

POWER-CONSTRAINED AWARE AND LATENCY-AWARE

MICROARCHITECTURAL OPTIMIZATIONS IN MANY-CORE PROCESSORS

by Sudhanshu Shekhar Jha

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(h t t p : / / w w w . t d x . c a t /) ha estat autoritzada pels titulars dels drets de propietat intel·lectual
únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc
aliè al servei UPCommons o TDX.No s’autoritza la presentació del seu contingut en una finestra
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tesis Doctorals en Xarxa

https://core.ac.uk/display/85128139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

Improving the Efficiency of Multicore
Systems Through Software and Hardware

Cooperation

a dissertation presented
by

Víctor Javier Jiménez Pérez
to

The Department of Computer Architecture

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of
Computer Science

Universitat Politècnica de Catalunya – Barcelona Tech
Barcelona

September 2016

©2016 – Víctor Javier Jiménez Pérez
all rights reserved.

Thesis advisor: Dr. Francisco Cazorla
Thesis advisor: Dr. Mateo Valero Víctor Javier Jiménez Pérez

Improving the Efficiency of Multicore Systems Through
Software and Hardware Cooperation

Abstract

Increasing processors’ clock frequency has traditionally been one of the largest drivers of performance
improvements for computing systems. In the first half of the 2000s, however, it became clear that
continuing to increase frequency was not a viable solution anymore. Power consumption and power
density becameprohibitely costly, andprocessormanufacturersmoved tomulticore designs. This new
paradigm introducedmultiple challenges not present in single-threaded processors. Applications run-
ning on multicore systems share different resources such as the cache hierarchy and the memory bus.
Resource sharing occurs at much finer degree when cores support multithreading as well. In this case,
applications share the processor’s pipeline too. Running multiple applications on the same processor
allows for better utilization of its resources—which otherwise may just lie idle if an application does
not use them. But sharing resourcesmay create interferences between applications running on the sys-
tem. While the degree of these interferences depends on the nature of the applications, it is typically
desirable to reduce them in order to improve efficiency.

Most currently available processors expose a set of sensors and actuators that software can use to
monitor and control resource sharing among the applications running on a system. But it is typically
up to end users to analyze their workloads of interest and to manually use the actuators provided by
the processor. Because of this, inmany cases the differentmechanisms for controlling resource sharing
are simply left unused. In this thesis we present different techniques that rely on software/hardware in-
teraction tomonitor and improve application interference—and thus improve system efficiency. First
we conduct a quantitative study showing the benefits of hardware/software cooperationon systemeffi-
ciency. Thenwenarrowour focus on a givenhardware knob: data prefetching. Specificallywe develop
and evaluate several adaptive solutions for improving the efficiency of hardware data prefetching on
multicore systems. The impact of the solutions presented in this thesis, however, goes beyond the par-
ticular case of data prefetching. They serve as illustrative examples for developing software/hardware
cooperation schemes that enable the efficient sharing of resources in multicore systems.

Resource sharing in a processor is a critical factor that significantly affects system efficiency. But re-
source sharing also occurs at other levels in a computing system. In large-scale computing facilities ap-
plications might also share storage and networking resources for instance. As a case study we consider
the design of an energy accounting system relying on hardware/software cooperation for large-scale
computing facilities. We explore multiple alternatives for the required sensors and actuators, as well
as the inherent trade-offs in the design of such a system.

iii

Contents

1 Introduction 1
1.1 Sensors and Actuators . 3
1.2 Problem Statement . 4
1.3 Using Hardware Data Prefetching as an Actuator 6
1.4 Contributions . 8
1.5 List of Publications . 9
1.6 Dissertation Organization . 11

2 Related Work 12
2.1 Hardware Solutions for Resource Management 13
2.2 Sampling-Based Online Adaptive Systems . 13
2.3 Solutions Exposing Custom Sensors and Actuators to the Software 14
2.4 Thread Mapping . 15
2.5 General Prefetching . 16
2.6 Local Adaptive Prefetching . 17
2.7 CMP-Aware Adaptive Prefetching . 17
2.8 Adaptive Prefetching Solutions for Real Systems 18
2.9 Per-Task Energy Accounting . 18

3 Motivation: Impact of Hardware Actuators 20
3.1 The IBM POWER6 Processor . 22
3.2 Effect of Workload Characteristics . 25
3.3 Effect of Core Usage . 29
3.4 PMC-Based Power Model . 31
3.5 Improving Efficiency Through Hardware Knobs 37
3.6 Conclusions . 50

4 Platform Characterization and Methodology 51
4.1 The IBM POWER7 Processor . 51
4.2 Methodology . 66

5 Adaptive Prefetching: Improving Per-Application Performance 68
5.1 Introduction . 68
5.2 Adaptive Prefetching . 69
5.3 Results . 79

iv

5.4 OS-Based Implementation . 89
5.5 Conclusions . 91

6 Bandwidth Shifting: Improving System-Wide Performance 92
6.1 Introduction . 92
6.2 Effect of Prefetching on Performance and Bandwidth 94
6.3 Intelligent Bandwidth Shifting . 97
6.4 Results . 103
6.5 Comparing Bandwidth Shifting to Adaptive Prefetching 114
6.6 Conclusions . 117

7 Per-Task Energy Accounting 118
7.1 Introduction . 118
7.2 Benefits of Energy-Aware Accounting/Billing 123
7.3 Target Facilities . 127
7.4 Energy Accounting Design and Trade-Offs . 128
7.5 Conclusions . 134

8 Conclusions and Future Work 135
8.1 Conclusions . 135
8.2 Future Work . 138

References 151

v

Listing of Figures

1.1 Examples of sensors and actuators exposed by hardware to software. 2
1.2 Design overview for the proposed adaptive resource management system. 5

3.1 POWER6 microarchitecture overview. 23
3.2 METbench power consumption for different number of threads (T) and cores (C). 26
3.3 Several copies of cpu_int are used to create an incremental execution (2, 4, 6 and 8

hardware threads). The values are relative to the power and temperature measure-
ments when the system is idle. 29

3.4 Effect of accesses to L2 cache and main memory on system power consumption.
Power values are relative to the idle system consumption. Several instances of the
same benchmark are executed to create a higher power delta. The regression line is
just an approximation to show the increasing trend. 33

3.5 Estimation accuracy for the powermodel trainedwithMETbench data only, for dif-
ferent number of threads (T) and cores (C). For instance, 4T/2Cmeans 4 threads are
runon2 cores (usingSMTcapabilities). The error is computed as: |measured−predicted|

measured ×
100. 35

3.6 Model validation using all the available data (METbench and SPEC CPU2006). (a)
shows the normalized measured vs. estimated power. The values are normalized
by subtracting the mean of the error and dividing by the standard deviation of the
error. (b) shows the residue error distributionwith the cross-validationprocess. The
residuals are normalized by dividing to the actual measure value. 36

3.7 Power spikes due to tick time events . 40

4.1 POWER7 microarchitecture overview. 52
4.2 Measured bandwidth for two SPEC CPU2006 benchmarks. 57
4.3 Microbenchmarks description. The microbenchmarks perform an array traversal

either in sequential or randomorder. Thedistance between accesses is a configurable
parameter. Dependingon function f, the accesses to every array element canbe loads,
stores or both. 58

4.4 Prefetch depth effect characterization. Both sequential and random microbench-
marks are used to show the effect of prefetch depth on performance and memory
bandwidth. Threads are bound to contexts in an increasing order (the first four
threads go to the first core, the next four ones go to the second core, and so on).
Values are normalized to the maximum value observed in each plot. 60

vi

4.5 Stride-Nandprefetchdepth effect characterization. A sequential stridedmicrobench-
mark is used to show the effect of stride-N and prefetch depth on performance and
memory bandwidth. Threads are bound to contexts in an increasing order (the first
four threads go to the first core, the next four ones go to the second core, and so on).
Values are normalized to the maximum value observed in each plot. 61

4.6 Memory and total system power consumption both for sequential and random mi-
crobenchmarks. Threads are bound to contexts in an increasing order (the first four
threads go to the first core, the next four ones go to the second core, and so on).
Values are normalized to the maximum value observed in each plot. 62

4.7 Effect of prefetching on performance for single-threaded runs. Multiple prefetch
configurations are used in order to show the effect of each prefetch knob: depth (2-
7), prefetch on stores (WD), and stride-N (SD)—refer to Table 4.1 for notation on
prefetch configurations. 64

4.8 Effect of prefetching on CPU andmemory power consumption for single-threaded
runs. The values are normalized to the ones obtained with the default prefetch con-
figuration. 66

5.1 Effect of changing the buffer size on inter-sample IPC variability. IPC variability (see
Equation 5.1) is normalized to the average IPC for each benchmark. 71

5.2 Effect of exploration/running ratio on expected performance. Values are normal-
ized to the maximum values observed for each workload. 74

5.3 Effect of drop factor on expected performance. Values are normalized to the best
possible performance. 76

5.4 Performance results for single-threaded workloads normalized to the ones obtained
with the default prefetch configuration. 79

5.5 CPU and memory power consumption results for single-threaded workloads us-
ing Algorithm 3. The values are normalized to the ones obtained with the default
prefetch configuration. 81

5.6 Intra-workload prefetch setting sensitivity for all the SPEC CPU2006 benchmarks. 83
5.7 Performance results forboth the static and adaptive approaches formixed-workloads.

Eachworkload is composedof twodifferentbenchmarks fromdifferent classes (PI=prefetch-
insensitive, PF=prefetch-friendly, PU=prefetch-unfriendly, CS=config-sensitive). Four
copies of each benchmark are run at the same time. Results are normalized to the
ones obtained with default prefetching. 84

5.8 CPU andmemory power consumption results for the adaptive approach for mixed-
workloads (same pairs as in Figure 5.7). Values are normalized to the ones obtained
with the default prefetch configuration. 86

5.9 Performance and power characterization for SPECjbb2005 along its execution for
eight warehouses (i.e., threads). Individual thread values are first aggregated, and
then they are normalized, dividing them by the mean of all the samples. In this way
we keep the same ratio between both prefetch configurations as in the original values. 88

vii

6.1 Effect of bandwidth shifting on systemperformancewhen aprefetch-efficient bench-
mark (bwaves) and a prefetch-inefficient one (omnetpp) run together. The X axis
shows the number of omnetpp threads (x). The number of bwaves threads is 32 − x. 93

6.2 Throughput andmemory bandwidth consumption characterization for a subset of
the benchmarks. This subset is representative of all the benchmarks used in this
chapter (i.e., the curves for the benchmarks not shown herematch one of the bench-
marks shown in the figure). 95

6.3 Prefetch usefulness characterization for the benchmarks shown in Figure 6.2. . . . 99
6.4 Base bandwidth shifting algorithm. 100
6.5 Enhanced bandwidth shifting algorithm with a guard mechanism. 102
6.6 Performance results for randomly-constructed workloads. 105
6.7 Individual speedups for results in Figure 6.6. Each square in a plot displays the indi-

vidual speedup for a benchmark within a workload. The speedup degree is shown
with a color scale, going from light colors—lower speedup—to dark colors—higher
speedup. 108

6.8 Power consumption results for random workloads. Values are normalized to the
case where the most aggressive prefetch setting is used for all the benchmarks. . . . 110

6.9 Performance results for an increasingnumber of copies of prefetch-inefficient bench-
marks. 111

6.10 Power consumption results for an increasingnumberof copies ofprefetch-inefficient
benchmarks. Figure 6.9 shows the performance results for the same set of experiments. 112

6.11 Performance speedup resulting fromusingbandwidth shiftingover adaptiveprefetch-
ing. 116

7.1 Power consumption for SPEC CPU2006 benchmarks measured on an Intel quad-
core system (a) and for the available results for SPECpower at severalCPUutilization
levels (b). Max and min refer to the most- and least-consuming systems. Mean is
the average for all the submitted results. 121

7.2 Comparison of idle and peak power consumption for SPECpower submitted results. 122
7.3 Power consumption as a functionofusage for a systemsubmitted to the SPECpower

webpage. The values are normalized to the consumption when the system is fully
utilized. The actual system is a Fujitsu PRIMERGY TX150 S7 server, based on a
quad-core Intel Xeon X3470 with 4GB of RAM. Its maximum power consump-
tion is 112 watts when utilization is 100 percent. 124

viii

Dedicated to my wife and parents,
for their constant support.

ix

Acknowledgments

Ever since I was a child, my parents strove to give me a good education. When I became interested
in computers, they did not hesitate to buy me one—even if at that time computers were not precisely
affordable. Later, they always encouraged me to continue studying, and supported me and my deci-
sions. For all this, I am very grateful to them. Thanks to my brother for bringing joy and fun to my
family, and for enduringmy (failed) attempts to spark his interest in computers. Amusingly, he is now
professionally dealing with computers.

I met my wife soon after starting my PhD. It was supposed to take just a few years, but it ended
up taking quite a bit longer. I am thankful for her endless support and for cheering me up during
difficult times. My son was born when I was close to finishing this thesis. His needs certainly delayed
its end, but the joy he brought to my life simply outshines everything else. I want to thank him for
not complaining too much when I needed to devote some time to complete this thesis.

I am indebted tomy advisor, Francisco Cazorla, for his direction and encouragement since day one.
His constructive criticism had a large influence on my development as a researcher. I am grateful for
his trust and the freedom he allowed me to have during my studies. Roberto Gioiosa provided lots
of insights and contributed to lively discussions that significantly helpedmy research. I thank him for
his teachings. I want to show my gratitude to Mateo Valero for all his support and for being always
there when difficulties appeared on the path.

During the internships I did at the IBM T. J. Watson Research Center, Pradip Bose and Alper
Buyuktosunoglu guided my research as well. In a way, they became de facto advisors of my PhD stud-
ies. Pradip was always eager to help me no matter what the problem was. Beyond invaluable Alper’s
mentoring, my friendship with him certainly made my time there more enjoyable. It was great to
watch together Barça winning so many titles. I thank Pradip and Alper for all their teachings and all
the opportunities that they provided me. I also want to thank Francis P. O’Connell, Canturk Isci,
Chen-yong Cher and Eren Kursun for their help while I was at IBM. During my stays at IBM, some
friends made me feel closer to home. I am thankful to Ramon, Augusto, Valentin and Alex for it.

The path that led to my PhD studies started when I decided to enrol in the master program at
the Computer Architecture Department at UPC. I am grateful to Marisa Gil, Nacho Navarro and
XaviMartorell for their support during that time. During mymaster studies I was a visitor student at
INRIA. I thank Grigori Fursin for the opportunity. I also want to thank Isaac Gelado for all his help
with my master thesis.

The C6 building is a special place forme. There, I metmany people whomade the process towards
obtaining my PhD a much better experience. Many of them continue to be my friends to this day.
I want to thank Zoraida, Carlos González, Àlex, Jordi, Abhishek, Carlos Boneti, Ramon, Lluís, Javi,
Carlos and Isaac. I specially want to thank Carlos Boneti for all his help during the first stages of my

x

PhD in the CAOS group at Barcelona Supercomputing Center (BSC). I am grateful to all the other
members of the CAOS team for their friendship.

Even if they do not really understand very much what my research is about, I am grateful to my
friends Cesc and Sergi for being part of my life before, during and (hopefully) after my PhD. Soon,
they will not be able to continue to make fun of my eternal student condition. I also want to thank
my undergraduate friends: Alex, Juanan, Marc, Bea, Lou, Lucas and many more. The list is simply
too long. During all these years I met other people who in one way or another helpedme to finish my
PhD. I am thankful to all of them.

Last but not the least, I thank all the institutions that supported me during my PhD studies: the
Computer Architecture Department at the UPC, the HiPEAC Network of Excellence, the Barcelona
Supercomputing Center and IBM Corporation. Specifically, this work has been partially sponsored
byDefense AdvancedResearch Projects Agency (DARPA),MicrosystemsTechnologyOffice (MTO),
under contract no. HR0011-13-C-0022. The views expressed are those of the authors and do not reflect
the official policy or position of the Department of Defense or the U.S. Government. This document
is: Approved for Public Release, DistributionUnlimited. This work has also been partially supported
by: the Spanish Ministry of Economy and Competitiveness (MINECO) under contracts TIN2012-
3455 and TIN2015-65316-P; the Spanish Ministry of Science and Technology of Spain under contracts
TIN-2007-60625 and JCI-2008-3688, and grants AP-2005-3776 and AP-2005-3318; and the HiPEAC
Network of Excellence (IST-004408).

xi

1
Introduction

In the last two decades of the past century computer scientists relied on the scaling laws for CMOS de-

vices to improve processor performance. Increases in clock speed drove processor performance during

that time—processor clock frequency doubled approximately every 18 months. In the first half of the

past decade, however, the slowdownofDennard scalingmadeprocessormanufacturers to embrace the

multicore design (Haensch et al. 45 , Horowitz et al. 49). That move allowed processor performance to

continue to increase by scaling up the number of cores instead of the clock rate. But it also introduced

multiple challenges not present in single-threaded processors. Suddenly, traditional problems in the

parallel computation realm such as thread coscheduling or resource sharing appeared in the context

of a single multicore processor.

Multicore processors allow multiple applications to concurrently run on a single processor. This

1

Sensors
Hardware

Actuators

Performance	
counters

Temperature Power DVFS Sleep
modes Prefetching

Cache	
partitioning

HW	thread	
priorities

Figure 1.1: Examples of sensors and actuators exposed by hardware to software.

typically increases the utilization of the different units in the processor such as caches and functional

units (assuming the processor supports multithreading too). But it also creates interferences between

applications running on the system as they compete for the usage of shared resources. In order to

alleviate these interferences—and therefore increase performance—several hardware techniques to

adaptively manage resource sharing were developed over time (e.g., Tullsen et al. 124 studied several

SMT fetch policies andQureshi&Patt 101 presented a runtimemechanism to partition shared caches).

Hardware-based adaptive policies are widely used inmodern processors and they have proved success-

ful at increasing performance or improving energy efficiency. Yet, in this thesis we show that there is

room for improvement: adaptive policies can be further enhanced by relying on software and hard-

ware cooperation. In this approach, hardware exposes sensors and actuators to software. A software

layer uses the sensors to gather all the required information to implement smart adaptive resource-

management policies. Such policies then use the actuators to adapt hardware resource sharing to the

running workloads based on a certain metric of interest (e.g., performance, power consumption or

quality of service).

2

1.1 Sensors and Actuators

Current processors contain multiple sensors that users can use for different purposes (Bowhill et al. 18 ,

Sinharoy et al. 111). Some examples of such sensors can be seen in Figure 1.1. Performance counters

(PMCs) are a set of special-purpose registers built into the performance monitoring unit (PMU) in a

processor. The PMU can be programmed to measure a broad selection of microarchitectural events

such as the number of instructions completed, cache misses or cycles that the processor was stalled

because of different reasons. Measures obtained fromPMCs can help performancemonitoring, work-

load characterization and application tuning (Anderson et al. 5 , Zagha et al. 132). They can also be help-

ful during the verification of a processor design to validate the exepcted system performance (Srinivas

et al. 117). Typically the OS exposes these special-purpose registers through some interface so that users

can use them to measure system performance. Eranian 37 implemented such an interface in the form

of a patch for the Linux kernel. Later, native support for PMCs was added to the Linux kernel (Car-

valho de Melo 22).

In addition to performance measurement, modern systems also allow users to obtain power con-

sumptionmeasurements. This information can thenbe used—potentially togetherwith performance

measurements—to build adaptive power management techniques. For instance, AMESTER (IBM

AutomatedMeasurements of Systems forTemperature andEnergyReporting software) is an in-house

solution to monitor IBM POWER systems (Floyd et al. 38). This software operates in an out-of-band

manner, thus avoiding any performance overhead on the system being measured. Power consump-

tion can be measured for different components (e.g., processor and memory). Other metrics such as

temperature, voltage and frequency can also be obtained by reading the sensors in POWER systems.

The IBM POWER7 also includes a power proxy that estimates power consumption for each core

based on PMC data (Floyd et al. 38). Empirical results show that estimations obained from the power

proxy are close to the actual power consumption measurements. Some of the advantages of this ap-

3

proach are a finer sampling granularity—the interval can be as small as a fewmicroseconds—as well as

the ability to independently estimate power consumption for each core.

Processor designers also exposemultiple actuators (or knobs) so that software can program and con-

trol the behavior of the processor (see Figure 1.1 for examples of such actuators). Dynamic frequency

and voltage scaling (DVFS) (see Chandrakasan et al. 24), core sleep modes (Floyd et al. 38), hardware

thread priorities (Boneti et al. 16) or programmable prefetching engines (Sinharoy et al. 111) are some ex-

amples of such knobs. Processors typically expose these actuators to the OS through special-purpose

registers or privileged instructions.

1.2 Problem Statement

Support for controlling some of these actuators is built into current operating systems. For instance,

Linux contains a mechanism to control processor frequency and voltage based on workload demands

(Pallipadi & Starikovskiy 97). In many cases, however, it is left to the end users to manually program

these actuators. Because of that, quite often these actuators end up not being used. The reason is

typically the costly workload characterization and optimization process necessary to select the optimal

setting for a particular actuator. That process further complicates when users are not just running a

small set of workloads, but their systems run a broad mix of workloads with different characteristics.

An adaptive mechanism that tunes hardware settings based on workload characteristics has the po-

tential to increase system efficiency—either from a pure performance perspective or from an energy

point of view. A block diagram of such a mechanism is depicted in Figure 1.2: the hardware exposes

sensors and actuators to the software—typically to the OS or some firmware. The sensor collector reads

the hardware sensors to obtain workload resource usage. Based on that information, a set of adaptive

policies take resource allocation decisions. The specific decisions depend on the optimization met-

ric of interest (e.g., performance, power consumption or quality-of-service). The actuator controller

4

Sensors

Software

Hardware

Actuators

Sensor	
collector

Actuator	
controller

Adaptive	
policies

Optimization	
metrics

Feedback	
loop

Figure 1.2: Design overview for the proposed adaptive resourcemanagement system.

enforces such decisions by configuring the actuators accordingly.

The design of such an adaptive mechanism follows the principle of hardware-software codesign

(Shalf et al. 109), whichproposes deeper collaborationbetween thehardware design and the application

teams. At the core of this approach lies an iterative optimization loop where application design influ-

ences hardware design decisions, and vice versa. It also encourages workload autotuning to optimize

applications for the specific platforms they run on. An adaptive resourcemanagementmechanism has

the potential to optimize a system well beyond the time while the system is being designed—further

optimizing the system once it has been delivered to its users.

In this thesis we explore the potential of leveraging hardware actuators to improve system efficiency.

First we conduct a quantitative study that shows the benefits of a hardware/software cooperation ap-

proach. Then we narrow our focus to a given knob: hardware data prefetching. This choice is based

on its potential performance impact—caches continue to be critical to system performance—and the

5

lack of adaptive solutions that tailor this knob. We present and evaluate different adaptive techniques

that rely onhardware/software cooperation in order to intelligently control prefetching on amulticore

system. The results show that our policies significantly increase performance and might reduce mem-

ory bandwidth and power consumption too—effectively making the systemmore efficient. Resource

sharing occurs as well at other levels in a computing system. For instance, in large-scale computing fa-

cilities applications—and their users—might share a wide variety of resources, ranging fromprocessor

and memory to storage and networking. In this context we describe the design of an energy account-

ing system for large-scale computing facilities, and we analyze different forms of hardware/software

cooperation required to build such a system.

1.3 Using Hardware Data Prefetching as an Actuator

Hardware data prefetching is awell-known technique to help alleviate the so-calledmemory wall prob-

lem (Wulf & McKee 129) and hide memory latency. The technique relies on the fact that many appli-

cations exhibit spatial locality (i.e., once a given memory address is accessed, it is very likely that sur-

rounding addresses will be accessed in the near future). Upon a data cache miss for a given address,

the prefetcher may speculatively bring consecutive blocks corresponding to the addresses that the ap-

plication is likely to access in the future. More complex prefetch implementations may detect access

patterns to non-consecutive data (e.g., pointer-based list traversal).

Manygeneral purpose server-classmicroprocessors in the field today rely ondata prefetch engines to

improve performance for memory-intensive workloads. Some prefetch engines allow users to change

some of their parameters. In current commercial systems, however, the hardware prefetcher is typi-

cally enabled in a default configuration during system bring-up, and dynamic reconfiguration of the

prefetch engine is not an autonomic feature. Nonetheless, commonly used prefetch algorithms—

when applied in a fixed, non-adaptive mode—will not help performance in many cases. In fact, they

6

may actually degrade it due to useless bus bandwidth consumption and cache pollution. These prob-

lems exacerbate with current chip multiprocessors (CMP) and simultaneous multithreading (SMT)

processors, which contain a significant number of cores (e.g., IBM POWER7 has 8 cores). And given

the current trends future processors will have larger core counts. Executing many threads concur-

rently can potentially stress the bandwidth between processor and memory (Rogers et al. 104). In this

scenario, bandwidth can easily be saturated even without the presence of data prefetching. Enabling

data prefetch may degrade system performance, since prefetches will fight with demand loads for the

scarce available bandwidth.

In this thesis, we present multiple adaptive solutions that dynamically adapt the prefetching con-

figuration to the running workloads. We first present a scheme that optimizes the prefetching setting

for every thread running on a system. Then, we describe a system-wide solution that tackles the prob-

lem ofmanaging global memory bandwidth by intelligently shifting prefetching bandwidth resources

among applications. Ourmechanisms successfully achieve significant performance improvements. In

some cases they are also capable of reducing power consumption.

We use the IBM POWER7 (Sinharoy et al. 111) as the vehicle for this study, since: (i) it represents a

state-of-the-art high-end processor, with a mature data prefetch engine that has evolved significantly

since the POWER3 time-frame; and (ii) it provides facilities for accuratemeasurement of performance

andpowermetrics. POWER7 contains a programmable prefetch engine that is able to prefetch consec-

utive data blocks as well as those separated by a non-unit, constant stride. The processor system is pro-

vided to customers with a default prefetch setting that targets to improve performance for most appli-

cations. But users can manually override the default setting via the operating system, if needed. Users

can specify some parameters such as the prefetch depth and whether strided prefetch and prefetch for

store operations should be enabled or not. Changing the prefetch configuration affects workloads in

different ways depending on the workload nature. This is the case even within the class of scientific-

engineering applications, which are generally amenable to data prefetch. While the optimal prefetch

7

setting—if known—can lead to a significant performance improvement, the corollary to this, as we

show in this thesis, is that blindly setting a configuration may reduce performance and waste power

consumption.

1.4 Contributions

This dissertation makes the following contributions:

1. We characterize the impact of multiple actuators on a real CMP/SMTplatform. We also assess

the potential of adaptive resource-management techniques that leverage hardware actuators.

2. We conduct an extensive characterization of the hardware data prefetching unit included in

the IBM POWER7 processor. We analyze the impact of multiple configurations on both per-

formance and power consumption. To that end, we use a combination of well-known bench-

marks as well as microbenchmarks.

3. We present and evaluate a runtime-based adaptive prefetching mechanism capable of improv-

ing performance via dynamically setting the optimal prefetching configuration, without the

need for a priori profile information. Our adaptive scheme increases performance up to 2.7X

and 1.3X compared to the default prefetching configuration for single-threaded and multipro-

grammed workloads, respectively. Our mechanism is able to reduce memory power consump-

tion in some cases. We also study the implementation of such an adaptive prefetching scheme

within the OS kernel. After implementing our adaptive mechanism into the Linux kernel, we

have observed similar performance improvements to those obtained by the userspace imple-

mentation.

4. We provide a motivation for prefetch-based bandwidth shifting and a characterization of the

performance-bandwidth trade-off for multiple benchmarks. We introduce a metric that esti-

8

mates prefetch usefulness for a given thread based solely on performance counters commonly

available in current processors. A novel bandwidth shifting mechanism is capable of signifi-

cantly improving system performance by taking bandwidth away from benchmarks that do

not use prefetching in an efficient way, and giving it to prefetch-efficient benchmarks. The

mechanismdoes not require any hardware support, and it is able to obtain up to 18.5% speedup

(10-11% on average). We also study the impact of bandwidth shifting in extreme cases where one

benchmark is highly prefetch-efficient and the other uses prefetching inefficiently. Our results

show that bandwidth shifting achieves much larger speedups (>1.6X). We also evaluate the im-

pact of the bandwidth shifting mechanism on power consumption.

5. In the last chapterwe lookbeyond the single-systemcase. We explore how sensors and actuators

can be used to accurately track per-task energy consumption in large-scale computing facilities.

We study the different trade-offs inherent in the design of an energy accounting solution. We

also show how such approach can be beneficial for both users and owners of the facility.

During this thesis we ported AMESTER—an internal power measurement tool at IBM (see Floyd

et al. 38 , Lefurgy et al. 70)—to C++. By doing so, we could extend the framework where our adaptive

policies are implemented with support for power measurement. In addition to that, members of the

System and Technology Group (STG) at IBM collaborated in the research conducted during this the-

sis. We believe the results from our research have provided valuable feedback to IBM’s product group.

1.5 List of Publications

The different parts in this thesis have been published in international conferences or technical journals.

The following list contains the details for the publications that spawned from this thesis.

• Jiménez, V., Cazorla, F. J., Gioiosa, R., Valero, M., Boneti, C., Kursun, E., Cher, C., Isci, C.,

Buyuktosunoglu, A., & Bose, P. (2010). Power and thermal characterization of POWER6

9

system. In Proceedings of the 19th International Conference on Parallel Architectures and Com-

pilation Techniques, PACT (pp. 7–18)

• Jiménez, V., Cazorla, F. J., Gioiosa, R., Valero, M., Boneti, C., Kursun, E., Cher, C., Isci, C.,

Buyuktosunoglu, A., & Bose, P. (2011b). Characterizing power and temperature behavior of

power6-based system. IEEE Journal Emerging and Selected Topics in Circuits and Systems,

JETCAS, 1(3), 228–241

• Jiménez, V., Gioiosa, R., Cazorla, F. J., Buyuktosunoglu, A., Bose, P.,&O’Connell, F. P. (2012).

Making Data Prefetch Smarter: Adaptive Prefetching on POWER7. In Proceedings of the 21st

International Conference on Parallel Architectures and Compilation Techniques, PACT (pp.

137–146).: ACM. Best Paper Award Nominee.

• Jiménez, V., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., Bose, P., O’Connell, F. P., &

Mealey, B. G. (2014). Adaptive prefetching on POWER7: improving performance and power

consumption. ACM Transactions on Parallel Computing, TOPC, 1(1), 4

• Jiménez, V., Buyuktosunoglu, A., Bose, P., O’Connell, F. P., Cazorla, F. J., & Valero,M. (2015).

Increasing multicore system efficiency through intelligent bandwidth shifting. In Proceedings

of the 21st International Symposium on High Performance Computer Architecture, HPCA (pp.

39–50).: IEEE

• Jiménez, V., Cazorla, F. J., Gioiosa, R., Kursun, E., Isci, C., Buyuktosunoglu, A., Bose, P., &

Valero, M. (2011a). Energy-Aware Accounting and Billing in Large-Scale Computing Facilities.

