(d) is available. Given fy(n)gNn=1, consider the problem of estimating
the unknown x(n) in (1.1), based on minimizing the MSE in (1.5), when the estimator
x̂c;s(n) = wH

c;sy(n) is a linear shrinkage of the sample MVDR towards a matched �lter,
i.e. w =�1R̂�1s+�2s, and when the constraint wHs =1 is imposed in the �lter, which is
equivalent to maximize the SINR at the output of w and it permits to avoid the knowledge
about the second moment of x(n). This problem is mathematically formulated as follows,

x̂c;s(n) = w
H
c;sy(n); wc;s = argmin

w
MSE (w)

s:t: wHs =1;w =�1R̂
�1s+�2s

(4.1)

Then, de�ning �c , (�1 ; �2)
T , the optimal solution for this problem is given by the

next shrinkage factors,

�c =

�
sHRssHR̂�1s� sHR̂�1Rs

sHR̂�1RR̂�1s� sHR̂�1ssHRR̂�1s

�
G

(4.2)
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Where, G , sHR̂�1s(sHRssHR̂�1s� sHR̂�1Rs)�sHRR̂�1ssHR̂�1s+ sHR̂�1RR̂�1s

Proof: See section 4.4.

�
As it was carried out for the shrinkage of the sample LMMSE, it is interesting to study

the particular case of direct shrinkage of the sample MVDR. That is, w =�1R̂�1s in lemma
4.1. Following the same procedure than for the proof of lemma 4.1, this leads to obtain
the next optimal shrinkage factor, in an MSE sense,

�c;p =
1

sHR̂�1s
(4.3)

Thus, the optimal shrinkage �lter reads w = R̂�1s
sHR̂�1s

, i.e. coincides with the sample
MVDR. Therefore, direct shrinkage of the sample MVDR does not help to improve its
performance. Moving on to something else, the expression for the optimal shrinkage MVDR
estimator in (4.2) highlights the dependance on the unknown R and as a consequence that
it is not realizable. At this point, in other contexts dealing with shrinkage estimation
and facing an analogous problem the authors propose to substitute the unknown R for its
sample estimate [130]. Nonetheless, that approach entails an estimation risk that may lead
to a performance degradation. Indeed, if one applies this strategy to (4.2), it turns out

that obtains the sample MVDR, i.e. �cjR=R̂ =
�

1
sHR̂�1s

; 0
�T
, and as a consequence the

potential bene�ts of shrinkage estimation disappear. Herein, in order to tackle this problem
and obtain a realizable method, another strategy is proposed. We propose to use random
matrix theory, to obtain an (M,N)-consistent estimate of the optimal shrinkage factor in
(4.2). Namely, the general asymptotics framework where M;N ! 1 at a constant rate
M=N ! c 2 (0; 1) is adopted as it is enough general to study the consistency for di¤erent
sample sizes. That is, it deals with the situations where M may be comparable to N , i.e.
small sample size and it embraces the classical large sample size assumption for obtaining
consistent estimators, where the observation dimension M is �xed and the sample size N
is assumed to tend to in�nity. This powerful approach is presented in the next section.

4.3 Asymptotically optimal shrinkage of the sample
MVDR

In this section an (M,N)-consistent estimate of the optimal, though unrealizable, shrinkage
factors of the method proposed in (4.2) is exposed and relevant comments are discussed.

113



This method, based on results from randommatrix theory, is presented in the next theorem,

Theorem 4.1 Let de�ne ��c , (��c;1 ; ��c;2)T , and let assume the normalization ksk2 = 1,
then a realizable and (M,N)-consistent estimate of the optimal shrinkage MVDR estimator
(4.2), within the general asymptotics framework where M;N ! 1 at a constant rate
M=N ! c 2 (0; 1), reads as follows,

�xc;s(n) = �wH
c;sy(n); �wc;s=��c;1R̂

�1s+��c;2s

��c =

�
(1� c)(sHR̂ssHR̂�1s(1� c)� 1)

csHR̂�1s

�
sHR̂�1s(sHR̂ssHR̂�1s(1�c)2 � 2(1� c) + 1)

(4.4)

Proof: See section 4.4.

�
This (M,N)-consistent estimator, shows explicitly the robustness to the small sample

size regime. On the one hand, its underlying structure corresponds to a shrinkage estimator,
which are known to be robust to the small sample size, see chapter 2. Namely, recall that as
it is explained above, in the previous section, the proposed shrinkage structure implements
a correction in the form of a bias variance tradeo¤ that permits to diminish the overall
MSE in the estimation of the SOI. Also another interpretation is that a shrinkage of the
inverse of the SCM, i.e. ��c;1R̂�1+��c;2I, is implemented by the proposed �lter which is a
better estimate than R̂�1, in the small sample size regime. Moreover, in this regard, note
the shrinkage coe¢ cients ��c;1 ; ��c;2 are designed to maximize the SINR at the output of
the �lter. On the other hand, as we will see in the proof of this theorem, the proposed
�lter relies on random matrix theory, i.e. the consistency is obtained within the framework
of general asymptotics, that embraces the small sample size scenario where N can be
comparable to M . In the numerical results section, the robustness to the small sample
size will be studied in more detail. Furthermore, in that section it will be demonstrated
that (4.4) outperforms the conventional sample MVDR estimator (1.9) in all the sample
size regimes dealt with herein, i.e M=N 2 (0; 1) and that the improvement in performance
is dramatic when M=N is close to 1. Moreover, the simulations also highlight that the
proposed method outperforms robust techniques to the small sample size regime such as the
LW-MVDR (1.17), provided that M=N 2 (0; 1), which obtains an asymptotically optimal
shrinkage of the SCM by minimizing the MSE in the estimation of the data covariance.
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In fact, note that this performance metric is not the �nal target. On the contrary the
proposed method focus on obtaining a good estimate the SOI x(n), which is the actual
target. The simulations also highlight better performance of the proposed method than the
ad-hoc implementations of the DL-MVDR (1.11) explained in section 1.4.1, provided that
M=N 2 (0; 1). This is because the proposed approach is more analytical, as it deals directly
with the optimization of a metric related to the estimation of the parameter of interest.
Finally, it is worth mentioning that the proposed shrinkage MVDR displays almost the
same performance than the DL technique [9] which optimizes asymptotically the SINR for
the type of DL methods. In this regard, an important contribution, as it will be shown
in chapter 5, is that the proposed shrinkage MVDR outperforms the DL method [9], in
situations where the signature vector of the SOI s in (1.1) is not precisely known.

At this point, it is interesting to study the values of the shrinkage factors in (4.4) when
c approaches its extremes values, i.e. when c ! 1 and c ! 0. This permits to get more
insights on the e¤ects of the shrinkage e¤ect on the proposed �lter. When c ! 1, after
straightfordward manipulations of (4.4), the next expression is obtained,

c! 1) ��c ! (0; 1)T : (4.5)

This is a meaningful result as in the small sample size regime the sample implementation
of the MVDR is no longer a good estimate and in general may display worse performance
than an estimator based on a matched �lter, which does not use any information about the
available samples. On the other hand, in the large sample size regime, i.e. when c! 0, it
is easy to obtain that the consistent shrinkage factors in (4.4) tend to the next expression,

c! 0) ��c !
�

1

sHR̂�1s
; 0

�T
: (4.6)

This is a meaningful result as in this case we are in the framework of classical asymptotics
that is commonly assumed to obtain the sample MVDR, i.e. M �xed and N tending to
in�nity. That is, in this situation R̂ is the MVUE of R, it is well conditioned and it is
consistent and as a consequence the sample implementation of the MVDR tends to the
theoretical �lter (1.7). Another interesting approach is the bayesian point of view, that
usually is given in shrinkage estimation. As c ! 1 the amount of information obtained
from the measured samples is lower and it is more convenient that the shrinkage factors
give more weight to a �lter built only from �a priori�information, i.e. a type of matched
�lter w / s. On the other hand, as c ! 0, the amount of information obtained from the
measured samples is much more relevant than the a priori information and therefore it is
logical that the shrinkage factors give more importance to the sample MVDR �lter.
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4.4 Proofs of Lemma 4.1 and Theorem 4.1

In this section, the proofs of Lemma 4.1 and Theorem 4.1 are provided. Recall that on
the one hand the proof of Lemma 4.1 permits to obtain the optimal, though unrealizable,
shrinkage factors �1; �2 for the type of proposed shrinkage MVDR �lter w =�1R̂�1s+�2s.
On the other hand, Theorem 4.1 yields an (M;N)�consistent estimate of the shrinkage
factors obtained in Lemma 4.1, i.e. it obtains the asymptotically optimal shrinkage factors.

Proof of Lemma 4.1

First, the expression of the MSE (1.5) is substituted in the optimization problem (4.1)
of Lemma 4.1. This leads to obtain the next expression,

wc;s = argmin
w

wHRnw+
��1�wHs

��2
s.t. wHs =1;w =�1R̂

�1s+�2s
(4.7)

Next, the constraint wHs =1 is applied to reduce the objective function to wHRnw.
This leads to the next optimization problem, which highlights that the shrinkage factors
�1; �2 are designed to optimize the SINR at the output of the type of �ltersw =�1R̂�1s+�2s,

wc;s = argmin
w

wHRnw

s.t. wHs =1;w =�1R̂
�1s+�2s

After this, observe that as R =ssH +Rn, the resulting problem is not a¤ected if the
considered objective function is wHRw. Namely note that, wHRw = wH(ssH +Rn)w
and due to the constraint wHs =1, this is equivalent to optimize the objective function
+wHRnw, which on its turn is equivalent to optimize wHRnw. Therefore, (4.7) can be
reformulated as,

wc;s = argmin
w

wHRw

s.t. wHs =1;w =�1R̂
�1s+�2s

(4.8)

At this point, let � and 
 be de�ned as � , (�1 ; �2), 
 ,
�
R̂�1s ; s

�
and let

�c denote the optimal shrinkage factors. Then, the optimization problem (4.8) can be
rewritten as a function of �,
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�c = argmin
�

�H
HR
�

s.t. �H
Hs =1
(4.9)

Observe that this optimization problem is analogous to the one involved in the MVDR
estimator (1.6). Therefore, following the same procedure, i.e. using the method of Lagrange
multipliers [131], we readily obtain that the optimum shrinkage factors are,

�c =

�

HR


��1

Hs

(
Hs)H (
HR
)�1
Hs
(4.10)

At this point, applying to (4.10) the property of multiplication of partitioned matrices

[14], bearing in mind that 
 ,
�
R̂�1s ; s

�
and after straightforward manipulations, the

next expression is obtained for the optimal shrinkage factors,

�c =

�
sHRssHR̂�1s� sHR̂�1Rs

sHR̂�1RR̂�1s� sHR̂�1ssHRR̂�1s

�
G

(4.11)

BeingG = sHR̂�1s(sHRssHR̂�1s� sHR̂�1Rs)�sHRR̂�1ssHR̂�1s+ sHR̂�1RR̂�1s. Which
concludes the proof, as (4.11) is equal to expression (4.2) in Lemma 4.1.

Proof of Theorem 4.1

The claim that (4.4) is a realizable estimator follows from its expression. With regard to
the consistency, the proof is readily obtained from Lemma 4.1, which provides the optimal
shrinkage of the sample MVDR towards a matched �lter, and Lemma 2.1, which are a set
of results from random matrix theory that pave the way to study the consistency of that
optimal �lter within the general asymptotics framework where M;N ! 1 and M=N !
c 2 (0; 1). Namely, in order to prove Theorem 4.1 it must be shown that ��c in (4.4) is a
consistent estimate of the theoretical shrinkage factor�c in (4.2). In order to attain this aim
the RMT results in Lemma 2.1 are considered in the theoretical MVDR shrinkage vector
(4.2). Namely, the �rst equivalence that is considered is sHR̂�1Rs � sHRR̂�1s � (1 �
c)�1, the second one is sHR̂�1RR̂�1s � (1� c)�3sHR�1s �(1� c)�2sHR̂�1s and the third
equivalence is sHRs � sHR̂s. This leads to obtain the next asymptotic equivalence for �c,

�c �

�
sHR̂ssHR̂�1s�(1� c)�1

(1� c)�2sHR̂�1s� sHR̂�1s(1� c)�1
�

sHR̂�1s(sHR̂ssHR̂�1s�2(1� c)�1 + (1� c)�2)
(4.12)
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Now, after straightforwards manipulations, one obtains that the quantitiy in (4.12) is
asymptotically equivalent to the next expression, within the general asymptotics where
M;N !1 and M=N ! c 2 (0; 1),

�c �

�
(1� c)(sHR̂ssHR̂�1s(1� c)� 1)

csHR̂�1s

�
sHR̂�1s(sHR̂ssHR̂�1s(1�c)2 � 2(1� c) + 1)

= ��c (4.13)

This highlights that ��c is asymptotically equivalent to �c. That is, ��c in Theorem
4.1 is an (M,N)-consistent estimator of �c in Lemma 4.1, within the general asymptotics
where M;N !1 and M=N ! c 2 (0; 1), and as a consequence the proof is concluded.