IEEE Micro, 31(3), 60–71

Chapter 7 in this thesis orginated a new line of research. The following two publications expand

some of contents in this thesis.

10

• Liu, Q., Moretó, M., Jiménez, V., Abella, J., Cazorla, F. J., & Valero, M. (2013). Hardware

support for accurate per-task energy metering in multicore systems. ACM Transactions on

Architecture and Code Optimization, TACO, 10(4), 34

• Liu,Q., Jiménez, V.,Moretó,M., Abella, J., Cazorla, F. J.,&Valero,M. (2014a). Per-task energy

accounting in computing systems. Computer Architecture Letters, 13(2), 85–88

1.6 Dissertation Organization

This dissertation is divided into eight different chapters. Chapter 2 describes the related work relevant

to this thesis. Chapter 3 provides a motivation showing the impact of hardware actuators. Chap-

ter 4 describes and characterizes the platforms used in this thesis. It also contains the experimental

methodology. Chapter 5 presents an adaptive prefetching mechanism to improve single-threaded per-

formance. Chapter 6 shows a system-wide solution that shifts prefetching bandwidth across work-

loads. Chapter 7 focuses on resource sharing for large-scale computing facilities. It describes the trade-

offs in the design of such a system, and analyzes different sensors and actuators that can be used. Fi-

nally, Chapter 8 provides the main conclusions of this thesis and directions for future work.

11

2
Related Work

A significant amount of research on adaptive solutions for resource management has been conducted

over the years. As computing systems continue to share resources at finer granularities, more oppor-

tunities for such solutions appeared. Adaptive resource management can be entirely implemented in

hardware or they might rely on hardware/software cooperation. We provide a detailed overview of

the related work in the field of adaptive resource management. Moreover, as this thesis presents two

adaptive solutions for controlling the prefetching engine, we also include a list of relevant prior work

on data prefetching.

12

2.1 Hardware Solutions for Resource Management

Multicore processors typically share the last level cache among the different cores. Therefore, appli-

cations running on such processors compete for space in the last level cache. Suh et al. 121 present a

dynamic cache partitioning scheme. Their solution adds extra hardware but the control algorithm

is actually implemented at the operating system level. Qureshi & Patt 101 enhance the previous work

by eliminating any effect on the partitioning algorithm due to interferences between the actual ap-

plications sharing the cache. Moreto et al. 87 present a cache partitioning technique but they focus on

achievingQoS for the co-running applications. Parallel applications running on amulticore processor

need tomaintain cache coherency among the different cores. Cache coherency traffic competes for the

available bandwidth in the interconnection bus. Martin et al. 82 use an adaptive bandwidth snooping

protocol. Depending on the number of processors and the running workloads, the protocol selects a

different policy to keep cache coherency, effectively optimizing the usage of the interconnection bus.

If a processor supportsmultithreading, resource sharingoccurs in theprocessor’s pipeline too. Threads

running on a particular core will share multiple resources such as the instruction fetch buffers, issue

queues or reorder buffer. Tullsen et al. 124 present different instruction fetch policies that try to maxi-

mize the usage of resources in the pipeline. Cazorla et al. 23 , Choi&Yeung 26 show fetchpolicies aiming

to increase throughput or provide quality of service (QoS).

2.2 Sampling-Based Online Adaptive Systems

Offline adaptive systems typically rely on application profiling to optimize future executions of a par-

ticular application. This approach allows for the usage of computationally expensive optimization

schemes, but its utility is limited when different inputs are used or when the application mix running

on a system changes over time. Online adaptive systems, on the other hand, monitor running appli-

cations and make optimization decisions while the applications are running. Many online adaptive

13

systems use a two-step approach. During the first step sensors are read to obtain measurements for

the metric of interest (e.g., performance, power consumption or temperature). Then, in the second

step an optimization decision is made based on the information obtained in the first step.

Isci et al. 55 , Sarikaya et al. 106 present solutions that uses performancemonitoring counters (PMCs)

to predict application phases. These solutions then use phase information to guide dynamic power

management schemes. Tikir & Hollingsworth 123 develop an online page migration scheme that char-

acterizes the memory access pattern of an application, and then moves pages to memory local to the

processor that accesses themmost frequently. Petrica et al. 98 present a runtime that optimizes system’s

efficiency by enabling and disabling parts of the processor’s pipeline in a fine-grain approach.

Lu et al. 79 relies onperformancemonitoring counters anddynamic instrumentation to insert prefetch-

ing instructions in a running application. Adl-Tabatabai et al. 3 present a similar system for JIT-based

runtimes. Schneider et al. 108 use PMCs to optimize object spatial locality in a generational garbage

collector.

2.3 Solutions Exposing Custom Sensors and Actuators to the Software

Most current, general-purpose processors expose different sensors (or counters) to the operating sys-

tem or userspace. For instance, performance monitoring counters allow software to obtain a signifi-

cant amount of information related to applications’ usage of the different subunits in the processor.

This information can be used to analyze the behavior of the applications or find their performance

bottlenecks. Processors and other components in a computer system may expose power consump-

tion and temperature sensors too. Processors can also expose actuators so that the operating system

or the end user are able to alter the behavior of the processor. Two commonly used actuators let the

processor’s frequency and sleep states to be controlled.

Prior research on resourcemanagement has proposed exposing new sensors or actuators that enable

14

the implementation of more complex adaptive schemes. Zhou et al. 133 present a memory allocation

adaptive solution that uses the page miss ratio curve to guide its decisions. Their proposal adds extra

hardware to collect the pagemiss ratio curve and it exposes that information through a new sensor that

the operating system has access to. Suh et al. 120 utilizes a set of novel hardware counters that expose

information about the isolated miss-ratio for each process running on the system. This information

can be used to guide scheduling decisions or to dynamically partition the cache. Merten et al. 84 pro-

pose sensors that expose applications’ hot spots to the operating system. An adaptive scheme could

use these sensors to optimize the performance in the hot spots. Yasin 131 adds extra events to the per-

formance monitoring unit of a processor to accurately find the bottlenecks of an application running

on that processor. Nagarajan & Gupta 91 expose interprocessor dependence information and build a

software solution that efficiently detects mispeculation and improves application reliability. Boneti

et al. 16 implement and characterize a kernel module to access the hardware thread prioritizationmech-

anismpresent in the IBMPOWER5processor. A follow-upwork, presents an adaptive solution to bal-

ance parallel applications using the thread prioritization mechanism. 17 Bhattacharjee & Martonosi 14

present a sensor that exposes thread criticality predictions to the operating system. Using themeasure-

ments obtained from that sensor they present an adaptive scheme to reduce thread imbalance as well

as another scheme to improve energy efficiency in barrier-based parallel applications.

2.4 Thread Mapping

Although thread mapping might apparently not look like a traditional actuator—in the sense of a

knob that can be tweaked—the way threads are mapped to cores or hardware contexts has a large im-

pact on the exact resource sharing among these threads. For instance, the interference level between

threads sharing a last-level cache might be very different depending on the particular mapping that

the operating system chooses. Also, threads running on multithreaded processors such as the IBM

15

POWER7 may have different access to pipeline’s resources depending on the multithreading level be-

ing used. 111 Therefore, thread mapping might affect performance in this case too.

Radojković et al. 102 use a statistical approach based on extreme value theory to optimally assign

tasks inmultithreaded processors. Tang et al. 122 study the impact of thread-to-coremappings in terms

of cache and bus bandwidth sharing. They also present an adaptive approach to thread mapping in a

data center, resulting in significant performance gains. Lo et al. 78 show an adaptive solution to safely

colocate latency-sensitive applications on a data center.

2.5 General Prefetching

There is a significant record of past research in data prefetch (e.g., Baer &Chen 7 , Fu et al. 41 , Jouppi 63 ,

Palacharla & Kessler 95 , Smith 113). Most of the initial proposals were based on sequential prefetch-

ers, which rely on applications exhibiting spatial locality. Although sequential prefetchers work effec-

tively inmany cases, there are applicationswith non-sequential data access patterns that do not benefit

from sequential prefetching. This has motivated the research onmore complex prefetchers that try to

capture the non-sequential nature of these applications. Cooksey et al. 27 , Ebrahimi et al. 34 , Roth

et al. 105 , Wang et al. 127 , Yang & Lebeck 130 study prefetch techniques targeting pointer-based applica-

tions. Joseph&Grunwald 62 studyMarkov-based prefetchers and present solutions to limit the band-

width devoted to prefetching. Solihin et al. 114 use a user-levelmemory thread in order to prefetch data,

delivering significant speedups even for applications with irregular accesses. Emma et al. 35 , Srinivasan

et al. 118 present limit studies and prefetch analytical models.

Most general-purpose processors contain a prefetch engine based on some of these works. Our

solution is orthogonal to them since their objective is to improve the accuracy of the algorithms im-

plemented in a single prefetcher.

16

2.5.1 Filtering Useless Prefetches

Several works that attempt to reduce the number of useless prefetches sent to memory have been pre-

sented in thepast (Charney&Puzak 25 , Lee et al. 69 , Lin et al. 73 ,Mowry et al. 88 ,Mutlu et al. 90 , Zhuang

& Lee 134). Even when these filtering techniques are used, applications still have different prefetch-

efficiency degrees. Therefore, our bandwidth shifting mechanism can be complementary used to fur-

ther improve performance.

2.6 Local Adaptive Prefetching

Using a prefetch engine that implements a fixed algorithm is suboptimal since the prefetch-efficiency

of applications may change during the different phases of execution. Several adaptive solutions that

attempt to dynamically change the prefetch configuration exist in prior research (Dahlgren et al. 28,29 ,

Nesbit et al. 94 , Srinath et al. 116). The objective of these solutions, however, is not to maximize global

system performance. They are either designed for single-threaded processors or they only attempt

to locally increase performance of individual cores. Therefore, while they may improve performance

for a particular core, system performance may decrease. On the contrary, in this thesis we present a

solution that maintains a global system view and increases performance for the whole system.

2.7 CMP-Aware Adaptive Prefetching

With the advent of CMP processors, interaction between threads must be taken into account when

designing a prefetch system. Ebrahimi et al. 33,32 study the effect of thread-interaction on prefetch,

and propose techniques to design prefetch systems that improve throughput or fairness. Despite the

similarities to the solutions presented in this thesis, their solution requires costly extra hardware—

amounting tomultiple kilobytes—whereas ours work withmost modern general-purpose processors.

17

Liu & Solihin 74 study the impact of prefetching and bandwidth partitioning in CMPs. But their

work only presents an analytical model and no mechanism to exploit their observations is included.

2.8 Adaptive Prefetching Solutions for Real Systems

Although there is a significant number of studies on prefetching based on simulators, there are very

few works that deal with hardware-based measurement and characterization. Wu & Martonosi 128

characterize the prefetcher of an Intel Nehalem processor and provide a simple algorithm to dynam-

ically control whether to turn the prefetcher on or off. Their study, however, is solely oriented to-

wards reducing intra-application cache interference without taking actual system performance into

consideration. Liao et al. 72 construct amachine learningmodel that dynamicallymodifies the prefetch

configuration of the machines in a data center (based on Intel Core2 processors). Although they

improve performance for some applications by enabling/disabling prefetch, their work only focuses

on how to improve the performance for a single application without taking into account the perfor-

mance/bandwidth trade-offs that appear when multiple applications are executed concurrently.

2.9 Per-Task Energy Accounting

Large-scale computing facilities are vast infrastructures with high operation costs. Any possible opti-

mization that improves their efficiency can translate into a considerable cost reduction. Several propos-

als focus on improving data centers’ energy efficiency (Moreira & Karidis 86 , Karidis et al. 66 , Meisner

et al. 83). Many of these proposals advocate for energy-proportional systems, in which the benefits of

energy accounting are higher than in current systems.

Several of these works focus on either reducing power consumption when the system is idle or im-

proving efficiency by consolidatingmore virtual machines in the same hardware. To this end,Moreira

& Karidis 86 leverage workload heterogeneity to better schedule the workloads onto the computing

18

resources, thus increasing resource usage. Nathuji & Schwan 92 propose a mechanism to connect the

low-power mechanisms available in the hardware with the power management requests and hints

made by an operating system running within a virtual machine.

Accounting users, tasks and virtual machines for the energy they actually consume is orthogonal to

the aforementioned proposals. On the one hand, the potential to adapt to the workloads’ heterogene-

ity increases with per-task energy accounting. On the other hand, energy accounting brings benefits

by itself as shown earlier.

Kansal et al. 65 present initial steps for an accurate energy-accounting mechanism. Their goal is to

develop a better power-cappingmechanism in the presence of multiple virtual machines on one node.

However, more research is necessary to obtain a more accurate mechanism for use not only for power

consumption estimation, but for billing users according to their energy consumption as well. For

instance, their proposal uses simple ways to split static power consumption and power consumption

caused by virtual machine interferences, among virtual machines.

To obtain better accuracy, hardware and operating system support is necessary. Bertran et al. 13

present an energy-accounting systemfor small-sized systems. Ourwork focuson large-scale computing

facilities, where other types of solutions are likely needed.

19

3
Motivation: Impact of Hardware Actuators

Workloads running on amulticore processor compete for different shared resources. Due toworkload

variability, the usage of these resources might be significantly unbalanced. This fact has important

implications onperformance, power consumption and energy efficieny. In this chapterwe characterize

these implications and we analyze the potential to improve system efficiency of solutions based on

hardware/software cooperation.

As process technologies advance, the trend is to have more cores per chip, where each core can fur-

ther increase the amount of concurrent threads via SMT. This has been the case for processors such as

the IBM pSeries (POWER668, POWER7 111, POWER8 112) and the Intel Xeon. 18 While CMP proces-

sors provide better performance per watt ratios than monolithic architectures, the power dissipation

continues to be a key performance limiter also for multithreaded architectures. Consequently, power

20

and thermal characteristics of processors are one of the primary design constraints, and motivate an

active research area.

Energy, power and thermalmanagement are of paramount importance inmany environments rang-

ing from embedded to High Performance Computing (HPC) systems. In the former case, improve-

ments in battery capacity simply have not kept pace with ever-more-powerful processors, limiting

device use to short time periods. In the latter case, supercomputers and data centers provide huge

amounts of computation power (necessary, for instance, for weather forecasting, climate research,

molecular modeling and other areas), with very high associated energy costs. A study from the U.S.

Environmental Protection Agency (EPA) estimates that national energy consumption by servers and

data centers will reach more than 100 billion kWh annually and representing $7.4 billion in electricity

cost. 36 InHPC systems, besides the heat dissipation issue, the increasing power consumption leads to

additional problems in the power delivery and energy costs that account for a considerable percentage

of the expenses of a data center. It is certain that managing and reducing the temperature and power

consumption is a critical problem that must be addressed in all levels of computing systems, from the

application layer to the hardware. As an example, most of the latest processors available in the market

employ several techniques to reduce power consumption.40,93 From the OS perspective, the Linux

kernel also implements features to reduce power.96,110,119

In this chapter we explore the power and thermal behavior of various power management tech-

niques provided by the IBM POWER6 processor and evaluate their impact at multiple levels:

Hardware level Wedemonstrate the impact of POWER6’s hardware-thread prioritizationmechanism

on power consumption. Our results show that workload-aware manipulation of thread prior-

ities improves system’s energy-delay product by as much as 25%. We also show the power and

thermal characteristics of the nap mode, and the combined effect of employing the nap mode

and hardware thread priorities. These evaluations show very significant benefits, reducing core

21

temperature up to 26% and total system power consumption by 25%.

OS level We explore the effectiveness of power and thermal management techniques present in mod-

ern OS for the POWER architecture: the tickless mechanism and the idle power manager. We

demonstrate the benefits of these approaches and their dependence on other system compo-

nents such as timer interrupt periods.

Application level Wecharacterize systembehaviorwith a set ofmicrobenchmarks and SPECCPU2006

benchmarks. We correlate power and temperature with performance counters and derive a

model capable of estimating system power consumptionwith an average error under 4.5%. We

also look at the potential benefits of hardware-aware OS scheduling. A JS22 system includes

two POWER6 chips, each of which is a CMP/SMT chip. In such a system, thread placement

affects both performance and power consumption. By placing threads in a workload- and

package-aware manner, we can achieve significant energy improvements, without incurring

significant performance degradation, with a 3.7X reduction in energy-delay product.

We use such multi-level characterization as motivation examples to show the potential benefits of

hardware/software cooperation on system efficiency.

3.1 The IBM POWER6 Processor

POWER6 is a dual-core chipwhere each core can run in two-way SMTmode. The design is optimized

for the servermarket and it features amostly in-order pipeline that supports high frequencies in excess

of 4 GHz. Despite being an in-order processor it supports limited out-of-order execution for floating

point operations. The processor microarchitecture blocks are shown in Figure 3.1. Each core has a 64

KB L1 instruction and data cache. Cores have a 4 MB private L2 cache connected to the L3 controller

and to thememory controller through the symmetric multiprocessor (SMP) interconnect fabric. The

22

POWER6
core

L2	cache

POWER6
core

L2	cache

Memory	
Controller

DDR2	
Memory

Chip	boundary

L3	Controller

SMP	Interconnect	Fabric

Memory	
Controller

L3	cache

DDR2	
Memory

Figure 3.1: POWER6microarchitecture overview.

optional off-die L3 cache is shared by both cores. Depending on the configuration, each chip has one

or two memory controllers that interface to the DRAM memory. Our system, being an entry-level

one, does not have the L3 cache and it contains only one memory controller.

POWER6 systems integrate a thin hypervisor layer that abstracts the real hardware and provides

the capability of running several virtualmachines simultaneously on the same physical resources. This

virtualizationmechanism is completely transparent and does not require anymodification of the guest

OS. But, collaboration between the guestOS and the hypervisor has significant benefits for improving

chip utilization and throughput as well as for effective power management.

In this thesis we are particularly interested in the interaction between the guest OS and the hypervi-

sor for effective power and performancemanagement. POWER6 implements specificmethods for the

guest OS to release hardware threads and cores when there are no runnable processes available. This

is done by invoking the cede_processor hypervisor call, which enables the hypervisor to dispose of the

hardware thread and assign the resources to another virtualmachine or to employ powermanagement

23

techniques on the unused resources. In our environment we run only one virtual machine, thus the

hypervisor performs one of the following operations when the cede_processor is invoked from a given

hardware thread: (i) If the other hardware thread on the same core is under use, the hypervisor turns

off the hardware thread and puts the core in single thread (ST) mode. This effectively assigns more

hardware resources to the running process, thus improving single-threaded performance. Moreover,

while this mode does not directly target at reducing power, as several functional units are not utilized

during ST mode, overall power consumption also decreases. (ii) If hypervisor has already turned off

the other hardware thread in the core (i.e., the core is already in ST mode), the hypervisor puts the

core in nap mode. Next we describe this power-saving mode and another hardware knob that we use

in this thesis for exploring hardware/software cooperation possibilities.

Nap Mode This per-core, low-power mode turns internal clocks off and restricts the operation of

the functional units in the core. Reducing active power consumption by turning clocks off reduces

temperature as well, which further reduces leakage power. In this thesis we show the effect of nap

mode on both system power consumption and core temperature.

Thread Priorities The POWER6 processor employs a thread priority mechanism—through

software/hardware co-design—that controls the instructiondecode rate for eachhardware threadwith

eight priority levels (POWER ISA 99 , Boneti et al. 16). The software-controlled priorities range from

0 to 7, where 0 means the thread is switched off and 7 means the thread is running in single thread

mode (i.e., the other thread is off). A thread’s software-controlled priority is enforced by the hardware

at decode stage, which determines the actual number of decode cycles assigned to the hardware thread.

In general, the higher the priority of a thread with respect to the other thread on the same core, the

higher the number of decode cycles assigned to the thread. Consequently, the thread with a higher

priority receives more resources and can obtain higher performance.

24

Table 3.1:METbench and SPEC CPU2006 temperature/power results when executing one thread. Power and tempera-

ture are relative to themeasured values when the system is idle.

cpu_int ld_l1 ld_l2 ld_mem st_mem cpu_fp h264ref bzip2 gcc dealII lbm cactusADM mcf milc soplex

Types INT INT INT INT INT FP INT INT INT FP FP FP INT FP FP
Tavg (%) 19.8 12.5 13.0 10.2 14.6 10.2 22.7 20.7 16.8 19.8 15.5 21.4 14.8 15.5 15.5
Pavg (%) 6.0 5.1 5.6 6.4 9.4 4.1 7.8 7.4 7.3 7.6 13.1 10.0 7.7 9.4 8.3

Aggregated Performance Counters
IPC 1.32 0.26 0.034 0.0020 0.018 0.47 1.16 0.79 0.44 0.66 0.39 0.85 0.12 0.19 0.32

L1 MPKC 0.0 0.0 32.5 1.94 3.62 0.0 11.0 8.9 5.8 5.9 29.5 29.3 5.58 8.3 8.2
L2 LDMPKC 0.0 0.0 0.0 1.94 0.0 0.0 0.00 0.05 0.66 0.25 0.25 0.06 1.20 1.84 0.95
L2 ST MPKC 0.0 0.0 0.0 0.0 3.61 0.0 0.02 0.13 0.16 0.02 5.6 0.51 0.05 0.46 0.37

Themainmotivationof the software-controlledpriority is to address instanceswherebiasing thread

performance is desirable because one thread is not really progressing or because it requires some level

of quality of service. For example, the Linux kernel implementation for POWER6 reduces the priority

of the idle process or of any process spinning on a lock. By doing so,more hardware resources are given

to the other running thread. Moreover, depending on the application, software-controlled priorities

can significantly improve both throughput and execution time (Boneti et al. 16). In this thesis, we also

show how software-controlled priorities can be used for improving system efficiency.

3.2 Effect of Workload Characteristics

Power and thermal behavior of computing systems strongly depend on the dynamic characteristics

of workloads. To characterize the effect of workload characteristics on POWER6, we conduct several

experiments with different applications from METbench (see Boneti et al. 16) and SPEC CPU2006

(see Henning 48) benchmark suites. While, in general, power and thermal behavior change with the

amount of activity in the system, there is not a single factor that directly reflects the power consump-

tion of the system. It is rather a combination of application characteristics as the usage level of the

different parts in a CPU and the memory access rate. We present measured power and thermal char-

acteristics for METbench and SPEC CPU2006 benchmarks in Table 3.1. The table shows measured

average temperature, Tavg (percentage over the baseline), average system power, Pavg (percentage over

25

cpu_int ld_l1 ld_l2 ld_mem st_mem cpu_fp
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

1T/1C 2T/1C 3T/2C 4T/2C

Benchmarks

R
el

at
iv

e
po

w
e r

Figure 3.2:METbench power consumption for different number of threads (T) and cores (C).

the baseline), IPC, L1 misses per kilo-cycle (L1MPKC), and L2 load and store misses per kilo-cycle (L2

LD MPKC and L2 ST MPKC) for each benchmark. We use temperature and power consumption

when the system is idle as the baseline.

The results inTable 3.1 show the strong influence of differentworkload characteristics onpower and

thermal behavior. We observe strong deviations among benchmarks in terms of their power and ther-

mal behavior and their associated performancemetrics. Next we look at specific benchmark categories

and derive the relations betweenmajor workload features and their impact on power and temperature.

CPU-bound benchmarks We see that high-IPC and CPU-bound benchmarks generally lead to

higher core temperatures. AmongMETbench, cpu_inthas the highest IPC and a core temperature that

is 7-9% higher than the other microbenchmarks. Within SPEC CPU2006, the benchmarks that cause

higher core temperatures are h264ref, bzip2 and cactusADM. These three benchmarks also present the

highest IPC among SPEC CPU2006. *

*METbenchmicrobenchmarks are designed to exercise a single resource in the system at a time. In contrast,
SPEC CPU2006 stress different parts of the system at once. Therefore, SPEC CPU2006 benchmarks typically
consume more power and reach higher temperatures than METbench.

26

Memory-bound benchmarks While benchmarks that are CPU-bound achieve higher temper-

atures, they do not consume the most power. As Table 3.1 shows, memory intensive benchmarks

generally consumemore power. This is because of accesses to mainmemory, which incur a significant

power cost. Among the microbenchmarks, ld_mem and especially st_mem are the workloads with the

highest power consumption. st_mem consumesmore power because, as opposed to the case of ld_mem,

evictedL2 lines are dirty and awrite-back operationmust be performed. This additional access tomain

memory increases power consumption. Power consumption for ld_mem does not differ significantly

from the other microbenchmarks when only one process is used. But as Figure 3.2 shows, the power

gap gets larger with increasing number of threads. For the SPEC CPU2006 benchmarks we see a sim-

ilar trend. Memory-intensive benchmarks like milc and lbm consume more power than the rest. For

instance, relative to the baseline, lbm consumes 5.3% more than h264ref, with significantly lower tem-

perature in comparison. Core temperature is generally low for memory-intensive benchmarks as they

spend most of the time waiting for data from the main memory.

mcf is a low-IPC benchmark with a considerable amount of L2 cache misses per kilo-cycle and with

similar characteristics to milc. However, the power consumption of mcf is considerably smaller (1.7%

less). The most significant difference between them is the number of L2 store misses per kilo-cycle,

which is 10 times higher formilc. As we have seen before in Figure 3.2, accessingmainmemory because

of a store operation leads to higher power consumption. Accordingly, lbm, which has the highest num-

ber of L2 store misses, also shows the highest power consumption among the evaluated benchmarks.

FP benchmarks An interesting application in this category is cpu_fp. Despite having a medium

IPC (0.47), it achieves the lowest core temperature. We have several hypothesis for this behavior. First,

a POWER6 core contains one on-chip thermal sensor (OCTS) and multiple digital thermal sensors

(DTS) distributed along the core, near expected hot spots. Our setup, however, only allows us to ac-

cess the OCTS, as the DTS can only be accessed by firmware. The OCTS is not located very close to

27

Table 3.2:METbench results for 2 threads (mixedworkloads). Power and temperature are relative to the idle system.

cpu_int, cpu_fp cpu_int,ld_l1 cpu_int,ld_mem
Cores 1 1 1

Tavg (%) 18.2 19.6 17.1
Pavg (%) 6.6 7.2 8.2

Aggregated Performance Counters
IPC 1.77 1.56 1.31

L1 MPKC 0.00 0.00 1.97
L2 LDMPKC 0.00 0.00 1.95
L2 ST MPKC 0.00 0.00 0.00

the floating-point unit (FPU), and thus it might not be able to measure temperature in the FPU as

accurately as the DTS can do. Second, cpu_fp strictly executes scalar floating-point operations. There-

fore, it is neither using the vector multimedia extension (VMX) unit nor the decimal FP unit (DFU).

This may lead to a relatively low power density—effectively avoiding the formation of hot spots. Hav-

ing access to the DTS would allow us to verify these hypothesis. Unfortunately, only the firmware

is allowed to access these sensors. This observation, however, only concerns to highly specialized mi-

crobenchmarks such as the ones we are using—where in general only a few units in the core are used.

More generic benchmarks such as SPECCPU2006 present amore uniformusage of the different units

in a core. In this case, the OCTS would effectively return temperature measurements that are closely

related to the largest hot spots on the core.

Table 3.2 shows the impact of heterogeneous workload mixes. We observe that co-scheduling a

computation-intensive benchmark and a memory-intensive one leads to both high core temperature

and high power consumption. For example, considering cpu_int and ld_mem, one thread continuously

performs arithmetic operations while the other exercises the memory subsystem. In contrast, a more

homogeneous mix, such as cpu_int and cpu_fp leads to lower power consumption. In this case the core

temperature is higher as the core is more stressed.

Figure 3.2 also shows an important characteristic of multicore processors—and POWER6 in par-

ticular. As we increase the number of used cores from one to two, we observe a significant jump in

power consumption. This is due to the fact that a second core has to exit the nap mode to serve the

28

� ��� ���� ���� ����

�

����

���

����

���

����

���

����

���

����

�

�

��

��

��

��

��

�	
����	�� �	
����	�� �	
����	�� �	
����	�� �	�����	����	�

��
	���	�����

�
	
��
��
�
	
��
	

�
	
��
��
�	
��
�
�

�
	
��
��
�
	
��
�
�
	
��
��
�

��	�

��	����	�

��	�
��	�

Figure 3.3: Several copies of cpu_int are used to create an incremental execution (2, 4, 6 and 8 hardware threads). The

values are relative to the power and temperaturemeasurements when the system is idle.

threads. We demonstrate in the following sections that every core that leaves the nap mode adds a

constant power increment of approximately 5% to the system power consumption. We will refer to

this increment as PAC in the following sections.

3.3 Effect of Core Usage

In this section we execute several copies of a microbenchmark from the METbench suite in an incre-

mental way. First we execute 2 copies on contexts 0 and 1 (using one core), then 4 copies on threads

0, 1, 2 and 3 (using two cores), and so on until 8 copies (using all four cores). We refer to each of these

steps as an execution step. Each execution step is roughly 9 minutes long (360 iterations†).

CPU-boundbenchmark Figure 3.3 shows the results of running an increasing number of cpu_int

copies. In the figurewe notice that power remains quite stable in the intervals between execution steps.

Power noticeably increases when two more copies of cpu_int are started and a new core is used. We

observe the first increment around one minute after the program is started. This is because of the

1-minute access granularity of the Thermal and Power Management Device (TPMD).

†METbench can iterate a benchmark a certain number of times in order to obtain better stability in the
results.

29

Table 3.3: IPC, aggregated IPC and power consumption for the incremental execution of multiple processes. The power

consumption values are normalized with respect to the ones obtainedwhen the system is idle.

(a) cpu_int

#threads

IPC per thread

aggregated IPC Pavg (%)chip0 chip1
core0 core1 core2 core3

0 1 2 3 4 5 6 7
2 0.8482 0.8483 1.6965 8.3
4 0.8480 0.8480 0.8489 0.8489 3.3938 16.5
6 0.8478 0.8478 0.8489 0.8489 0.8485 0.8485 5.0904 23.9
8 0.8480 0.8480 0.8481 0.8481 0.8487 0.8487 0.8486 0.8486 6.7868 31.2

(b) ld_mem

#threads

IPC per thread

aggregated IPC Pavg (%)chip0 chip1
core0 core1 core2 core3

0 1 2 3 4 5 6 7
2 0.0017 0.0017 0.0034 10.6
4 0.0011 0.0011 0.0011 0.0011 0.0044 17.0
6 0.0010 0.0010 0.0010 0.0010 0.0016 0.0016 0.0072 26.2
8 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0088 33.0

From this experiment we find out that for every two new copies of cpu_int, system power consump-

tion increases approximately 7.6%. Another observation is the interaction between cores within the

same chip. In Figure 3.3, around t = 50 seconds, we see that the temperature of core 1 increases ap-

proximately 8% when core 0 starts executing the benchmark. Later, around t = 600 seconds the

temperature of core 0 further increases 7% when core 1 starts running. This is due to the lateral heat

conduction between the cores within the chip. As the two chips are physically separated, we do not

see any inter-chip effect in temperature.

As cpu_int is not using any shared resources between the cores, the aggregated throughput does not

reduce as we increase the number of used cores. This can be seen in Table 3.3a. The IPC is stable

around 0.85 per thread and the aggregated throughput increases linearly with the number of threads

being executed.

30

Memory-boundbenchmark ld_mem continuously executes load instructions thatmiss in all lev-

els of the cache hierarchy. Therefore, it always needs to go to main memory to get the data. As shown

in Table 3.3b, its IPC is much lower than the one measured for cpu_int. In terms of power consump-

tion, as we have previously observed, memory-intensive workloads typically consume more power

than computation-intensive loads. This behavior is seen again when comparing the incremental exe-

cutions of cpu_int and ld_mem.

It is interesting to notice the reduction in IPC as more ld_mem threads are run. For instance, by

comparing the cases where two threads (on the same core) and four threads (on the same chip) are

executed—the first two rows of Table 3.3b—IPC for the first thread in the core 0 decreases approx-

imately 36%. This suggests that there is contention in the shared hardware resources between cores.

Looking at the results for six threads, we observe that the IPC for contexts four and five is approxi-

mately the same as it was in the case of two threads for contexts zero and one. The drop in IPC occurs

within a chip when going from two to four contexts. Thus, the contention occurs within the chip—

probably in thememory controller or the SMP interconnect fabric (as bothL1 andL2 cache are private

to each core).

3.4 PMC-Based Power Model

The possibility to obtain temperature and power measurements is a useful feature in POWER-based

systems. But some configurations may not include the external microcontroller responsible to obtain

these measurements (TPMD). Moreover, in some systems it may not be possible to access the con-

sole that provides the temperature and power measurements. Accessing the console is typically only

available to administrators and regular users do not have access to it. Yet, it is beneficial for users to

understand the power and thermal behavior of their applications. Another situation where a power

model is useful is when implementing adaptive policies in the OS that manage power consumption—

31

since direct access to TPMD from the OS is not possible, OS could rely on a power model to improve

its decisions in terms of power consumption.

In this section, we present a model based on performance counter (PMC) data to estimate system

power consumption. Since performance counter data is available and accessible by the OS, an analyti-

cal model in this form can alleviate all the shortcomings highlighted previously. This model follows a

similar approach as the one presented in Bircher & John 15 . The model presents a good accuracy and

it only relies on performance counters. No extra hardware support is required. Moreover, since the

set of necessary events is minimal, it is simple to implement it in runtime systems that take decisions

based on performance counters data.

Similarly to the aforementioned work we select a group of PMC that captures the activity in differ-

ent components of the system (CPU,memory, disk, etc.). In our case, we concentrate on the CPU and

memory parts since, as Bircher & John 15 shows, there is not a significant variation in power consump-

tion due to activity in other components (95% of the dynamic power consumption is due to CPU

andmemory activity). The selection of the right set of events for the model relies on a hybrid scheme,

where expert knowledge and pruning techniques based on statistical analysis are utilized. The scheme

leads to a set of events that obtain significant accuracy at predicting system power consumption.

The power consumption due to activity in the chip is modeled by using IPC and the number of

L1 load misses per cycle (L1LDMPC). The memory system contribution to the power consumption

is modeled by using the number of L2 (load and store) misses per cycle (L2LDMPC and L2STMPC).

As our system does not have an L3 cache, every miss to the second level cache goes to main memory.

Thus, L2 misses per cycle are good indicators of memory power consumption. Bircher & John 15 do

not differentiate between load and store misses. But, as discussed in Table 3.1, benchmarks with a

high count of L2 store misses consume more power than other type of workloads. Because of it, our

analytical model includes L2 store misses to improve accuracy.

As theTPMDallows us to onlymeasure total systempower consumption, it is important to under-

32

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

1.2

1.21

1.22

1.23

1.24

1.25

1.26

0 0.02 0.04 0.06 0.08 0.1 0.12

IP
C

Re
la
tiv
e	
po
w
er
	c
on
su
m
pt
io
n

L1	misses	per	cycle

Relative	power Aggregated	IPC Linear		(Relative	power)

(a) L2 accesses effect

0

0.5

1

1.5

2

2.5

1.24

1.26

1.28

1.3

1.32

1.34

1.36

0 0.002 0.004 0.006 0.008 0.01 0.012

IP
C

Re
la
tiv
e	
po
w
er
	c
on
su
m
pt
io
n

L2	misses	per	cycle

Relative	power Aggregated	IPC Linear		(Relative	power)

(b)Memory accesses effect

Figure 3.4: Effect of accesses to L2 cache and main memory on system power consumption. Power values are relative

to the idle system consumption. Several instances of the same benchmark are executed to create a higher power delta.

The regression line is just an approximation to show the increasing trend.

33

stand the power behavior of different components andwhether a linearmodel of these components is

sufficient. For this purpose, we use two microbenchmarks that can vary the miss rate both for L1 and

L2 from zero to the point where the access rate to L2 and memory saturates. Figure 3.4a displays the

power consumption variation as the L1 miss ratio grows, which provides an insight on the L2 cache

power contribution to the system power consumption. Figure 3.4b shows similar information for L2

misses reflecting the memory power contribution to the system power. In both figures, we observe

that power consumption grows linearly as the number of misses increase. Thus, we define the model

as a linear combination of the different factors that contribute to system power consumption (see

Equation 3.1).

P = NAC × PAC + α× IPC+ β× L1LDMPC

+ γ× L2LDMPC+ σ× L2STMPC
(3.1)

Power is predicted as a percentage over the baseline when the system is idle (i.e., no user-process

is being executed and the cores spend most of the time in the nap mode). In the characterization

step in Section 3.2 we observe that for each core that exits the nap mode there is an increase in power

consumption (PAC). NAC is the number of active cores, so multiplying it by PAC gives the power

consumption of all the active cores in the system.

We conduct several descriptive statistic tests for the parameters in the data set (e.g., normality test for

residuals and non-presence of non-random patterns in the residuals). We also look at the significance

of the parameters and their correlation to the response variable.

It is important to note that the coefficients obtained from the linear regression are subject to change

if the size or type of the components in the system change (e.g., installed memory). Motivated by this

fact, we follow two different approaches to train the model. (i) The first one (METbench training)

relies on METbench data to train the model. Since running METbench is five times shorter than ex-

34

0

1

2

3

4

5

6

7

benchmarks

re
la

ti
v
e
 e

rr
o
r

(%
)

pe
rlb

en
ch

bz
ip
2

le
sl
ie
3d

na
m

d

go
bm

k

de
al
II

so
pl
ex

po
vr

ay

ca
lc
ul
ix

hm
m

er

sj
en

g

G
em

sF
D
TD

gc
c

lib
qu

an
tu

m

h2
64

re
f

to
nt

o
lb
m

om
ne

tp
p

as
ta

r

sp
hi
nx

3

xa
la
nc

bm
k

bw
av

es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct
us

AD
M

av
er

ag
e

1T/1C

2T/2C

4T/4C

2T/1C

4T/2C

Figure 3.5: Estimation accuracy for the powermodel trainedwithMETbench data only, for different number of threads

(T) and cores (C). For instance, 4T/2Cmeans 4 threads are run on2 cores (using SMTcapabilities). The error is computed

as:
|measured−predicted|

measured × 100.

ecuting SPEC CPU2006, the amount of time to collect training data for a new model is considerably

reduced. Thus, we only use METbench results to train the model, and we test the model with SPEC

CPU2006. In case a newmodel is required for a different system configuration, we can quickly obtain

newdata byusingMETbench and later train a newmodelwith the newdata. (ii)The second approach

(shared training) combines all the data (METbench and SPEC CPU2006) into a pool, and then relies

on this dataset to train the model. A more general and accurate model is possible when a heteroge-

neous set of workloads are used. To cross-validate the model we use leave-one-out cross-validation (see

Harrell 47). Leave-one-out cross-validation is a standard statistic technique to estimate the accuracy of

a regression model.

METbench training Figure 3.5 shows the relative error between our model estimation and the

actual powermeasurement. Different bars for a benchmark correspond to differentCMP (1T1C, 2T2C

and 4T4C) and hybrid CMP+SMT configurations (2T1C and 4T2C). As shown in Figure 3.5, most

of the benchmarks are predicted with an error equal or less than 5%. The relative error for 1T1C con-

figuration is below 2% for almost all benchmarks. The maximum error occurs for cactusADM when

it is run as four processes in SMT mode. We compute the average error using the geometrical mean,

35

−2 −1 0 1 2 3
−2

−1

0

1

2

3

normalized measured power

n
o
rm

a
liz

e
d
 e

s
ti
m

a
te

d
 p

o
w

e
r

(a)

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

20

40

60

80

100

120

normalized residuals

re
la

ti
v
e

 f
re

q
u

e
n

c
y

(b)

Figure 3.6: Model validation using all the available data (METbench and SPEC CPU2006). (a) shows the normalized

measured vs. estimated power. The values are normalized by subtracting the mean of the error and dividing by the

standard deviation of the error. (b) shows the residue error distributionwith the cross-validation process. The residuals

are normalized by dividing to the actual measure value.

being under 4% for all the configurations.

In general, the estimation error increases as more processes run on the system. We observe this ef-

fect for both CPU-bound and memory-bound workloads. We attribute it to the accumulation of the

errors that are made to predict the power consumption for each core in the system. When both SMT

and CMP capabilities are used, the estimation error grows with respect to the CMP case.Nonetheless,

the average error for the CMP+SMT case is between 2.5% and 5% for two and four processes, respec-

tively.

Shared training By combining data from METbench and SPEC CPU2006 to train the model,

we capture wider resource usage patterns. Thus, we obtain a model that could potentially predict un-

observed data points in amore accurateway. Figure 3.6a shows the normalizedmeasured vs. estimated

power consumption. Model predictions are considerably close to the real measurements for most of

the data points. The residual distribution with the cross-validation process, shown in Figure 3.6b, re-

36

sembles a normal distribution, with mean μ = −7.2 · 10−5. Only 4.6% of the individuals are out of

the confidence interval [μ− 2σ,μ+ 2σ]. The error is under 6% for all the cross-validation steps.

Overall, both of the approaches that are used to construct the model obtain quite accurate results,

with errors less than 6%. This level of accuracy is sufficient for users to study the power consumption

behavior of their applications. In addition, this level of accuracy is also attractive for OS to implement

such a model to deploy optimization policies.

3.5 Improving Efficiency Through Hardware Knobs

3.5.1 Low Power Mode

POWER6 employs several power reduction techniques for idle cores. Here we quantify the effects of

these capabilities. Specifically we look at the effects of thread prioritization and enabling nap mode

via the cede_processor function call in the kernel. We consider four power management policy com-

binations: (i) No power saving represents the baseline behavior without any power management. In

this case all calls to cede_processor and HMT_xxx‡ have been disabled. (ii) HMT enabled only enables

hardware thread prioritization. Enabling the calls to HMT_xxx allows the snooze loop—a small active

waiting loop that runs before deciding to put a core into napmode—to be executed with low priority.

(iii) CEDE enabled only enables the calls to cede_processor so that the cores can go into napmode, dis-

abling the clock for most of the circuits inside the core. This policy does not rely on hardware thread

priorities. (iv) Both enabled enables calls to both cede_processor and HMT_xxx, and thus is the most

aggressive power management policy.

Table 3.4 shows power and temperature characteristics observed for the idle systemwith these four

policies. With no power saving policy, all the cores reach the highest temperature and the highest total

system power consumption. We will consider these values as the baseline for this section, showing

‡Prioritization functions such as HMT_medium, HMT_low and HMT_very_low.

37

Table 3.4: Temperature and power savings when the system is idle using different low-power-saving mechanisms in the

processor. Values are normalized to the first configuration.

1 2 3 4
No power HMT CEDE Both
saving enabled enabled enabled

Temp
savings
(%)

core 0 0 8.2 24.6 26.2
core 1 0 6.8 22.0 23.7
core 2 0 8.6 22.4 24.1
core 3 0 9.4 21.9 23.4

Power savings (%) 0 8.7 23.3 24.3

the reduction compared to this baseline for the rest of configurations. HMT enabled mode reduces

the activity within the core and both power consumption and temperature are considerably reduced.

Core temperatures and system power decrease 7-9% and 8.7% respectively using only hardware thread

prioritization. We see much more dramatic improvements with the CEDE enabled policy. Although

we prevent the processor from reducing thread priorities in the snooze loop, higher power savings are

achieved by enabling POWER6 nap mode. Compared to the baseline configuration, core tempera-

tures and system power consumption are reduced by 22-25% and 23.3%, respectively. Finally, applying

both power management mechanisms (both enabled policy) further reduces system power consump-

tion by 1%. This shows limited improvements for an idle systemwith hardware thread priorities when

nap mode is enabled. However, nap mode can only be enabled when both threads in a core are idle,

whereas thread prioritization does not have such restriction. When only one thread is idle, prioritiza-

tion can give more resources to the other thread, increasing both performance and energy efficiency.

Overall, combining napmode and thread prioritization significantly reduces the energy consumption

when the processor is in idle mode.

3.5.2 Linux Tickless Kernel

When a core is idle, the OS tries to put it in low power mode. One challenge in this power manage-

ment scheme is the interrupt behavior of the system. Any interrupt received in low-power state forces

the CPU to go back to active state to handle the interrupt. Timer interrupts are the most common

38

Table 3.5: Timer interrupts for tickless and non-tickless kernel configurations (HZ=100 and HZ=1000). Power and tem-

perature are normalized to the first configuration.

tickless non-tickless tickless non-tickless
100 100 1000 1000

total ticks/s 30 399 39 3993

temp
increase

%

core 0 0 0 0 2.3
core 1 0 0 0 0
core 2 0 0 0 2.3
core 3 0 0 0 2.1

power increase 0 0.46 0.46 2.75%

interrupts received by a CPU and local timers fire interrupts periodically. Moreover, if the CPU is idle,

the timer interrupt handler does not perform any operation, while still forcing the CPU to wake up.

Thus, reducing the amount of interrupts delivered to idle cores increases the time cores stay in low

power mode and improves overall system power efficiency. The tickless kernel mechanism (present in

version≥ 2.6.21) reduces the effect of timer interrupts by disabling the periodic timer interrupts when

a CPU is idle (see Siddha et al. 110). In practice, instead of programming the local timer to expire every

100 ms (default value for the periodic timer), the kernel programs the timer to expire in the next, non-

periodic, timer event (e.g., a software timer programmed by a task that has called the sleep() system

call). Therefore, the tickless mechanism avoids disturbing an idle CPU unless there is real work to do.

Wemeasure the effect of the tickless mechanism on temperature and power while the system is idle.

As there is no activity in the system, the number of external interrupts is negligible. Thus, the system

is mainly disrupted by timer interrupts (tick events).

We use four kernel versions to evaluate the impact of the tickless mechanism, as shown in columns

of Table 3.5. We build tickless and standard tick-based kernels with different tick rates (timer events

per second): 100Hz (default value for a server configuration) and 1000Hz. We measure idle core tem-

perature and system power in all these configurations. For this section we choose configuration 4 in

Table 3.4 as the baseline for all power and temperature results. For that configuration the system is idle

and both low-power mechanisms analyzed in the previous section are active, leading to the minimum

39

time

p
o
w
e
r

Pidle

Pexec

Psnooze

≈

≈

tup tdowntsnoozetawake
≈

Figure 3.7: Power spikes due to tick time events

power consumption and core temperature.

There is a significant difference in the number of ticks among the different kernel configurations

(row 1 of Table 3.5). The number of ticks per second in a non-tickless system is much higher than in

a tickless system, increasing by 13X (from 30 to 399) for the 100Hz kernel and 102X (from 39 to 3993)

for 1000Hz kernel. These results show how a tickless kernel effectively reduces the number of times

that cores have to wake up from their idle state to handle each of these interrupt requests.

Temperature and power results inTable 3.5 show the power and thermal effects of the ticklessmech-

anism. While the first three configurations (tickless-100, non-tickless-100 and tickless-1000) do not

show any significant variation, the last one (non-tickless-1000) has a power consumption 2.75% higher

than the rest, with a slight increase in temperature. The number of timer events per second is much

higher in this configuration (10X compared to non-tickless-100 and 54X compared to tickless-1000).

As the number of timer events per second grows, cores are more disrupted and cannot stay much in

the nap mode. This is not as significant for the non-tickless-100 kernel due to the smaller number of

ticks generated by the lower resolution timer.

Figure 3.7 depicts the interrupt timing behavior in more detail. Each of the spikes in the figure

represents an expiration of the tick timer. When the system is idle it consumes Pidle (configuration 4

in Table 3.4) and on every tick timer expiration the following actions are carried out:

40

• The core wakes up from nap mode to active mode. This transition takes tup μs. Behle et al. 11

show that tup fits in the context switch delay, that is, in the order of fewmicroseconds. Ourmea-

surements show that for the POWER6 processor, tup equals 4 μs. As we have seen in Table 3.4

(configuration 1), during this period the system power consumption is the highest among the

four configurations shown. Pexec represents the absolute power for that configuration.

• Once in active mode, we have to account for the time it takes the interrupt handler to run and

to go from user to kernel mode and vice-versa, tawake. In the interrupt handler, the OS checks

whether there is any job to do. As Gioiosa et al. 42,43 show, both steps take in the order of few

microseconds (1-3μs). We assume 3 μs. During this period the power consumption remains at

Pexec.

• In an idle systemmost of the time the OS just continues in the idle loop and enters the snooze

delay loop checking if a context switch is needed. As the hardware priority is reduced when

entering the snooze delay loop, the system power consumption goes down to Psnooze (Table 3.4

shows 8.7% reduction over Pexec). This phase lasts for tsnooze, which by default is 100 μs. Chang-

ing the hardware priorities requires executing anOR operation, so we assume a delay of 0 μs.

• Finally, the system goes back to nap mode in a transition that takes tdown μs. Our results show

that for the POWER6processor, tdown equals 4 μs. During this period, the power consumption

increases again up to Pexec and gradually decreases to Pidle.

The effect of ticks on power consumption is represented by Equation 3.2, where ttotal is the obser-

41

vation period and#ticks is the number of ticks occurred during that period.

P =
(
[(tup + tawake + tdown)× (Pexec − Pidle)

+ tsnooze × (Psnooze − Pidle)]×#ticks

+ ttotal × Pidle
)
/ttotal

(3.2)

We now apply Equation 3.2 to understand the low impact of the tickless mechanism (especially for

HZ=100). Table 3.4 displays the power consumption for the idle loop using different configurations.

These measurements are conducted when all four cores are in the same state. Therefore, for the rest

of this analysis we will assume that all cores process the tick-timer expiration at the same time. If we

considered expirations independently, their number would be higher but system power consumption

would be significantly lower as only one core would be active at a time. Thus, both analysis would

lead to similar results.

For non-tickless-100we have close to 100 tick-timer expirations per second in the whole system. Us-

ing Equation 3.2, the computed power consumption in this scenario is 0.24% over Pidle. For the case

of non-tickless-1000, there are approximately 1000wake-ups per second, leading to a power consump-

tion of 2.3% over the baseline. Both results are close to the actual measurements in Table 3.5.

Overall, we conclude that the ticklessmechanism does not significantly reduce the power consump-

tion for a standard tick resolution (HZ=100) as the number of times the cores exit the napmode is not

enough to noticeably increase the power consumption during the period of one second. This ob-

servation may change for other systems with the following characteristics: 1) the time to go from/to

low-power (tup and tdown) mode is longer. This may happen in processors in which low-power modes

introduce changes in the supply voltage, in which case tup can be much longer; 2) the difference be-

tween Pexec and Pidle is large; or 3) tsnooze is relatively long. Such formulation of the interrupt behavior

42

can help evaluate different kernel configurations for POWER6 systems without the need to deploy

them in an actual system.

3.5.3 Effect of Hardware Thread Priorities

Boneti et al. 16 demonstrated that the hardware prioritization mechanism in POWER processors can

improve system throughput. We look at hardware prioritization from a power and energy efficiency

angle. We show the effect of applying this mechanism in a energy-aware manner and present use cases

where thread prioritization can improve not only system throughput, but also system efficiency. We

present only a subset of the multiple priority levels in POWER6 as we are more interested in showing

their possible use to improve energy efficiency, rather than doing an extensive characterization.

In Section 3.5.1 we show that by using hardware thread prioritization, power consumption for an

idle system can be reduced up to 9%. In that case performance is not a major concern since the system

is solely running the idle loop. When a system is executing workloads, however, hardware thread pri-

oritization cannot be blindly used to reduce power consumption in a performance-agnostic manner.

Careful consideration of power-performance trade-offs is needed to choose the appropriate priority

levels. We can use hardware thread prioritization in a workload-aware manner to reduce power con-

sumption and increase system throughput, thus improving efficiency.

Table 3.6a shows the results of executing a high-IPC application (h264ref) together with a low-IPC,

memory-intensive one (lbm). With the standard priority configuration (4,4) power consumption is

16% over the baseline. If the priority configuration is changed to (5,4)—so that the priority of the

high-IPC workload is increased—system power consumption is slightly reduced as less memory re-

quests are performed by lbm. Moreover, aggregated IPC increases as more computational resources

are given to h264ref, thus obtaining a better relative energy-delay product (EDP) (see Brooks et al. 19).

It is important to notice that in this case the individual IPC for lbm is not drastically reduced (approx-

imately only 11%). In the most extreme configuration (6,1) power is further reduced and performance

43

Table 3.6: Power results using prioritization for a single core. Power values are normalized to consumption when idle.

EDP and ED2P normalized to configuration (4,4).

(a)Mixedworkload (h264ref and lbm)

Priorities 3,4 4,4 5,4 6,1
IPC

h264ref 0.32 0.55 0.72 1.15
lbm 0.36 0.35 0.31 0.01

Aggregated 0.68 0.9 1.03 1.16
Pavg (%) 15.1 16.1 15.1 8.7

EDP (relative) 1.73 1 0.75 0.56
ED2P (relative) 2.29 1 0.65 0.43

(b) Effect of priority (1,1)

Benchmarks cpu_int ld_mem

Priorities 1,1 4,4 1,1 4,4
Aggr. IPC 0.07 1.80 0.0030 0.0034
Pavg (%) 3.9 6.9 8.7 9.6

EDP (relative) 642.9 1 1.2 1
ED2P (relative) 16508.8 1 1.5 1

is increased again. But this comes at the expense of significantly reducing the performance of the

memory-intensive workload (lbm).

We consider priority one as a special case for powermanagement. Table 3.6b characterizes the effects

of this priority mode. It shows the results of executing a CPU-bound (cpu_int) and a memory-bound

(ld_mem) workload with priorities (4,4) and (1,1). We notice that the effect of hardware thread prioriti-

zation depends on the characteristics of the workload. For instance, running ld_memwith priority (1,1)

does not significantly affect its IPC, as it is an extreme low-IPC memory-bound benchmark. Power

consumption is also not significantly affected as this benchmark consumes most of the power in the

memory subsystem. For a high-IPC workload such as cpu_int the behavior is completely different.

Power consumption decreases 3%, at the expense of reducing the IPC from 1.8 to 0.07. In general, the

higher the core activity, the higher the power reduction obtained with priority one and the higher the

performance impact.

One major advantage presented by this priority-based power/performance management scheme is

the ability to make “small” changes to the system behavior to achieve desired power-performance tar-

44

gets. Unlikemost adaptation schemes that exposedrastically different operatingpoints, theprioritization-

based approach can provide small shifts in power and performance with very small impact to runtime

behavior. Another advantage of this mechanism is its very short latency until the applied power man-

agement actions take effect. The response time of this mechanism is dramatically faster compared

to external mechanisms such as dynamic voltage and frequency scaling (DVFS) (see Floyd et al. 40).

Therefore, hardware thread prioritization can be used as a fast and flexible initial response in the case

of a thermal/power emergency.

3.5.4 Thread Placement

With the arrival of SMT and CMP architectures, ensuring fairness between the different running pro-

cesses has become an important issue. Several techniques such as scheduling domains, load balancing

and cache affinity have been implemented in actual operating systems.

Job scheduling techniques have also been used in order to reduce power consumption. For in-

stance, Linux provides a setting (sched_mc_power_savings) that attempts to save power consumption

by grouping several processes onto a single chip, therefore leaving other chips idle. An analogous set-

ting (sched_smt_power_savings) exists to consolidate several processes into a single core (see Srinivasan

et al. 119). But the kernel does not currently schedule threads based on their resource usage nature.

In this section we study the effect of thread placement on power consumption. Given a set of

processes, there are different possibleways of assigning them tohardware threads, considerably varying

the impact onpower andperformance. In order to analyze this impactwe conduct several experiments

wheremultiple processes are executedwithdifferent coreusagepatterns. The second row inTables 3.7a

and 3.7b shows the core usage pattern used. The usage pattern is encoded in a binary form where

the first four digits correspond to the first chip and the last four ones correspond to the second chip.

Within a chip, the first two digits refer to the thread contexts in the first core and the last two refer to

the thread contexts in the second core. For instance, the binary pattern 1000 1000means that the first

45

Table 3.7: Effect of core configurations on power and performance. Power is normalized to the idle power. EDP and

ED2P values are normalized to the best configuration within each group (2 or 4 threads).

(a) h264ref

1 2 3 4 5 6

Pattern 1100 1010 1000 1111 1100 1010
0000 0000 1000 0000 1100 1010

HW threads 2 2 2 4 4 4
Cores 1 2 2 2 2 4

Pavg (%) 9.6 13.3 12.8 20.2 19.3 29.4
IPC 1.75 2.33 2.34 3.51 3.51 4.68
EDP 1.74 1.01 1 1.65 1.64 1
ED2P 2.32 1.02 1 2.18 2.14 1

(b) lbm

1 2 3 4 5 6

Pattern 1100 1010 1000 1111 1100 1010
0000 0000 1000 0000 1100 1010

HW threads 2 2 2 4 4 4
Cores 1 2 2 2 2 4

Pavg (%) 15.1 17.9 22.0 22.0 29.4 34.9
IPC 0.41 0.44 0.76 0.42 0.83 0.88
EDP 3.24 2.88 1 3.97 1.08 1
ED2P 6.01 4.98 1 8.33 1.14 1

thread context in the first core in both chips is used to execute one process.

CPU-bound workload Table 3.7a shows the effect of thread placement for 2 and 4 instances of

the CPU-bound benchmark h264ref. The first thing we notice is that SMT configurations (columns

1, 4 and 5) present lower power consumption with respect to the other scheduling options using the

same number of threads. For example, the configuration on column 1 reduces power consumption by

3.2% with respect to the configuration in column 2. Analogously configuration 5 is 7.8% better than

configuration 6. As h264ref is CPU-bound, however, running both processes in SMT mode on the

same core affects performance (up to 25% slowdown). The energy-delay product is worse for these

configurations as the small power reduction does not make up for the loss in performance. Li et al. 71

obtained similar conclusions.

More interestingly, the power consumption remains the same between using 2 cores in a single chip

46

(configuration 2) and using one core in each chip (configuration 3). We expected that in configuration

2, the second chip would be in low power mode most of the time, leading to a power consumption

reduction. But the POWER6 saves power at the core level, without any extra reduction when a whole

chip is idle. Therefore, what really matters is the number of idle cores and not whether they are in the

same chip or not. The same behavior can be observed when using 4 threads in configurations 4 and

5. If the processor were able to reduce the power consumption when a whole chip is idle, it would

certainly be possible to consolidate several processes onto one chip in order to reduce total energy

consumption.

Memory-bound workload For memory-intensive workloads the situation clearly changes. As

they are not bounded by pipeline resources, executing 2 threads on the same core in SMT mode does

not significantly hurt the performance. Comparing the IPC for configurations 1 and 2 in Table 3.7b,

we observe that IPC reduces only 6.8% (from 0.44 to 0.41). The same behavior is observed for config-

urations 5 and 6, where four threads are run and IPC decreases 5.7%.

lbm is a memory-intensive application and it saturates the memory bandwidth of the first chip—as

it is shown in Section 3.3. As each chip has a dedicated memory controller, distributing the processes

across both chips will better use the available bandwidth tomemory, compared to consolidating them

onto one chip. In Table 3.7b we can observe that the performance nearly doubles when we go from

single chip configurations (1, 2 and 4) to double chip ones (3, 5 and 6).

Effects on scheduling Recent versions of Linux use scheduling domains for representing the

CPUshierarchywith a tree-based shape. In our system, at the first level there are the chips in the system.

The second level has the cores belonging to the chips from the previous level. The third level contains

the HW threads or contexts for every core.

When using the default behavior, the Linux scheduler tries to distribute the threads throughout

47

all the cores in the system, avoiding to run two threads on the same core unless it is not possible (i.e.,

there are more running threads than cores in the system). As we have seen, running two threads in

SMT mode is not very efficient especially when the threads are CPU-bound. Linux prevents putting

threads into the same core as long as there are free ones available. If the sched_smt_power_savings flag

is active, however, Linux will group processes without considering the nature of the workloads. This

may degrade overall performance and energy efficiency. We have also seen that when using processors

with power-saving techniques at the core level, grouping threads on the same chip—leaving the other

idle—introduces no benefit. In this case, sched_mc_power_savingswouldnot lead to a power reduction,

but it might degrade performance if the workloads are memory-intensive.

We analyze the effect of grouping threads into a single core/chip in terms of performance and en-

ergy efficiency. In general, a major source of slowdown between threads is sharing the caches. In our

setup, the L2 cache is private to each core so threads do not suffer any slowdown due to cache sharing

whether they are placed on different chips or on the same chip (on different cores). But there are other

resources shared at the chip level that have to be taken into account for memory-bound workloads.

In this scenario, multi-chip configurations are much more efficient in terms of energy-delay product

with reductions up to 2.9X (configuration 3 vs. 2) and 3.7X (configuration 4 vs. 5) as shown in Ta-

ble 3.7b. Thus, the decision on whether to consolidate tasks onto the same core/chip cannot be static.

It depends on the low-power capabilities of the underlying architecture and the characteristics of the

workloads.

Mixed workload A scheduler that is aware of the workload characteristics can use this informa-

tion to increase the system performance and/or reduce the power consumption. Table 3.8 shows the

results of executing a mixed workload consisting of several h264ref and lbm processes. § Comparing

configurations 5 and 6weobserve that the latter is a heterogeneousworkloadmix at the chip level (each

§In this case, the patterns are composed of Hs and Ls, standing for h264ref and lbm, respectively.

48

Table 3.8: Effect of core configurations for a mixed configuration (h264ref and lbm). Power is normalized to the idle

power. EDP and ED2P values are normalized to the best configuration within each group (2, 3 or 4 threads).

1 2 3 4 5 6

Pattern H0L0 H000 L0L0 L0H0 H0H0 H0L0
0000 L000 H000 L000 L0L0 H0L0

HW threads 2 2 3 3 4 4
Cores 2 2 3 3 4 4

Pavg (%) 21.1 19.7 26.2 26.6 34.9 32.6
IPC 1.54 1.56 1.60 1.93 2.78 3.06
EDP 1.05 1 1.45 1 1.23 1
ED2P 1.07 1 1.74 1 1.36 1

chip executes a CPU-bound and a memory-bound workload), whereas the former is a homogeneous

mix at the chip level. This will affect both performance and power consumption. The performance of

configuration 6 is 10% better and the power consumption is 2.3% less. This leads to a 18.7% improve-

ment in EDP and 26.3% in ED2P.