4.5 Shrinkage and regularization of the sampleMVDR

In this section the shrinkage of the sample MVDR proposed in section 4.2 is generalized to
the case where the observation dimensionM can be higher than the sample size N . Those
situations provoke that the sample covariance is not invertible. In order to cope with
this problem a regularization of the shrinkage MVDR method of section 4.2 is proposed.
Thereby, the new �lter proposed in this section has the next expression,

w =�1(R̂+ �I)
�1s+�2s (4.14)

In fact, this type of �lter also helps to improve the performance of the method proposed
in section 4.2 in the interval where N > M . This is because the unknown R�1, stemming
from the MVDR, is estimated using the regularization (R̂+�I)�1, which is a better estimate
of R�1 than just considering R̂�1, when N is comparable toM and N > M . More insights
are given in the numerical simulations section comparing �gures 4.6 and 4.8. Another
interesting interpretation of (4.14) is that it can be viewed as a generalization of the type
of DL �lters w = (R̂ + �I)�1s. In this regard, the numerical simulations of chapter 5
show that the shrinkage in (4.14) leads to improve the type of DL �lters when there is an
uncertainty in s. The rationale is that (4.14) promotes the shrinkage towards the matched
�lter w / s which circumvents the signal cancelation e¤ect of the MVDR when there is an
uncertainty in s. That is, the MVDR may tend to cancel the SOI when either the sample
size is small or there is an uncertainty in s, as it may interpret the SOI as an interference.
The type of DL methods that deal with a �nite sample size and assume a known s, e.g. [9],
alleviate the signal cancelation e¤ect, but they still undergo a degradation when s is not
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precisely known. On the other hand, (4.14) promotes the shrinkage towards the matched
�lter which may imply some attenuation of the SOI, but it avoids the signal cancelation
e¤ect. Moreover, bearing in mind an array processing application, note that the main beam
of the matched �lter is wider than the one of the MVDR. Thereby the linear combination
of the regularized sample MVDR with a matched �lter in (4.14) can show more robustness
to an uncertainty in s than considering directly a regularized sample MVDR.

The design of the proposed �lter implies to obtain an expression for the parameters
�1; �2 and �. To this end, the proposed approach is to optimize SINR at the output of the
�lter. Given our data model in (1.1), the SINR is given by

SINR =
jwHsj2
wHRnw

:

Taking into account that the data covariance has the expression R = ssH +Rn, the
SINR can be rewritten as follows,

SINR =
�
wHRw

jwHsj2 � 1
��1

:

Therefore, the design of the shrinkage parameter � = (�1; �2)T and the regularization
parameter � is obtained by optimizing the next expression

min
w

wHRw

jwHsj2
s.t. w = �1(R̂+ �I)�1s+�2s:

In order to solve this optimization problem a two step procedure is followed. First the
optimal � is obtained, for any given �, by optimizing the SINR. Second the optimal � is
substituted in the expression of the SINR, which leads to obtain the optimal �. This is
summarized in the next lemma.

Lemma 4.2 Assume that a set of observations fy(n)gNn=1 ful�lling the model in (1.1), with
assumptions (a)-(c) is available. Given fy(n)gNn=1, consider the problem of estimating the
unknown x(n) in (1.1), based on maximizing the SINR when the estimator x̂(n) = wHy(n)
is a shrinkage of a regularized sample MVDR i.e. w =�1(R̂+�I)�1s+�2s. Considering the
typical distortionless constraint of the SOI wHs = 1, this problem can be mathematically
expressed as
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x̂(n) = wHy(n); w = argmin
w

wHRw

jwHsj2
s.t. w = �1(R̂+ �I)

�1s+�2s
wHs = 1:

(4.15)

Then, de�ning �R = R̂ + �I, the optimal shrinkage factor �o , (�1 ; �2)T for any
given regularization � is given by,1

�o =

�
sHRssH �R�1s� sH �R�1Rs

sH �R�1R�R�1s� sH �R�1ssHR�R�1s

�
(4.16)

Moreover, the optimal regularization �o is obtained by means of the next optimization,

�o = argmin
�

�Ho

�
sH �R�1R �R�1s sH �R�1Rs
sHR �R�1s sHRs

�
�o�����Ho � sH �R�1s

sHs

�����2
(4.17)

Proof: The proof for �o follows easily from the proof for lemma 4.1, just considering �R
instead of R̂. The proof for lemma 4.1 is detailed in section 4.4. On the other hand, �o is
obtained after easy manipulations by considering the type of �lter w = �1(R̂+�I)�1s+�2s
and by substituting the optimal shrinkage �o in the expression of the SINR.

�
The optimal values of the shrinkage �o and regularization parameters �o in Lemma 4.2

highlight the dependence on the unknown data covariance R. Namely, �o and �o depend
on the next quantities,

sH �R�1R �R�1s
sHR �R�1s
sH �R�1Rs
sHRs

(4.18)

which must be estimated to obtain a realizable estimator. To this end, the framework
dealt with in this thesis must be taken into account. That is, the estimation must bear in

1In fact (4.15) yields the expression (4.16) times a scalar term, but the scalar is irrelevant in terms of
SINR.
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mind that the number of samples N may be scarce compared to the observation dimension
M . Thereby, a RMT approach is proposed to obtain the estimations, as it deals implicitly
with the small sample size regime. Namely, to estimate the expressions in (4.18) lemma
2.2 is considered, which establishes the converge in probability for the next terms, within
the asymptotic framework where (M;N)!1 and M=N ! c 2 (0;1),

sH �R�1R �R�1s � 1�
1� c

M
Tr[R̂ �R�1]

�2 sH �R�1R̂ �R�1s

sHR �R�1s � 1

1� c+ c �
M
Tr[ �R�1]

sHR̂ �R�1s

sH �R�1Rs � 1

1� c+ c �
M
Tr[ �R�1]

sH �R�1R̂s

sHRs � sHR̂s:

(4.19)

Regarding the expressions in (4.19) recall that �R = R̂+�I. At this point, the estimators
for all the unknown quantities in (4.16) and (4.17) are available. Therefore, an estimator
of the optimal shrinkage factor �o in (4.16) and the regularization parameter �o (4.17) is
obtained, which is robust to the small sample size thanks to the RMT approach. This
result is formally stated in the next theorem.

Theorem 4.2 Let denote ��o = (��o;1; ��o;2)T = �̂oj�=�̂o and
�R = R̂+ �I. Then, a realizable

and (M,N)-consistent estimate of the optimal shrinkage MVDR estimator in (4.15), within
the general asymptotic framework where M;N ! 1 and M=N ! c 2 (0;1), reads as
follows,

�x(n) = wHy(n);w=��o;1(R̂+ �̂oI)
�1s+��o;2s

�̂o =

0@ sHR̂ssH �R�1s� 1
1�c+c �

M
Tr[ �R�1]

sH �R�1R̂s

1

(1� c
M
Tr[R̂ �R�1])

2 sH �R�1R̂ �R�1s� sH �R�1s
�

1
1�c+c �

M
Tr[ �R�1]

�
sHR̂ �R�1s

1A (4.20)
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�̂o = argmin
�

�̂Ho

0@ 1

(1� c
M
Tr[R̂ �R�1])

2 sH �R�1R̂ �R�1s 1
1�c+c �

M
Tr[ �R�1]

sH �R�1R̂s

1
1�c+c �

M
Tr[ �R�1]

sHR̂ �R�1s sHR̂s

1A �̂o
�����̂Ho � sH �R�1s

sHs

�����2
(4.21)

Proof: The proof is based on lemma 2.2, as it provides the (M;N)-consistent estimates
of the unknown quantities in lemma 4.2.

�
Remark 1: In (4.20) and (4.21) it has been used sHR̂s as an estimate of the unknown

sHRs in lemma 4.2. An alternative estimate for sHRs is sH(R̂+ �̂oI)s. In numerical simu-
lations it has been observed that this latter approach leads to slightly better performance
in the estimation of the parameter of interest x(n).

Remark 2: In order to �nd the optimal value for �̂o, a one dimensional search is needed,
as �̂o is the argument optimizing (4.21). This requires matrix inversions for each iteration
of the search due to the expressions involved in (4.20) and (4.21). Fortunately, these matrix
inversions can be avoided, which leads to reduce the computational cost of the numerical
search. To achieve this aim, �rst the next identities can be considered, where �̂m and êm
denote the m-th sample eigenvalue of R̂ and its associated eigenvector, respectively,

sH(R̂+ �I)�1s =
MX
m=1

jsH êmj2

� + �̂m

sH(R̂+ �I)�1R̂(R̂+ �I)�1s =

MX
m=1

jsH êmj2�̂m
(� + �̂m)2

Tr[R̂(R̂+ �I)�1] =
MX
m=1

�̂m

� + �̂m

Tr[(R̂+ �I)�1] =
MX
m=1

1

� + �̂m

sH(R̂+ �I)�1R̂s =

MX
m=1

jsH êmj2�̂m
(� + �̂m)

sHR̂(R̂+ �I)�1s =

MX
m=1

jsH êmj2�̂m
(� + �̂m)

:

(4.22)
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Moreover, note that f�̂mgMm=1 and the expression jsH êmj2 need to be computed and
stored only once, i.e. there is no need to recompute these values for each iteration of the
numerical search.

4.6 Numerical simulations

4.6.1 Performance assessment of the proposed shrinkage MVDR
in (4.4).

In this section the performance of the shrinkage MVDR estimator proposed in (4.4) is com-
pared to the conventional sample MVDR estimator (1.9), the theoretical MVDR method
(1.7) and the techniques that are robust to the small sample size regime, which were
explained in section 1.4.1. Namely, these are the LW-MVDR (1.17), which relies on a
shrinkage estimation of the SCM and whose shrinkage factors seek to minimize the MSE of
the data covariance in the asymptotic case whereM;N !1 andM=N 2 (0;1). Another
robust method that is considered for comparison purposes is the DL-MVDR (1.11). More
speci�cally, several loading factors are considered to implement the DL-MVDR (1.11). On
the one hand the heuristic DL factor (1.12), which arises from the analysis of the ratio
between the SINR of DL-MVDR �lters and the SINR of the optimal MVDR. The other
rather ad-hoc DL factor is (1.13), which recall that relies on proposing bounds for the DL
factor and it selects in an ad-hoc way the lower bound. Recall that the bounds where
obtained from the analysis of the estimation error of the data covariance. Finally, the as-
ymptotically SINR optimal loading factor (1.15) is considered. The methods are compared
both in terms of the MSE in the estimation of the SOI and the SINR at the output of the
�lter. The rationale is that the SINR is a popular metric in a wide variety of applications
such as beamforming, which is the one considered below. Moreover, the MSE is a popu-
lar metric in the design and comparison of estimators and it is important in applications
where the complex amplitude of the SOI is important, e.g. in subband beamforming [17],
which is within the type of beamforming applications considered below. In this regard,
note that the expression of the proposed shrinkage MVDR �lter (4.4) depends on a scalar
sHR̂�1s(sHR̂ssHR̂�1s(1�c)2 � 2(1� c) + 1) which does not a¤ect the SINR, though it is
important in terms of MSE. Or in other words, the proposed �lter optimizes the SINR
regardless of the considered scaling of the �lter. On the other hand, the MSE is only
optimized for the scaling obtained in (4.4).

In order to conduct the simulations, the same simulation environment than in chapter 3
is considered. That is, beamforming in the context of array signal processing is considered
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as an application to specify the value of the simulation parameters c, M
N
, R̂, R, and s.

The model for R̂, R, and s is speci�ed in detail in section 3.7 and arises from considering
a uniform linear array, a SOI, several interferences and an AWGN. In this regard, both
the SOI and the interferences are considered to be point sources, i.e. no spatial spread
is considered, and all of them are generated according to a zero mean complex gaussian
distribution whose power depends on the SNR and SIR, which is speci�ed below. Therefore,
recall that the data covariance R and the interference plus noise covariance Rn have the
next form

R =ssH +Rn;
Rn = SPS

H + �2I.

Moreover, S is the matrix of steering vectors of the interferences and P, assumed to be
diagonal, contains the power associated to each of them. The SNR is considered to be 5
dB in the next simulations and the interferences have the same power than the SOI, which
is set to  = 1 without loss of generalization. The DOA of the signal of interest is set to 0�

and eight interferers are considered, whose DOAs are the same than in �gure 3.7 to 3.10,
i.e.

�
�k

180�

�

	8
k=1

= f8�;�15�; 23�;�21�; 46�;�44�;�85�; 74�g, where recall that �k is the
DOA of the k-th interferer in radians. Moreover, the number of antennas M is considered
to be �xed, and speci�ed below, and the sample size or number of snapshots N is variable
to emulate any of the sample size regimes considered herein, i.e. M=N 2 (0; 1). For more
speci�c details on the simulation conditions the reader is referred to section 3.7.

In �gures 4.1 and 4.2, the performance of the proposed shrinkage MVDR estimator in
(4.4) is compared to the one of the theoretical MVDR (1.7) and the sample MVDR (1.9)
for a relatively small and high value of M , namely M = 10 and M = 50, respectively. The
performance is shown both in terms of the SINR at the output of the �lters and the MSE
achieved by each �lter in the estimation of the signal of interest. The proposed method
is optimal for a large M , as it is an (M;N)-consistent estimate, thereby these simulations
permit to assess their performance degradation for a small M . One can see in �gures
4.1 and 4.2 that this degradation is not signi�cant and as a consequence the proposed
shrinkage MVDR o¤ers a good performance even for rather small values of M . In fact one
can observe that their performance is very close to the optimal MVDR.