An evenmore noticeable situation is seen in configurations 3 and 4. As in the previous case, placing

both memory-bound workloads on the same chip limits their performance, without decreasing the

total system power consumption. Thus, by co-scheduling the high-IPC and the memory-intensive

workloads on the same chip we can reduce the interference between them, boosting the performance

and reducing the energy consumption (1.7X improvement in the ED2P).

Effects on scheduling Current implementation of the Linux scheduler does not take into ac-

count workload characteristics. This means that the scheduler may fail to achieve the optimal per-

formance and/or the minimum energy consumption. For instance in Table 3.7b the scheduler may

choose either configuration 2 or 3, as none of them uses SMT. If the former configuration is chosen, a

5XED2Pdeteriorationwill be experienced. InTable 3.8 the schedulermay choose either configuration

3 or 4, leading to a 1.7X ED2Pworsening. These results show the importance of considering workload

characteristics and interaction in order to make more efficient scheduling decisions.

49

3.6 Conclusions

The different characterizations in this section show the benefits of using hardware/software coopera-

tion to improve system efficiency. In the following chapters of this thesis we will focus on a specific

hardware knob—data prefetching—and we will develop and evaluate policies that improve system

efficiency by adaptively controlling the prefetching engine.

While the scope of the following sections is more specific, this section shows how hardware and

software cooperation can enhance resource sharing. By doing so, system efficiency—based on differ-

ent metrics such as performance or power consumption—is improved. As processors include more

shared resources—as POWER7 does—the impact of hardware and software cooperationwill increase,

reinforcing the findings in this section.

50

4
Platform Characterization and

Methodology

The techniques and solutions presented in this thesis have been implemented and evaluated on real

computing platforms. This section describes in detail the platforms used in the different parts of this

thesis as well as the methodology used to evaluate the proposals.

4.1 The IBM POWER7 Processor

The IBMPOWER7 (Sinharoy et al. 111) processor is an out-of-order designmanufactured using 45 nm

Silicon-On-Insulator technology. Figure 4.1 shows the microarchitecture of a POWER7 processor.

51

eDRAM L3	cache	and	Chip	Interconnect

POWER7
core

L2	cache

POWER7
core

L2	cache

POWER7
core

L2	cache

POWER7
core

L2	cache

POWER7
core

L2	cache

POWER7
core

L2	cache

POWER7
core

L2	cache

POWER7
core

L2	cache

M
em

ory	Controller

M
em

ory	Controller

DDR3	M
em

ory

DDR3	M
em

ory

Chip	boundary

Figure 4.1: POWER7microarchitecture overview.

A chip contains eight cores and each core can run up to four threads. A core can switch between

single-thread (ST), two-way SMT (SMT2), and four-way SMT (SMT4) execution modes. Each core

contains a 32 KB four-way set-associative L1 instruction cache and a 32 KB eight-way set-associative L1

data cache. Cores also contain a 256KBL2 cache. Theprocessor contains anon-chip 32MB(embedded

DRAM)L3 cache. Each core has a private 4MBportion of theL3 cache, but a given core can also access

the rest of portions from other cores—with higher latency.

POWER7 supports four virtual memory page sizes: 4 KB, 64 KB, 16 MB and 16 GB. Large pages

provide multiple benefits such as a reduced number of page faults and TLB misses, and they allow

prefetching to have a larger reach (data prefetching cannot cross page boundaries). Linux—the OS

used in this thesis’ evaluations—currently uses a 64 KB default page size for IBM POWER systems.

4.1.1 POWER7 Prefetcher

Implemented within the load-store unit (LSU), the data prefetching unit (DPU) contains twelve

prefetch request queues (PRQs) plus associated logic that are capable of detecting and prefetching

52

load, store, and load-to-store streams (see Cain & Nagpurkar 20 , Hur & Lin 50 , POWER ISA 99 for

more details). As in previous POWER implementations, the DPU is able to detect sequential storage

reference patterns, but is augmented with a “stride-N” logical subunit. The stride-N subunit detects

streams which have regular access patterns, but do not fetch from consecutive cache lines in memory.

The DPU can detect strides up to 8 KB in length, with a 32B granularity. The detection is handled in

a four entry buffer which examines the stride between the address of the current cache line miss and

those from the previous four cache line misses. When a pattern is detected, a data stream is created

in a PRQ. From this point forward, the data stream is treated just like any other data stream, with

the distinction that subsequent prefetch requests may fetch from non-consecutive cache lines. The

detection hardware is unique compared to traditional stride-N approaches in that the pattern can be

detected across multiple load instructions in the code sequence. This is required for proper detection

of unrolled loops and complex conditional load structures.

The POWER7 DPU uses two types of prefetches to optimize the retrieval of data via prefetch-

ing. L3-prefetches prefetch data from memory (or other caches) into the L3 cache and L1-prefetches

prefetch data into the L1 data cache. The core generates both types of prefetches to optimally cas-

cade data from high latency DRAM into the L3 and from the L3 into the L1 data cache. POWER7

DPU is programmable and allows users to set different parameters (knobs) that control its behavior

and determine the aggressiveness of the prefetch engine: i) prefetch depth, how many lines in advance

to prefetch, ii) prefetch on stores, whether to prefetch store operations, and iii) stride-N, whether to

prefetch streams with a constant stride larger than one cache block. The L1 and L3 prefetchers can-

not be independently controlled. Prefetch settings are controlled via the data stream control register

(DSCR). The Linux kernel exposes the register to users through the sys virtual filesystem (Mochel 85),

allowing them to set the prefetch setting on a per-thread basis.

Table 4.1a describes the possible prefetch configurations and introduces the notation that will be

used throughout the chapter. Prefetch depth can take values from 2 (shallowest) to 7 (deepest). Ad-

53

Table 4.1: Notation used in this chapter for referring to prefetch configurations. We use tags (W/S) to indicate whether

prefetch on stores (W) or stride-N (S) are enabled. Prefetch depth can be set to default (D) or to any value in the range

2-7 (shallowest-deepest). The special configuration where depth is 001 turns off the prefetcher (O). Table b shows some

examples with this notation.

(a)Notation

Shortname DSCR Descriptionvalue

O xx001 Off (prefetch disabled)
D xx000 Default depth
2 xx010 Shallowest
3 xx011 Shallow
4 xx100 Medium
5 xx101 Deep
6 xx110 Deeper
7 xx111 Deepest
W x1xxx Prefetch on stores
S 1xxxx Stride-N

(b) Examples

Shortname Depth Prefetch Stride-Non stores

D Default No No
WD Default Yes No
SD Default No Yes

SWD Default Yes Yes
S2 Shallowest No Yes
S3 Shallow No Yes
7 Deepest No No
S7 Deepest No Yes

SW7 Deepest Yes Yes

ditionally, there are two special values that can be used: 001b (O) and 000b (D). The former disables

the prefetcher, while the latter is the system-predefined default depth. In POWER7 the default depth

corresponds to depth 5 (deep). This value is automatically selected when the system boots (Abeles

et al. 1). Prefetch on stores (W) and stride-N (S) can only be enabled or disabled—they are disabled in

the default configuration. Therefore, the default configuration corresponds to configuration 5 (using

our notation). Every knob in the prefetcher can be independently configured. Table 4.1b shows some

examples of the possible combinations that can be formed by setting values for each prefetch knob.

Additionally, it shows how the shortnames that we use along the chapter are constructed.

4.1.2 Performance Monitoring

ThePOWER7processor has a built-in performancemonitoring unit (PMU) for each hardware thread

that provides instrumentation to aid in performance monitoring, workload characterization, system

characterization and code analysis. There are six thread-level Performance Monitor Counters (PMC)

54

Table 4.2: Description of performance events.

Name Description

PM_CYC Processor cycles
PM_INST_CMPL Instructions that completed
PM_DATA_FROM_L3MISS Demand load from L3 miss
PM_L3_MISS L3 miss
PM_L3_LD_MISS L3 demand load miss
PM_L3_CO_MEM Total L3 castouts that went to memory
PM_L3_PREF_MISS Total L3 prefetches sent from core that miss L3 prefetch directory
PM_MEM0_RQ_DISP The memory controller has dispatched a read operation
PM_MEM0_WQ_DISP The memory controller has dispatched a write operation
PM_MEM0_PREFETCH_DISP The memory controller has dispatched a read for a prefetch operation

in a PMU. PMC1 - PMC4 are programmable, PMC5 counts non idle completed instructions and

PMC6 counts non idle cycles. The thread level and core level instrumentation have access to a rich set

of performance events (close to 550) that cover essential statistics such as miss rates, unit utilization,

thread balance, hazard conditions, translation related misses, stall analysis, instruction mix, L1 I cache

and D cache reload source, effective cache counts and memory latency counts. Table 4.2 shows the

description of the events that we use in the different adaptive prefetching solutions.

In this thesis we need to measure both thread performance and memory bandwidth consumption.

In order to measure thread performance we use instructions per cycle (IPC). To collect bandwidth

measurements, two different approaches exist. The first one (shown in Equation 4.1) computes mem-

ory bandwidth for the total chip.

55

ChipBW = 128 ∗ 8 ∗ (ChipRead+ ChipWrite+ ChipPref) (4.1)

ChipRead = PM_MEM0_RQ_DISP− PM_MEM0_PREFETCH_DISP

ChipWrite = PM_MEM0_WQ_DISP

ChipPref = PM_MEM0_PREFETCH_DISP

We use this metric, for instance, to determine whether the memory bandwidth is saturated. Some-

times we also require to measure memory bandwidth at a finer granularity. Equation 4.2 shows how

to measure the memory bandwidth consumed by each core in the system.

CoreBW = 128 ∗ (CoreRead+ CoreWrite+ CorePref) (4.2)

CoreRead = PM_DATA_FROM_L3MISS+ (PM_L3_MISS− PM_L3_LD_MISS)/2

CoreWrite = PM_L3_CO_MEM/2

CorePref = PM_L3_PREF_MISS/2

The fraction corresponding to the read traffic is composed of demand loads that miss in the L3

cache and reads with intention to modify (RWITM). Some of the events are scaled down by a fac-

tor of two because they originate in a different frequency domain within the processor. Ideally we

would like to measure per-thread memory bandwidth consumption. Unfortunately some of the nec-

essary events for measuring memory bandwidth are not collected in the core but in the nest (the L3

slice corresponding to each core). This is also the case for other processors (see Intel 52). While there

are ways to estimate the contribution of each thread within a core to the core’s memory bandwidth

consumption, enabling support to independently measure bandwidth-related events for each thread

56

chip core

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

O
N

O
F

F
0 25 50 75 0 25 50 75

Time (s)

B
an

dw
id

th
 (

G
B

/s
)

CHIP.CASTOUT
CHIP.PREFETCH

CHIP.READ
CORE.CASTOUT

CORE.PREFETCH
CORE.READ

(a)GemsFDTD

chip core

0

3

6

9

12

0

3

6

9

12

O
N

O
F

F

0 25 50 75 0 25 50 75
Time (s)

B
an

dw
id

th
 (

G
B

/s
)

CHIP.CASTOUT
CHIP.PREFETCH

CHIP.READ
CORE.CASTOUT

CORE.PREFETCH
CORE.READ

(b)mcf

Figure 4.2:Measured bandwidth for two SPECCPU2006 benchmarks.

might significantly improve the accuracy of the measurement. We believe this thesis may encourage

processor’s designers to enhance the features of their PMUso thatmore efficient adaptivemanagement

techniques can be envisioned.

Figure 4.2 shows the result of measuring memory bandwidth for two benchmarks from the SPEC

CPU2006 suite (GemsFDTD and mcf). The figure displays bandwidth measured at the chip and core

level for two different prefetching settings: 1) enabled (shown in the top row), and 2) disabled (shown

in the bottom row). Both benchmarks are memory intensive and their memory bandwidth consump-

tion significantly increaseswhenprefetching is enabled. As the figure shows,measuringmemory band-

width with either method (per-chip and per-core) results in very similar measurements.

57

��� ��� ��� ��� ��� ��� ��� ���

������	
��������

��� ��� ��� ��� ��� ��� ��� ���

������������

�	���	�����
��������	�

�	���	������ !�

"�

#��	���$������	��$
���$
%���&�����%	'(���'
������	
�)

$*�+,���-�
�.�+,���	�
$*�+,���-�
�.�+,���	�
/*0�	
�����������-

����1�����)

Figure 4.3:Microbenchmarks description. Themicrobenchmarks perform an array traversal either in sequential or ran-

dom order. The distance between accesses is a configurable parameter. Depending on function f, the accesses to every

array element can be loads, stores or both.

4.1.3 Impact of Prefetch Settings on Microbenchmarks

In order to understand the behavior of the multiple knobs available in POWER7’s prefetcher, we use

severalmicrobenchmarks and characterize their effect onperformance,memorybandwidth andpower

consumption.

Real applications present phases and significant dynamic variations during their execution, com-

plicating the task of fine-grain architectural characterization. In addition to that, OS interferences

and asynchronous I/O services further complicate the analysis. Microbenchmarks with well-defined

characteristics simplify this problem by allowing us to understand the behavior of the different archi-

tectural components in isolation.

We developed a set of synthetic microbenchmarks that stress the prefetcher, caches and memory

subsystem in different ways. By using them, we can understand the behavior of the prefetcher and

its interaction with the rest of the memory hierarchy. The basic structure for all the microbench-

marks consists of an array traversal following a given order and bringing lines from a given point in

the memory hierarchy to levels closer to the CPU. Figure 4.3 shows the implementation details of the

58

microbenchmarks as well as two access patterns (sequential and random traversal). Each element of

the array is composed of a pointer to the following element—the next element will depend on the

type of traversal—and a padding area. The length of the padding area will determine how consecu-

tive lines are accessed. For instance, if the size of the element structure equals the size of a cache line,

every step in the traversal will touch a line. This design, when applied within a sequential traversal,

will bring adjacent lines from the memory to the low-level caches. If the padding size is bigger, how-

ever, two consecutive accesses will not touch adjacent lines. Although sequential prefetching does not

help with this access pattern, we will see that if stride-N is enabled, the prefetcher is able to improve

performance.

In this characterizationwe use threemicrobenchmarks based on the scheme presented in Figure 4.3:

seq-bench, seq-bench-stride and rnd-bench. The first one performs sequential accesses to consecutive

cache lines. The second one is similar but the stride between two accesses is larger than a cache line.

This creates an access pattern that a sequential prefetcher cannot identify. Finally, the last oneperforms

random accesses, therefore it does not benefit from prefetching. All the microbenchmarks are mainly

composed of memory load operations, and they are heavily memory-bound workloads.

Performance Results Figure 4.4 shows the results of running an increasing number of threads

(from 1 to 32) under different prefetch configurations for different prefetch depth values. The left part

of the figure shows per-thread IPC andmemory bandwidth for seq-bench. Thisworkload accesses con-

secutive memory blocks, and hence prefetching helps in this case. Prefetch depth significantly affects

performance too, with the deepest configuration (7) achieving a 2.6X speedup over the shallowest one

(2) for the single-thread case. As more threads run, memory bandwidth consumption significantly

increases, and prefetch depth does not make a significant difference after eight threads are running in

the system—with the exception of depth 2. After that point, the effect of prefetch depth is somehow

limited, but there is still a large performance gap between enabling and disabling prefetching. If more

59

Number of threads

N
or

m
al

iz
ed

 IP
C

 a
nd

 b
an

dw
id

th

0.0

0.2

0.4

0.6

0.8

1.0

1 4 8 16 32

Per-thread IPC
Sequential

1 4 8 16 32

Bandwidth
Sequential

1 4 8 16 32

Per-thread IPC
Random

1 4 8 16 32

Bandwidth
Random

O 2 7

Figure 4.4: Prefetch depth effect characterization. Both sequential and randommicrobenchmarks are used to show the

effect of prefetch depth on performance andmemory bandwidth. Threads are bound to contexts in an increasing order

(the first four threads go to the first core, the next four ones go to the second core, and so on). Values are normalized to

themaximum value observed in each plot.

threads continue to be added, at some point memory bandwidth saturates and performance asymp-

totically converge to the same performance as when the system is not using prefetching. Although

this example helps us to understand the effect of prefetch depth on both performance and memory

bandwidth, we must bear in mind that it is an extreme case since the workload is mainly composed of

operations that continuously access memory.* Whenmore realistic workloads (e.g., SPEC CPU2006)

are used, pressure on bandwidth is not so high, and prefetch depth keeps helping beyond the early

saturation point seen in this example.

The right part of Figure 4.4 shows the same experiment with a benchmark that accesses memory

positions in random order. In this case, prefetching cannot help since the workload’s access pattern is

not sequential. In fact, if prefetching is enabled, bandwidth consumption increases up to 1.5X com-

pared to the case when prefetch is disabled. Upon encountering a cache miss, the prefetcher sends

*POWER7-based systems contain twomemory controllers, but ours is a low-end system with only one con-
troller. This could explain why bandwidth is saturated with fewer threads.

60

Number of threads

N
or

m
al

iz
ed

 IP
C

 a
nd

 b
an

dw
id

th

0.0

0.2

0.4

0.6

0.8

1.0

1 4 8 16 32

Per-thread IPC

1 4 8 16 32

Bandwidth

O D S2 S7

Figure 4.5: Stride-N and prefetch depth effect characterization. A sequential strided microbenchmark is used to show

the effect of stride-N and prefetch depth on performance andmemory bandwidth. Threads are bound to contexts in an

increasing order (the first four threads go to the first core, the next four ones go to the second core, and so on). Values

are normalized to themaximum value observed in each plot.

an L3 prefetch for the next cache line. Since those prefetches are useless, they do not contribute to

increase performance, but they actually increase memory bandwidth and create more cache conflicts.

Because of all these factors, disabling prefetch actually provides the best performance, especially when

the number of threads increases.

Figure 4.5 shows the effect of stride-N for several choices of prefetch depth on the seq-bench-stride

microbenchmark. We only display the results for depths 2 and 7 in order to ease the comprehension of

the figure—the remaining depth values would lie in between 2 and 7. As it was expected, the default

prefetch configuration (D) does not improve performance for this benchmark. Since accesses tomem-

ory are sequential, but they are not to adjacent cache lines, sequential prefetching does not help. The

performance for the default configuration (D) is exactly the same as when prefetch is disabled. As we

can see in Figure 4.5, however, the default configuration consumes significantlymore bandwidth than

turning prefetch off (O), without obtaining any performance benefit. Once stride-N is enabled (con-

figurations S2 and S7), the prefetcher is able to identify the strided access pattern, and a significant

61

Number of threads

N
or

m
al

iz
ed

 p
ow

er

0.5

0.6

0.7

0.8

0.9

1.0

1 4 8 16 32

Memory
Sequential

1 4 8 16 32

System
Sequential

1 4 8 16 32

Memory
Random

1 4 8 16 32

System
Random

O 2 7

Figure 4.6: Memory and total system power consumption both for sequential and randommicrobenchmarks. Threads

arebound to contexts in an increasingorder (thefirst four threads go to thefirst core, thenext four ones go to the second

core, and so on). Values are normalized to themaximum value observed in each plot.

speedup is achieved. The effect of prefetch depth is similar to the one observed for seq-bench (Fig-

ure 4.4): when the number of threads is low, increasing prefetch depth achieves a significant speed up.

But, as the thread count increases, the impact of prefetching considerably reduces.

Power Consumption Results Figure 4.6 shows both memory and total system power con-

sumption for the same experiments shown in Figure 4.4. In all the cases, power consumption is signifi-

cantly lower when prefetch is disabled. For seq-bench there is up to 30%memory power consumption

difference between enabling and disabling prefetch. In terms of total system power consumption,

the difference is still very significant (up to 10%). We must remember, however, that this power con-

sumption reduction comes at the cost of a significant decrease in performance (see Figure 4.4). We

computed energy efficiency using energy-delay product, and the results show that when both perfor-

mance and power consumption are taken into account, disabling prefetch is not an efficient decision

for seq-bench-like workloads.

Power consumption results for rnd-bench are similar to the ones observed for seq-bench. In this case

62

the maximum observed difference between enabling and disabling prefetch is 18% for memory power

consumption (5% for total systempower). But as Figure 4.4 shows, a benchmarkwith a random access

pattern does not benefit from prefetch, and performance is typically better when prefetch is disabled.

Therefore, this case is awin-win situation. Disabling prefetch both improves performance and reduces

power consumption, boosting system efficiency.

Power consumption results for the case when stride-N is enabled are similar to the ones presented

in Figure 4.6. Because of that, they are not presented in this thesis.

Overall, wehave seen that prefetchdepth can significantly influence performance as long asmemory

bandwidth is not under a lot of pressure. When bandwidth gets saturated due to a large amount of

demand loads, prefetching does not help as much anymore. Additionally, if a workload generates

many useless prefetches, bandwidth consumption will increase, which may hurt system performance.

We have also seen that prefetching typically increases power consumption. When prefetch is useful,

power consumption increases alongwithprefetch aggressiveness. Whenprefetches are not useful, they

may decrease system performance and waste power at the same time. All these observations are useful

to understand the results with real benchmarks in the following sections.

4.1.4 Impact of Prefetch Settings on SPEC CPU2006

In the previous section we have studied the effect of prefetch settings on performance and power con-

sumption for a set of microbenchmarks. In this section we conduct a similar study withmore realistic

workloads, using the SPEC CPU2006 benchmark suite.

Prefetching affects workloads in different ways, depending on their nature. Some experience a sig-

nificant speedup when prefetch is used, while others are totally insensitive. We classify benchmarks

in four different groups (see Table 4.3), according to the way prefetching affects their performance

when running in single-threadmode on our POWER7 system: i) prefetch-insensitive (PI) ; this type of

benchmark is insensitive to prefetching. It does not suffer any significant performance variation no

63

N
or

m
al

iz
ed

 IP
C

 w
.r.

t.
de

fa
ul

t p
re

fe
tc

h

0.4

0.6

0.8

1.0

1.2

libquantum mcf

CS

cactusADM sphinx3

PF

gamess sjeng

PI

omnetpp povray

PU
O 2 7 WD SD

Figure 4.7: Effect of prefetching on performance for single-threaded runs. Multiple prefetch configurations are used in

order toshowtheeffectofeachprefetchknob: depth (2-7), prefetchonstores (WD),andstride-N(SD)—refer toTable4.1

for notation on prefetch configurations.

matter whether prefetching is enabled or not. Additionally, the various configurations (e.g., depth,

stride-N and prefetch-on-stores) do not affect its performance (e.g., sjeng and gamess), ii) prefetch-

friendly (PF) ; enabling prefetching positively affects the performance of the benchmarks in this group.

But, they are not affected when the prefetch setting is varied (e.g., zeusmp and cactusADM), iii) config-

sensitive (CS) ; for benchmarks in this group performance also increases when prefetching is enabled.

Moreover, changing the prefetch configuration affects their performance too (e.g., enabling stride-N

improves performance with respect to the default configuration; this is the case formcf andmilc), and

iv) prefetch-unfriendly (PU) ; for this type of benchmark, enabling prefetching negatively affects its

performance (e.g., omnetpp and povray).

Figure 4.7 shows the performance for SPECCPU2006 benchmarks—representatives of each differ-

ent class—running in single thread mode under several prefetch settings. We use the default prefetch

configuration (D) as the baseline to normalize IPC. The figure visualizes the impact of prefetching on

the different classes that we use to classify the benchmarks (Table 4.3 contains the exact classification

for all the SPEC CPU2006 benchmarks).

In terms of power consumption, Figure 4.8 shows CPU and memory power consumption for the

64

Table 4.3: Benchmark classification based on how their performance is affected by the prefetch settings when running

in single-threadmode.

Classes Benchmarks

Prefetch-insensitive

perlbench bzip2 gamess
gromacs namd gobmk
sjeng h264ref tonto
astar xalancbmk

Prefetch-friendly

gcc zeusmp cactusADM
dealII calculix hmmer

GemsFDTD lbm wrf
sphinx3

Config-sensitive bwaves mcf milc
leslie3d soplex libquantum

Prefetch-unfriendly omnetpp povray

same benchmarks appearing in Figure 4.7. The values are normalized to the ones obtained with the

default prefetch configuration. In terms of CPU power, there is not too much variation when using

the most aggressive prefetch setting (SW7). When disabling prefetch (O), CPU power consumption

decreases up to 3% (for libquantum). The reduction of memory power consumption is much more

significant—especially for config-sensitive, prefetch-friendly andprefetch-unfriendlybenchmarks. For

instance, memory power consumption for libquantum decreases 15%—at the expense of reducing its

IPC more than 60%, though (see Figure 4.7). Perhaps the most interesting cases are povray and espe-

cially omnetpp. For the latter, disabling prefetching reduces memory power consumption 10% while,

at the same time, performance increases close to 20%. That is a win-win situation, caused by avoiding

useless bandwidth consumption due to inefficient prefetches. Power consumption is decreased for

povray too, although in this case the reduction is more modest (5%).

Overall, as results in Figures 4.7 and 4.8 show, an adaptive prefetching mechanism could tune the

prefetcher for every particular benchmark in order to find the prefetch configuration that leads to its

optimal performance, potentially saving power consumption at the same time.

65

N
or

m
al

iz
ed

 p
ow

er
 c

on
su

m
pt

io
n

0.85
0.90
0.95
1.00
1.05

mcf libquantum

CS

M
E

M
.P

O
W

E
R

cactusADM sphinx3

PF

M
E

M
.P

O
W

E
R

gamess sjeng

PI

M
E

M
.P

O
W

E
R

povray omnetpp

PU

M
E

M
.P

O
W

E
R

mcf libquantum

CS

C
P

U
.P

O
W

E
R

cactusADM sphinx3

PF

C
P

U
.P

O
W

E
R

gamess sjeng

PI

C
P

U
.P

O
W

E
R

povray omnetpp

0.85
0.90
0.95
1.00
1.05

PU

C
P

U
.P

O
W

E
R

O SW7

Figure 4.8: Effect of prefetching on CPU andmemory power consumption for single-threaded runs. The values are nor-

malized to the ones obtainedwith the default prefetch configuration.

4.2 Methodology

We use an IBM BladeCenter PS701 to conduct most of the experiments in this thesis—this is the case

for all the experiments involved in the evaluation of the adaptive prefetching solutions. The system

contains one POWER7 processor running at 3.0 GHz and 64 GB of DDR3 SDRAM running at 800

MHz. Themaximum bandwidth achievable by this system is approximately 40 GB/s. The operating

system is SUSE Linux Enterprise Server 11 SP1. We use IBM XL C/C++ 11.1 and IBM XL Fortran 13.1

compilers to compile all the SPEC CPU2006 benchmarks. We disable compiler-generated prefetch

instructions in order to avoid interactions between these instructions and the hardware prefetcher.

Although compiler-generated prefetches (Callahan et al. 21 , Mowry et al. 88) may improve the perfor-

mance of some applications, because of their static nature, they are not a suitable instrument for

dynamically adapting to the mix of applications running on a system. Our solution is actually or-

thogonal to software prefetching. The interaction between hardware and software prefetching has

already been studied in the past (Cain &Nagpurkar 20). We also use Graph500 (Murphy et al. 89) and

SPECjbb2005 115 for evaluating the presented solutions. Graph500 is a representative example of a new

class of server applications: analytics. The Java VM is IBM J9 VM build 2.4. We run all benchmarks

66

until completion. Each benchmarkmay run for a different amount of time. Because of this, we restart

benchmarks that finish early until all benchmarks have fully completed their execution at least once

(see Vera et al. 125). For collecting information from the performance counters we use perf, the official

implementation in the mainstream Linux kernel (see Carvalho de Melo 22). The default page size in

Linux for POWER is 64 kilobytes. This helps prefetching since it is not necessary to restart the streams

after crossing the boundary of relatively small 4 kilobytes pages.

Power measurements are obtained using the IBM Automated Measurement of Systems for Tem-

perature and Energy Reporting (AMESTER) software (Floyd et al. 38 , Lefurgy et al. 70). The software

connects to the EnergyScale microcontroller to download real-time power, temperature, and perfor-

mance measurements of the POWER7 microprocessor and server. The software samples sensors at

1-ms granularity. By using this software we can access multiple sensors in the system, making it possi-

ble to sample total system power, chip power and memory power.

An IBM BladeCenter JS22 is used to conduct the experiments in chapter 3. This system contains

two POWER6 processors running at 4.0 GHz. Each processor is a dual-core, two-way SMT chip.

Thus, the system presents eight logical CPUs to the hypervisor and the OS layer. Our system does

not include an off-chip L3 cache. Therefore, the last level of cache in our system is the 4MB L2 cache

private to each core. Only one memory controller per processor is available in our configuration. The

amount of DRAM memory is 15GB. The system runs SUSE Linux Enterprise 10 SP2 with a 2.6.28

kernel patched with perfmon2 3.8 in order to access the performance counters. The rest of the envi-

ronmental setup is similar to the one described for the POWER7 system.

67

5
Adaptive Prefetching: Improving

Per-Application Performance

5.1 Introduction

Different workloads typically benefit from different prefetching settings. Execution phases within a

workload might as well be sensitive to the specific prefetching configuration being used. In this chap-

ter we present a runtime-based adaptive prefetch mechanism capable of improving performance via

dynamically setting the optimal prefetch configuration, without the need for a priori profile informa-

tion. We evaluate the performance benefits of adaptive prefetching. Our adaptive scheme increases

performance up to 2.7X and 1.3X compared to the default prefetch configuration for single-threaded

68

and multiprogrammed workloads, respectively. We also show that our mechanism is able to reduce

memory power consumption in some cases. In addition to using the SPEC CPU2006benchmark

suite we also evaluate the impact of our adaptive prefetch mechanism on a Java server-side workload

(SPECjbb2005). For that benchmark, adaptive prefetching is able to both improve performance by

21% and reduce memory power consumption by 22%. We also study the implementation of such an

adaptive prefetch schemewithin theOS kernel. After implementing our adaptivemechanism into the

Linux kernel, we have observed similar performance improvements to those obtained by the userspace

implementation.

5.2 Adaptive Prefetching

In Section 4.1.4 we have seen that different applications derive maximum performance benefit from

different prefetch settings. In that approach, users need to profile applications prior to running them

in order to determine the best prefetch setting for each application. We refer to this method as the

best static configuration approach or, simply, the static approach. In that approach, a priori profiling

yields the optimal prefetch configuration for a given application, and all future runs of this application

would use this optimal configuration to achieve its efficiency target. Note that in that approach, the

prefetch configuration is statically fixed for the duration of the application run. A truly dynamic adap-

tation of the data prefetch algorithmpresents the promise of two potential benefits: (i) users would be

able to avoid the per-application profiling step; and, (ii) dynamic phase changes within the same appli-

cation would trigger adaptation of the prefetch parameters in order to further maximize the targeted

efficiency metric.

69

5.2.1 Basic Adaptive Algorithm

In its simplest form, our adaptive solution is composed of two different phases: 1) an exploration phase

where the solution evaluates the performance of the different prefetch settings for each application

running on the system, and 2) a running phase where the best performing setting found for each ap-

plication is used. This process occurs periodically so that our solution can adapt to application phase

changes. Algorithm 1 describes in detail the behavior of our solution.

Algorithm 1 Base adaptive prefetch algorithm.
1: for all t in threads do
2: for all ps in pref_settings do
3: set_prefetch(cpu(t), ps)
4: wait Te ms
5: ipc[ps] = read_pmcs()
6: end for
7: best_ps = argmaxps(ipc)
8: set_prefetch(cpu(t), best_ps)
9: end for
10: wait Tr

Algorithm 1 contains two configurable parameters, Ts and Tr. The former specifies the interval

length to be used during the exploration phase (line 4). The latter is the amount of time that the best

settings found during the exploration phasewill be used before a new exploration phase starts (line 10).

In our implementation we use the interval lengthsTe = 10ms andTr = 100ms. This granularity is a

good compromise between adaptability and overhead. It is actually a typical value for sampling-based

approaches in the OS and runtime realms (Isci et al. 54). For instance, the Linux kernel allows the user

to choose the granularity of the timer tick from 1ms up to 10 ms. A finer granularity would introduce

a significant overhead in the system.

This first algorithm is the base for the other two presented in this chapter. But it suffers from two

70

1 4 8 16 32

MAB size

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

N
o
rm

a
liz

e
d

 I
P
C

 v
a
ri

a
b

ili
ty

 b
e
tw

e
e
n
 s

a
m

p
le

s

Benchmarks

400.perlbench
401.bzip2
403.gcc
429.mcf
445.gobmk
456.hmmer

458.sjeng
462.libquantum
464.h264ref
471.omnetpp
473.astar
483.xalancbmk

(a) SPEC INT

1 4 8 16 32

MAB size

0
.0

0
.2

0
.4

0
.6

0
.8

N
o
rm

a
liz

e
d

 I
P
C

 v
a
ri

a
b

ili
ty

 b
e
tw

e
e
n
 s

a
m

p
le

s

Benchmarks

410.bwaves
416.gamess
433.milc
434.zeusmp
435.gromacs
436.cactusADM
437.leslie3d
444.namd
447.dealII

450.soplex
453.povray
454.calculix
459.GemsFDTD
465.tonto
470.lbm
481.wrf
482.sphinx3

(b) SPEC FP

Figure 5.1: Effect of changing the buffer size on inter-sample IPC variability. IPC variability (see Equation 5.1) is normal-

ized to the average IPC for each benchmark.

potential problems: the effect of phase changes and the impact of “inefficient” prefetch settings (for a

particular workload). Next, we examine and present solutions for these two problems.

5.2.2 Impact of Phase Changes

It is well-known that applications present phases during their execution (Denning 30). They actually

present phases at different levels, ranging from the microsecond to the millisecond level (some phases

may even last for some seconds). Our adaptive mechanism periodically samples performance for dif-

ferent settings, attempting to find the best setting for that particular interval. Wemust, however, take

care of possible phase changes thatmay occur betweendifferent samples in the explorationphase. Oth-

erwise, we could attribute a performance change to the effect of a given prefetch setting when the real

reason is an underlying phase change between measurements.

In order to alleviate this problemwe use amoving average buffer (MAB) 2 that keeps the lastm IPC

71

samples for every prefetch setting and thread under control of the adaptive prefetch runtime. We then

compare the performance of prefetch settings by using the mean of the values in the buffer, instead of

using individual measurements. We evaluate the effect of using buffers of different sizes on the IPC

variability between consecutive samples. Figure 5.1 shows the normalized IPC variability as we increase

the buffer size from 1 (i.e., no buffer is used) up to 32. IPC variability is computed with the following

equation:

variability = 1
n− 1

n−1∑
i=1

|IPCi+1 − IPCi| (5.1)

where IPC is an array with all the n IPC samples for a given workload execution. Variability is then

normalized to the average IPC for every workload. For clarity reasons the figure is split into two. Fig-

ure a contains the results for SPEC INT benchmarks and Figure b does so for SPEC FP benchmarks.

As it can be seen in the figure, most of the benchmarks present a small to moderate variation when

MAB is not used. A few of them (bzip2, perlbench, wrf and GemsFDTD), however, have quite a high

variation. As an example, let us examine bzip2. The average IPC variability between consecutive sam-

ples is 30% when MAB is not used. As the buffer size increases the variability is reduced, reaching 2%

for a buffer containing the last 32 samples. By using a moving average buffer, we are able to signifi-

cantly reduce the impact that phase changes may have on the exploration step of the adaptive prefetch

mechanism.

Algorithm 2 presents the new version of the algorithm, using the moving average buffer. The algo-

rithm is very similar to the one presented in the previous section. The only differences are on lines 5, 6

and 8, where the buffer is actually used. The operation of pushing a new sample into the buffer (line 5)

is implemented using a circular buffer. Thus, when the buffer is full and a new sample is added, the

oldest one is removed from the buffer.

72

Algorithm 2 Adaptive prefetch with MAB
1: for all t in threads do
2: for all ps in pref_settings do
3: set_prefetch(cpu(t), ps)
4: wait Te ms
5: push(ipc_mab[t, ps], read_pmcs())
6: ipc_mean[ps] = mean(ipc_mab[t, ps])
7: end for
8: best_ps = argmaxps(ipc_mean)
9: set_prefetch(cpu(t), best_ps)
10: end for
11: wait Tr

5.2.3 Impact of “Inefficient” Prefetch Settings

The base adaptive prefetch algorithm iterates along a set of prefetch settings during the exploration

phase. After the exploration phase is over, the runtime lets the threads run for a certain amount of time

with the best setting found. Depending on the workload, there could be a significant performance

variation between different settings used in the exploration phase. For instance, for bwaves, disabling

the prefetch reduces its performance 78%with respect to the best setting. Such a significant slowdown

may actually impact overall performance if the exploration phase is executed too often. Therefore, for

this particular workload disabling prefetch would be an inefficient prefetch setting (it is important to

mention that an inefficient setting for one workload may be the best one for another workload; thus

settings’ efficiency is workload-dependent).

In order to quantify the effect of inefficient settings, we model the expected performance, ÎPC,

based on the ratio of exploration and running phases’ length. We use the following equation for the

73

1 5 50 500

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Running vs Exploration Ratio

N
or

m
al

iz
ed

IP
C

95% 99%

(a) perlbench

1 5 50 500

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Running vs Exploration Ratio

N
or

m
al

iz
ed

IP
C

95% 99%

(b)milc

Figure 5.2: Effect of exploration/running ratio on expected performance. Values are normalized to themaximum values

observed for each workload.

model:

ÎPC =
n∑

i=1

Le
Lt

× IPCi +
Lr
Lt

× max
i
(IPCi) (5.2)

where Le and Lr are the lengths of the exploration and running phases, respectively, and Lt =

Le + Lr. IPC is a set containing the average IPC values for each prefetch setting for a given workload.

Figure 5.2 shows the expected performance for two different types of workloads as the ratio Lr/Le

increases. The solid, green vertical line determines the running-exploration ratio such that the ex-

pected performance is within 5% of the best achievable performance (i.e., if there is no exploration

phase and the best prefetch setting is used during all the interval). The dashed, blue vertical line is

equivalent to the previous one, but it marks the point where the expected performance is within 1%

of the best achievable performance. We use two benchmarks, perlbench andmilc, to construct an illus-

trative example. The results for all the other SPEC CPU2006 benchmarks are similar to either one of

these two.

74

Figure 5.2a shows the results for perlbench. This workload is mostly insensitive to prefetching and,

thus, the expected performance follows a very flat curve. In order not to lose more than 1% of per-

formance, it suffices to set a running phase four times longer than a single exploration interval. For

these types of workloads, since they do not really suffer from inefficient prefetch settings, the running-

exploration ratio is not so important. This totally changes for a different type of workload such asmilc.

Figure 5.2b shows the results for this workload. In this case the curve is not flat anymore. Indeed if

we are not willing to pay a performance drop bigger than 5% we must use a running phase at least 50

times longer than a single exploration interval. For a tighter 1% bound, the ratio would increase up

to approximately 400. Using such a large value for all the possible workloads would imply a drastic

reduction in the number of times that an exploration phase is triggered. Thus, the adaptability of our

mechanism would be significantly reduced.

In order to avoid this issue we decided to introduce a new feature in our adaptive prefetch scheme.

This feature removes inefficient prefetch settings from the set containing all the settings to be tried

during the exploration phase. We call this feature prefetch setting drop. Settings are “dropped” for a

certain amount of time based on their inefficiency and then, they are considered again to be selected in

a future exploration phase. The exact number of iterations, ITi, that a given setting, i, will be dropped

is given by the following equation:

ITi = DF× |MAB| ×
(
maxi(IPCi)

IPCi
− 1

)
(5.3)

where DF is the drop factor, |MAB| is the size of the moving average buffer and the last term is a

measure of the slowdown experienced when using setting i. If the performance for setting i is equal to

the best performance observed, the last term becomes zero and the setting is actually not dropped at

all, so it will be used in the next exploration phase. The slowdown term in the last equation penalizes

inefficient settings proportionally to the measured slowdown. Thus, settings that significantly devi-

75

0 10 20 50 100

Drop factor

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

E
xp

ec
te

d
P

er
fo

rm
an

ce

Performance Ratio

0.99
0.95
0.9
0.8
0.5

Figure 5.3: Effect of drop factor on expected performance. Values are normalized to the best possible performance.

ate from the best setting’s performance will be penalized more than the others. The equation drops

settings proportionally to the size of the moving average buffer too. After a setting is dropped, its

MAB is reset, because by the time the setting is considered again in the exploration phase, the con-

tents of the buffer may not be valid anymore. Moreover, the adaptive mechanism does not give a

prediction for a setting until its associated buffer is full—doing so would be equivalent to not using a

buffer. Therefore, |MAB| exploration phases are necessary before the algorithm can decide whether

a prefetch setting that has just been reconsidered again for inclusion continues to be an inefficient set-

ting and, consequently, must be dropped oncemore. The bigger the size of themoving average buffer,

the more potentially harmful effect that an inefficient setting may have. Thus, Equation 5.3 includes

a term that drops settings proportionally to the size of the moving average buffer.

InEquation 5.3 thedrop factor,DF, is the onlyparameter that the adaptiveprefetchmechanism’s de-

signer or the end-user must select a value for. Its value will depend on the workloads that the end-user

will ultimately execute on the system. Based on mathematical performance modeling and empirical

analysis, it is possible to select a default value for that parameter. We use a similar approach as we did

76

to determine the effect of the exploration-execution ratio on performance. In this case, we model the

effect of changing the drop factor on the expected performance. We use the following equation to

model the impact on performance of different drop factor values for the case of two prefetch settings:

ÎPCi =
t1
T × IPCbest +

t2
T × αIPCbest (5.4)

where t1 and t2 correspond to the amount of time that setting one and two are respectively selected.

Their values are |MAB|+ITi and |MAB|, respectively. Finally,T is the total interval time (t1+t2) and

α is the reduction inperformance of setting two compared to the first one. Figure 5.3 showsnormalized

expected performance for several drop factor values, for the case of two prefetch settings. One of the

settings corresponds to the best setting in a given interval (performance = 1.0). We include results for

different performances (α) for the second setting, ranging from 1% to 50% slowdown.

As it can be observed in Figure 5.3, settings that are close to the best one do not reduce performance

significantly and, thus, they do not need to be dropped for a long time—if at all. As the performance

of the second setting decreases, the impact on performance becomes much more noticeable. For in-

stance, if the performance for the second setting is 50% compared to the best setting, not using the

drop feature would lead to an estimated overall performance of 75% compared to when just the best

setting is used. As the drop factor increases, the impact of inefficient settings clearly reduces and the

expected performance tends to converge to the performance obtained with the best prefetch setting.

Algorithm 3 presents the latest version of the adaptive prefetch mechanism, both including the

moving average buffer and the drop feature. As it can be seen there is no running phase in this algo-

rithm. The running phase is not necessary anymore since the drop feature removes inefficient settings,

thus, allowing us to perform a continuous exploration. Before trying a prefetch setting, the algorithm

decrements the number of drop iterations for that setting, and it only actually considers the setting

if it is not dropped (lines 3-4). In lines 13-18 the algorithm computes the number of iterations that

77

Algorithm 3 Adaptive prefetch with MAB and inefficient setting drop.
1: for all t in threads do
2: for all ps in pref_settings do
3: drop_iter[t, ps] = max(0, drop_iter[t, ps]− 1)
4: if drop_iter[t, ps] = 0 then
5: set_prefetch(cpu(t), ps)
6: wait Te ms
7: push(ipc_mab[t, ps], read_pmcs())
8: ipc_mean[ps] = mean(ipc_mab[t, ps])
9: end if
10: end for
11: best_ps = argmaxps(ipc_mean)
12: set_prefetch(cpu(t), best_ps)
13: for all ps in pref_settings do
14: if drop_iter[t, ps] = 0 then
15: SL = (ipc_mean[best_ps]/ipc_mean[ps]− 1)
16: drop_iter[t, ps] = DF× |MAB| × SL
17: end if
18: end for
19: end for

78

N
or
m
al
iz
ed

IP
C

0.
9

1.
0

1.
1

1.
2

1.
3

as
tar

bw
av
es
bz
ip2

ca
ctu
sA
DM

ca
lcu
lix
de
alI
I

ga
me
ss gc

c

Ge
ms
FD
TD

go
bm
k

gr
om
ac
s

h2
64
re
f

hm
me
r
lbm

les
lie
3d

lib
qu
an
tum mc

f
mi
lc
na
md

om
ne
tpp

pe
rlb
en
ch

po
vra
y
sje
ng

so
ple
x

sp
hin
x3
ton
to wr

f

xa
lan
cb
mk

ze
us
mp

Static Algorithm.1 Algorithm.2 Algorithm.3

2.78

2.35

2.79

2.35

Figure 5.4: Performance results for single-threaded workloads normalized to the ones obtained with the default

prefetch configuration.

inefficient settings will be dropped. We select DF = 100 based on the previous analysis and on em-

pirical evaluation, obtaining good performance for all the benchmarks both for single-threaded and

multiprogrammed workloads, as we will see in the next section.

5.3 Results

In this sectionwe evaluate the performance benefits of using adaptive prefetching. We use both single-

threaded workloads as well as multiprogrammed workloads composed of random SPEC CPU2006

benchmark pairs.

5.3.1 Single-Threaded Workloads

Figure 5.4 shows the results for single-threadedworkloads. Wepresent results for all the SPECCPU2006

benchmarks. Performance values are normalized to the ones obtained with the default prefetch con-

figuration. As it can be seen in the figure, many of the benchmarks do not experience any performance

79

variation. That is especially true for prefetch-insensitive workloads. In that case, neither the best static

nor the adaptive approaches improve performance. It is important to notice that while the first and

the second algorithmmay experience a performance decrease compared to the default configuration—

due to, for instance, inefficient settings—, that is not the case for the third algorithm. Algorithm 3 does

not perform worse than the default configuration for any of the benchmarks. That is an important

observation, since otherwise it may not be “safe” to unconditionally enable adaptive prefetching.

We can observe the effect of the moving average buffer especially in the case of GemsFDTD. This

benchmark is the one that suffered the most from inter-sample variability (see Figure 5.1). By using a

MAB we can reduce the impact of IPC variability between samples and improve performance.

If we look at config-sensitive workloads we observe that adaptive prefetching performs nearly as

good as the best static approach. SPEC CPU2006 benchmarks present little variability in terms of

which prefetch setting they most benefit from along their execution. Because of this, it is typically

not possible for dynamic prefetching to beat the static approach—we look at this inmore detail in Sec-

tion 5.3.2. The speedups obtainedwith the adaptive scheme are, however, very significant (in the order

of 15% formcf, soplex and libquantum). In the case of milcwe observe a large speedup of 2.7X.While all

thoseworkloads benefit fromprefetch and they see their performance increasedwhen the right setting

is selected for them, omnetpp behaves in a completely different way, and it actually benefits from dis-

abling prefetch. By profiling this benchmark we have seen that it spends a significant percentage of its

execution time traversing a heap. A heap is a tree-like data structure, and when traversing it, accesses

between nodes are separated by a variable stride. This access pattern is very difficult for a sequential

prefetcher, even if stride-N is enabled. In fact, prior research already showed that omnetpp does not

benefit from prefetch 34,69. When prefetch is disabled during all the execution (static approach), per-

formance for omnetpp increases 17%. Adaptive prefetching detects that, and turns off prefetchmost of

the time, significantly improving performance too.

Figure 5.5 shows CPU and memory power consumption results for all the benchmarks when run-

80

N
or

m
al

iz
ed

 p
ow

er

0.90

0.95

1.00

1.05

1.10
as

ta
r

bw
av

es

bz
ip

2

ca
ct

us
A

D
M

ca
lc

ul
ix

de
al

II

ga
m

es
s

gc
c

G
em

sF
D

T
D

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m

m
cf

m
ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl

ex

sp
hi

nx
3

to
nt

o

w
rf

xa
la

nc
bm

k

ze
us

m
p

CPU Power Memory Power

Figure 5.5: CPU and memory power consumption results for single-threaded workloads using Algorithm 3. The values

are normalized to the ones obtainedwith the default prefetch configuration.

ning under Algorithm 3. CPU power consumption is slightly lower for all benchmarks except formilc.

That benchmark experiences a 2.8X speedup when running under adaptive prefetching. Selecting

the right prefetch setting reduces the impact of cache misses, increasing both CPU and memory activ-

ity in a very significant manner. In terms of memory power consumption, prefetch-insensitive and

prefetch-friendly benchmarks do not experience any variation, consuming the same amount for both

the default configuration and adaptive prefetching. Performance for config-sensitive benchmarks in-

creaseswhen the right prefetch setting is used. That extra performance implies accessingmemorymore

intensively. Because of that, memory power consumption increases. It significantly does for milc (up

to 15%) and more modestly for libquantum and soplex (up to 3%). In all the cases, the performance

increase surpasses the increment in power consumption. For omnetpp, power consumption actually

decreases under adaptive prefetching. Our mechanism effectively detects that disabling prefetching is

the best setting for that benchmark. By doing so, useless bandwidth consumption is eradicated, re-

ducing memory power consumption in turn. We also observe a memory power reduction for povray.

Being a prefetch-unfriendly workload, disabling prefetch helps as well, reducing power consumption

3%. Another interesting case is xalancbmk. That benchmark presents two different phases. During the

81

first one, prefetching—especially when stride-N is enabled—significantly helps. In the second one,

disabling prefetch is slightly better in terms of performance. Doing so also reduces bandwidth con-

sumption to some degree. That reduction translates into a 2% memory power decrease for adaptive

prefetching compared to the default setting.

Overall, the significant speedups for single-threaded workloads, together with the fact that perfor-

mance does not decrease when compared to the default configuration, converts adaptive prefetching

into a very useful mechanism to improve performance for memory intensive workloads. Addition-

ally, memory power consumption is reduced for prefetch-unfriendly workloads such as omnetpp and

povray, adding further value to our adaptive solution.

5.3.2 Composite Workloads

As shown in the previous sections, our adaptive scheme is able to find, without user intervention, the

best prefetch setting for all SPEC CPU2006 benchmarks, with similar performance speedups to the

best static approach. For an application that benefits frommultiple “best” prefetch settings over its full

execution period, however, the dynamic approach generally performs better. We use the term intra-

workload prefetch setting sensitivity to refer to the degree of potential improvement that applications

may have due to benefiting from multiple prefetch settings within their execution. In the previous

sections we have pointed out that a single SPECCPU2006 benchmark does not benefit frommultiple

prefetch settings, thus they have a low intra-workload prefetch setting sensitivity.

Figure 5.6 shows the sensitivity for all benchmarks. We compute the sensitivity as the ratio of time

where a prefetch setting different from best static setting obtains a better performance compared to

the best static one. Most benchmarks present a very low sensitivity (under 5%). And the only three

benchmarks with relatively higher sensitivity only experience a slight increase in their performance

during less than 15% of their execution. Therefore, we conclude that SPEC CPU2006 benchmarks do

not present a high intra-workload prefetch setting sensitivity.

82

Intra-workload prefetch setting sensitivity

B
en

ch
m

ar
ks

astar
bwaves

cactusADM
calculix
gamess
gobmk

gromacs
h264ref
hmmer

lbm
leslie3d

libquantum
namd

povray
sjeng

sphinx3
zeusmp

GemsFDTD
soplex

tonto
perlbench

dealII
bzip2

omnetpp
mcf
gcc
wrf

xalancbmk
milc

0.00 0.05 0.10

Figure 5.6: Intra-workload prefetch setting sensitivity for all the SPECCPU2006 benchmarks.

It is, however, conceptually easy to imagine the existence of applications that would benefit from

different prefetch settings during their execution. For instance, a scientific application that retrieved a

large amount of data from the Internet, uncompressed the data and finally processed it, would have

three very different macro-phases. Moreover, each one of these phases may benefit from a different

prefetch setting. In such a scenario, the best static approach could easily performworse than a dynamic

mechanism.

Table 5.1: Performance increase for adaptive prefetching compared to the static approach for composite workloads.

Workload IPC speedup (%)

bwaves-omnetpp 9.1
mcf-omnetpp 8.9
milc-omnetpp 10.5

libquantum-omnetpp 7.7

83

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

1.0

1.1

1.2

1.3

les
lie

3d
−b

wav
es

lib
qu

an
tu

m
−m

ilc

m
cf−

les
lie

3d

m
cf−

lib
qu

an
tu

m

so
ple

x−
m

cf

CS−CS

ca
ctu

sA
DM

−b
wav

es

ca
ctu

sA
DM

−s
op

lex

gc
c−

lib
qu

an
tu

m

Gem
sF

DTD−m
ilc

Gem
sF

DTD−s
op

lex

hm
m

er
−b

wav
es

lbm
−b

wav
es

lbm
−s

op
lex

sp
hin

x3
−le

sli
e3

d

wrf−
les

lie
3d

PF−CS

ca
ctu

sA
DM

−g
cc

gc
c−

Gem
sF

DTD

Gem
sF

DTD−s
ph

inx
3

hm
m

er
−z

eu
sm

p

lbm
−w

rf

PF−PF

ca
ctu

sA
DM

−p
ov

ra
y

gc
c−

om
ne

tp
p

Gem
sF

DTD−o
m

ne
tp

p

hm
m

er
−o

m
ne

tp
p

lbm
−p

ov
ra

y

PF−PU

as
ta

r−
les

lie
3d

bz
ip2

−b
wav

es

bz
ip2

−s
op

lex

ga
m

es
s−

m
ilc

ga
m

es
s−

so
ple

x

go
bm

k−
bw

av
es

gr
om

ac
s−

bw
av

es

gr
om

ac
s−

so
ple

x

h2
64

re
f−

lib
qu

an
tu

m

xa
lan

cb
m

k−
les

lie
3d

PI−CS

bz
ip2

−w
rf

ga
m

es
s−

de
alI

I

go
bm

k−
ze

us
m

p

gr
om

ac
s−

ca
ctu

sA
DM

h2
64

re
f−

ca
lcu

lix

PI−PF

bz
ip2

−a
sta

r

ga
m

es
s−

xa
lan

cb
m

k

go
bm

k−
pe

rlb
en

ch

gr
om

ac
s−

h2
64

re
f

h2
64

re
f−

na
m

d

PI−PI

bz
ip2

−p
ov

ra
y

ga
m

es
s−

om
ne

tp
p

go
bm

k−
om

ne
tp

p

gr
om

ac
s−

po
vr

ay

h2
64

re
f−

om
ne

tp
p

PI−PU

om
ne

tp
p−

m
ilc

po
vr

ay
−b

wav
es

po
vr

ay
−le

sli
e3

d

po
vr

ay
−li

bq
ua

nt
um

po
vr

ay
−s

op
lex

PU−CS

po
vr

ay
−o

m
ne

tp
p

1.0

1.1

1.2

1.3

PU−PU

Adaptive Static

Figure5.7: Performance results forboth the static andadaptive approaches formixed-workloads. Eachworkload is com-

posed of two different benchmarks from different classes (PI=prefetch-insensitive, PF=prefetch-friendly, PU=prefetch-

unfriendly, CS=config-sensitive). Four copies of each benchmark are run at the same time. Results are normalized to the

ones obtainedwith default prefetching.

In order to demonstrate the potential benefits of an adaptive scheme compared to a static one, we

construct some composite workloads by stitching together two SPEC CPU2006 benchmarks, one run-

ning after the other. Table 5.1 shows the speedup obtained by adaptive prefetching compared to the

best static approach. As we can observe, there are significant performance improvements for work-

loads with a higher intra-workload prefetch setting sensitivity. As these results show, the adaptive

prefetch mechanism is able to find the best prefetch setting for each of the macro-phases, thus increas-

ing performance compared to a static approach.

5.3.3 Multiprogrammed Workloads

In this section we compare adaptive prefetching against the default configuration and the static ap-

proach for multiprogrammed workloads. Since, as we have seen in Section 5.3.1, the performance for

Algorithm 3 is much better than the other two, in this section we only show results for the third al-

84

gorithm. The results in Figure 5.7 are normalized to the case where all the benchmarks run with the

default prefetch setting. We construct random pairs in such a way that all the benchmark types listed

in Table 4.3 are represented. Each workload is composed of eight threads, four from a benchmark

class and four from the other class. Each thread runs on a different core. We show results for five

randomworkloads for each class combination except for PF-CS and CS-CS where we use ten random

workloads since the result space and the performance variability are larger for these combinations. For

PU-PU there is only one result, since there are only two benchmarks in PU class.

Looking at the results we observe that, as it was the case with single-threaded workloads, there is

not too much difference in performance for workloads composed of prefetch-insensitive or prefetch-

friendly benchmarks (PI-PI, PI-PF or PF-PF classes). For config-sensitive workloads, however, we

observe very significant speedups (over 10%) for some pairs. Throughput goes up to 30% for the pair

omnetpp-milc. In this case the adaptive mechanism disables prefetch for omnetpp and enables stride-N

for milc, boosting the performance of both workloads. It is also important to notice that virtually in

no case the performance achieved by the adaptive prefetchmechanism is lower than the baseline (using

default prefetch for all the threads). The only two caseswhere this happens are for the pairsGemsFDTD-

milc (in PF-CS class) and libquantum-milc (in CS-CS class). The reason for these results is the small

absolute IPC for milc. When it runs together with other higher-IPC benchmarks, the total through-

put may not increase that much—it may actually decrease—when using the adaptive approach. If we

look at the individual IPC values, however, the results show that the adaptive mechanism actually im-

proves performance. Let us examine the GemsFDTD-milc case in more detail. For that pair, adaptive

prefetching worsens total throughput 4% compared to the baseline. When using the baseline, IPC

values are 0.61 and 0.18 for GemsFDTD and milc, respectively. Adaptive prefetching selects different

prefetch settings, and the IPC values change to 0.37 and 0.34 for the same benchmarks. These results

show thatGemsFDTD suffers a 35% slowdown, but the speedup formilc is almost 2X, easily compensat-

ing the slowdown for GemsFDTD. In addition to throughput, we have used other metrics such as the

85

N
or

m
al

iz
ed

 p
ow

er
 c

on
su

m
pt

io
n

0.90

0.95

1.00

1.05

1.10

les
lie

3d
−b

wav
es

lib
qu

an
tu

m
−m

ilc

m
cf−

les
lie

3d

m
cf−

lib
qu

an
tu

m

so
ple

x−
m

cf

CS−CS

ca
ctu

sA
DM

−b
wav

es

ca
ctu

sA
DM

−s
op

lex

gc
c−

lib
qu

an
tu

m

Gem
sF

DTD−m
ilc

Gem
sF

DTD−s
op

lex

hm
m

er
−b

wav
es

lbm
−b

wav
es

lbm
−s

op
lex

sp
hin

x3
−le

sli
e3

d

wrf−
les

lie
3d

PF−CS

ca
ctu

sA
DM

−g
cc

gc
c−

Gem
sF

DTD

Gem
sF

DTD−s
ph

inx
3

hm
m

er
−z

eu
sm

p

lbm
−w

rf

PF−PF

ca
ctu

sA
DM

−p
ov

ra
y

gc
c−

om
ne

tp
p

Gem
sF

DTD−o
m

ne
tp

p

hm
m

er
−o

m
ne

tp
p

lbm
−p

ov
ra

y

PF−PU

as
ta

r−
les

lie
3d

bz
ip2

−b
wav

es

bz
ip2

−s
op

lex

ga
m

es
s−

m
ilc

ga
m

es
s−

so
ple

x

go
bm

k−
bw

av
es

gr
om

ac
s−

bw
av

es

gr
om

ac
s−

so
ple

x

h2
64

re
f−

lib
qu

an
tu

m

xa
lan

cb
m

k−
les

lie
3d

PI−CS

bz
ip2

−w
rf

ga
m

es
s−

de
alI

I

go
bm

k−
ze

us
m

p

gr
om

ac
s−

ca
ctu

sA
DM

h2
64

re
f−

ca
lcu

lix

PI−PF

bz
ip2

−a
sta

r

ga
m

es
s−

xa
lan

cb
m

k

go
bm

k−
pe

rlb
en

ch

gr
om

ac
s−

h2
64

re
f

h2
64

re
f−

na
m

d

PI−PI

bz
ip2

−p
ov

ra
y

ga
m

es
s−

om
ne

tp
p

go
bm

k−
om

ne
tp

p

gr
om

ac
s−

po
vr

ay

h2
64

re
f−

om
ne

tp
p

PI−PU

om
ne

tp
p−

m
ilc

po
vr

ay
−b

wav
es

po
vr

ay
−le

sli
e3

d

po
vr

ay
−li

bq
ua

nt
um

po
vr

ay
−s

op
lex

PU−CS

po
vr

ay
−o

m
ne

tp
p

0.90

0.95

1.00

1.05

1.10
PU−PU

CPU Power Memory Power

Figure 5.8: CPU andmemory power consumption results for the adaptive approach formixed-workloads (same pairs as

in Figure 5.7). Values are normalized to the ones obtainedwith the default prefetch configuration.

harmonic speedup in order to obtain performancemeasurements that combine both throughput and

fairness between threads in each pair. Our results show that the adaptive mechanism always obtain a

better performance compared to the baseline when using the harmonic speedup metric.

We observe that the static approach always obtains a performance equal or slightly higher than the

adaptive one. As we pointed out in the previous section, virtually no SPEC CPU2006 benchmark

benefits the most from more than a single prefetch setting. In such a case, the static approach always

obtains the best possible performance. With our adaptive scheme, however, the user gets the benefit of

autonomic performance boost across all workloads (compared to the default configuration), without

the need to invest into a priori characterization of each and every workload.

Figure 5.8 shows CPU and memory power consumption for the same set of pairs that we used

in Figure 5.7. As it was the case with single-threaded experiments, power consumption does not sig-

nificantly vary for pairs where both benchmarks are either prefetch-insensitive or prefetch-friendly.