Furthermore, �gures 4.1 and 4.2 highlight that the proposed method is robust to the
small sample size regime and that outperforms the sample MVDR for any of the sample
sizes considered herein i.e. M

N
2 (0; 1), specially in the small sample size regime where

the improvement is huge. The improvement of performance in the intermediate sample
size regime is remarkable as well. It is also interesting to observe that for N � M the
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Figure 4.1: Performance comparison between proposed shrinkage MVDR estimator (4.4),
MVDR (1.7) and sample MVDR (1.9), when SNR=5 dB and SIRi=0 dB. M=10.
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shrinkage, the theoretical and the sample estimators tend to converge. This is because
in this case the SCM is the MVUE of R and it is well conditioned. As a consequence,
the sample MVDR tends to be optimal, i.e. tends to the MVDR method. The shrinkage
estimator is aware of this situation and re�ects it by means of the shrinkage factors, which
lead to obtain the sample MVDR, as it was noted in (4.6). This behavior will be more
clear in the upcoming �gures.

Next, in �gure 4.3 the shrinkage e¤ect in the proposed �lter is exempli�ed. Namely, in
�gure 4.3 a Monte Carlo simulation is carried out to plot the coe¢ cients j��c;1j2 and j��c;2j2
of the shrinkage method proposed in (4.4). The simulation conditions are the same than in
the previous �gures. Recall that the proposed shrinkage �lter reads �wc;s=��c;1R̂

�1s+��c;2s.
Moreover, recall that the behavior of this �lter is as follows. On the one hand when the
sample size increases, i.e. M

N
decreases, �wc;s tends to give more weight to the sample

MVDR than to the matched �lter. In fact, when N � M the proposed �lter tends to
disregard the matched �lter and give most of the weight to the sample MVDR. This is
because the sample MVDR is the optimal �lter for the large sample size regime, see also
(4.6). And e¤ectively, �gure 4.3 highlights this behavior, as M

N
decreases j��c;1j2 tends to

increase whereas j��c;2j2 tends to decrease. On the other hand, as in general in the small
sample size regime the matched �lter yields better performance than the sample MVDR,
�wc;s has the next behavior. As MN increases, �wc;s tends to give more weight to the matched
�lter than to the sample MVDR. Indeed in the extreme case where M

N
is close to 1, the

proposed �lter �wc;s tends to disregard the sample MVDR and give most of the weight to
the matched �lter. And e¤ectively �gure 4.3 highlights this behavior as well. Namely, as
M
N
increases, j��c;2j2 tends to increase whereas j��c;1j2 tends to decrease.
In �gure 4.4 the proposed shrinkage MVDR is compared to another method that is

robust to the small sample size. Namely, the DL implementation of the MVDR (1.11)
with the conventional choice of the diagonal loading factor � = 10�̂min [14, p 748]. For
simulation purposes the performance of the optimal MVDR (1.7) is displayed as well,
M = 30 and the rest of simulation parameters are the same than above. The performance
is presented in terms of MSE, though in terms of SINR similar results were observed and
they are not displayed for the sake of the clarity. One can see, on the top �gure, that
the proposed shrinkage MVDR outperforms the DL-MVDR, namely in the small sample
size regime the improvement is signi�cant. The rationale of this behavior is explained by
means of the bottom �gures. Note that the DL choice � = 10�̂min depends on the sample
estimation of the minimum eigenvalue of R. Unfortunately, in the small sample size regime
the distribution of the sample eigenvalues undergoes a spreading phenomenon, which has
been studied in the RMT literature, see e.g. [73]. This can be observed in the bottom plots
of �gure 4.4. The real eigenvalues of R are 1:77; 1:55; 1:40; 1:37; 1:33; 1:28; 1:25; 1:05; 0:82
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Figure 4.2: Performance comparison between proposed shrinkage MVDR estimator (4.4),
MVDR (1.7) and sample MVDR (1.9), when SNR=5 dB and SIRi=0 dB. M=50.
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Figure 4.3: Shrinkage factors of the proposed shrinkage MVDR method in (4.4) when M = 10,
SNR=5 dB and SIRi=0 dB.

and 0:32 with multiplicity 21. In the large sample size regime, the sample eigenvalues are
a good estimate of the real ones. Therefore, one can see in �gure 4.4 that for a smallM=N
the histogram of the eigenvalues tend to be similar to the real eigenvalues. However, in the
small sample size regime the sample eigenvalues are not a good estimate of the real ones.
In fact, one can see that the larger M=N the more spread the histogram of the sample
eigenvalues is. This provokes that in the small sample size regime �̂min can be smaller than
expected and the DL regularization of the SCM may have a limited e¤ect, which leads to
worse performance than expected for the DL method. On the other hand, the proposed
method is aware of the sample eigenvalue spreading phenomenon and counteracts it thanks
to the shrinkage structure and the proposed random matrix theory approach to obtain the
shrinkage coe¢ cients. This can be more clear if one takes into account that the proposed
�lter �wc;s=��c;1R̂

�1s+��c;2s is implementing a correction of the eigenvalues of R̂�1. Namely,
as it was mentionend in section 4.2, after carrying out the eigendecomposition of the SCM,
the propopsed �lter can be expressed as �wc;s = Ê(��c;1�̂

�1 + ��c;2I)Ê
Hs, where Ê contains

in its columns the eigenvectors of the SCM and �̂ is a diagonal matrix containing the
eigenvalues of R̂. Thereby, the expression ��c;1�̂�1 + ��c;2I highlights that the proposed
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Figure 4.4: On the top �gure, performance comparison between proposed shrinkage MVDR in
(4.4) and DL-MVDR in (1.11) with � = 10�min. Bottom �gures, histogram of the SCM eigen-
values to illustrate the eigenvalue spread e¤ect. M=30, SNR=5 dB and SIRi=0 dB in all the
�gures.
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�lter implements a correction in terms of a shrinkage of the eigevalues of R̂�1.

Next, in �gure 4.5 the performance of the proposed shrinkage MVDR (4.4) is compared
to the LW and DL implementations of the MVDR (1.17) and (1.11), respectively, which
are robust to the small sample size regime as well. In these plots we consider the rather ad-
hoc DL factor proposed in [77] based on analyzing the estimation error of the covariance,
i.e. � is chosen to be equal to the standard deviation of the diagonal entries of the SCM
(1.13). Figure 4.5 shows that the proposed estimator herein outperforms the DL and LW
implementations of the MVDR. The reason for this improvement is as follows. On the one
hand, both DL and LW implementations seek to enhance the covariance estimate, but they
do not deal directly with the estimation of the parameter of interest. DL regularizes the
SCM by analyzing the error bounds in the estimation of the covariance, whereas LW seeks
a shrinkage of the SCM to optimize asymptotically the MSE of the covariance. On the
other hand, the method suggested herein faces directly the estimation of the parameter
of interest x by obtaining an (M;N)�consistent estimate of the MSE optimal, though
unrealizable, estimator of x in (4.2).

Next, the proposed shrinkage of the MVDR in (4.4) is compared to the DL proposed
in [9], which is summarized above in section 1.4.1 through equations (1.14) to (1.15). As
commented above in section 1.4.1, the importance of this state-of-the-art work is that it
provides a methodology to �nd the loading factor that asymptotically maximizes the SINR.
To obtain the numerical results, almost the same simulation conditions than in the previous
�gures are considered, though considering the values in [9] to allow a fair comparison.
Namely, M = 50 and N = 70, to simulate a small sample size situation, and 29 interferers
are considered. To allow variability in the scenario, the DOA of the interferers and the
signal of interest are generated, at each iteration of the simulation, as independent random
variables uniformly distributed on [�90�; 90�]. This setup permits to obtain a general view
of the performance for a variable DOA scenario, which complements the previous �gures.
Moreover, the power of the interferers is the same than the one of the signal of interest,
which is 20 dB above the noise. Moreover, to obtain the DL factor in (1.15), the grid search
is implemented in the interval (in decibels) [10 log �̂min � 20; 10 log �̂min + 40] as suggested
in [9, p. 77], being �̂min the minimum eigenvalue of the SCM. In order to obtain a more
complete performance comparison the LW-MVDR (1.17), the ad-hoc DL-MVDR (1.13)
and the theoretical MVDR (1.7) methods are included in the simulation as well.

The methods are compared in terms of SINR to obtain a fair comparison for [9], which
proposes a DL factor maximizing asymptotically the SINR. Thereby, �gure 4.6 displays the
empirical cumulative distribution function (CDF) of the SINR at the output of the �lters.
Figure 4.6 shows that the proposed method achieves almost the same SINR performance
than [9]. Moreover, as it will be shown in the numerical results of chapter 5, the proposed
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Figure 4.5: Performance comparison between proposed shrinkage MVDR estimator (4.4),
MVDR (1.7), LW-MVDR (1.17), sample MVDR (1.9) and DL-MVDR (1.11), implemented
with � equal to the standard deviation of the diagonal entries of R̂, i.e. � in (1.13). SNR=5
dB, SIRi=0 dB and M=30.
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Figure 4.6: CDF of the SINR at the output of the DL-MVDR, implemented with the asymp-
totically optimal loading factor (1.15), the proposed shrinkage MVDR (4.4), the theoretical
MVDR (1.7), LW-MVDR (1.17) and ad-hoc DL-MVDR (1.11), implemented with � equal to
the standard deviation of the diagonal entries of R̂, i.e. � in (1.13).

shrinkage MVDR method outperforms the DL-MVDR [9] when there is an uncertainty
in the signature vector of the signal of interest s. This is because in the small sample
size the proposed �lter tends to disregard the contribution of the sample MVDR and give
more weight to the conventional beamformer or matched �lter and thus to avoid the signal
cancellation e¤ect provoked in the MVDR due to an uncertain s. On the contrary the DL-
MVDR regularizes the SCM through the loading factor, though only taking into account
the small sample size degradation. Thereby, as an additional loading factor may be needed
due to the uncertainties in s, this may lead to undergoing performance degradation related
to the signal cancellation e¤ect. Figure 4.6 also shows that the proposed shrinkage MVDR
outperforms the LW-MVDR and ad-hoc DL-MVDR. This corroborates the results obtained
in �gure 4.5 in an scenario where the DOA of both the SOI and the interferers is variable
rather than �xed. As it was commented in �gure 4.5, the proposed method obtains better
performance than the LW-MVDR and ad-hoc DL-MVDR thanks to an approach based
on addressing directly the estimation of the parameter of interest. On the contrary LW-
MVDR and ad-hoc DL-MVDR try to obtain an estimate of the data covariance, that is
better than the SCM, by optimizing or analyzing certain metrics related to the covariance.
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4.6.2 Performance assessment of the proposed shrinkage and reg-
ularization of the sample MVDR in Theorem 4.2.

In the next set of simulations the performance associated to the shrinkage of the regularized
sample MVDR method, proposed in Theorem 4.2, is assessed. Recall that the aim of this
method is to extend or generalize the shrinkage MVDR in (4.4) to support the cases
where M > N . That is, the new shrinkage method of Theorem 4.2 supports M=N 2
(0;1), whereas the shrinkage MVDR in (4.4) was constrained to M=N 2 (0; 1). The
proposed method is compared to the theoretical MVDR (1.7) and to the state-of-the-art
methods which have shown the best performance in the previous �gures. These are the
asymptotically optimal DL method proposed in [9], which is summarized above in section
1.4.1 and relies on the DL factor (1.15), and the LW-MVDR method in (1.17). All the
simulation conditions are the same than in �gure 4.6, except that in the next �gures N is
varied for a �xed value of M = 50. More speci�cally, in �gure 4.7 M = 50 and N = 25
to simulate a situation where M > N , which was the motivation to propose the new
shrinkage method of Theorem 4.2. Figure 4.7 shows that the new proposed shrinkage
method outperforms clearly the LW-MVDR and it obtains the same performance than
the asymptotically optimal DL-MVDR method. These results are validated for other
sample size regimes in the next �gures. Namely, in �gure 4.8 M = 50 and N = 70,
thereby the sample size is still rather small but now N > M . As in the previous �gure
the proposed shrinkage method outperforms the LW-MVDR and it leads to almost the
same performance than the asymptotically optimal DL-MVDR.Moreover, comparing �gure
4.8 with �gure 4.6, it can be observed that the shrinkage of the regularized MVDR of
Theorem 4.2 outperforms slightly the previous shrinkage MVDR in (4.4). This is because
the shrinkage method of Theorem 4.2 is a generalized version of the previous shrinkage
estimator in (4.4) due to the regularization of the SCM, which is a better estimator of
R than just considering the SCM. Finally, in �gure 4.9, M = 50 and N = 500, which
corresponds to a sample size which is no longer small. The same conclusions than in
previous �gures can be extracted. On the one hand, the proposed shrinkage MVDR of
Theorem 4.2 still outperforms the LW-MVDR method, though their performance are closer
due to the increment of N . On the other hand both the shrinkage MVDR of Theorem
4.2 and the asymptotically optimal DL-MVDR obtain the same performance. As it was
commented above, the proposed shrinkage MVDR obtains better performance than the
LW-MVDR because it seeks to optimize a metric which is directly related to the parameter
of interest x in (1.1), i.e. the SINR, whereas the LW-MVDR relies on a shrinkage estimator
of the covariance whose aim is to optimize the MSE of the data covariance which is not
directly related to the estimation of x.
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Figure 4.7: CDF of the SINR at the output of the DL-MVDR, implemented with the asymp-
totically optimal loading factor (1.15), the proposed shrinkage MVDR (4.20), the theoretical
MVDR (1.7) and the LW-MVDR (1.17), when M = 50 and N = 25.