Config-sensitive benchmarks, such as libquantum and soplex, experience significant speedups when

86

the right prefetch setting is selected by our adaptive mechanism. That extra performance is delivered

through an increase in memory bandwidth usage, and therefore, memory power consumption in-

creases too. As Figure 5.8 shows, memory power consumption can increase up to 10% for these kinds

of benchmarks. An interesting example is milc; this benchmark considerably benefits from enabling

stride-N, resulting in a significant performance increment. As we can see in Figure 5.8, the pairs con-

tainingmilc experience apower consumption reductionwhen they rununder our adaptivemechanism.

Adaptive prefetching enables stride-Nmost of the time formilc, effectively capturing that benchmark’s

access pattern, and increasing prefetching efficiency. When we use the default prefetch configuration,

the prefetcher fails to capture the strided pattern, and bandwidth consumption due to demand loads

increases. Yet, (useless) prefetches are still generated, thus consuming memory bandwidth—and in-

creasing power consumption in turn. Actually, we already observed this effect for seq-bench-stride

microbenchmark (see Figure 4.5). Finally, we also observe how adaptive prefetching is able to reduce

power consumption for prefetch-unfriendly benchmarks. Pairs where omnetpp appears, experience

memory power consumption reductions close to 10%. These results demonstrate the potential of our

adaptive prefetch scheme, not only at improving performance, but at reducing memory power con-

sumption as well.

5.3.4 Java Business Workloads

So farwe have evaluated our adaptive prefetchmechanismusing SPECCPU2006—abenchmark suite

mainly composed of HPC simulation kernels and some integer workloads. Those are, however, just

a fraction of the representative workloads running on real systems. Therefore, in addition to SPEC

CPU2006, we have also evaluated our mechanism using SPECjbb2005 115, a server-side, Java business

application that models a three-tier client/server system. This type of application is commonly used

nowadays in areas such as banking, wholesale suppliers or data warehousing.

In all the experiments, we run SPECjbb using eight warehouses—each warehouse is executed by a

87

Time

N
or

m
al

iz
ed

 v
al

ue
s

0.
8

0.
9

1.
0

1.
1

0 20 40 60 80 100

●

●

●

●

●●

●

●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●●●

Throughput

0 20 40 60 80 100

0.
6

0.
8

1.
0

1.
2

●

●●
●
●●

●

●
●●
●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●

●
●●●

●●●●●●●●●●

●

●●●●
●●●●●●●●●

●

●●●

Bandwidth

0.
8

0.
9

1.
0

1.
1

0 20 40 60 80 100

●

●

●●

●
●

●

●●●
●
●●
●●●●●●●

●●●●
●●●●●

●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●

●●●●●●
●●●●

●●●●●●
●
●
●●●

●●●●●●●●●●●
●●●

●●●●●●
●●●●●●●

Memory Power

D O●

Figure 5.9: Performance and power characterization for SPECjbb2005 along its execution for eight warehouses (i.e.,

threads). Individual thread values are first aggregated, and then they are normalized, dividing them by the mean of all

the samples. In this waywe keep the same ratio between both prefetch configurations as in the original values.

different thread. Thus, we have eight threads in total, mapping each one of them onto a different core.

We have tried other numbers of warehouses, obtaining similar results. Typical SPECjbb executions

consist ofmultiple stepswhere the number ofwarehouse is increased from 1 to the number of CPUs in

the system. The reason to do that is to studyhow the system scales asmorewarehouses are executed. In

our case, however, we are not studying the scaling capabilities, but just how different prefetch settings

affect performance and power consumption for SPECjbb. Thus, we just execute the last step—when

all the cores are used.

Figure 5.9 shows the results of executing SPECjbb with different prefetch configurations: default

(D) and off (O). As we can observe in the figure, throughput increases 19% when prefetching is dis-

abled compared to using the default prefetch configuration. SPECjbb is a prefetch-unfriendly bench-

mark, thus benefiting from disabling data prefetching—just in the same way omnetpp (from SPEC

CPU2006) does too. In the same figure we also notice that bandwidth consumption increases 56%

when prefetching is enabled. Since SPECjbb is a prefetch-unfriendly benchmark, that extra band-

width consumption is basically wasted due to inefficient prefetches. Even if the increased bandwidth

consumption does not translate into extra performance—the opposite is actually true in this case—,

88

Table5.2: Throughputandmemorypowerconsumptionevaluation forSPECjbb2005. Resultsarenormalized to theones

obtainedwith the default prefetch setting.

Throughput Power Consumption

Static 22.4% -23.1%
Adaptive 21.1% -21.9%

more frequent accesses to thememory subsystem incur into a significantmemory power consumption

overhead (22% increase).

In such a scenario, adaptive prefetching has the potential to both improve performance and reduce

power consumption at the same time. That is a very much desired win-win situation. We have evalu-

ated the impact of using our adaptive prefetchmechanismwhile running SPECjbb. Table 5.2 contains

the results, showing total throughput andmemory power consumption. All the values are normalized

with respect to the ones obtained when using the default prefetch configuration. The static approach,

as expected, significantly increases performance by 22.4% and reduces power consumption by 23.1%.

Our adaptive prefetch mechanism effectively detects that disabling prefetching is the optimal choice

for this benchmark, and it obtains similar results: 21.1% performance speedup and 21.9% power reduc-

tion.

5.4 OS-Based Implementation

The presented implementation of the adaptive prefetch is based on a user-level runtime. Compared

to an OS implementation, a user-level runtime provides the maximum flexibility and portability. An

OS-based implementation would provide several advantages, though. For instance, the overhead for

reading performance counters as well as for changing the DSCR register would be reduced, since it

would not be necessary to change the privilege mode to do so.

Therefore, besides evaluating the runtime-based mechanism, we studied the implementation of

89

adaptive prefetch within the Linux OS. For that purpose, we have implemented OS-based adaptive

prefetch algorithms similar to the runtime-based ones.

Algorithm 4 OS-based implementation of Algorithm 1
1: ct = get_current_running_thread()
2: if mode = EXPLORATION then
3: perf[ct, curr_ps[ct]] = read_ipc()
4: if curr_ps[ct] ̸= last_ps() then
5: curr_ps[ct] = next_ps(curr_ps[ct])
6: set_dscr(ct, curr_ps[ct])
7: else
8: best_ps = argmaxps(perf[ct])
9: set_dscr(ct, best_ps)
10: run_quantum[ct] = RUN_QUANTUM
11: mode = RUNNING
12: end if
13: else if mode = RUNNING then
14: run_quantum[ct] = run_quantum[ct]− 1
15: if run_quantum[ct] = 0 then
16: curr_ps[ct] = first_ps()
17: set_dscr(ct, curr_ps[ct])
18: mode = EXPLORATION
19: end if
20: end if

We rely on the timer interrupt in order to divide the execution of threads into intervals containing

exploration and running phases. At each timer interrupt a reference to the thread running on the

current context is first obtained (see Algorithm 4). Then the behavior of the algorithm depends on

the current phase: i) If the exploration phase is active, the performance for the current prefetch setting

(curr_ps) is recorded and the next setting is selected (lines 5-6). In case no more settings are available,

the algorithm starts the running phase, after selecting the best setting found during the exploration

phase (lines 8-11). ii) If the running phase is active, the running quantum is first reduced (line 14).

That quantum determines how long a running phase will be. A larger value will reduce the effect of

inefficient prefetch settings at the expense of a coarser adaptability.

Using OS-based algorithms we have observed similar results to the ones obtained at user-level.

90

These promising results encourage us to further pursue this path. We leave, however, the exploration

of other OS-based adaptive schemes for future work.

5.5 Conclusions

Prefetching engines in processors are getting more sophisticated over time. While designing a new

processor it is not easy to select a prefetching setting that performs well under all workloads that may

later run on the processor. In response to this, processor manufacturers are exposing multiple knobs

that users can tweak in an attempt to improve their workloads performance. But, doing so typically re-

quires a costly profiling step to determine the best prefetching setting for a particular workload. More-

over, when theworkload set changes overtime, the profile resultsmight not be useful anymore. There-

fore, this manual approach does not scale in a scenario where systems are shared amongmultiple users

and workload consolidation is becoming pervasive.

In this chapter we present an adaptive prefetch mechanism capable of boosting performance by

leveraging on prefetching knobs. We evaluate its impact on performance for single-threaded andmul-

tiprogrammed workloads, showing that significant speedups can be obtained with respect to the de-

fault prefetch setting. We compare the adaptive scheme to an approach where applications are first

profiled and the best prefetch setting found is used for future executions. Our dynamic approach,

however, frees users from profiling every application in order to find the best static prefetch setting.

91

6
Bandwidth Shifting: Improving

System-Wide Performance

6.1 Introduction

As newer systems become capable of running a larger thread count, effectively sharing the available

bandwidth to memory is becoming even more important. Total bandwidth continues to increase

throughmultiple architectural improvements. But bandwidth per thread is actually becoming scarcer

in newer systems. Therefore in this section we place the focus on a solution that balances the band-

width usage of the different workloads running on the system. This approach will attempt to maxi-

mize the utilization of memory bandwidth, potentially improving system performance and/or reduc-

92

Number of omnetpp threads

H
ar

m
on

ic
 S

pe
ed

up
1.1

1.2

1.3

1.4

1.5

1.6

4 8 12 16 20 24 28

●

●

●

●

●

●

●

Figure 6.1: Effect of bandwidth shifting on system performance when a prefetch-efficient benchmark (bwaves) and a

prefetch-inefficient one (omnetpp) run together. The X axis shows the number of omnetpp threads (x). The number of
bwaves threads is 32 − x.

ing power consumption (e.g., by turning off the prefetcher for applications that are not amenable

to prefetching). To the best of our knowledge, this solution is the first one that addresses prefetch

bandwidth management for CMP processors without requiring hardware support. Because of its de-

sign, our solution should work on anymulticore systemwith a programmable prefetch engine—most

modern processors allow users to control prefetching in different ways.

Figure 6.1 shows an illustrative example of the effect of bandwidth shifting on system performance.

In this examplewe run twobenchmarks—bwaves (prefetch friendly) andomnetpp (prefetchunfriendly).

For every execution (represented as a tick in the X axis) we run 32 processes in total: x omnetpp copies

and 32− x bwaves copies. We compute the system speedup using the harmonic speedup between two

configurations: 1) both benchmarks using themost aggressive prefetch setting, and 2) bwaves keeps us-

ing themost aggressive setting, but prefetching is disabled for omnetpp. Our bandwidth shiftingmech-

anism would effectively shift prefetch resources from the prefetch-friendly to the prefetch-unfriendly

benchmark. As the number of omnetpp copies increases, the benchmark keeps adding pressure to the

available memory bandwidth thus taking bandwidth away from bwaves. If we shift bandwidth be-

93

tween both benchmarks by disabling prefetching for omnetpp, we observe very significant speedups.

This is especially noticeable as the number of omnetpp copies increases, since prefetches issued for that

benchmark saturate the bandwidth to memory. When we intelligently shift bandwidth between the

applications, for 28 omnetpp threads the system speedup exceeds 60%. As Figure 6.1 demonstrates,

there is ample room for an intelligent bandwidth shifting mechanism that takes bandwidth resources

away from prefetch-inefficient workloads, and gives those resources to more efficient workloads.

In this chapter we first introduce a metric that estimates prefetch usefulness for a given thread

based solely on performance counters commonly available in current processors. Then we present

a novel bandwidth shifting mechanism capable of significantly improving system performance by tak-

ing bandwidth away from benchmarks that do not use prefetching in an efficient way and giving it to

prefetch-efficient benchmarks. The mechanism does not require any hardware support, and it is able

to obtain up to 18.5% speedup (10-11% on average). We also study the impact of bandwidth shifting in

extreme cases where one benchmark is highly prefetch-efficient and the other uses prefetching ineffi-

ciently. Our results show that bandwidth shifting achieves much larger speedups (>1.6X). Finally we

evaluate the impact of the bandwidth shifting mechanism on power consumption too.

6.2 Effect of Prefetching on Performance and Bandwidth

In order to study the potential for a bandwidth shiftingmechanism and tobetter understand the inher-

ent trade-offs to such amechanism, in this section we look at the effect of prefetching on performance

and bandwidth for different mix of benchmarks running concurrently on a system.

Figure 6.2 shows the throughput and memory bandwidth consumption for a subset of the SPEC

CPU2006 benchmarks (the rest of the benchmarks in the suite have a similar behavior to one of the

benchmarks shown in the figure). The results show throughput and bandwidth values for an increas-

ing thread count, from 4 threads (using only one core) to 32 threads (using all 8 cores). Results are

94

Number of threads

T
hr

ou
gh

pu
t a

nd
 B

an
dw

id
th

 (
G

B
/s

)

1
2

3
4

5
6

4 8 121620242832

●

●

●

● ● ● ● ●

THROUGHPUT
bwaves

10
20

30
40

●

●

●

● ● ● ● ●

BW
bwaves

2
4

6
8

10
12

14

4 8 121620242832

●

●

●

●

●

●

●

●

THROUGHPUT
cactusADM

5
10

15
20

25

●

●

●

●

●

●

●
●

BW
cactusADM

5
10

15
20

4 8 121620242832

●

●

●

●

●

●

●

●

THROUGHPUT
h264ref

2
4

6
8

10
12

●

●

●

●

●

●

●

●

BW
h264ref

1.
0

1.
5

2.
0

2.
5

3.
0

●

●

●
● ●

● ● ●

THROUGHPUT
milc

10
15

20
25

30
35

●

●

●
● ● ● ● ●

BW
milc

5
10

15
●

●

●

●

●

●

●

●

THROUGHPUT
namd

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

BW
namd

1
2

3

●

●

●

●
●

●
●

●

THROUGHPUT
omnetpp

10
20

30
40

●

●

●

●
●

● ● ●

BW
omnetpp

5
10

15

●

●

●

●

●

●

●

●

THROUGHPUT
povray

4 8 121620242832

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

●
●

●
● ●

● ●

●

BW
povray

1
2

3
4

●

●

●

● ● ● ●

●

THROUGHPUT
soplex

4 8 121620242832

10
20

30

●

●

●

●
● ● ● ●

BW
soplex

1
2

3
4

5

●

●

●

●
●

●
● ●

THROUGHPUT
xalancbmk

4 8 121620242832

10
20

30
40

●

●

●

●
●

● ● ●

BW
xalancbmk

DEEP SHALLOW OFF●

Figure 6.2: Throughput and memory bandwidth consumption characterization for a subset of the benchmarks. This

subset is representative of all the benchmarks used in this chapter (i.e., the curves for the benchmarks not shown here

match one of the benchmarks shown in the figure).

shown for three different prefetch configurations: DEEP, SHALLOW and OFF. In the first two set-

tings prefetching is enabled, but with various aggressiveness configurations. For DEEP the prefetcher

uses the longest prefetch distance available, while for SHALLOWit uses the shortest one. SettingOFF

simply turns off the prefetcher.

As the figure shows, bandwidth andperformance of certain benchmarks saturate and level offwhen

we use more than 16 threads. In this study we use a low-end POWER7 system, where the maximum

available bandwidth is 40GB/s per socket and the DRAM clock frequency is 800MHz. These results

might differ for higher-end systems, which havemore than double thismemory bandwidth per socket.

It should be noted that our goal is to evaluate the benefits of thememory bandwidth shifting idea, not

tomeasure the effectiveness of the existing data prefetchmechanisms in this particular IBMPOWER7

machine.

95

Some benchmarks use prefetching in a very efficient way. High performance computing (HPC)

applications such as bwaves and cactusADM are good representatives of prefetch-efficient workloads.

Their speedup when prefetching is enabled is linearly proportional to the extra bandwidth consump-

tion. Prefetching is critical for these applications to obtain high performance. Other benchmarks such

as h264ref benefit fromprefetching, but the performance benefit they obtain does not compensate the

extra bandwidth utilized. Benchmarks like this one do not utilize prefetching as efficiently as bench-

marks such as bwaves do.

Benchmarks such as xalancbmk, milc and soplex are high bandwidth consumers—all of them reach-

ing 40 GB/s (the bandwidth limit in our system) when the thread count is high. When the thread

count is relatively small, prefetching increases performance since memory bandwidth is not saturated.

As the number of threads running on the system increases, bandwidth tomemory becomes saturated,

and at some point, prefetching stops being useful. After a certain thread count (which depends on the

benchmark) prefetching may degrade performance.

Other benchmarks such as omnetpp and povray simply do not benefit from prefetching for any

thread count. Even if the total bandwidth consumption of povray is very low, Figure 6.2 shows that

the bandwidth consumption significantly increases (in relative terms) when we enable prefetching.

Performance, on the contrast, decreaseswhenprefetching is turned on. omnetpphas a similar behavior,

but this benchmark consumes a large amount of bandwidth. It saturates the available bandwidthwith

useless prefetches that do not benefit itself, and degrade the performance of other workloads running

on the system. Another benchmark with a similar behavior is namd. When prefetching is turned off,

however, its performance increase is barely noticeable.

Our findings show that the efficiency of prefetching on applications significantly varies depending

on the access patterns of these applications. Bandwidth saturation is another important parameter

that determines the effectiveness of prefetching—an application that benefits from prefetching when

there is plenty of bandwidth available might be negatively affected by prefetching when bandwidth

96

is scarce. All these observations suggest that a dynamic—online—mechanism, such as the one we are

presenting in this chapter, is required in order to use bandwidth in a more efficient way.

Because we do not observe significant differences when varying the prefetch aggressiveness, in the

design of the bandwidth shifting mechanism we only consider two settings: ON and OFF. * We use

DEEP as the configuration when prefetching is enabled (ON).

6.3 Intelligent Bandwidth Shifting

Our intelligentbandwidth shiftingmechanismdynamically takes prefetch resources away fromprefetch-

inefficient threads and gives those resources to more efficient threads, effectively shifting bandwidth

between the threads running on the system. Giving that extra bandwidth to the threads that use

prefetching efficiently leads to system (global) speedups.

In order to decidewhich threads use prefetching efficiently, wemust first define ametric to estimate

the prefetch usefulness (PU) level for a given thread. We define that metric as:

PU =
IPCon/BWon
IPCoff/BWoff

(6.1)

where IPCon and IPCoff are the instructions per cycle when the prefetch is on and off, respectively.

Similarly,BWon andBWoff refer to thememory bandwidth consumption for the same configurations.

All these values are dynamically obtained while applications are running on the system by sampling

per-thread IPC and bandwidth from the performance monitoring unit (PMU) in POWER7. The

rationale behind this metric is to compare the increase in performance to the increase in bandwidth

when going from prefetching disabled to enabled. The theoretical range of values for this metric is

(0, 1]. On the one hand, workloads with a prefetch usefulness close to 0 experience a very significant

*Using SHALLOWinsteadofDEEPmakes a differencewhen the system runs few threads in single-threaded
mode. But, we are interested in more realistic cases where many threads run on the system.

97

performance decrease or a large increase in bandwidth consumption (without a proportional increase

in performance)whenprefetching is enabled. On the other hand, prefetch-efficientworkloads that ob-

tain a prefetch usefulness equal to 1 have a proportional increase in performance and bandwidthwhen

prefetching is turned on. This implies that for every unit of bandwidth consumedbyprefetching there

is a linear increase in performance. This indeed is the upper limit for prefetch usefulness. As a proof,

let us consider a memory-bound program that traverses an array of sizeN bytes. With no prefetching

it takes Toff seconds to execute. Therefore, bandwidth consumption is N/Toff bytes/second. Let us

nowassume aperfect prefetch engine (in terms of coverage, accuracy and timeliness). Such aprefetcher

does not waste any data, thus only N bytes are moved from memory into the processor as well. The

difference is that in this case data is not transferred because of demandmisses, but because of prefetch

actions. When prefetching is used, the time the program takes to complete is Ton (Ton < Toff). Band-

width consumption isN/Ton bytes/second. Since execution time is inversely proportional to IPC we

have the following:

PU =
IPCon/IPCoff
BWon/BWoff

=
Toff/Ton

BWon/BWoff
=

Toff/Ton
N/Ton
N/Toff

= 1 (6.2)

This case represents the upper limit since in any other case where the prefetch engine moved use-

less data, bandwidth would proportionally increase more than performance and prefetch usefulness

would be less than 1.

We explored the potential of extending the PUmetric with some extra information such as estima-

tors of cache pollution. But we decided to keep the metric as simple as possible for three reasons: 1) to

increase the portability across different platforms, 2) due to the fact that in some systems obtaining an

estimate of cache pollutionmaynot be feasible or itmay require reading a significant number of events

from the performance monitoring unit (PMU)—incurring a high cost, and 3) because based on em-

pirical observation we concluded that the effect of bandwidth saturation was a muchmore important

98

Number of threads

P
re

fe
tc

h
U

se
fu

ln
es

s
(P

U
)

0.2
0.4
0.6
0.8
1.0

4 8 12 16 20 24 28 32

● ● ● ● ● ● ● ●

bwaves
● ● ● ● ● ● ● ●

cactusADM

4 8 12 16 20 24 28 32

●
● ● ● ● ● ● ●

h264ref

● ● ● ● ● ● ● ●

milc

● ● ● ●
●

● ●
●

namd

0.2
0.4
0.6
0.8
1.0

● ● ● ● ● ● ● ●

omnetpp
0.2
0.4
0.6
0.8
1.0

● ● ● ● ● ● ● ●

povray

4 8 12 16 20 24 28 32

● ● ● ● ● ● ● ●

soplex

● ● ● ● ● ● ● ●

xalancbmk

Figure 6.3: Prefetch usefulness characterization for the benchmarks shown in Figure 6.2.

factor to be addressed than cache pollution. Although we do not directly measure cache pollution or

cache interference between threads, our algorithm dynamically recomputes PU for every thread run-

ning on the system. Therefore, our mechanism naturally adapts to application phases and changes in

the thread mix. Our approach is also compatible with using extra information that might be poten-

tially available in future processors.

Figure 6.3 shows a prefetch usefulness characterization for the benchmarks shown in Figure 6.2.

Prefetch-efficient benchmarks such as bwaves and cactusADM consistently reach a prefetch usefulness

of 1 for any number of threads (that is the largest prefetch usefulness that a benchmark could obtain).

Benchmarks such as soplex and h264refmake amoderately efficient usage of prefetching. Other bench-

marks such as omnetpp, milc and xalancbmk do not use prefetching in an efficient way. Therefore, it is

typically better to take prefetching bandwidth away from them and to give it to more efficient work-

loads when bandwidth is scarce. Finally, povray is by far the most inefficient benchmark in terms of

99

Reset prefetch
settings

Compute PU
for each thread

Wait for next
phase

Turn off
prefetch for
lowest-PU

thread

BW
saturated

?

yes

no

Figure 6.4: Base bandwidth shifting algorithm.

prefetching usage. Because of its low bandwidth consumption, however, this benchmark does not

negatively affect other benchmarks running on the system.

6.3.1 Mechanism Description

Figure 6.4 shows the base implementation of the intelligent bandwidth shifting algorithm. It uses a

fully online approach—no offline profiling step is required at all. The algorithm behaves in an itera-

tive way. At the beginning of an iteration, the prefetch setting for every thread is reset using the most

aggressive prefetch configuration. After that step, the algorithm computes the prefetch usefulness for

every thread, and keeps the results in a table. † It does so by sequentially turning on and off prefetch-

ing for each thread, and measuring IPC and bandwidth in both configurations. By doing this process

in a sequential manner, our mechanism is able to indirectly account for the interferences between

threads at the different levels of the cache hierarchy. The algorithm samples performance counters

with 1ms granularity. Therefore, computing prefetch usefulness for all the threads takes 64ms. The

distance between two sampling steps or phases is 100ms. This sampling granularity may seem coarse

†We actually do not just store the last read sample. Instead, we use an exponentially-weighted moving av-
erage (EWMA) in order to limit the noise coming from micro-phases during the execution. This approach is
similar to using a moving average buffer as we did in the previous chapter.

100

compared to hardware-based solutions, but it is common for software-based ones. In fact, the Linux

kernel cannot sample PMCs at a granularity smaller than 1ms (when sampling events from different

groups). While hardware-based solutions are able to exploit the dynamic behavior of shorter phases,

real applications present phases lasting just a few nanoseconds all the way up to the multi-seconds

range. Therefore, our solution is able to adapt to the longer application’s phases. But, more impor-

tant, it can adapt to changing conditions in the system (e.g., when new threads are spawned and the

workload mix changes). The sampling overhead is negligible since the runtime spends most of the

time sleeping. We conducted tests where the runtime sampled PMCs but did not take any bandwidth

shifting action. The results showed no measurable slowdown.

This is a common sampling granularity for OS and runtime adaptive solutions. Finer granularities

might not be accurate and they may create significant overhead in the system. In the next step the

algorithm checks the total bandwidth consumption in the system. If the threads running on the sys-

tem do not saturate the total bandwidth capacity‡, the algorithm does nothing and it just waits for

the next phase or iteration. If bandwidth is saturated, shifting bandwidth from low to highly-efficient

threads will typically improve system performance. Our mechanism therefore turns prefetch off for

the thread with the lowest prefetch usefulness. The algorithm then checks whether the bandwidth is

still saturated. While it is, the algorithm will keep turning prefetch off for the running threads, based

on their prefetch usefulness—going from low to high values.

Ourbandwidth shiftingmechanism is implemented as a runtime thatmonitors the running threads

(reading the PMCs) and controls the prefetchers (through an OS-interface exposed in sysfs). The

scheme, however, is not restricted to this implementation. For instance, an OS-level implementation

would also be possible.

‡Bandwidth is determined to be saturated once it reaches 90% of the peak achievable bandwidth. We have
conducted experiments and determined that this threshold is the turning point where system performance de-
grades if prefetch bandwidth is not carefully managed.

101

Reset prefetch
settings

Compute PU
for each thread

Wait for next
phase

Turn off
prefetch for
lowest-PU

thread

BW
saturated

?

yes

no

Positive
speedup

?

Reenable
prefetch for
that thread

yes

no

Figure 6.5: Enhanced bandwidth shifting algorithmwith a guardmechanism.

6.3.2 Guard Mechanism

Our bandwidth shifting solutions computes prefetching usefulness (PU) for each thread, and then

uses that information to shift bandwidth resources from threadswith lower PU to threadswith higher

PU. In some circumstances, however, the available bandwidth capacity left unused after prefetching

is turned off for the lowest-PU thread cannot be used by the other threads. This might happen for

instance if threads with better PU cannot generate a higher rate of prefetches or demand loads to fill all

the extra bandwidth capacity. In such a scenario, the thread that had prefetching disabled experiences

a slowdown, and performance for the other threads remains the same—effectively leading to a global

performance slowdown. This behaviormight occur because of the intrinsic nature of theworkloads—

they might be already generating memory accesses as fast as necessary—or because of some hardware

limitation. Threads running on a system share hardware resources in the memory hierarchy, and this

limits their individual peak bandwidth (e.g., there is a limit on the number of simultaneous prefetch

streams that threads can allocate).

Current hardware does not expose such information to the software. Yet, it is essential to prevent

102

our bandwidth shifting solution from taking a decision that may lead to a system performance de-

crease. We thus extend our base algorithm with a guard mechanism that increases performance up

to 33% compared to the base algorithm. Figure 6.5 shows the new version of the algorithm, includ-

ing the guard mechanism. The behavior for the first steps is equivalent to the previous version of the

algorithm. When the algorithm decides to turn prefetching off for a given thread, however, system

performance is measured before and after disabling prefetching for that thread. In case there is a neg-

ative global speedup, prefetching is restored for that thread—and the decision to turn it off again is

not considered again until the next iteration. Otherwise, the algorithm behaves as the base one and

prefetching is kept turned off until another iteration starts.

6.4 Results

In this section we evaluate the performance and power impact of our bandwidth shifting mechanism.

Ourmechanism targets improving systemperformancebut it considers individual threadperformance

as well. Therefore, we use harmonic speedup (HS) as the metric to measure performance since it

both captures individual thread performance and global system performance. We compute harmonic

speedup using the following equation:

HS = #threads∑#threads
i

timei,bw−shifting
timei,baseline

(6.3)

where timei,bw−shifting is the execution time for thread i when the bandwidth shifting mechanism

is applied, and timei,baseline is the execution time for thread iwhen using the baseline prefetch configu-

ration. In all our evaluations we run all the threads until the last one completes its execution. Before

reaching that point we re-execute threads that finish earlier, thus keeping the number of threads con-

stant during the execution. We use a configuration where prefetching is enabled for all the threads

running on the system as the baseline for the evaluation of bandwidth shifting. In all the following

103

figures we use this baseline for computing the harmonic speedup and for normalizing the power con-

sumption.

6.4.1 Random Workloads

We use workloads composed of multiple randomly-selected benchmarks to evaluate the benefits of

using our bandwidth shiftingmechanism. We constructworkloads containing eight benchmarks each.

In total 32 threads are executed since we use all four SMT contexts, effectively running 4 threads per

core (we run 4 copies of the same benchmark in each core). Evaluating the bandwidth shifting with

all the possible combinations of eight benchmarks is not feasible due to the vast exploration space.

Instead, we create multiple groups of workloads with different characteristics in terms of memory

bandwidth usage and prefetch efficiency. We use these groups to show the benefits of bandwidth

shifting under different scenarios. We construct such groups by constraining the benchmarks that can

be part of the different workloads. We construct the following four groups:

Random Workloads in this group are constructed in a purely random way—no constraints are en-

forced. This translates into workloads where the bandwidth consumption is typically not high

and prefetch efficiency varies across all the possible range. We use this group to demonstrate

that our bandwidth shifting mechanism does not degrade performance for workloads that, a

priori, should not significantly benefit from such a mechanism.

MI-PE-high Workloads in this group are memory intensive and they contain a high percentage of

benchmarks that are prefetch efficient.

MI-PE-mix Workloads in this group arememory intensive and they are composed of benchmarkswith

mixed prefetch efficiency levels.

104

Harmonic Speedup

WL8
WL7
WL1
WL3
WL5
WL9
WL4
WL2
WL6

WL10

0.95 1.00 1.05 1.10

●

●

●

●

●

●

●

●

●

●

(a)Random

Harmonic Speedup

WL1
WL9
WL3
WL6
WL5
WL2

WL10
WL8
WL7
WL4

1.00 1.05 1.10 1.15

●

●

●

●

●

●

●

●

●

●

(b)MI-PE-high

Harmonic Speedup

WL6
WL4
WL5

WL10
WL7
WL9
WL8
WL2
WL1
WL3

1.05 1.10 1.15 1.20

●

●

●

●

●

●

●

●

●

●

(c)MI-PE-mix

Harmonic Speedup

WL1
WL7
WL6

WL10
WL8
WL3
WL2
WL9
WL4
WL5

1.05 1.10 1.15 1.20

●

●

●

●

●

●

●

●

●

●

(d)MI-PE-low

Figure 6.6: Performance results for randomly-constructedworkloads.

MI-PE-low Workloads in this group arememory intensive and they are composed of benchmarks that

are not prefetch efficient.

Table 6.1 shows the exact benchmarks used in every workload for all the workload groups. In the

following figures we utilize the workload name as displayed in this table to identify individual work-

loads.