Moreover, at this point, it is important to comment that the proposed shrinkage MVDR
of Theorem 4.2 outperforms the asymptotically optimal DL-MVDR when there is an uncer-
tainty in the steering vector s. This will be shown in chapter 5. As it was pointed above, in
section 4.5, the rationale is that (4.14) promotes the shrinkage towards the matched �lter
w / s, which circumvents the signal cancelation e¤ect of the MVDR, when there is an un-
certainty in s. And also, in terms of array processing, the matched �lter has a wider main
beam than the MVDR. Thereby, the linear combination of a regularized sample MVDR
with a matched �lter promoted by (4.14) can show more robustness to an uncertainty in s
than considering directly a regularized sample MVDR.
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Figure 4.8: CDF of the SINR at the output of the DL-MVDR, implemented with the asymp-
totically optimal loading factor (1.15), the proposed shrinkage MVDR (4.20), the theoretical
MVDR (1.7) and the LW-MVDR (1.17), when M = 50 and N = 70.
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Figure 4.9: CDF of the SINR at the output of the DL-MVDR, implemented with the asymp-
totically optimal loading factor (1.15), the proposed shrinkage MVDR (4.20), the theoretical
MVDR (1.7) and the LW-MVDR (1.17), when M = 50 and N = 500.
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Chapter 5

Signature vector and covariance
mismatch scenario: evaluation of
shrinkage LMMSE/MVDR and a
robust shrinkage MVDR

5.1 Introduction

The shrinkage �lters presented in the previous chapters assume a known SOI signature
vector. In this chapter not only a �nite sample size scenario is considered but also a
situation where there is a mismatch in the presumed signature vector associated to the
SOI. Thereby, the objective of this chapter is twofold. On the one hand, the performance
of the most relevant shrinkage LMMSE and MVDR methods proposed in chapters 3 and
4 is studied when there is both a mismatch in the covariance and the signature vector
of the SOI. The proposed shrinkage LMMSE and MVDR methods show more robustness
than the related work to an uncertainty in the presumed signature vector. On the other
hand, the shrinkage MVDR proposed in section 4.2 is extended to be robust not only to
the �nite sample size regime, but also to uncertainties in the steering vector, i.e. the SOI
signature vector. That is its design takes into account explicitly the �nite sample size and
the uncertainty of the SOI signature vector. The chapter is organized as follows, in section
5.2 the performance study of the shrinkage LMMSE and MVDR methods of chapters 3 and
4 is carried out. Then in section 5.3 the proposed approach to obtain the robust shrinkage
MVDR is presented. Moreover, the challenges to obtain the desired shrinkage �lter are
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exposed. Namely, it involves solving a nonconvex optimization problem and there are
quantities depending on the unknown theoretical covariance of the observations R. Next,
in section 5.4 the challenges posed by the robust shrinkage MVDR optimization problem
are solved. On the one hand, the quantities depending on R are estimated relying on
results from RMT, which is an approach that deals naturally with the small sample size
regime. On the other hand, the original problem is reformulated in the form of a SOCP,
which is a convex problem and thereby can be e¢ ciently solved, i.e. in polynomial time, by
means of interior point method software tools. Finally, in section 5.5 the proposed robust
shrinkage MVDR method is compared to related work methods by means of numerical
simulations.

5.2 Evaluation of the shrinkage LMMSE and MVDR
methods of chapters 3 and 4 in a signature vector
and covariance mismatch scenario.

The aim of this section is to carry out a performance assessment, by means of numerical
simulations, of the most important shrinkage LMMSE and MVDR methods of chapters 3
and 4, when there is an uncertainty in the signature vector of the SOI and a small sample
size situation. Recall that those methods assumed the next signal model (1.1)

y(n) = x(n)s+ n(n):

Moreover, it was assumed that signature vector s is perfectly known. However, in
practice the actual steering vector ~s may di¤er from the presumed s due to e.g. errors when
pointing towards the signal of interest, see [37]. This signature vector mismatch leads to
a performance degradation of the LMMSE and MVDR methods, as it was explained in
chapter 1, because the SOI may be confused as an interference. The methods proposed in
chapters 3 and 4 were designed to cope with a �nite sample size regime and they do not
consider an uncertain signature vector. Thereby, it is interesting to give more insights on
their performance when not only the sample size is small but also when there is a mismatch
in the presumed signature vector. The simulation conditions to carry out this study are
the same than the ones of the numerical results in chapters 3 and 4, i.e. beamforming in
an array processing context is considered. The only di¤erence is that herein an error is
introduced to model the mismatch between the actual and the presumed steering vectors.
More speci�cally, in the next simulations, an error in the presumed DOA of the SOI is
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introduced, which accounts in practice to a pointing error towards the signal of interest in
an array signal processing context. Thereby, the actual steering vector ~s = s(�p+�e), where
s(�) is the presumed steering vector depending on a generic DOA �, �p is the presumed
DOA associated to the SOI and �e is an error in terms of DOA.
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Figure 5.1: Comparison of the empirical cdf of the SINR at the output of the shrinkage
LMMSE proposed in (3.28), the shrinkage of the regularized LMMSE proposed in Theorem 3.6,
the regularized LMMSE in [79], the theoretical LMMSE (1.4) and Mestre-DL in [9] see (1.15),
when M=50, N=55 and the DOA mismatch is 0.1�.

5.2.1 Performance of shrinkage LMMSE methods

In this section the performance of the most relevant shrinkage LMMSE methods proposed
in chapter 3, as well as their related work, is studied. Namely, these are the shrinkage
LMMSE proposed in (3.28) and its generalization to deal with M > N , i.e. the shrinkage
of the regularized LMMSE proposed in Theorem 3.6. Regarding the related work the next
methods are considered, as they demonstrated the best performance among the state-of-
the-art methods in chapter 3. On the one hand, the regularized LMMSE in [79], which
proposes a shrinkage of the sample covariance in the LMMSE method, whose shrinkage
factors optimize asymptotically the MSE of the SOI. On the other hand, the DL method
in [9], which is a shrinkage of the SCM in the LMMSE method and whose DL or shrinkage
factor is designed to optimize asymptotically the SINR at the output of the �lter. For
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comparison purposes the theoretical LMMSE method (1.4) is considered in the simulations,
i.e. the LMMSE implemented with the theoretical covariance matrix and the actual steering
vector of the SOI.
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Figure 5.2: Comparison of the empirical cdf of the SINR at the output of the shrinkage
LMMSE proposed in (3.28), the shrinkage of the regularized LMMSE proposed in Theorem 3.6,
the regularized LMMSE in [79], the theoretical LMMSE (1.4) and Mestre-DL in [9] see (1.15),
when M=50, N=55 and the DOA mismatch is 0.5�.

Figures 5.1 to 5.3 evaluate the performance of the �lters when the DOA mismatch is
increased and within a small sample size situation. More speci�cally the DOA mismatch in
those �gures is 0:1�, 0:5� and 1�, respectively, whereasM = 50 and N = 55. Moreover, the
signal of interest and 29 interference signals are considered to be present in the scenario.
It is assumed that the SOI and the interferers have the same power and their DOA are
generated randomly at each iteration according to a uniform distribution between �90�
and 90�. Moreover, an SNR=20 dB is considered in the simulations. Given these simulation
conditions, the empirical cdf associated to the SINR at the output of the �lters, is ploted
in �gures 5.1 to 5.3. It can be observed that as the DOA mismatch increases, the proposed
shrinkage of the regularized LMMSE leads to obtain better performance than the rest of
the methods under comparison. Moreover, the shrinkage LMMSE, which is a simpli�ed
version of the shrinkage of the regularized LMMSE, also obtains better performance than
the DL method [9] and better performance than the regularized LMMSE [79] within some
SINR intervals.
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In order to understand the better performance of the proposed methods recall that the
shrinkage of the regularized LMMSE and the shrinkage LMMSE rely on a �lter of the type
w = �1 �R

�1s + �2s, where �R = R̂+�I in the former and �R = R̂ in the latter. Thereby,
the proposed shrinkage �lters rely on a linear combination of the regularized LMMSE or
the sample LMMSE with a matched �lter. The matched �lter on the one hand, has less
spatial resolution than the type of LMMSE methods and thereby may be less sensitive to
a DOA mismatch. On the other hand, under a DOA mismatch the LMMSE methods may
confuse the SOI as an interference and may tend to cancel it, whereas the matched �lter
considers an scenario with a SOI and white noise. Thereby, although the matched �lter
will not point towards the correct direction, it will not try to cancel the SOI as it was an
interference. Moreover, as the proposed shrinkage �lters consider in their �lter structure
the sample or regularized LMMSE they can lead to reject better the interferers than just
considering the matched �lter.
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Figure 5.3: Comparison of the empirical cdf of the SINR at the output of the shrinkage
LMMSE proposed in (3.28), the shrinkage of the regularized LMMSE proposed in Theorem 3.6,
the regularized LMMSE in [79], the theoretical LMMSE (1.4) and Mestre-DL in [9] see (1.15),
when M=50, N=55 and the DOA mismatch is 1�.

On the other hand, the regularized LMMSE method [79] and the DL method [9] undergo
the signal cancelation e¤ect due to the DOA mismatch. That is, they can confuse the SOI
as an interference, which leads to try to cancel the SOI. They consider a regularization of
the SCM to combat the small sample size regime, which could o¤er some bene�ts to combat
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the DOA mismatch as well, see e.g. [37] and section 1.4.2. However, the regularization or
DL of the SCM is designed to deal only with the small sample size regime in [79] and [9],
assuming a known steering vector. Thereby, an additional tuning of the regularization or
loading factor of the SCM is needed to deal properly with the DOA mismatch. Moreover,
note that among the proposed methods, the shrinkage of the regularized LMMSE obtains
better peformance than the shrinkage LMMSE. The rationale is that in the �lter structure
w = �1 �R

�1s+ �2s, the former considers the regularization �R = R̂+�I whereas the latter
considers �R = R̂ and the regularization leads to a better estimate in the small sample size
and under a DOA mismatch than just considering the SCM.
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Figure 5.4: Comparison of the empirical cdf of the SINR at the output of the shrinkage
LMMSE proposed in (3.28), the shrinkage of the regularized LMMSE proposed in Theorem 3.6,
the regularized LMMSE in [79], the theoretical LMMSE (1.4) and Mestre-DL in [9] see (1.15),
when M=20, N=22 and the DOA mismatch is 1�.

The next comments are related to �gures 5.3, 5.4 and 5.5. The objective of these
�gures is to assess the impact in the performance of varying the dimension M of the
observed signal, when there is a DOA mismatch and a small sample size situation. Note
that in our case M is the number of antennas in the array. The simulation conditions are
as follows. The DOA mismatch is set to 1� in all the simulations, whereas the sample size is
set to maintain the same ratio M=N when varying M . Thereby, in �gure 5.3 M = 50 and
N = 55, in �gure 5.4M = 20 and N = 22 and in �gure 5.5M = 10 and N = 11. Moreover,
the ratio K=M is maintained when varying M in the di¤erent simulations to allow a fair
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comparison, where K is the number of interference signals plus the SOI. Namely, in �gure
5.3 M = 50 and K = 30, in �gure 5.4 M = 20 and K = 12 and in �gure 5.5 M = 10 and
K = 6. The rest of the simulation parameters are the same than in previous �gures.
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Figure 5.5: Comparison of the empirical cdf of the SINR at the output of the shrinkage
LMMSE proposed in (3.28), the shrinkage of the regularized LMMSE proposed in Theorem 3.6,
the regularized LMMSE in [79], the theoretical LMMSE (1.4) and Mestre-DL in [9] see (1.15),
when M=10, N=11 and the DOA mismatch is 1�.

Figures 5.3, 5.4 and 5.5 highlight that increasing M leads the shrinkage of the regularized
LMMSE, proposed in Theorem 3.6, to outperform the rest of the methods. Also the more
simple shrinkage LMMSE proposed in (3.28), leads to some performance gains compared
to the related work methods, whenM is increased. The rationale for these results relies on
a similar explanation than the one given in the previous �gures. On the one hand, whenM
and K increase and there is a DOA mismatch, the signal cancelation e¤ect on the LMMSE
methods gets worse. This is because the �lters tend to have more spatial resolution and it
is more easy that the SOI is confused as it was an interference. The regularization of the
SCM in the LMMSE may alleviate this e¤ect. However, the regularized LMMSE [79] and
the DL in [9] design the regularization to cope with the �nite sample size, thereby under
a DOA mismatch they may undergo a performance degradation. On the other hand,
the shrinkage of the regularized LMMSE relies on a linear combination of a regularized
LMMSE and a matched �lter. Under a DOA mismatch the matched �lter will not point
exactly towards the SOI but it will not try to cancel the SOI as it was an interference.
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This permits the shrinkage of the regularized LMMSE to be more robust to the DOA
mismatch than the regularized LMMSE and the DL method. On the other hand, the
proposed shrinkage also considers the regularization of the LMMSE, which leads to better
rejection of the interference than just considering a matched �lter. A similar rationale can
be applied to explain why the shrinkage LMMSE in (3.28) obtains some gains compared
to the regularized LMMSE and the DL method. Moreover, as it was comented before,
the shrinkage of the regularized LMMSE obtains better performance than the shrinkage
LMMSE because it relies on a regularization of the SCM, which is a better estimate than
just considering the SCM. Moreover, in the small sample size regime the shrinkage LMMSE
tends to disregard the LMMSE and give more weight to the matched �lter, thereby the
rejection against the interference is better in the shrinkage of the regularized LMMSE.
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Figure 5.6: Comparison of the empirical cdf of the SINR at the output of the shrinkage
LMMSE proposed in (3.28), the shrinkage of the regularized LMMSE proposed in Theorem 3.6,
the regularized LMMSE in [79], the theoretical LMMSE (1.4) and Mestre-DL in [9] see (1.15),
when M=50, N=30 and the DOA mismatch is 1�.

In �gures 5.3, 5.6 and 5.7 the impact of several small sample size situations is studied,
in an scenario where a DOA mismatch is present as well. Namely, in �gure 5.3 M = 50
and N = 55, whereas in �gure 5.6 M = 50 and N = 30 and in �gure 5.7 M = 50
and N = 10. In all the simulations the DOA mismatch is 1� and K = 30. The rest of
the simulation parameters are the same than in previous �gures. Note that in �gures
5.6 and 5.7 M > N , thereby the shrinkage LMMSE is not considered, as it does not
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support this scenario. The �gures highlight that the proposed shrinkage of the regularized
LMMSE in Theorem 3.6 clearly outperforms the regularized LMMSE in [79] and DL in [9]
when M = 50 and N = 55 or N = 30. The rationale is the same than in the previous
simulations. Thanks to the linear combination w = �1 �R

�1s + �2s, the shrinkage of the
regularized LMMSE pro�ts the fact that the matched �lter is less sensitive to a DOA
mismatch than the LMMSE. Moreover, it also pro�ts the fact that the regularized LMMSE
has better interference rejection capabilities than a matched �lter. On the other hand, the
regularization considered in [79] and [9] is designed to deal with the small sample size
situation, but the protection against a DOA mismatch is not guaranteed. In fact note that
decreasing the sample size (i.e. N for a �xed M) leads to increase the regularization of
the SCM considered in [79] and [9] which also leads to more protection against a DOA
mismatch. This can be observed in �gure 5.7 where all the methods tend to give the same
performance.
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Figure 5.7: Comparison of the empirical cdf of the SINR at the output of the shrinkage
LMMSE proposed in (3.28), the shrinkage of the regularized LMMSE proposed in Theorem 3.6,
the regularized LMMSE in [79], the theoretical LMMSE (1.4) and Mestre-DL in [9] see (1.15),
when M=50, N=10 and the DOA mismatch is 1�.
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5.2.2 Performance of shrinkage MVDR methods

In this section a performance evaluation of the methods related with the MVDR technique
will be carried out. More speci�cally, on the one hand the proposed shrinkage MVDR
in (4.4) is considered. Moreover, the shrinkage of the regularized MVDR proposed in
Theorem 4.2 is incorporated in the simulations. Recall that this is a generalization of the
shrinkage MVDR in (4.4) to support the cases where M > N and in general to improve
its performance due to the regularization of the SCM. For the comparison purposes, the
asymptotically SINR optimal DL method, proposed in [9], which is summarized above in
section 1.4.1 is included in the simulations. The rationale is that this method was the best
state-of-the-art algorithm in the numerical results of chapter 4. Finally, the theoretical
MVDR (1.7) is considered as an upperbound in the simulations, as it considers the true
covariance and signature vector in its implementation.
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Figure 5.8: Comparison of the empirical cdf of the SINR at the output of the shrinkage
MVDR proposed in (4.4), the shrinkage of the regularized MVDR proposed in Theorem (4.2)
the theoretical MVDR (1.7) and Mestre-DL in [9] see (1.15), when M=50, N=55 and the DOA
mismatch is 0.1�.

In �gures 5.8 to 5.10 the e¤ect of a DOA mismatch is considered. Namely, the DOA
mismatch in these �gures is 0:1�, 0:5� and 1�, respectively. Moreover, a small sample
size situation is considered, namely M = 50 and N = 55. Thereby, in this situation the
methods have to cope both with a mismatch in the presumed steering vector and a small
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sample size situation. In this simulation the SOI and 29 interference signals are considered
to be in the scenario. Both the SOI and the interferences have the same power and their
DOA are generated randomly at each iteration according to a uniform distribution between
�90� and 90�. Moreover, the SNR=20 dB.
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Figure 5.9: Comparison of the empirical cdf of the SINR at the output of the shrinkage
MVDR proposed in (4.4), the shrinkage of the regularized MVDR proposed in Theorem (4.2)
the theoretical MVDR (1.7) and Mestre-DL in [9] see (1.15), when M=50, N=55 and the DOA
mismatch is 0.5�.

It can be observed in �gure 5.8 that for a very small DOA mismatch, the performance
of the methods is similar to the case where the signature vector is perfectly known, see
chapter 4. However, when the error in the presumed DOA increases, it can be observed in
�gures 5.9 and 5.10 that both the shrinkage MVDR proposed in (4.4) and the shrinkage
of the regularized MVDR proposed in Theorem (4.2) obtain better performance than the
DL-MVDR method proposed in [9]. The rationale is that the DL-MVDR in [9] relies on
an asymptotically optimal DL factor which is designed to deal with the small sample size,
though it assumes that the steering vector is pefectly known. Thereby, when there is a
mismatch between the presumed and actual signature vectors, a degradation is expected
in this method. The signature mismatch leads to the signal cancellation e¤ect, where the
SOI is interpreted as an interference and the �lter tends to cancel it. As the MVDR is
a method with a high spatial resolution this can provoke a signi�cant degradation for a
DOA mismatch situation. In fact the DL-MVDR would require an additional amount of
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loading factor to deal with the steering vector uncertainty.

On the other hand, both the shrinkage MVDR and the shrinkage of the regularzied MVDR
rely on a �lter structure of the type w = �1 �R

�1s + �2s, where �R = R̂ in the former and
�R = R̂+�I in the latter. Thereby these �lters combine the regularized or sample MVDR
with a matched �lter, which is known to have less spatial resolution than the MVDR
and thereby is less sensitive to a DOA mismatch and it is less prone to undergo the
signal cancellation e¤ect. Another interesting interpretation is that the matched �lter can
be viewed as a DL-MVDR where the loading factor tends to in�nity [9]. These are the
reasons behind the better performance of the proposed shrinkage methods compared to the
DL-MVDR in [9]. Moreover, note that the shrinkage of the regularized MVDR is better
than the shrinkage MVDR due to its regularization of the SCM which permits to cope
more properly with the small sample size situation, when considered in the shrinkage �lter
w = �1 �R

�1s+ �2s.
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Figure 5.10: Comparison of the empirical cdf of the SINR at the output of the shrinkage
MVDR proposed in (4.4), the shrinkage of the regularized MVDR proposed in Theorem (4.2)
the theoretical MVDR (1.7) and Mestre-DL in [9] see (1.15), when M=50, N=55 and the DOA
mismatch is 1�.

In �gures 5.10, 5.11 and 5.12 a simulation is carried out, whose aim is to assess the
e¤ect of varying M in the performance of the �lters, when there is a DOA mismatch and
a small sample size situation. More speci�cally, the DOA mismatch is set to 1� in all the
simulations, whereas the sample size is set to maintain the same ratio M=N when varying
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M . Recall that in �gure 5.10 M = 50 and N = 55, thereby in �gure 5.11 M = 20 and
N = 22 and in �gure 5.12 M = 10 and N = 11. Moreover, it is important to mention
that the ratio K=M is maintained when varyingM , where K is the number of interference
signals plus the SOI. In �gure 5.10 M = 50 and K = 30. Thereby, in �gure 5.11 M = 20
and K = 12 and in �gure 5.12 M = 10 and K = 6. The rest of the simulation parameters
are the same than in the previous simulations.
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Figure 5.11: Comparison of the empirical cdf of the SINR at the output of the shrinkage
MVDR proposed in (4.4), the shrinkage of the regularized MVDR proposed in Theorem (4.2)
the theoretical MVDR (1.7) and Mestre-DL in [9] see (1.15), when M=20, N=22 and the DOA
mismatch is 1�.

Figures 5.10, 5.11 and 5.12 highlight that when M is increased the proposed shrinkage
MVDR and shrinkage of the regularized MVDR tend to outperform the DL-MVDR. The
rationale is similar than in the previous simulation. That is, as M increases, the type
of MVDR �lters (i.e. the sample MVDR and the regularized or DL-MVDR) tend to be
more sharp. As a consequence a DOA mismatch leads to exacerbate the consequences of
the signal cancelation e¤ect and to deteriorate the performance. In the shrinkage �lters
this e¤ect is alleviated because they combine the sample MVDR or the regularized MVDR
with a matched �lter. This method, on the one hand is less resolutive and on the other
hand does not lead to the signal cancelation e¤ect. That is, due to the DOA mismatch the
matched �lter will not point exactly towards the SOI but it will not try to cancel it as it
was an interference as it happens in the MVDR. On the other hand, it can be observed in
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the simulations that whenM is decreased all the �lters tend to give the same performance
as they have less spatial resolution, but this makes them more robust to a DOA mismatch.
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Figure 5.12: Comparison of the empirical cdf of the SINR at the output of the shrinkage
MVDR proposed in (4.4), the shrinkage of the regularized MVDR proposed in Theorem (4.2)
the theoretical MVDR (1.7) and Mestre-DL in [9] see (1.15), when M=10, N=11 and the DOA
mismatch is 1�.

In �gure 5.13 the same type of simulation than in �gure 5.10 is considered, but in this
case the sample size is decreased. Namely, the DOA mismatch is considered to be 1� and
two situations are considered, in the �rst one M = 50 and N = 30, whereas in the second
one M = 50 and N = 10. Note that in this situation M > N , thereby the shrinkage
MVDR is not considered, as it does not support this scenario. However, its generalization
which is the shrinkage of the regularized MVDR is able to cope with this situation and
it is the method considered in the simulation. The rest of simulation parameters are the
same than in �gure 5.10. It is interesting to observe in �gure 5.13 that for M = 50
and N = 30 the same conclusion can be extracted than in the previous plot, i.e. �gure
5.10. That is, the shrinkage of the regularized MVDR outperforms the DL-MVDR in [9]
thanks to the linear combination of the regularized MVDR with the matched �lter, which
is less sensitive to a DOA mismatch. However, it can be observed that the shrinkage of
the regularized MVDR and the DL-MVDR tend to get closer than in �gure 5.10. This is
because the �lters tend to increase the loading factor as the sample size is smaller. This
has a bene�cial e¤ect in terms of dealing with steering vector mismatch as it was pointed
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out e.g. in [37] and section 1.4.2. This is con�rmed for an even smaller sample size regime
of M = 50 and N = 10, which leads to obtain the same performance in both the shrinkage
of the regularized MVDR and the DL-MVDR. In fact better performance than forM = 50
and N = 30 is obtained because for N = 10 the loading factor is higher and the steering
vector mismatch is treated more properly and it more than compensates that N is smaller.
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Figure 5.13: Comparison of the empirical cdf of the SINR (for di¤erent small sample sizes of
N=30, N=10) at the output of the next �lters. The shrinkage of the regularized MVDR pro-
posed in Theorem (4.2) the theoretical MVDR (1.7) and Mestre-DL in [9] see (1.15), when
M=50 and the DOA mismatch is 1�.

5.3 Robust shrinkage MVDR problem

In chapters 3 and 4 the type of shrinkage �lter w = �1R̂
�1s + �2s was proposed to

counteract the degradation of the sample LMMSE and MVDR due to the �nite sample
size constraint. The methods proposed in those chapters assume that the SOI signature
vector s is perfectly known. This is an assumption that has been considered in other related
works, see e.g. [9]. On the other side, as it was explained in chapter 1, recall that another
possible source of degradation of the LMMSE and MVDR methods is a mismatch between
the presumed and the actual steering vector. Therefore, the assumption of a known s
can be interpreted as focusing on the degradation that the small sample size provokes in
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the MVDR and the LMMSE [9]. Another interpretation of that assumption is that one
assumes that the small sample size degradation dominates compared to the steering vector
mismatch degradation, see e.g. [49]. In this chapter, the shrinkage MVDR proposed in
chapter 4 is improved to be robust not only to the �nite sample size e¤ect, but also to
uncertainties in the presumed steering vector s. In fact, the shrinkage of the LMMSE and
the MVDR relying on w = �1R̂

�1s + �2s, which were proposed in chapters 3 and 4, are
equivalent in terms of SINR. Therefore, from the SINR viewpoint, the shrinkage method
proposed in this chapter can be viewed also as a robust extension of the shrinkage LMMSE
of chapter 3 to uncertainties in s.

In this chapter, the actual steering vector, denoted by ~s, is assumed to di¤er from the
presumed steering vector s in the data model of the observations exposed in (1.1). Namely,
recall that according to (1.1),

y(n) = x(n)s+ n(n):

Herein the actual steering vector is assumed to be related to the presumed steering
vector through the model

~s = s+�;

where � is an unknown distortion vector. In practice, the distortions of the presumed
steering vector arise from array calibration errors, errors when pointing towards the signal
of interest, source spreading due to local scattering or source wavefront distortions due
to environmental inhomogeneities, among other reasons [37]. Recall that the mismatch
between ~s and s leads to a degradation in the MVDR due to the signal cancelation e¤ect,
which provokes that the MVDR may confuse the SOI with an interferer and thus may tend
to cancel it, see [37] and references therein.