Performance Evaluation

Figure 6.6 shows the performance impact of using our bandwidth shiftingmechanism for all thework-

load groups. We study the benefits of using bandwidth shifting independently for each group.

Random group Workloads in this group typically do not contain more than one prefetch ineffi-

cient benchmark. Since they are also composed ofmultiple benchmarkswith lowmemory bandwidth

consumption, the speedups obtainedwhen using the bandwidth shiftingmechanism are not large. Ex-

cept for workload 10, speedups are always below 5%—the average speedup is 2.5%. Workload 10 is one

of the workloads with highest bandwidth consumption in this group. It additionally contains two

inefficient benchmarks (milc and astar). Because of this, the bandwidth shifting mechanism is able to

obtain a 7% speedup. We observe a small performance degradation for workload 8. The slowdown

105

Table 6.1: Benchmark combinations used for creating the randomworkloads.

(a)Random

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10

sjeng dealII tonto GemsFDTD gromacs GemsFDTD perlbench libquantum h264ref milc
tonto milc namd milc Graph500 soplex lbm zeusmp mcf zeusmp
zeusmp libquantum cactusADM h264ref soplex milc bwaves gobmk soplex astar
hmmer zeusmp soplex h264ref bzip2 soplex wrf gromacs hmmer GemsFDTD
h264ref calculix namd perlbench xalancbmk calculix omnetpp xalancbmk libquantum gcc
gobmk leslie3d povray sphinx3 gamess h264ref perlbench dealII Graph500 soplex
hmmer GemsFDTD omnetpp soplex bwaves xalancbmk gamess mcf hmmer lbm
h264ref bzip2 mcf sjeng sjeng tonto dealII wrf wrf mcf

(b)MI-PE-high

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10

leslie3d astar gcc milc lbm Graph500 astar sphinx3 xalancbmk Graph500
xalancbmk GemsFDTD soplex milc lbm mcf leslie3d lbm libquantum leslie3d
xalancbmk mcf libquantum omnetpp astar libquantum bwaves sphinx3 gcc Graph500
leslie3d xalancbmk GemsFDTD leslie3d lbm Graph500 omnetpp sphinx3 Graph500 xalancbmk
mcf milc gcc astar astar leslie3d milc milc mcf bwaves
gcc libquantum GemsFDTD bwaves bwaves gcc astar milc gcc milc
gcc sphinx3 omnetpp omnetpp xalancbmk GemsFDTD astar GemsFDTD GemsFDTD omnetpp

leslie3d mcf leslie3d libquantum sphinx3 xalancbmk libquantum milc mcf libquantum

(c)MI-PE-mix

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10

xalancbmk omnetpp omnetpp gcc milc Graph500 gcc GemsFDTD sphinx3 omnetpp
astar sphinx3 omnetpp astar sphinx3 soplex leslie3d Graph500 astar leslie3d
mcf bwaves milc gcc milc Graph500 astar milc lbm astar

soplex milc sphinx3 Graph500 GemsFDTD astar milc Graph500 milc xalancbmk
milc soplex bwaves leslie3d libquantum xalancbmk mcf omnetpp astar Graph500

omnetpp mcf milc Graph500 astar libquantum astar gcc GemsFDTD Graph500
Graph500 xalancbmk sphinx3 omnetpp gcc GemsFDTD leslie3d Graph500 milc sphinx3

lbm xalancbmk milc mcf gcc soplex milc astar leslie3d lbm

(d)MI-PE-low

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10

gcc GemsFDTD xalancbmk milc gcc astar libquantum milc milc leslie3d
astar Graph500 gcc milc omnetpp omnetpp astar leslie3d GemsFDTD xalancbmk
gcc milc omnetpp omnetpp lbm xalancbmk milc milc libquantum gcc

Graph500 Graph500 GemsFDTD astar milc astar gcc milc omnetpp bwaves
leslie3d omnetpp milc omnetpp omnetpp xalancbmk xalancbmk Graph500 xalancbmk omnetpp

Graph500 gcc astar GemsFDTD mcf Graph500 bwaves xalancbmk milc Graph500
omnetpp Graph500 sphinx3 Graph500 omnetpp libquantum xalancbmk Graph500 milc astar

mcf astar omnetpp milc milc gcc gcc soplex astar omnetpp

106

is, however, less than 0.5%. No other workload suffers any performance degradation, so we can ef-

fectively consider that our bandwidth shifting mechanism works efficiently even in cases where the

potential benefits are not expected to be large.

Memory intensive, high prefetch efficiency Most workloads in this group contain less

than three prefetch-inefficient benchmarks. But compared to the previous group, there is more room

for effectively shifting bandwidth from prefetch-inefficient benchmarks to other benchmarks that use

prefetching more efficiently. A 6.5% average speedup reflects that observation. In this group no work-

load suffers a performance degradation—the minimum speedup is 1.5% (workload 1). Workloads 4

and 7 contain multiple copies of prefetch-inefficient, memory-intensive benchmarks such as milc, om-

netpp and astar. The bandwidth shifting mechanism obtains speedups slightly over 10% for these two

cases.

Memory intensive, mixed prefetch efficiency Workloads in this group contain approxi-

mately 50% prefetch-inefficient benchmarks. The potential for bandwidth shifting in this scenario

seems ample and the results confirm that intuition. The average speedup for this groupofworkloads is

10%. This is a very significant performance increase, especially considering that we are conducting our

experiments on a realmachinewith all the software stack running on it. The highest speedup (18.5%) is

achieved for workload 3. That workload contains a large number of prefetch-inefficient benchmarks

plus some highly efficient ones. In such a scenario, the bandwidth shifting mechanism obtains the

best results by giving the valuable bandwidth to the benchmarks that better use it. All the workloads

experience speedups when run under the control of the bandwidth shifting mechanism. The smallest

speedup is 5.4%.

Memory intensive, low prefetch efficiency Workloads in this group are composed of ap-

proximately 70% prefetch-inefficient workloads. It may seem as if bandwidth shifting could poten-

107

Benchmarks

W
or

kl
oa

ds

WL8

WL7

WL1

WL3

WL5

WL9

WL4

WL2

WL6

WL10

0 1 2 3 4 5 6 7
0.9

1.0

1.1

1.2

1.3

1.4

(a)Random

Benchmarks

W
or

kl
oa

ds
WL1

WL9

WL3

WL6

WL5

WL2

WL10

WL8

WL7

WL4

0 1 2 3 4 5 6 7
0.9

1.0

1.1

1.2

1.3

1.4

(b)MI-PE-high

Benchmarks

W
or

kl
oa

ds

WL6

WL4

WL5

WL10

WL7

WL9

WL8

WL2

WL1

WL3

0 1 2 3 4 5 6 7
0.9

1.0

1.1

1.2

1.3

1.4

(c)MI-PE-mix

Benchmarks

W
or

kl
oa

ds

WL1

WL7

WL6

WL10

WL8

WL3

WL2

WL9

WL4

WL5

0 1 2 3 4 5 6 7
0.9

1.0

1.1

1.2

1.3

1.4

(d)MI-PE-low

Figure6.7: Individual speedups for results in Figure6.6. Each square in aplot displays the individual speedup for abench-

markwithinaworkload. Thespeedupdegree is shownwithacolor scale, going fromlightcolors—lowerspeedup—todark

colors—higher speedup.

tially obtain higher speedups for this group compared to the previous one. When most benchmarks

in a workload are prefetch-inefficient, however, there are not so many good candidates to shift the

bandwidth to. Nonetheless, the bandwidth shifting mechanism performs very successfully in this

group too. The average speedup is 11%. The minimum and maximum speedups are 6% and 18%, re-

spectively.

According to these results, we conclude that the bandwidth shifting mechanism works efficiently

across a wide range of different scenarios. Even if, as expected, large speedups are not obtained for

workloads with a low degree of memory intensity and few prefetch-inefficient benchmarks, perfor-

mance for these workloads is not degraded in virtually any case. When we use bandwidth shifting

under the presence of memory-intensive, prefetch-inefficient workloads, such a dynamic mechanism

certainly helps at improving performance—the maximum speedup obtained being 18.5%.

Fairness Evaluation

The main goal of this chapter is to present a mechanism for improving global system performance by

intelligently allocating prefetch bandwidth among the different applications. For such kind of mecha-

nism, however, it is important to assess its impact on fairness. Because of the nature of ourmechanism,

108

Table 6.2: Summary of individual speedups for the different workload groups.

Random MI-PE-high MI-PE-mix MI-PE-low

Min. speedup 0.92 0.97 0.98 0.99
Max. speedup 1.15 1.25 1.36 1.27
Avg. speedup 1.03 1.07 1.11 1.11

even if the global performance increases, some applicationsmay experience speedupswhile othersmay

experience slowdowns. Therefore, we study the impact of our mechanism on the fairness among the

running benchmarks. In order to do that, we look at the individual speedups experienced by all the

benchmarks composing the workloads.

Figure 6.7 contains a heat map showing individual benchmark speedup for each workload group.

Lighter colors represent lower speedups—or even slowdowns—anddarker ones stand forhigher speedups.

For instance, the row labeledWL3 in Figure 6.7b shows the individual speedups for all benchmarks in

workload 3 (from theMI-PE-high group). Suchworkload contains a heterogeneousmix ofworkloads:

some such as libquantum and leslie3d are prefetch-efficient while omnetpp is very inefficient. Other

benchmarks such as gcc, GemsFDTD and soplex are sensitive to prefetching but to a much lesser degree.

Ourmechanism shifts bandwidth away from omnetpp so that libquantum and leslie3d can benefit from

that extra bandwidth, obtaining 18 and 4% speedups, respectively. At the same time omnetpp bene-

fits as well, since turning prefetch off for that benchmark avoids the generation of a high number of

useless prefetches. In the figure we observe a dark square—representing the high speedup for libquan-

tum—and two smaller speedups—omnetpp and leslie3d. The rest of the benchmarks experience±1%

speedups.

Looking at Figure 6.7 we observe that in general there is not a high degree of unfairness. Some

benchmarks such as bwaves and libquantum consistently obtain very significant individual speedups

up to 36%—most of the darkest squares in the figure are related to these two benchmarks. Other

benchmarks experience a slowdown since bandwidth is taken away from them, but the maximum

109

Normalized Power

WL8
WL4
WL6
WL5
WL9
WL7

WL10
WL2
WL3
WL1

0.97 0.99 1.01

●

●

●

●

●

●

●

●

●

●

Total power

0.97 0.99 1.01

●

●

●

●

●

●

●

●

●

●

CPU power

0.97 0.99 1.01

●

●

●

●

●

●

●

●

●

●

Memory power

(a)Random

Normalized Power

WL2
WL4

WL10
WL7
WL9
WL3
WL5
WL6
WL8
WL1

0.98 1.00 1.02

●

●

●

●

●

●

●

●

●

●

Total power

0.98 1.00 1.02

●

●

●

●

●

●

●

●

●

●

CPU power

0.98 1.00 1.02

●

●

●

●

●

●

●

●

●

●

Memory power

(b)MI-PE-high

Normalized Power

WL5
WL9
WL1
WL7
WL2
WL6
WL8

WL10
WL3
WL4

0.98 1.00 1.02

●

●

●

●

●

●

●

●

●

●

Total power

0.98 1.00 1.02

●

●

●

●

●

●

●

●

●

●

CPU power

0.98 1.00 1.02

●

●

●

●

●

●

●

●

●

●

Memory power

(c)MI-PE-mix

Normalized Power

WL2
WL7
WL5
WL3
WL4
WL8
WL1
WL6
WL9

WL10

0.98 1.00 1.02 1.04

●

●

●

●

●

●

●

●

●

●

Total power

0.98 1.00 1.02 1.04

●

●

●

●

●

●

●

●

●

●

CPU power

0.98 1.00 1.02 1.04

●

●

●

●

●

●

●

●

●

●

Memory power

(d)MI-PE-low

Figure6.8: Power consumption results for randomworkloads. Values are normalized to the casewhere themost aggres-

sive prefetch setting is used for all the benchmarks.

performance degradation is 8% in the most extreme case—below 3% in the average case. Table 6.2

shows these observations. It contains a summary of the individual speedups obtained for each work-

load group. The results show that our bandwidth shifting mechanism—with the help of the guard

feature—achieves to maintain a good level of fairness between the different benchmarks running on

the system. As future work, we plan to extend the guard mechanism to keep fairness under a certain

threshold if desired.

110

Number of omnetpp threads

H
ar

m
on

ic
 S

pe
ed

up

1.1

1.2

1.3

1.4

1.5

1.6

4 8 12 16 20 24 28

●

●

●

●

●

●

●

(a) bwaves-omnetpp

Number of milc threads
H

ar
m

on
ic

 S
pe

ed
up

1.1

1.2

1.3

1.4

1.5

4 8 12 16 20 24 28

●

●

●

●

●

●

●

(b) bwaves-milc

Number of graph500 threads

H
ar

m
on

ic
 S

pe
ed

up

1.0

1.1

1.2

1.3

4 8 12 16 20 24 28

●

●

●

●

●

●

●

(c) bwaves-Graph500

Figure 6.9: Performance results for an increasing number of copies of prefetch-inefficient benchmarks.

Power Consumption Evaluation

Figure 6.8 shows the power consumption impact of using our bandwidth shifting mechanism for all

the workload groups. In general, total power consumption is not significantly affected—all values

are within 1% of the power consumption obtained when the bandwidth shifting mechanism is not

utilized. For virtually all workloadsmemory power consumption decreases (up to 3%). The reason be-

hind that reduction is that the bandwidth shifting mechanism effectively turns off prefetch for those

benchmarks that are not efficiently using prefetching. Even if prefetch-efficient benchmarks benefit

from that extra available bandwidth—performance actually increases for them—in some cases, these

benchmarks might not be able to utilize all the bandwidth freed by the shifting mechanism. On the

other hand, CPU power consumption typically increases for most benchmarks. By shifting band-

width to the more efficient benchmarks, useless prefetches and cache misses due to cache pollution

are avoided. That increases CPU utilization for the benchmarks running on the system while at the

same time it increases power consumption in the cores.

111

Number of omnetpp threads

N
or

m
al

iz
ed

 p
ow

er

0.96

0.98

1.00

1.02

1.04

4 8 12 16 20 24 28

●
●

●
● ● ●

●

Total CPU Memory●

(a) bwaves-omnetpp

Number of milc threads
N

or
m

al
iz

ed
 p

ow
er

0.96

0.98

1.00

1.02

1.04

4 8 12 16 20 24 28

●
● ●

● ●
●

●

Total CPU Memory●

(b) bwaves-milc

Number of graph500 threads

N
or

m
al

iz
ed

 p
ow

er

0.99

1.00

1.01

1.02

1.03

4 8 12 16 20 24 28

●
●

●

●
● ●

●

Total CPU Memory●

(c) bwaves-Graph500

Figure 6.10: Power consumption results for an increasing number of copies of prefetch-inefficient benchmarks. Fig-

ure 6.9 shows the performance results for the same set of experiments.

6.4.2 Limit Studies

In this section we look at the potential of bandwidth shifting inmore extreme cases where we run two

benchmarks with very different characteristics together. Figure 6.9 shows the results of these exper-

iments. In all the cases we run one benchmark that uses prefetching in a very efficient way (bwaves)

and a benchmark that is very prefetch-inefficient (omnetpp,milc andGraph500). It is important to note

that even if we only use bwaves as the representative of prefetch-efficient benchmarks, similar results

are obtained with other benchmarks such as leslie3d or libquantum.

In Figure 6.9 theX axis shows the number of copies running for the prefetch-inefficient benchmark

(x). In all the cases we run 32 copies in total, therefore the number of copies for the prefetch-efficient

benchmark is 32 − x. All the combinations show a similar trend: when the number of prefetch-

inefficient threads is low (4) most of the bandwidth is consumed by the prefetch-efficient benchmark.

Therefore, there is limited potential for bandwidth shifting in this scenario. In all cases the speedup is

well below 10%. As we increase the number of prefetch-inefficient threads, however, the pressure on

bandwidth increases and the impact of bandwidth shifting on performance is much more significant.

In the most extreme case—when 28 omnetpp copies are run—bandwidth shifting achieves a speedup

112

over 1.6X.

While we have seen very significant speedups in the case of randomly constructed workloads, the

potential for bandwidth shifting is even higher for mixed workloads with applications that exploit

prefetching in a very efficient way and applications that are prefetch unfriendly.

Figure 6.10 shows the power consumption for the experiments shown in Figure 6.9. In terms of

total power consumption, the variation due to using bandwidth shifting is rather small (<1%). If we

look at the CPU and memory power consumption we observe higher power variations in the order

of 4-5%. As it was the case with random workloads, memory power consumption tends to go down

when bandwidth shifting is used. This decrease is much more significant as the number of prefetch-

inefficient threads gets larger. For instance, in Figure 6.10a we observe that when 28 omnetpp copies

are run, memory power consumption goes down 4% with respect to the case where no bandwidth

shifting is used. The reason for that is a total bandwidth decrease. As bandwidth shifting turns off

prefetching for omnetpp, its bandwidth consumption is almost halved. The only 4 bwaves copies run-

ning on the system cannot consume enough bandwidth—evenwhen prefetching is enabled. Since the

total bandwidth to memory decreases, and active power consumption in DRAM is proportional to

bandwidth consumption, using bandwidth shifting reduces memory power consumption. The same

trend can be observed for the other two experiments.

CPU power consumption goes up when using bandwidth shifting. The reason is again a more

effective usage of core resources since the cores do not need to wait so long for memory requests to

come back from the last level cache or DRAM. All three experiments show similar results where CPU

power consumption increases up to 5%. It is important to note that such a power consumption in-

crease comes with a very significant performance speedup in the order of 1.3-1.6X.

113

Table 6.3: Decisions taken by the algorithms implemented in adaptive prefetching (AP) and bandwidth shifting (BWS)

solutions for two sample executions (WL5 and WL7 in Table 6.1b). The fraction of time where prefetching was off for

each workload is shown for both solutions. For adaptive prefetching the setting selected more times is also listed (best

AP)—the column is blank if there was not a single setting that dominated the execution.

(a)WL5

Workload Time Off Time Off Best
BWS (%) AP (%) AP

lbm 14 0 SW7
lbm 15 0 SW7
astar 82 3 7
lbm 20 0 SW7
astar 87 4 -

bwaves 0 0 SW7
xalancbmk 80 6 -
sphinx3 2 0 7

(b)WL7

Workload Time Off Time Off Best
BWS (%) AP (%) AP

astar 66 6 -
leslie3d 6 0 7
bwaves 4 0 SW7

omnetpp 91 1 -
milc 92 0 SW7
astar 68 4 -
astar 74 3 -

libquantum 0 0 SW7

6.5 Comparing Bandwidth Shifting to Adaptive Prefetching

The adaptive prefetching solution presented inChapter 5 is designed to independently find an optimal

prefetching configuration for each thread in the system. In spite of that, adaptive prefetching can also

improve performance formulti-programmedworkloads. That is the case specially for relatively simple

workloads where only eight threads—from two different benchmarks—are executed (see Section 5.3).

But for more complex workloads such as the ones used to evaluate the bandwidth shifting solution

presented in this chapter, adaptive prefetching might suffer from a lack of a system-wide perspective.

Table 6.3 shows detailed information of the decisions taken by both solutions for two sample execu-

tions (WL5 andWL7 inTable 6.1b). For adaptive prefetching, the setting that was selectedmore times

during the execution is also listed. As it can be seen, adaptive prefetching makes good local choices: i)

it enables prefetching for stores operations for lbm, a benchmark with a high write bandwidth; ii) it

enables stride-N formilc, a benchmark that exhibits a strided memory access pattern, and iii) it selects

the deepest setting for leslie3d, bwaves and libquantum, all of them benchmarks that significantly ben-

114

efit from an aggressive prefetching setting. The rest of the benchmarks do not benefit from a specific

setting. That is for instance the case of prefetch-friendly benchmarks—they benefit from prefetching,

but once prefetching is enabled, changing the configuration does not affect their performance.

While these decisions might be optimal from a local point of view, they might not be ideal from

a global, system-wide perspective. Let us imagine a workload composed of benchmarks that benefit

from prefetching, yet with different prefetching efficiency levels. In such a scenario, adaptive prefetch-

ing will independently try to optimize the prefetching setting for each benchmark—likely by mak-

ing prefetching more aggressive for each benchmark. As Table 6.3 shows, adaptive prefetching keeps

prefetching enabled for all benchmarks most of the time. When the total memory bandwidth usage is

high, however, it might be better to give extra resources to benchmarks with a high degree of prefetch-

ing efficiency.

This is exactly what our bandwidth shifting solution does. Benchmarks that are not prefetch-

efficient such as milc, omnetpp, astar or xalancbmk have prefetching disabled up to 92% of their exe-

cution time. That leaves more bandwidth available to prefetch-efficient benchmarks such as bwaves,

leslie3d or libquantum, thus improving global system performance. It is important to note that our

bandwidth shifting solution enforces a certain fairness degree as the guard mechanism uses the har-

monic mean to compute the global speedup when prefetching is disabled for the least-efficient bench-

mark (see Section 6.4.1 for details).

Figure 6.11 shows the performance speedup for each workload in Table 6.1 when using bandwidth

shifting compared to adaptive prefetching. In general, bandwidth shifting significantly outperforms

adaptive prefetching when system-wide performance is considered. This is due to the lack of global

awareness of the adaptive prefetching solution, which just tries to optimize single-threaded perfor-

mance. There are, however, some differences in the results depending on the nature of the workloads

evaluated.

In the case of completely randomly selected bechmarks (Figure 6.11a) bandwidth shifting actually

115

Harmonic Speedup

WL7
WL8
WL2
WL1
WL3
WL5
WL9
WL4
WL6

WL10

0.95 1.00 1.05

●

●

●

●

●

●

●

●

●

●

(a)Random

Harmonic Speedup

WL6
WL1
WL9
WL3
WL5

WL10
WL8
WL7
WL4
WL2

1.0 1.1 1.2 1.3

●

●

●

●

●

●

●

●

●

●

(b)MI-PE-high

Harmonic Speedup

WL6
WL10

WL4
WL8
WL7
WL9
WL5
WL2
WL1
WL3

0.95 1.00 1.05 1.10 1.15 1.20

●

●

●

●

●

●

●

●

●

●

(c)MI-PE-mix

Harmonic Speedup

WL1
WL6
WL7

WL10
WL2
WL3
WL8
WL9
WL4
WL5

1.05 1.10 1.15 1.20

●

●

●

●

●

●

●

●

●

●

(d)MI-PE-low

Figure 6.11: Performance speedup resulting from using bandwidth shifting over adaptive prefetching.

performs slightly worse than adaptive prefetching. But the slowdown is small—in the 1-3% range. We

have pinned down the origin of the slowdown to the exploration phase. The most advanced version

of adaptive prefetching (see Algorithm 3 in Section 5.2.3) drops inefficient settings based on their inef-

ficiency degree so that they do not significantly hurt performance during the exploration phase. We

have not implemented such a technique in our bandwidth shifting solution. Therefore, prefetching-

efficient applications suffer a performance degradation every time the exploration phase runs. This,

however, could be avoided—or at the very least alleviated—through several means: 1) implementing

a dropmechanism similar to the one present in adaptive prefetching; 2) reducing the number of times

the exploration phase needs to run by using a phase-detection mechanism for a multicore processor;

or 3) eliminating the need of the exploration phase altogether—improving the information provided

by the hardware to the software so that the latter can decide the relative prefetching efficiency of the

different applications running on the system without the need to explicitly turn prefetching off. We

leave the research on this improvements as future work.

In the other three cases—Figure 6.11 (b-d)—bandwidth shifting performs equally or better than

adaptive shifting. As a larger percentage of the benchmarks composing the workload groups become

more prefetching-inefficient, bandwidth shifting obtains significant speedups in the 5-20% range, with

one instance reaching 30% system performance improvement.

116

Overall, bandwidth shifting is a better solution for managing prefetching resources from the per-

spective of improving global systemperformance. Its system-wide awareness is responsible for a better

allocation of bandwidth resources—specially when the workload is memory-intensive. Moreover, its

performance can be further improved with the aforementioned enhancements.

6.6 Conclusions

Effectively managing memory bandwidth consumption in highly-threaded CMP/SMT systems is be-

coming paramount. In this chapter we present an intelligent bandwidth shifting mechanism that as-

signs bandwidth resources to applications in such a way that prefetch-inefficient applications do not

waste these resources while prefetch-efficient ones benefit from the extra available resources. To the

best of our knowledge, our solution is the first one to address this important problemwithout requir-

ing hardware support. We assess the impact of our bandwidth shifting mechanism using an extensive

evaluation. We obtain very significant speedups—in the order of 10-20% for randomly built work-

loads and over 1.6X for more extreme cases where one benchmark uses prefetching in a very efficient

way while the other is very prefetch-inefficient.

Compared to adaptive prefetching (see Chapter 5) our bandwidth shifting solution uses a global,

system-wide approach that achieves a better management of memory bandwidth resources available

to applications. By doing so, it obtains signficant speedups compared to both adaptive prefetching

and a static approach in most cases.

117

7
Per-Task Energy Accounting

7.1 Introduction

The previous chapters in this thesis have focused on how to improve system efficiency by leveraging co-

operation between hardware and software. Specifically, we have presented adaptive solutions that use

hardware sensors and actuators to optimize resource utilization by the different workloads running

on a system. We have shown that such solutions can provide significant efficiency improvements. Yet,

exploiting the information given by sensors and creating policies that intelligently use hardware actu-

ators is not limited to a processor or a system. Large-scale computing facilities (LSCFs) can also profit

fromobtaining advancedmetrics using sensors and eventually adapt to the specificworkloads running

on the facility. In this chapter we present our view on how LSCFs can exploit a tighter collaboration

118

between hardware and software in order to optimize system efficiency. In particular we analyze how

accurately tracking energy consumption by the different applications and users of such facilities can

help to improve efficiency—specially as the trend towards energy-proportional systems continues. We

also explore the different types of sensor and actuators required for such endeavour, andwhat changes

are required to existing hardware and software.

7.1.1 Background

Energy and power trends in large-scale computing facilities pose challenges that shape the design of

next-generation facilities. The carbon footprint of societal energy consumption levels has seen intense

scrutiny in recent years. According to recent statistics, the electricity demand from LSCFs shows the

fastest growth among all sectors. Current facilities consume several megawatts—enough to power

small towns (Belady & Malone 12). The US Environmental Protection Agency (EPA) estimates that

national energy consumption attributable to servers and data centers will soon reach more than 100

billion kWh annually (EPA 36). Raghavendra et al. 103 estimate the corresponding electrical cost to be

US$30 billion.

The cost of energy is rising, further exacerbating the problem. Recent studies show that power

accounts for 13%of the total cost of ownership (TCO)ofLSCFs. This cost increases up to 31% ifwe add

the cost for cooling and power infrastructure, becoming the second largest contributor to the TCO

after server costs (Hamilton 46). Yet, while server cost has remained flat over successive generations,

energy cost is expected to rise (Barroso 9), thus increasing the relative cost of energy.

Despite these energy consumption trends, user or task-specific accounting for energy or power con-

sumption is limited. The accounting method applied for user-level billing is usually based simply on

the amount of time that a resource is used. But, this method typically does not consider the exact

level of resource usage—power consumption attributable to a specific user job is either estimated on

the basis of known peak (or nameplate) values for used resources, or a derated estimation for the ac-

119

tual peak power consumption that the system can achieve under a realistic workload (Bean et al. 10).

Nonetheless, this is a rough estimation typically based on average or worst-case behavior. Thus, using

a more accurate method such as energy-aware accounting might provide significant benefits.

Although accounting based just on usage time and resource type and size is adequate in the present

context, where static power dominates the total power consumption in current hardware, there is

a clear movement towards energy-proportional systems (Barroso & Holzle 8). In such systems, most

of the energy an application consumes—and hence, its cost—is due to its activity. In this scenario,

current accounting systems can be neither accurate nor fair. For instance, two customers can incur

different utilizations across similarly allocated resources, and yet result in nearly identical usage time.

Moreover, the facility owner’s cost could vary significantly because of differences in power and energy

consumption.

In this chapter we highlight the importance and benefits of using energy-aware accounting and

billing on current LSCFs such as data centers. We explore the opportunities, as well as the problems

in implementing such technology. We propose an accounting and billing method—based on accu-

rate measurements of actual resource usage levels—that would benefit the typical consumer in terms

of (generally) reduced expenses. Additionally, we show that the facility owner’s adoption of such ac-

counting metrics would drive up energy efficiency in computing facilities.

Detailed, technical solutions to the issues and trade-offs presented in this chapter are left as future

work. In fact, a new research line in our group is already exploring these solutions (Liu et al. 75,77).

7.1.2 Motivation Examples

To elaborate on the need for accurate, energy-aware accounting principles, we consider several bench-

marks as proxies for the behavior of applications executed by different users. Figure 7.1a shows the

results for executing all the SPEC CPU2006 benchmarks on an Intel quad-core, single-socket server

system. A 10% variation in power across workloads is typical, with the maximum variation being 20%

120

�
�
��
�
�
�
�
�

�
	

�
�

�
�
�

�

�
��
�

�
�
�
�
�
�

�
�
�

�

��

	�
�
�
�
�

�
��
�
�
�
�

�
�
�
��
�
�
�
�

��
�
�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
���

�
�
�
��
�

�
�
��
�
�

�
�
��
�
�
�

�
�
�
�
�

�
��
�
�

�
�
�
!
�
"
�

�
�
#
�
�
�
��
�

�
�
$
%
��
�

��
�
��

��
�

�
�
�
�
��
�

�
�
��
�

��

�
�
�

�
��

��
��
�
�
�
�
�

&'()

&'*&

&'*)

&'+&

&'+)

,'&&

-���������

.
�
��
�
�
	
�
�
/0
�

�
�

(a) SPECCPU2006

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �

�

���

���

���

���

���

���

��	

��

���

�

���

���

���

�����������

�
�
��
�
��
�

�
��
�
�

�

(b) SPECpower

Figure 7.1: Power consumption for SPECCPU2006 benchmarks measured on an Intel quad-core system (a) and for the

available results for SPECpower at severalCPUutilization levels (b).Max andmin refer to themost- and least-consuming

systems. Mean is the average for all the submitted results.

121

������
������

������
������

������
���	��

���	��
���	��

���	��
������

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

���

��
��
��
�
�
�
��
�
�
�
��
�
�
�
�
�
�
�
�
�
�

Figure 7.2: Comparison of idle and peak power consumption for SPECpower submitted results.

(between mcf and calculix). So, mcf-like and calculix-like workloads executing for the same length of

time on the same platform would incur energy usage levels that actually differ by a margin of 20%.

Yet, current accounting and billing practices would treat them equally. Figure 7.1b shows the power

consumption at different usage levels for all the submitted SPECpower (Lange 67) results between

2007 and 2010 avaialble at the SPEC website. This example illustrates variable-demand workloads,

showing considerably different power consumption for different CPU usage levels.