In the sequel, it is assumed that both s and ~s lie within an uncertainty set. Herein,
it is assumed that the error between s and ~s describes a spherical uncertainty region, or
in other words its norm is bounded. This yields the next uncertainty region, which was
originally proposed in [37],

A(") = faja = s+ e; kek � "g: (5.1)

where " 2 [0; ksk) is a user parameter assumed to be known, see [37] [47]. Note that in the
literature other types of uncertainty region have been proposed, e.g. [46] and [47] considered
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ellipsoidal uncertainty sets, nonetheless this leads to assume a more sophisticated prior
information, i.e. more a priori known model parameters [80]. Now recall that the shrinkage
MVDR problem seeks to maximize the SINR for the type of shrinkage �lter w = �1R̂�1s+
�2s, which permits to deal with the small sample size degradation, and subject to a no
distortion constraint towards the SOI signature vector. Therefore, the shrinkage MVDR
can be made robust to uncertainties in s by modifying the no distortion constraint towards
s. Namely, the new robust shrinkage MVDR method proposed in this chapter arises from
maximizing the SINR subject to a no distortion constraint for all the steering vectors that
lie within the uncertainty set A("), for the type of �lter w = �1R̂�1s+�2s. This problem
was stated rigorously in chapter 1 in (1.30) and it is given by,

x̂(n) = wHy(n); w = arg min
w

wHRw

subject to jwHaj > 1 for all a 2 A(");
w = �1R̂

�1s+ �2s:

(5.2)

Note that this problem seeks to maximize the SINR for the type of the proposed
shrinkage �lters with the constraint that in the worst case the no distortion constraint will
be maintained for any of the steering vectors belonging to the uncertainty region A("),
i.e. for the particular vector a which yields the minimum value of jwHaj. The type of no
distortion constraint jwHaj > 1 for all a 2 A("), which permits to treat the uncertainties
in s, was originally proposed in [37], see (1.23). However, unlike in [37] herein the small
sample size is dealt with directly, as the type of �lter w = �1R̂

�1s + �2s is considered.
Furthermore, in this regard, note that the theoretical covariance R is considered in the
objective function, unlike in [37] which considered the SCM R̂, see (1.23). In fact, [37] has
some robustness to the small sample size regime, as their �lter can be interpreted in terms
of a DL, w / (R̂+�"2I)�1s, where the Lagrange multiplier � cannot be obtained in closed
form [37]. However, the robustness to the small sample size depends on the loading factor,
which just depends on the parameter ", which is designed to cope with the uncertainty of
the SOI signature but not to deal directly with the small sample size. Thereby, [37] may
require in some situations an additional parameter tuning of " to counteract properly the
small sample size. This parameter tuning is avoided thanks to the proposed approach as
it will be shown below. Thereby, thanks to the proposed approach both the small sample
size degradation and the uncertainties in s can be dealt with directly.

In order to proceed, consider the notation � = (�1; �2)T , 
 = (R̂�1s; s). This permits
to express the �lter w = �1R̂�1s+ �2s as w = 
�. By taking this notation into account,
the optimization problem (5.2) can be rewritten as
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minimize
�

�H
HR
�

subject to j�H
Haj > 1 for all a 2 A(");
A(") = faja = s+ e; kek � "g:

(5.3)

Equation (5.3) highlights that the shrinkage coe¢ cients in � have two roles. First, they
must implement the corrections of the sample MVDR that permit to deal with the small
sample size regime. Second, they guarantee the no distortion constraint for all the steering
vectors within the uncertainty region A(") and as a consequence permit to make robust the
shrinkage MVDR to uncertainties in the presumed steering vector s. On the other hand,
note that in order to solve the problem (5.3) there are two issues to be faced. The �rst one,
is that the objective function depends on the unknown R. Or more precisely, the matrix

HR
 yields several quantities depending on R. To counteract this problem, a RMT
approach is proposed in the next section. This approach will permit to obtain consistent
estimates of the unknown quantities within the asymptotic regime where M;N !1 and
M=N ! c 2 (0; 1). As it has mentioned in the previous chapters, this asymptotic regime
permits to deal naturally with the small sample size situation. Thereby, thanks to the
shrinkage structure of the proposed �lter and the RMT approach, the proposed shrinkage
MVDR �lter in this chapter deals directly with the small sample size degradation. The
second issue in (5.3) is that j�H
Haj > 1 is a nonlinear and nonconvex constraint on �
for each vector a 2 A("). Therefore, (5.3) belongs to the class of nonconvex quadratically
constrained quadratic programming problems, which are known to be intractable [37]. In
order to face this problem, in the next section it will be shown that (5.3) can be reformulated
as a SOCP program and as a consequence it can be solved e¢ ciently, or in polynomial time,
by means of interior point methods [131].

5.4 Solution to the robust shrinkage MVDR based on
RMT and the reformulation as a SOCP

In this section, all the necessary derivations to obtain the desired robust shrinkage MVDR
�lter are presented. To this end, the problems posed by (5.3) are faced next. The �rst
problem that is treated is the dependence on the unknown data covariance R of the ob-
jective function in (5.3). In order to proceed, �rst the objective function is examined in
more detail. Note that considering the de�nition of 
 = (R̂�1s; s), the objective function
can be expressed as
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�H
HR
� = �H
�
sHR̂�1

sH

�
R
�
R̂�1s s

�
�

and using the property of multiplication of partitioned matrices, the last equation can be
rewritten as follows,

�H
HR
� = �H
�
sHR̂�1RR̂�1s sHR̂�1Rs

sHRR̂�1s sHRs

�
�:

This expression highlights that the objective function of the robust shrinkage MVDR
problem in (5.3) depends on the unknown data covariance R through the quantities
sHR̂�1RR̂�1s; sHR̂�1Rs; sHRR̂�1s and sHRs. In order to circumvent this problem and
to obtain a solution that is still robust to the �nite sample size, a RMT approach is pro-
posed. Namely, the (M;N)-consistent estimate of these quantities is desired. This permits
to obtain estimators that convergence to those functions of the unknown R within the
asymptotic regime where M;N ! 1 and M=N ! c 2 (0; 1), which deals implicitly with
the �nite sample size situation. To obtain the desired estimates, Lemma 2.1 is taken into
account. Thereby, considering that M;N ! 1 and M=N ! c 2 (0; 1) one obtains the
next consistent estimate for the inner matrix of the objective function of (5.3)

�
sHR̂�1RR̂�1s sHR̂�1Rs

sHRR̂�1s sHRs

�
�
�
(1� c)�2sHR̂�1s (1� c)�1sHs
(1� c)�1sHs sHR̂s

�
, B: (5.4)

Therefore, the �rst issue of problem (5.3), i.e. the dependence on R, is solved by
substituting the objective function by its (M;N)-consistent estimate obtained thanks to
(5.4). This leads to the next optimization problem,

minimize
�

�HB�

subject to j�H
Haj > 1 for all a 2 A(");
A(") = faja = s+ e; kek � "g:

(5.5)

Next, the second issue of (5.3) must be addressed, i.e. the fact that it is an intractable
nonconvex quadratically constrained quadratic programming problem. To circumvent this
issue the procedure is similar to the one proposed in [37]. Namely, �rst observe that the
objective of (5.3) is to maximize the SINR subject to the no distortion constraint for all
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the steering vectors a 2 A("), i.e. subject to the constraint j�H
Haj > 1 for all a 2 A(").
This is equivalent to force that the no distortion constraint is ful�lled for the smallest value
of j�H
Haj > 1. Therefore, the constraint j�H
Haj > 1 for all a 2 A(") can be rewritten
in terms of this next expression,

min
a2A(")

j�H
Haj > 1: (5.6)

Moreover, recalling the de�nition of the uncertainty set A(") = faja = s+ e; kek � "g,
last equation can be rewritten as

min
e2D(")

j�H
Hs+�H
Hej > 1;where D(") = fe j kek � "g:

Next, in order to proceed, the Cauchy-Schwartz inequality, the triangle inequality and
the relation kek � " are applied to obtain the next relations, 1

j�H
Hs+�H
Hej > j�H
Hsj � j�H
Hej > j�H
Hsj � "k
�k (5.7)

Therefore, taking into account the equivalence between the constraint in (5.5) and (5.6)
and the lower bound (5.7), the robust shrinkage MVDR problem (5.5) can be rewritten as
follows,

minimize
�

�HB�

subject to j�H
Hsj � "k
�k > 1:
(5.8)

However, note that this problem is still nonconvex due to the presence of the absolute
value operator. In order to circumvent this problem, note that the cost function in (5.8)
is not changed if an arbitrary phase rotation of � is forced. Thus, a new constraint can
be incorporated in the problem to force a phase rotation of � so that j�H
Hsj is a real
number. Namely, the constraints Ref�H
Hsg > 0 and Imf�H
Hsg = 0 can be forced.
This yields the next constraints for (5.8)

1The �rst inequality is obtained by observing that two complex numbers x and y ful�ll the next relation,
according to the triangular inequality, jxj = jx + y � yj 6 jx + yj + j � yj = jx + yj + jyj. Regarding the
second inequality, using Cauchy-Scwartz inequality �j�H
Hej > �kekk
�k and noting that kek � " one
obtains �j�H
Hej > �"k
�k.
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�H
Hs > "k
�k+ 1
Ref�H
Hsg > 0
Imf�H
Hsg = 0:

(5.9)

Moreover, note that the second constraint in (5.9) is unnecessary if one takes into
account the �rst constraint in (5.9). Therefore, taking into account this fact, (5.8) can be
rewritten in the next form,

minimize
�

�HB�

subject to �H� > "k
�k+ 1;
Imf�H�g = 0:

(5.10)

Where, B =

�
(1� c)�2sHR̂�1s (1� c)�1sHs
(1� c)�1sHs sHR̂s

�
, � = (sHR̂�1s; sHs)T , � = (�1; �2)

T

and 
 = (R̂�1s; s). The next step is to express (5.10) in the form of a SOCP problem,
to show that it can be solved e¢ ciently, i.e. in polynomial time. Taking into account the
eigendecomposition of B

B = E�EH , UHU;

one can express the objective function as �HB� = kU�k2, which is equivalent to
minimize kU�k [37]. Thus, introducing a new positive variable � , (5.10) can be expressed
as,

minimize
�;�

�

subject to kU�k 6 �
"k
�k 6 �H�� 1
Imf�H�g = 0:

(5.11)

Now, the next variables are introduced to rewrite (5.11) in real valued form and to facilitate
its interpretation as a SOCP,
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�� = (Ref�gT ; Imf�gT )T �U =

�
RefUg �ImfUg
ImfUg RefUg

�
�
 =

�
Ref
g �Imf
g
Imf
g Ref
gg

�
�� = (Ref�gT ; Imf�gT )T

�� = (Imf�gT ;�Ref�gT )T

(5.12)

These, de�nitions permit to rewrite (5.11) as

minimize
�;��

�

subject to k�U��k 6 �
"k�
��k 6 ��T��� 1
��T�� = 0:

(5.13)

Now, let us introduce the next variables

y = (� ; ��T )T ; d = (1;0T )T : (5.14)

These new variables permit to rewrite (5.13) as the next problem, which has the stan-
dard form of a SOCP [132],

minimize
y

dTy

subject to k(0; �U)yk 6
�
1;0T

�
y

k(0; "�
)yk 6 (0; ��T )y � 1
(0; ��T )y = 0:

(5.15)

Where, recall that according to (5.14) y = (� ; ��T )T 2 R5�1, d = (1;0T )T 2 R5�1.
Moreover, �� 2 R4�1, �U 2 R4�4, �
 2 R2M�4, �� 2 R4�1 and �� 2 R4�1 were de�ned in (5.12).
Therefore, as (5.15) has the standard form of a SOCP (see (5.20) or [132]), it has been shown
that the proposed robust shrinkage MVDR can be solved e¢ ciently, in polynomial time, by
means of software tools relying on interior point methods [131]. Namely, the computational
cost of the proposed method is O(M3), as it is shown in the appendix 5.A, which is
the same than the cost of the sample MVDR (1.9) and the robust Capon �lter in [37]
based on a worst case performance optimization. Even more important, the cost is much
smaller than the recent robust beamforming technique based on interference covariance
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matrix reconstruction [58], which is robust to both steering uncertainties and covariance
mismatches. The estimate of the interference covariance in that method, depends on
evaluating an expression in a number of grid points S of the angular sector where the
interference lies, which leads [58] to have a cost O(SM2) where S � M . Moreover, note
that thanks to the proposed shrinkage structure of the �lter and to the RMT approach
introduced through (5.4), the proposed approach deals directly with the small sample size
regime. As a consequence, this permits to avoid the ad-hoc parameter tuning of " that the
robust Capon �lter in [37] requires to counteract the covariance mismatches properly. That
is, in the proposed robust Shrinkage MVDR, " can concentrate on treating the steering
vector mismatches, which was its original aim when it was introduced in the set A(") in
(5.1) to model the uncertainty of the presumed steering vector.

5.5 Numerical Simulations

Next, the performance of the robust shrinkage MVDR �lter proposed in this chapter, in
the expression (5.15), is compared to other robust �lters. To this end, the application
considered is robust beamforming in array processing, thereby the proposed �lter is called
in the sequel robust shrinkage MVDR or Capon Beamformer (RSCB). For comparison
purposes, the next robust beamformers are considered. First, the robust Capon beam-
former (RCB) proposed in [37] and exposed above in (1.24). Recall that this beamformer
is robust to uncertainties of the steering vector by incorporating an uncertainty region to
the Capon beamformer, which leads to a worst-case optimization of the SINR, though it
does not deal directly with the �nite sample size e¤ect. The second type of beamformers,
which are considered for simulation purposes, are robust to the small sample size, though
assuming a known steering vector. These are, on the one hand, the proposed shrinkage
MVDR beamformer in (4.4), which is called Shrinkage MVDR in the sequel of this section.
On the other hand, the DL which optimizes asymptotically the SINR, for a known steering
vector, i.e. (1.15) proposed in [9]. Moreover, recall that the proposed RSCB and the RCB
in [37] have the form of a convex optimization problem, namely they can be expressed as a
SOCP. In order to implement these SOCP problems, the CVX software package was used
in Matlab [133].

Next, the simulation conditions are described. A uniform linear array with M = 50
sensors spaced half wavelength is considered. Also, without loss of generality  = 1 in (1.1)
and a set of K narrowband interferers are considered. Thereby, Rn in (1.1) reads,

Rn = APA
H + �2I
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where �2 is the power of an AWGN, and its value will be given below. A 2 CM�K stacks
in its columns the steering vector of the interferers, whose Direction Of Arrival (DOA) is
speci�ed below. P is a diagonal matrix with elements

�2k = 10
�SIRk=10 8k = 1; : : : ; K:

Being SIRk the ratio between the power of the SOI and the power of the k-th interferer
and it is set to 0 dB. Finally, in order to generate the SCM, the data at the output of the
array, the SOI, the signal of the k�th interferer and the AWGN are generated, respectively,
from the next iid complex gaussian distributions:

y(n) � CN (0;R); x(n) � CN (0; ); xk(n) � CN (0; �2k); �(n) � CN (0; �2I):
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Figure 5.14: Comparison of the empirical cdf of the SINR at the output of the proposed
RSCB (5.15), the RCB proposed in [37] see (1.24), the theoretical MVDR (1.7), Mestre-DL
proposed in [9] see (1.15) and the shrinkage MVDR in (4.4), when the DOA mismatch lies
within an uncertainty set and the sample size is large.

In �gure 5.14 we study the e¤ect of an error in the presumed steering vector when
the errors due to the covariance mismatch are negligible and the steering vector error is
assumed to be bounded within an uncertainty region. To this end, on the one hand a large
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sample size regime is considered, namely M = 50 and N = 5000. Moreover, a steering
error due to a DOAmismatch in the SOI is considered. More speci�cally, a maximum DOA
mismatch of 1� is considered and at each iteration of the simulation the DOA mismatch is
generated randomly according to a uniform distribution between 0� and 1�. Thereby, the
DOA errors lead to an uncertainty set. The rest of the simulation parameters are SNR=10
dB, a SOI and three interferers whose DOA are 1�, 10�, �10� and 15�, respectively, and
SIRi = 0 dB for all the interferers. Finally, the parameter " which de�nes the uncertainty
set for the steering vector in both the proposed RSCB and the RCB, see (5.1) and [37], is
set close to its maximum value, i.e. " = 0:99.
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Figure 5.15: SINR comparison at the output of the proposed RSCB (5.15), the RCB proposed
in [37] see (1.24) and the theoretical MVDR (1.7), when the error in the presumed DOA of the
SOI is relatively small. Exempli�cation that, unlike the proposed RSCB, the RCB requires an
additional heuristic tuning of " to counteract properly the small sample size e¤ect.

In �gure 5.14 the empirical cumulative distribution function (CDF) of the SINR at the
output of the beamformers is plotted. Note that the variability leading to plot the empirical
cdf is due to consider a variable DOA mismatch at each iteration of the simulation. It can
be observed that both the proposed RSCB (5.15) and the RCB deal properly with this
situation as their design considers an error in the presumed steering vector which varies
within an uncertainty set. Moreover, they obtain the same performance as the errors are
just due to the steering vector mismatch. That is, recall that the advantage of the proposed
RSCB over the RCB is that it can deal explicitly with both the mismatch in the covariance,
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due to the small sample size, and the mismatch in the steering vector, whereas the RCB
is designed to cope with the steering vector mismatch but its protection against the �nite
sample size is not directly tackled. On the other hand, the asymptotically optimal DL-
MVDR [9] and the proposed shrinkage MVDR (4.4) undergo a performance degradation as
they rely on a known steering vector. Moreover, note that both o¤er the same performance
as in the large sample size regime both tend to the sample MVDR, which on its turn tends
to an MVDR implemented with the true covariance matrix and the presumed steering
vector, which di¤ers from the actual steering vector.
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Figure 5.16: SINR comparison at the output of the proposed RSCB (5.15), the RCB proposed
in [37] see (1.24) and the theoretical MVDR (1.7), when the error in the presumed DOA of the
SOI is relatively small. Exempli�cation that choosing " too high, to counteract the small sam-
ple size degradation, may lead to a saturation e¤ect.

Next, in �gure 5.15 to 5.17 the beamformers are compared when the error between
the presumed and actual DOA of the SOI are relatively small. Namely, in �gure 5.15, a
scenario with the SOI and three interferers is considered, whose DOA are 1�, 4�, �10� and
15� respectively and the SNR=5 dB. A mismatch of 0:2� in the look direction is considered,
which corresponds to a theoretical norm of the error between the presumed and the actual
steering vector of "o = k~s � sk = 0:31. This �gure exempli�es the limitation of the RCB
commented above, i.e. " is designed to counteract the steering errors and it is not clear
whether it is robust enough to covariance mismatches. Thereby, " requires an additional
heuristic tuning. In e¤ect, one can observe in �gure 5.15 that setting " = 0:32 in the RCB,
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which is a close value to "o, leads to an important performance degradation in the small
sample size and an additional tuning is needed to counteract the covariance mismatch.
Namely, observe how the RCB with " = 0:5 yields better performance.
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Figure 5.17: Comparison of the empirical cdf of the SINR at the output of the proposed
RSCB (5.15), the RCB proposed in [37] see (1.24), the theoretical MVDR (1.7), Mestre-DL
proposed in [9] see (1.15) and the shrinkage MVDR in (4.4), for a relatively small error in the
presumed DOA of the SOI. The actual DOA of the SOI and the interferers are generated ran-
domly at each iteration.

In fact, by observing �gure 5.15, one may think that setting " t 1, i.e. to its highest
value, is always the correct choice, though in other situations this can provoke a saturation
e¤ect in the performance when N is increased, as it is shown in �gure 5.16. The simulation
parameters of �gure 5.16 are a SOI and three interferers, whose DOA are 76�, 79�, 65� and
90� respectively, the SNR=5 dB and the look direction mismatch is 0:2�, which corresponds
to "o = 0:075. On the other hand, as it can be observed in �gures 5.15 and 5.16, the
proposed RSCB does not require the tuning of ", as it deals with the covariance mismatch
thanks to the shrinkage structure of the beamformer and the RMT approach. These
comments are con�rmed in �gure 5.17 for a more general scenario where the DOA of the
desired signal and 7 interferers are generated randomly at each iteration, to this end a
uniform distribution between �90� and 90� is considered and the error in the presumed
DOA of the SOI is 0:2� as in �gures 5.15 and 5.16. In this simulation, the cdf of the
SINR at the output of each beamformer is plotted for M = 50 and N = 55 (the rest of
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the parameters are the same than in �gure 5.15). For comparison purposes Mestre-DL
(1.15) and the Shrinkage MVDR (4.4) have been included. They show small performance
degradation as the error in the presumed DOA is relatively small and they are robust to
the covariance mismatches.
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Figure 5.18: Comparison of the empirical cdf of the SINR at the output of the proposed
RSCB (5.15), the RCB proposed in [37] see (1.24), the theoretical MVDR (1.7), Mestre-DL
proposed in [9] see (1.15) and the shrinkage MVDR in (4.4), for a signi�cant error in the pre-
sumed DOA of the SOI. The actual DOA of the SOI and the interferers are generated ran-
domly at each iteration.

Nonetheless, as �gure 5.18 highlights, if the error in the presumed DOA increases,
Mestre-DL (1.15) and the Shrinkage MVDR (4.4) undergo a signi�cant degradation. The
simulation parameters of �gure 5.18 are M=50, N=55, a SOI and 28 interferers whose
DOA is generated randomly at each iteration according to a uniform distribution between
�90� and 90�, the SNR=20 dB and a look direction mismatch of 1�. Figure 5.18 high-
lights another advantage of the proposed RSCB, as it is more robust to steering errors
than Mestre-DL and the Shrinkage MVDR. In fact this was one of the objectives of this
chapter and it has been achieved thanks to the new formulation of the proposed RSCB,
which incorporates an uncertainty region for the steering vector in the MVDR optimization
problem and it requires a no distortion constraint for all the steering vectors within that
uncertainty set. On the other hand, both Mestre-DL and the Shrinkage MVDR presume
a known steering vector. Moreover, it is also interesting to observe how the shrinkage
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MVDR proposed in this thesis in (4.4) is more robust to signi�cant steering vector errors
than Mestre-DL proposed in [9]. The reason is that Mestre-DL obtains an asymptotically
optimal diagonal loading factor to deal for the small sample size regime, but it requires
an additional tuning of the loading factor to deal with steering vector uncertainties. On
the other hand, the proposed shrinkage MVDR in (4.4) tends to a scaling of the conven-
tional beamformer in the small sample size regime. Therefore, as the main lobe of the
conventional beamformer is wider than the one of the DL-MVDR it is less sensitive to
uncertainties of the steering vector. A �nal important comment related to �gure 5.18 is
described next. When the steering vector errors increase, they may dominate over the co-
variance mismatches and the tuning of " in the RCB is less signi�cant. Both the proposed
RSCB and the RCB deal properly with this situation with a high " and they o¤er almost
the same performance.

5.A Appendix: Computational Cost of the proposed
method

Next, the computational cost of the proposed robust shrinkage MVDR method in (5.15)
is analyzed. To this end, recall that (5.15) is a SOCP, thereby the cost of the proposed
method is determined by the cost of solving a SOCP and the cost of forming the matrices
that give form to that SOCP, i.e. to (5.15).

Regarding the cost of forming the matrices of (5.15), �rst observe that this optimization
problem is formed by the next matrices, which were de�ned in (5.12) and (5.14)

y = (� ; ��T )T 2 R5�1; d = (1;0T )T 2 R5�1 �� 2 R4�1;
�U 2 R4�4; �
 2 R2M�4; �� 2 R4�1
�� 2 R4�1:

(5.16)

On its turn, according to (5.12), the expression of ��; �U; �
; �� and �� is,

�� = (Ref�gT ; Imf�gT )T �U =

�
RefUg �ImfUg
ImfUg RefUg

�
�
 =

�
Ref
g �Imf
g
Imf
g Ref
gg

�
�� = (Ref�gT ; Imf�gT )T

�� = (Imf�gT ;�Ref�gT )T

(5.17)

Moreover, recall that the expressions for 
 and � are given by
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 = (R̂�1s; s) � = (sHR̂�1s; sHs)T : (5.18)

And also remember thatU arises from the eigendecomposition of B, i.e. B = E�EH =
UHU, where the expression for B is given by

B =

�
(1� c)�2sHR̂�1s (1� c)�1sHs
(1� c)�1sHs sHR̂s

�
(5.19)

Therefore, by inspecting equations (5.16) to (5.19) one infers that the cost of forming
the matrices required by the optimization problem (5.15) is due to the cost of computing
R̂�1, which is well known to be O(M3).

Now, in order to know what is the overall cost of the proposed method in (5.15), it
remains to know what is the cost of computing the SOCP involved in (5.15). To this end,
bear in mind that the standard form of a SOCP is, see e.g. [132],

min
x

fTx

s.t. kAix+ bik 6 cTi x+ di; i = 1; : : : ; N:
(5.20)

Where f 2 Rn, Ai 2 Rni�1�n, bi 2 Rni�1, ci 2 Rn and di 2 R. According to [132],
the cost of a SOCP is due to the cost of solving the system, which is O(n3), and the cost
of forming the matrix system, which is O(n2

PN
i=1 ni). In our case, observing (5.15) and

comparing to the standard SOCP (5.20), it can be easily inferred that n = 5; n1 = 5; n2 =
2M +1 and n3 = 2. As a consequence, the cost of computing our SOCP is due to the cost
of forming the matrix system, which is O(n2

PN
i=1 ni) = O(52(5+2M +1+2)). Note, that

this is smaller than the cost of forming the matrices of (5.15), which is O(M3) according
to equations (5.16) to (5.19). Therefore, the overall cost of the proposed robust shrinkage
MVDR method in (5.15) is O(M3).
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Chapter 6

Conclusions and Future work

6.1 Conclusions

This thesis has dealt with the estimation of a parameter based on a linear �ltering of the
observations, when the parameter of interest is observed through a linear model. More-
over, this thesis considers the modern statistical framework, imposed by the current trend
in e.g. array signal processing or wireless communications, where the dimension of the
observations is comparable or even larger than the number of available statistical samples
for the estimation purposes. Considering the MSE or SINR as the performance measures,
the optimal linear estimators are the LMMSE or the MVDR, respectively. Unfortunately,
these methods are not realizable as they depend on the inverse of the data covariance,
i.e. the precision matrix. The conventional approach based on substituting the unknown
covariance by its sample estimate, i.e. the SCM, leads to an important degradation within
the statistical framework considered herein, where the sample size is small. Thereby, the
aim of this thesis has been to propose corrections of the conventional sample LMMSE and
MVDR �lters to cope with the small sample size regime. To achieve this aim, several
corrections based on the shrinkage estimation philosophy have been considered. The aim
of those techniques is to reduce the MSE, of the methods to be corrected, by means of a
linear transformation of the sample methods. Or more in general by means of an a¢ ne
transformation which combines the sample methods with a priori information. Thereby, in
this thesis shrinkage corrections of the sample LMMSE and MVDR �lters have been con-
sidered, which may be summarized as particular cases of the general form of shrinkage �lter
w = �1 �R

�1s+�2s, where �R = R̂+ �I, R̂ is the SCM obtained from the observations, s is
the signature vector associated to the SOI and �1, �2, � are the parameters to be designed.
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Namely, the corrections of the sample LMMSE that have been considered, from more sim-
ple to more elaborated, have been the following. A direct linear correction w = �1R̂

�1s
for the case that the sample size N and the observation dimension M ful�ll the constraint
M=N 2 (0; 1). A linear correction of a regularized sample LMMSE, i.e. w = �1 �R

�1s,
which permits to deal with any M=N 2 (0;1). Then, a more general shrinkage correction
based on an a¢ ne transformation is considered. Namely, assuming that M=N 2 (0; 1),
the inverse of the SCM, which relies on the available statistical samples, is combined with
an estimation of the precision matrix based on just a priori information, i.e. the identity
matrix, which leads to w = �1R̂�1s+�2s = (�1R̂

�1+�2I)s. And �nally, the previous �lter
is extended to deal with anyM=N 2 (0;1) by considering a regularization of the SCM, i.e.
the more general form of the shrinkage �lter w = �1 �R�1s+ �2s is treated. Regarding the
sample MVDR, the shrinkage corrections that have been considered are based on the a¢ ne
transformations mentioned above, i.e. the �lters w = �1R̂�1s+�2s and w = �1 �R�1s+�2s
have been considered.

The design of the shrinkage parameters �1; �2 and the regularization parameter � is
obtained as the optimization of the MSE, in the case of the LMMSE �lters, or the maxi-
mization of the SINR, in the case of the MVDR, which can be viewed as the minimization
of the MSE with a no distortion constraint. This leads to optimal �1; �2 and �, though
they depend on the unknown data covariance. To circumvent this problem, most of the
proposed �lters adopt a RMT approach which may be summarized as follows. First, an
asymptotic regime which deals naturally with the small sample size regime is considered.
Namely, this asymptotic regime considers thatM;N !1 andM=N ! c, where c 2 (0; 1)
in the more basic forms of shrinkage that consider � = 0 and c 2 (0;1) in the more gen-
eral form of shrinkage �lters with � 6= 0. Then, within this asymptotic regime, consistent
estimators of the optimal shrinkage and regularization factors �1; �2 and � are obtained.
That is, the obtained estimators are asymptotically optimal as they tend to the optimal
shrinkage estimators. This asymptotic approximation leads to good performance even for
rather small values of M;N . Moreover, the RMT approach does not require any further
assumption regarding the distribution of the observations.

The numerical simulations have shown that the proposed shrinkage �lters clearly out-
perform the sample LMMSE and MVDR. Moreover, the next contributions are o¤ered
compared to the related work methods, which recall that are based on DL �lters of the
form w = (R̂ + �I)�1s or more in general on �lters relying on a shrinkage of the SCM
w = (� 1R̂ + � 2I)

�1s, see section (1.4). Compared to the ad-hoc choices of the DL fac-
tor, the proposed shrinkage �lters obtain better performance, as they obtain the shrinkage
parameters that optimize asymptotically the metrics related to the estimation of the pa-
rameter of interest. This argument is also the reason to improve the �lters based on the
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LW shrinkage estimator of the SCM [33], as that method obtains a shrinkage which opti-
mizes asymptotically the MSE in the estimation of the data covariance, which is not the
�nal target. Compared to the DL method [9], which obtains the asymptotically optimal
DL factor in terms of SINR, the next conclusions were observed. The proposed shrinkage
�lters based on an a¢ ne transformation of the inverse of the SCM, i.e. w = �1R̂�1s+�2s
and w = �1 �R

�1s + �2s, obtain almost the same performance than [9] in terms of SINR
and better performance than [9] in terms of MSE, when the proposed �lters are designed
as corrections of the sample LMMSE. Moreover, compared to the regularization of the
LMMSE w = (� 1R̂ + � 2I)

�1s proposed in [79], which obtains the asymptotically optimal
� 1,� 2 in terms of MSE, the next bene�t was observed. The proposed shrinkage correction
of the sample LMMSE, based on the �lter w = �1 �R

�1s + �2s, obtains a performance
gain in terms of MSE compared to [79], which is due to the additional shrinkage of the
inverse covariance implemented through �1, �2. Both the proposed methods and the re-
lated work mentioned above assume that s is precisely known, though recall that another
important source of degradation of the LMMSE and MVDR methods arises when there
is an uncertainty in the signature vector s. In those situations, the proposed shrinkage
methods w = �1R̂

�1s+�2s and w = �1 �R
�1s + �2s outperform the related work meth-

ods [9] and [79]. The rationale is that the proposed methods consider the combination of
the sample or regularized sample LMMSE and MVDR with a matched �lter. Under and
imprecise knowledge of s, the matched �lter may attenuate the SOI, but it will not try
to cancel this signal as it was an interference, which is the behavior of the LMMSE and
MVDR with a signature vector mismatch. On the contrary the DL [9] and regularization
of the sample LMMSE [79] design the DL factor and shrinkage parameters to cope with
the small sample size, but still undergo an important degradation due to the imprecise
knowledge of s. That is, they would require an additional tuning of the loading factor an
shrinkage parameters to take into account the uncertainty in s.

Finally, we propose a correction of the sample MVDR which is robust to both the degra-
dation due to the small sample size and the degradation due to the imprecise knowledge
of the signature vector s. To this end, our previous shrinkage �lter w = �1R̂

�1s+�2s is
considered to deal with the small sample size impairment. Moreover, the MVDR problem
formulation is modi�ed by incorporating a no distortion constraint for all the vectors that
are within an uncertainty region related to the signature vector. In this way, both the
small sample size and the uncertainty in the signature vector are dealt with explicitly. The
proposed �lter outperforms our previous shrinkage MVDR �lter w = �1R̂�1s+�2s and the
DL �lter [9], which assume a known s. Moreover, our work rather than [37] deals directly
with the small sample size degradation, recall that [37] was the seminal work proposing
the modi�cation of the MVDR based on an uncertainty region for the signature vector.
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Compared to [37], this leads to some performance gains in situations where the degradation
due to the small sample size is more important than the degradation due to the uncertainty
in s.

6.2 Future work

This thesis has considered a statistical inference framework where the sample size support
N is small or at most comparable to the system�s dimension M . Within this context,
topics for future research are described next.

6.2.1 Parameter estimation with low sample size support in a
Massive MIMO context

Within the context of array signal processing and wireless communications one of the
most promising and prominent technologies is massive MIMO [4], which consists of equip-
ping the base stations (BS) with large arrays of antennas, namely several hundreds of
antenna elements are envisaged. This will permit to cope with the increasing demand for
higher spectral and energy e¢ ciency in wireless systems [134]. Thereby, the statistical
inference framework considered in this thesis �ts perfectly within the massive MIMO con-
text, as the sample size support for inference purposes is scarce compared to the system�s
dimension. More speci�cally, a possible problem to treat is the channel estimation based
on an LMMSE methodology. In fact, pilot based channel estimation is a hot topic of re-
search in massive MIMO [135], as due to the pilot contamination e¤ect the performance of
channel estimation and the spectral e¢ ciency is known to be degraded. This e¤ect refers
to the spatially correlated intercell interference due to the pilot reuse in wireless cellular
networks. The mathematical expression of the LMMSE channel estimator depends on the
inverse covariance of the observations which on its turn depends on the covariance of the
disturbance term, which includes the receiver noise and the intracell and intercell interfer-
ence [135]. Thereby, these covariances must be estimated from a set of available snapshots,
which will be small or comparable to the system�s dimension. This paves the way to apply
the statistical inference framework considered in this thesis.

The bene�ts of large antenna arrays for wireless cellular communications systems have
been stressed by a great deal of research works in recent years. However, less attention
has been paid to the use of this massive number of antennas at the fusion centre (FC) of
sensor networks. In fact, massive MIMO can produce interesting bene�ts regarding the
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energy e¢ ciency of sensor networks. Namely, [136] shown that a constant detection and
estimation performance can be achieved by decreasing the transmit power of the nodes by
a factor 1=M and increasing to M the number of antennas at the fusion centre. Thereby,
the channel estimation problem, mentioned above, is even more critical within a WSN
framework characterized by a large number of antennas at the FC. Namely, note that the
less the sensor nodes access the channel the better, as they are in general battery powered
and the battery must have a duration of months or years. Thereby, the statistical inference
framework dealt with in this thesis, where the sample size is small compared to the system�s
dimension is worth to be applied in this massive MIMO WSN framework.

6.2.2 Low complexity estimators

When the system�s dimension increases it is important to device strategies to reduce the
complexity of the proposed statistical inference methods. For instance, in massive MIMO
or in general in other systems characterized by large arrays of antennas this is an impor-
tant topic, see e.g. [135]. In fact, in that work they deal with the reduction of the LMMSE
through a polynomial expansion technique, which has been widely applied in signal process-
ing to reduce the complexity of the LMMSE in other systems such as in e.g. multiuser
detection. The idea of this technique is to approximate large dimensional matrix inversions
by an L-degree matrix polynomial, which leads to reduce the computational complexity
from O(M3) to O(LM2). Another interesting technique is based on dimensionality reduc-
tion of the observed data through a random projection or random unitary transformation,
see e.g. [8] [137]. Namely, the M -dimensional observed data is left multiplied by a random
unitary matrix of dimensions L�M , where L�M . In this regard, it is important to note
that, according to the Johnson-Lindenstrauss lemma [138], an appropiately de�ned ran-
dom projection preserves the length of the data vectors and the distance between vectors.
A key question of this type of random projection techniques is to specify the distribution
of the random unitary matrix. For instance in [8] they consider a isotropically random
distribution or Haar measure whereas in [137] the entries of the random matrix are i.i.d.
standard normal random variables, i.e. with zero mean and unit variance.

6.2.3 Non linear shrinkage estimation

As it has been mentioned in the conclusions section, the proposed shrinkage �lters in this
thesis can be summarized in the general form w = �1 �R�1s+�2s, where �R = R̂+ �I, R̂ is
the SCM obtained from the observations, s is the signature vector associated to the SOI
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and �1, �2, � are the shrinkage parameters to be designed. Moreover, the related work
methods can be summarized as w = (� 1R̂ + � 2I)

�1s. Thereby, after easy manipulations,
based on the eigendecomposition of the SCM, it can be observed that both the proposed
and the related work methods have the same eigenvectors than the SCM and apply a
shrinkage correction to the sample eigenvalues. Namely, the proposed shrinkage �lters
can be rewritten as w = (Ê(�1(�̂ + �I)�1 + �2I)Ê

H)s and the related work methods as
w = (Ê(� 1�̂ + � 2I)

�1ÊH)s. These expressions bring to light that the same shrinkage
intensity is applied to every sample eigenvalue. A recent work [139], dealing with the
estimation of large-dimensional covariance matrices, proposed to apply a di¤erent nonlinear
shrinkage intensity to every sample eigenvalue. They showed that this approach provides
important improvements over the linear shrinkage framework in situations where linear
shrinkage does not improve enough the SCM, e.g. when the population eigenvalues are
dispersed. Thereby, it would be interesting to study this type of nonlinear shrinkage
estimation techniques in our framework. That is, our �nal target is to estimate a parameter
which depends on functionals of the covariance, instead of the estimation of the covariance
itself. Moreover, interesting enough, [139] not only builds on shrinkage estimation but
also on large dimensional random matrix theory tools, which are the mathematical tools
that have been used in this thesis. Namely, [139] focus on the type of estimators of the
population covariance and the precision matrix which minimize the Frobenius norm by
considering di¤erent shrinkage intensities for the sample eigenvalues. A brief description
is provided next for the estimation of the covariance matrix, see [139] for the estimation
of the precision matrix. Namely, the estimation is formulated as the next optimization
problem,

min
D
kÊDÊT �RkF

where Ê denotes the matrix containing in its columns the sample eigenvectors fêigMi=1
and D a diagonal matrix containing the estimation of the eigenvalues. The optimal solu-
tion to this problem is given by D = diag(d1; : : : ; dM) where di = êTi Rêi for i = 1; : : : ;M .
Building on recent RMT results which generalize the Marµcenko-Pastur equation and con-
sidering that M;N !1 and M=N ! c 2 (0; 1), it was shown in [140] that the optimal di
can be approximated by the next quantity,

dori =
�̂i

j1� c� c�̂i �mF (�̂i)j2

where �̂i is the i-th sample eigenvalue and �mF (�̂i) is de�ned in terms of the Stieltjes
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transform of the limiting spectral distribution associated to the SCM mF (z) as follows,
lim

z2C+!�
mF (z) = �mF (�) 8� 2 R � f0g. Note that �mF (�̂i) is not known as it is related

to the limiting distribution of the sample eigenvalues not the observed one. However, the
main contribution of [139] is precisely to provide a consistent estimation of �mF (�̂i) and
thereby to provide a consistent estimation of dori . Finally, observe that the estimation of
the eigenvalues dori is e¤ectively a nonlinear shrinkage of the sample eigenvalues and that
a di¤erent shrinkage intensity is applied for each of the eigenvalues.
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