These variations are already significant and they will most probably increase in the future, when

system vendors build more energy-proportional systems. As idle consumption levels drive down, and

peak systempower remains constant (or perhaps evenhigher), the variation in usage-drivenpower pro-

files across different workloads is bound to increase in the future. In fact, multiple on-going initiatives

are trying to reduce the significance of the static consumption fraction. Techniques implemented in

current processors, such as dynamic voltage and frequency scaling (DVFS) and sleep modes with dif-

ferent depth levels, reduce static energy consumption. Yet for many hardware components, a high

fraction of their power consumption is still static regardless of their activity.

Although current systems are not energy-proportional yet, the trend is moving towards this kind

of systems. Figure 7.2 shows the ratio of idle power consumption over peak consumption for all the

SPECpower results submitted between 2007 and 2010. The data is sorted by submission date and

122

it shows a clear trend to reduce the idle power consumption’s significance—a move toward energy-

proportional systems. In the presence of truly energy-proportional systems, the static power cost

would be almost entirely eliminated, and the dynamic cost would account for most of the energy

consumption. Under this situation, all the energy that systems consume will be a consequence of

application activity. Thus, considering energy consumption for accounting purposes becomes attrac-

tive.

7.2 Benefits of Energy-Aware Accounting/Billing

Users and owners of a large-scale computing facility can benefit from using energy-aware accounting

and billing.

7.2.1 User’s Perspective

The first benefit for users would be amore accurate and fair billing. Consider the consequences of cur-

rent billing practices on the user community. Figure 7.3 shows the normalized power consumption as

a function of usage for one system submitted to the SPECpower webpage. Under current accounting

practices, if the user instance executes for T hours, the billing would effectively be based at the peak

power rate, (Ppeak), where usage is 1 (see Figure 7.3). Thus, the user’s bill would be:

billconv = K · Ppeak · T (7.1)

whereK is a constant value (measured in dollars per power unit per hour).

If the energy accountingwere done accurately, the user would be charged depending on the average

resource utilization. For example, in Figure 7.3 we observe that if the average CPU utilization was

recorded to be 40%,* then the power consumption would decrease by slightly more than 50% and a

*A study at Google revealed that most of the servers typically operate at 10-50% utilization (Barroso & Hol-

123

� ��� ��� ��� ��� ��� ��� ��	 ��
 ��� �
���

���

���

���

���

���

���

��	

��

���

���

���������

�
�
��
�
���
�
�
� �
�
�
�
�

Figure 7.3: Power consumption as a function of usage for a system submitted to the SPECpower webpage. The values

are normalized to the consumptionwhen the system is fully utilized. The actual system is a Fujitsu PRIMERGYTX150S7

server, based on a quad-core Intel Xeon X3470 with 4GB of RAM. Its maximum power consumption is 112 watts when

utilization is 100 percent.

fair bill would have been:

billfair = K · P40% · T ≃ 0.5 · billconv (7.2)

Energy consumption is not the only cost for LSCF; personnel, capital cost and maintenance repre-

sent a significant part of theTCO.But, the cost of power plus cooling andpower distribution accounts

for up to 31% of the TCO (Hamilton 46). Therefore, a 50% reduction in energy cost translates into a

16% reduction for the user’s bill.

Energy-aware billing enables other end-user benefits. For instance, current facilities do not expose

power consumption to their users. Exposingpower consumptionper task or virtualmachinewould let

users understand their applications’ power and energy profile, and their power consumption versus ex-

ecution time trade-off. Thus, users could optimize their applications and deployment configurations

to reduce their bill. This green trend also benefits the data center owner and society in general—for in-

stance, by reducing the power need of a large-scale computing facility, which in turn reduces its impact

on the environment.

zle 8).

124

Our approach should not require users to have too-advanced computer science skills to exploit

energy-accounting. We envision a runtime system that will help users select proper setups for their

applications and the underlying hardware to reduce energy. Energy-accounting, on the other hand,

couldmake users uncertain about the billing they will receive, because it depends on the actual energy

the applications use. The facility owner can provide bounds or estimates on the energy that user’s

applications will consume using profiling (for example, using amapping function between utilization

and cost similar to Figure 7.3).

7.2.2 Owner’s Perspective

In addition to the benefits for end-users, there are several reasons why a facility owner should invest

in accurate, energy-aware accounting.

Finer-grainprecision inallocatingandmanagingcoolingresources Today’sLSCFs

design the cooling infrastructure so it can effectively dissipate the heat produced by the systems un-

der worst-case load scenarios—either based on the sum of nameplate powers across all the facility re-

sources or on a derated estimation of the actual peak power consumption under realistic workloads.

Aswementioned earlier, however, servers are typically underused. Therefore, facilitiesmight consider

the possibility of reducing cooling costs by underprovisioning the cooling resources, based on typical

or observed “peak” workloads in the facility. But, heuristically fixing thermal thresholds could lead

to frequently needing to engage performance-throttling mechanisms or to tripping fuses, producing

unplanned server outages. Precise energy accounting practices would result in better runtime task

allocation and cooling resource allocation to prevent unplanned outages or performance shortfalls.

Safeworkload consolidation In prior non-virtualized systems, once a user instance received

some physical resources, no other user would be able to share those resources. In such a situation, time

125

is indeed money; so, even if the user instance is not using the allocated resources, it would make sense

to charge the user a flat, per-hour “rental” rate, because once a set of resources is tied up, the owner

cannot make rental income out of those resources from any other waiting customer.

With the advent of virtualized hardware, the owner canmakemoney frommultiple customers shar-

ing a resource. The net resource utilization could then approach 100%, a good business proposition.

In this new scenario, the owner has no reasonnot tomove to an energy-aware accounting systembased

on actual resource usage. Since the total usage across all users approaches 100%, the net effect is that

the total bill amount acrossmultiple users sharing the same systembasically follows Equation 7.1 again,

with the total revenue approachingK · Ppeak · T.

Abuilt-in energy accounting systemcould guide theworkloadmanagement systemtomake schedul-

ing decisions that result in safe, more efficient workload consolidation. For example, let’s assume that

a system can run N virtual machines simultaneously. When selecting a subset of virtual machines for

execution, it is hard to determine whether the power or energy threshold would be exceeded, so the

virtual machine manager must be conservative. With per-virtual machine energy accounting, at the

time of composing a workload of N virtual machines, we know the power consumption of each VM

and thus the workload. Therefore, energy-accounting improves efficiency, and we can consolidate

more virtual machines simultaneously. By doing so, we can add more computing nodes and service

more customers with the same power budget—a clear benefit for the data center owner.

Reduction in energycosts Motivation for end users to reduce their energy consumption (and

bill) will also drive down the total energy consumption incurred by the data center. In a context where

energy cost is a significant fraction of theTCO, and electricity price is increasing, the data center owner

will welcome any reduction in power consumption.

126

7.3 Target Facilities

Several types of facilities exist, each with a different business model. Energy-accounting targets multi-

ple facility types, though its potential benefits depends on their characteristics. We consider twomajor

types of facilities:

Private data centers In this case, the facility follows a dedicated provisioning in which some physical

nodes (or the slots to place them) are leased to a given user. A user’s application can span mul-

tiple nodes, and the overall provisioned capacity is dedicated to the deployed applications. In

thismodel, the leased nodes’ overall operation and power cost can be attributed to the running

applications. Only a per-node energy accounting is needed. Supercomputers in national labs

are examples of systems in this category

Dedicated hosting services and colocation facilities Adoption of this type of facility is growing, and we

envision clear benefits from energy accounting in these types of facilities. Users are billed ac-

cording to the number of hours their instances (e.g., virtual machines) are on without consid-

ering the detailed compute resource usage profile. Although some parameters—such as data

transfer, I/O, and disk space—are used for billing purposes, two instances running for the same

number of hours will be charged the same, in terms of wall-clock CPU time, regardless of what

the actual CPU and memory usage is. Examples of these types of facilities are Amazon EC2,4

Google App Engine,44 or IBM Bluemix. 51

We can make several considerations when applying energy accounting in virtualized data centers.

First, resource providers such as Amazon EC2 provision end users with virtual resources. Here, the

direct mapping of the end user applications to actual physical resources is not transparently known.

Moreover, because applications are not directly mapped to physical hardware, direct hardware profil-

ing is not generally available at the application level. Instead, the virtual machine manager has direct

127

access to hardware profiling and knows when applications are really mapped to hardware. This layer

is an appropriate level for implementing energy-accounting capabilities.

Second, virtualization vendors further provide additional resourcemanagement vehicles such as re-

source guarantees, limits and shares. In this case, each application’s and virtualmachine’s contribution

to energy consumption depends on provisioned virtual resources, the imposed resource constraints

and the underlying resource-sharingmechanism. All these management vehicles are orthogonal to en-

ergy accounting. For instance, some applications handle asynchronous events and have hard latency

requirements. To deal with this situation, the application or user must reserve resources in advance.

From the energy-accounting point of view, this just implies that the user must pay the reserved re-

sources’ static power consumption. Once the user’s application starts running, it follows our proposed

energy-accounting policy.

Finally, many virtualization technologies also employ additional resource optimizations such as

page sharing across compatible virtual machines, linked clones (Antony 6) with shared based images,

memory overcommitment anddynamicmemory ballooning (Waldspurger 126). These techniques, while

improving overall resource use efficiency, also blur the resource and energy usage association with in-

dividual applications and end users.

7.4 Energy Accounting Design and Trade-Offs

There are challenges and opportunities associatedwith energy and power accounting at various granu-

larities in a large-scale computing environment. Some changes are also required, both at the hardware

and software levels, to provide accurate energy accounting. The infrastructure required to accurately

track power and energy dissipation can vary significantly over the computing spectrum. However,

there are several common considerations that apply to all systems.

128

Granularity versus overhead A critical point in an energy-accounting system is to decide

the level at which energy is tracked. The hardware and software overhead increases for per-user rack

and node-level accounting. Within a node, accounting becomes even more challenging. At hardware

level, we must decide the area, power and cost overhead of the additional hardware blocks to provide

accurate accounting. At the software level, we must decide how much overhead we will allow for

tracking energy consumption.

Fairness From the user’s perspective, an important principle to follow is that different runs of

the same application with the same input exhibit a similar energy profile. This is called the principle

of accounting, and it is currently applied to CPU time accounting (Luque et al. 80,81). In an ideal

scenario, the application reaches the same energy-accounting result for the same input, regardless of

the applications it is coscheduled with. In reality, however, several factors complicate the ideal case,

potentially causing significant variation for repeated runs. Accurate, fair energy-aware accounting and

billing should account for this.

7.4.1 Static and Dynamic Power Consumption

To accurately track energy consumption, wemust first break down power-related costs between static

and dynamic costs. The former accounts for the power that does not depend on system activity (e.g.,

the power consumption of an idlemachine that is not running any user process, or power distribution

unit loses). The latter is related to the extra power consumed when there is user activity on a system.

The fraction between static and dynamic power depends on both the system under consideration and

the workload itself.

For the dedicated data center case—where users do not share nodes—that distinction is not really

necessary, because the total power consumption canbe typicallymeasured at thenode level.† However,

†If some external resources (e.g., storage) are shared, some of the following discussion might apply to the

129

for virtualized data centers, wemust estimate the fraction of these components thatmust be attributed

to each virtual machine running on the system.

Static Power Splitting the cost of static power consumption among virtual machines depends

on the level at which resources are shared, leading to several possibilities with different associated ac-

curacies and overheads. The easiest solution is to split the static consumption among all the virtual

machinesmapped to that node either evenly among all them or proportional to each virtual machine’s

dynamic power consumption (Kansal et al. 65). If a higher accuracy is desired, we can individually look

at the system’s components. We need either hardware support to derive the static power consumption

or the hardware vendor to provide these values. For instance, current performance-monitoring coun-

ters or power sensors are not enough to derive the static power consumption of a system’s individual

components.

We differentiate two component types on the basis of their nature:

Spatial-sharing In spatially shared components (such as cache or memory) there is a linear relation

between the amount of space a virtual machine demands and the cost of static power. If at a

given instant a resource with an associated space ofMtotal bits has a static power consumption

of Stotal watts, it can be broken down amongN virtualmachines as follows: Si = (Mi/Mtotal)·

Stotal, in which
∑N

i=1 Mi = Mtotal and
∑N

i=1 Si = Stotal, where Mi and Si are the amount of

space used and the static consumption incurred by virtual machine i, respectively.

Temporal-sharing Temporally shared components (such as the CPU or hard drive) consume static

power proportionally to the duration they are enabled. In this case, we can use an interval-

based accounting approach. Let’s assume we divide the time into intervals of fixed length I. If

during a given interval a certain amount of virtual machines access a component, all of its static

accounting of these resources.

130

power consumption is charged to these virtual machines. The other running virtual machines

should not be charged, because we assume that the components can go into a low-powermode

if they are not accessed for an interval I. Thus, the static energy consumption for virtual ma-

chine i during time interval k—when Nk virtual machines are accessing the component—is

Si,k = Sk/Nk, where Sk is the static energy consumed by a device during interval k. It follows

that the static power charged to virtual machine i afterN intervals is
∑N

k=1 Si,k.

We can find components that, depending on their power-saving capabilities, present both spatial

and temporal sharing characteristics. In that case, we can apply a hybrid combination of the method-

ology we discussed in the previous paragraphs.

DynamicPower Splitting the dynamic power consumption among virtualmachines is a complex

task that in some cases might require hardware or software support (see Section 7.4.3). We can use

several approaches for attributing energy consumption to multiple virtual machines sharing a node.

CPU usage is a high-level metric that typically correlates well with power and energy consumption

(Barroso & Holzle 8 , Kansal et al. 65). Its main advantage is that it is easy to collect, thus reducing the

complexity and the overhead for energy-accounting implementation.

Additionally, if a higher accuracy level is desired, we can estimate energy consumption on the basis

of lower-level metrics, such as events occurred in the system. We can use different sources to collect

events: performance counters such as instructions per cycle (IPC) and cache misses, or operating sys-

tem statistics such as I/O operations. Bircher & John 15 demonstrate the high correlation between sys-

tem events and power consumption. Obtaining these metrics, however, may have higher associated

overheads compared to using high-level metrics.

The type ofmetrics required to estimate power consumption also depends on the workloads being

executed within the virtual machines. For instance, in CPU-intensive workloads, high-level generic

metrics are generally less useful. CPU usage for these kinds of workloads is close to 100%, render-

131

ing CPU usage-based power estimation not so useful. Yet, as Figure 7.1a shows, significant power

consumption variation exists among workloads running at 100% CPU usage. We can use workload-

specific, high-level metrics—such as transactions per second—but this solution is not portable among

different workloads, and it might be challenging tomake these metrics visible from outside the virtual

machine. Therefore, in the case of CPU-intensive workloads, event-based metrics are a much better

fit to accurately estimate energy consumption.

7.4.2 Application Interference and System Activity

In shared environments there is generally interference among virtualmachines accessing the samehard-

ware resources. Nowadays, most facilities use processors that can concurrently execute more than one

thread—based on chip-levelmultiprocessing (CMP), simultaneousmultithreading (SMT)or a hybrid

approach. In these systems, two different virtual machines share certain resources when they are exe-

cuted at the same time. Although program output will not change, the actions that the system takes

to obtain this output could differ compared to when a virtual machine is executed in isolation. For in-

stance, the aggregated memory footprint of both virtual machines can exceed the amount of cache or

memory installed in the system, leading tomemory or disk accesses that would not occur if the virtual

machines ran in isolation. Luque et al. 80,81 show that the interaction between multiple applications

running on a CMP can lead to errors in CPU time accounting up to 19%. Including hardware support

for tracking intra- and inter-task interferences can reduce the error down to 1%. Similarly, using mech-

anisms based on tracking per-thread component usage would make energy-aware accounting more

precise.

Another source of interferences is systemactivity causedbyhousekeeping (e.g., freeing virtualmem-

ory and cleaning system logs). Finally, optimizations across virtualmachines create interactions among

them as well. The challenge here is to determine how to account for the energy that the system con-

sumes considering such interference. Current solutions such as Kansal et al. 65 do not focus on these

132

issues since hardware and operating system support would be necessary to increase the accuracy of

their energy-accounting proposal.

7.4.3 Hardware/Software Support for Energy Accounting

As we have shown, several shortcomings exist in obtaining accurate energy accounting with low over-

head. But, new hardware support could overcome some of these problems. First, some current sys-

tems already let us obtain power measurements at the processor level. A standard, accurate way to

obtain similar measurements for a system’s most consuming components can greatly enhance the ac-

curacy of energy accounting. Second, an easier way to derive power consumption from performance

counters is desirable. Kadayif et al. 64 presented a framework based on performance counters to ob-

tain energymeasurements. But, a native hardware implementationwill probably provemore accurate.

For instance, the IBMPOWER7 processor internally uses a power proxy based onmore than 50 differ-

ent architectural events to estimate the power consumption for each core (Floyd et al. 38,39). Estimates

from such proxy can significantly improve the accuracy and granularity of energy accounting solu-

tions. Third, although we can use performance counters as a power-proxy, we cannot use current

performance counters to derive static power consumption. For instance, including hardware support

to obtain the instruction mix per thread—or alternatively recording unit utilization using PMCs—

can significantly increase the accuracy on power consumption estimation. Fourth, as we mentioned

earlier, hardware support to overcome application interference can also help to improve the accuracy

of energy accounting.

Software support can improve energy accounting’s accuracy as well. For example, the operating

system or the virtual machine manager can help by tracking the time that resources are being used

by the operating system itself, without contributing to a direct profit for the user. Also, interaction

between the accounting system and the virtual machine monitor can help to track energy usage in

the presence of virtual machine optimizations such as those described in Section 7.3. The operating

133

system can also use performance counters to create a profile of each application. Such profile could

containusage information for the different units in the system. This information could later beused to

enhance estimates for static and dynamic power consumption, thus improving the accuracy of energy

accounting.

7.5 Conclusions

In this chapter we make a case for energy-aware computing under the current context where energy

consumption in large-scale computing facilities is increasing and it is becoming a bigger fraction of

their TCO.We argue that, in this scenario, introducing energy accounting will benefit both end users

and facility owners. Additionally, using energy consumption for accounting purposes can trigger a

spiral process that leads to “greener” facilities and reduce the carbon footprint associated with large-

scale computing.

The complexity of implementing an energy-aware accounting solution depends on the environ-

ment characteristics. The case of dedicated systems is considerably simple. But, multiple research

challenges exist for shared environments. Interaction among the different layers in the system (hard-

ware, hypervisor and software) is necessary in order to obtain accurate accounting systems. We discuss

several options and trade-offs that are of importance to the design of an energy accounting solution.

The results obtained from this exercise have already started a new line of research in our group (see

Liu et al. 75,77).

Finally, we also argue on the importance to continue the trend towards energy-proportional sys-

tems. In fact, an energy-aware accounting will benefit from this trend and, at the same time, can

accelerate it as demand for “greener” computing grows.

134

8
Conclusions and Future Work

8.1 Conclusions

Current computing systems use hardware and software cooperation to a certain extent to improve

system efficiency. Yet, in many cases actuators exposed by hardware are left unused. Additionally,

system efficiency could be further optimized if hardware were to expose more actuators to software.

This would further enable software to adapt resource allocation based on application’s needs, and

improve a certain target metric.

In this thesiswe show the potential benefits of using hardware and software cooperation to improve

resource allocation and system efficiency in a server-class system. We then implement several adaptive

policies that rely on a given hardware actuator—a programmable data prefetching unit—to improve

135

performance and, in some cases, reduce power consumption too.

Our evaluation of different actuators available on an IBM POWER6 system (e.g., nap mode and

hardware thread priorities) as well as other forms of hardware and software cooperation (such as tick-

less kernel and resource-aware thread placement) revealed that significant improvements in system

efficiency can be obtained. The observed improvements go from single digit percentage up to close to

4X improvements to ED2P—depending on the specific mechanism under consideration.

We describe and evaluate the implementation of an adaptive solution to improve application effi-

ciencybydynamically controlling thehardwaredataprefetcher in an IBMPOWER7processor. Prefetch

engines in current server-class microprocessor are getting more and more sophisticated. Specifically,

the POWER7 processor contains a programmable hardware data prefetcher, allowing users to control

different knobs in order to adapt the prefetcher to workload requirements. We evaluate the impact of

our solution on performance for single-threaded andmultiprogrammed workloads, showing that sig-

nificant speedups can be obtained with respect to the default prefetch setting. We also show how our

adaptive mechanism reduces power consumption for prefetch-unfriendly benchmarks. We compare

the adaptive scheme to an approach where applications are first profiled and the best prefetch setting

found is used for future executions. Our dynamic approach, however, frees users from profiling every

application in order to find the best static prefetch setting.

Our bandwidth shifting solution goes beyond improving performance for individual applications,

and it instead targets global system performance. Our results show that effectively managing mem-

ory bandwidth consumption in highly-threaded CMP/SMT systems is of paramount importance.

We present an intelligent bandwidth shifting mechanism that assigns bandwidth resources to applica-

tions in such a way that prefetch-inefficient applications do not waste these resources while prefetch-

efficient ones benefit from the extra available resources. To the best of our knowledge, our solution

is the first one to address this important problem without requiring hardware support. We assess the

impact of our bandwidth shifting mechanism using an extensive evaluation. We obtain very signifi-

136

cant speedups—in the order of 10-20% for randomly built workloads and over 1.6X for more extreme

cases where one benchmark uses prefetching in a very efficient way while the other is very prefetch-

inefficient.

Althoughwe use POWER6 andPOWER7-specificmeasurements and analysis in this thesis, the ba-

sic insights gleanedgenerally also apply toother (non-POWER) systems that exposehardware actuators—

allowing software to implement adaptive policies on top of them. For instance, some Intel processors

allow users to enable or disable individual prefetching engines in the processor (see Intel 53). Certain

versions of Intel processors also expose other actuators such as cache partitioning mechanisms. And,

the latest pSeries processor from IBM—the POWER8—adds extra knobs to the prefetching unit such

that, for instance, the urgency to achieve steady-state prefetching can be programmed by users (see

POWER ISA 99). Similar solutions to the ones developed in this thesis can be applied to these other

actuators.

Beyond the case of a single computing system, we also analyze how large-scaling computing facili-

ties could benefit from a larger degree of sensors and actuators exposure to the software. We study the

design of a per-task energy accounting system, and we explore the multiple trade-offs in the construc-

tion of such a system. The results from our analysis have already spawned a new area of research in

our group.

Overall, this thesis shows clear benefits from a strengthened collaboration between hardware and

software. By exposing sensors and actuators to the software, the latter can tune resource allocation to

the demands of the workloads running on the system. This thesis also implements different adaptive

policies that illustrate how system efficiency can be boosted by tightening the degree of hardware and

software collaboration.

137

8.2 Future Work

The adaptive prefetching solutions presented in this thesis target systems running a mix of heteroge-

neousworkloads—similarly towhat it occurs in a data center. Balancing of shared resources is specially

critical in such environments. But, other types ofworkloadsmight benefit from solutions that dynam-

ically control the prefetching unit. A related group at Barcelona Supercomputing Center has recently

started to explore the potential of such solutions for parallel applications. Prat et al. 100 have extended

theOmpSs programmingmodel (see Duran et al. 31) so that it can optimize the prefetch configuration

for the different phases in parallel applications.

Most of the work in this thesis is conducted on real systems. Developing solutions that actually

work on top of real, existing systems has definite advantages, but it might face some challenges as well.

For instance, in a simulator-based prototype it is straightforward to measure the traditional metrics

used to evaluate prefetching performance: accuracy, coverage and timeliness. On a real system, how-

ever, using performance counters to estimate prefetching usefulness presents somedifficulties. During

the development of our adaptive prefetching solutions multiple events were considered to be used in

the design of the prefetching usefulness metric. Unfortunately, the candidates that were found did

not behave as expected.

The work conducted during this thesis was done in collaboration with IBM Systems and Technol-

ogy Group (STG). As part of our feedback, we exposed the shortcomings that we faced to construct

an efficient metric to evaluate prefetching usefulness. The newest POWER processor (POWER8) in-

cludes new events that help to identify useless prefetches. As future work, it would be very interesting

to analyze the potential of using these new events tomeasure prefetching usefulness in such away that

we could avoid the exploration phase currently present in our adaptive solutions. In case of success,

this would be a good example of hardware and software codesign (see Shalf et al. 109).

Another area of research that would benefit adaptive resource management mechanisms is phase

138

detection and prediction in highly-threaded processors. While there is a significant amount of work

for single-threaded processors (Denning 30 , Isci et al. 54,55 , Sarikaya et al. 107), the same problem is far

from being solved when many threads run on the same system. Yet, if accurate phase detection and

prediction for highly-threaded processors was available, adaptive solutions could significantly benefit

from it. Triggering a reconfiguration of a given actuator could be done in a smarter way—only when

a change in applications’ behavior took place.

The solutions presented in this thesis are research prototypes that were used to show the potential

benefits of leveraging hardware actuators to improve system efficiency. Undoubtedly, implementing

such solutions as a product in either the operating system or some form of runtime is something we

also envision as future work.

In the context of per-task energy accounting, the insights gained during this thesis have already

spawned a new line of research in our group. Liu et al. 75,76,77 have presented hardware solutions to

estimate per-task energy consumption onmulti-core processors and DRAMdevices. As future work,

we expect further models to account energy consumption for other computing components.

From a more general point of view, we would like to extend the work in this thesis by developing

similar solutions for other hardware actuators aswell as findingopportunities to exposemore actuators

to the software. Doing so would require some form of coordination in the adaptive software that

took care of the potential interferences between the different actuators being handled. These two

new areas of research would definitely strengthen the cooperation between hardware and software—

making systems more efficient.

139

References

1. Abeles, J. et al. (2010). Performance Guide for HPC Applications on IBM POWER 755 Sys-
tem. IBM. https://www.power.org/events/Power7/Performance_Guide_for_HPC_
Applications_on_Power_755-Rel_1.0.1.pdf.

2. Abraham, B.&Ledolter, J. (1983). StatisticalMethods for Forecasting. Wiley series in probability
and mathematical statistics: Applied probability and statistics. Wiley.

3. Adl-Tabatabai, A.-R., Hudson, R. L., Serrano, M. J., & Subramoney, S. (2004). Prefetch Injec-
tion Based on Hardware Monitoring and Object Metadata. In Proceedings of the ACM SIG-
PLAN 2004 Conference on Programming Language Design and Implementation, PLDI (pp.
267–276).: ACM.

4. Amazon (2015). Amazon Elastic Computed Cloud (Amazon EC2). https://en.wikipedia.
org/wiki/Amazon_Elastic_Compute_Cloud.

5. Anderson, J. M., Berc, L. M., Dean, J., Ghemawat, S., Henzinger, M. R., Leung, S.-T. A., Sites,
R. L., Vandevoorde, M. T., Waldspurger, C. A., & Weihl, W. E. (1997). Continuous profiling:
where have all the cycles gone? ACMTransactions on Computer Systems (TOCS), 15(4), 357–390.

6. Antony, J. (2015). Virtual machine cloning. US Patent App. 14/020,303.

7. Baer, J. L. & Chen, T. F. (1991). An Effective On-Chip Preloading Scheme To Reduce Data
Access Penalty. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, SC (pp.
176–186).: ACM.

8. Barroso, L. & Holzle, U. (2007). The Case for Energy-Proportional Computing. Computer,
40(12), 33–37.

9. Barroso, L. A. (2005). The Price of Performance. Queue: Multiprocessors, 3(7), 48–53.

10. Bean, J., Bednar, R., Jones, R., Jones, R., Morris, P., Moss, D., Patterson, M., Prisco, J., Vinson,
W., & Wallerich, J. (2009). Proper Sizing of IT Power and Cooling Loads. Green Grid.

11. Behle, B. et al. (2009). IBM EnergyScale for POWER6 Processor-Based Systems. IBM.

12. Belady, C.&Malone, C. (2006). Data center powerprojections to 2014. InThe Tenth Intersociety
Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (pp. 439–
444).

140

https://www.power.org/events/Power7/Performance_Guide_for_HPC_Applications_on_Power_755-Rel_1.0.1.pdf
https://www.power.org/events/Power7/Performance_Guide_for_HPC_Applications_on_Power_755-Rel_1.0.1.pdf
https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud
https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud

13. Bertran, R., Becerra, Y., Carrera, D., Beltran, V., Gonzalez Tallada, M., Martorell, X., Torres, J.,
& Ayguade, E. (2010). Accurate energy accounting for shared virtualized environments using
PMC-based power modeling techniques. In Proceedings of the 11th IEEE/ACM International
Conference on Grid Computing, GRID (pp. 1–8).

14. Bhattacharjee, A. & Martonosi, M. (2009). Thread Criticality Predictors for Dynamic Perfor-
mance, Power, and Resource Management in Chip Multiprocessors. In Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA (pp. 290–301).: ACM.

15. Bircher, W. L. & John, L. K. (2007). Complete System Power Estimation: A Trickle-Down
Approach Based on Performance Events. In Proceedings of the International Symposium on
Performance Analysis of Systems and Software, ISPASS (pp. 158–168).

16. Boneti, C., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., Cher, C. Y., & Valero, M. (2008a).
Software-Controlled Priority Characterization of POWER5 Processor. InProceedings of the 35th
International Symposium on Computer Architecture, ISCA (pp. 415–426).: IEEE Computer So-
ciety.

17. Boneti, C., Gioiosa, R., Cazorla, F. J., &Valero,M. (2008b). ADynamic Scheduler for Balancing
HPC Applications. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC
(pp. 41:1–41:12).: IEEE Press.

18. Bowhill, B., Stackhouse, B., Nassif, N., Yang, Z., Raghavan, A., Morganti, C., Houghton, C.,
Krueger, D., Franza, O., Desai, J., Crop, J., Bradley, D., Bostak, C., Bhimji, S., & Becker, M.
(2015). 4.5 The Xeon processor E5-2600 v3: A 22nm 18-core product family. In International
Solid-State Circuits Conference, ISSCC (pp. 1–3).

19. Brooks, D. M., Bose, P., Schuster, S. E., Jacobson, H., Kudva, P. N., Buyuktosunoglu, A., Well-
man, J.-D., Zyuban, V., Gupta, M., & Cook, P. W. (2000). Power-aware microarchitecture:
design and modeling challenges for next-generation microprocessors. IEEE Micro, 20(6), 26–
44.

20. Cain, H. W. & Nagpurkar, P. (2010). Runahead Execution vs. Conventional Data Prefetching
in the IBM POWER6 Microprocessor. In Proceedings of the International Symposium on Per-
formance Analysis of Systems and Software, ISPASS (pp. 203–212).

21. Callahan,D., Kennedy,K.,&Porterfield, A. (1991). SoftwarePrefetching. InProcessing of the 4th
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS (pp. 40–52).: ACM.

22. Carvalho de Melo, A. (2010). Performance Counters for Linux. http://www.
linux-kongress.org/2010/slides/lk2010-perf-acme.pdf.

141

http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf

23. Cazorla, F. J., Knijnenburg, P. M. W., Sakellariou, R., Fernández, E., Ramirez, A., & Valero, M.
(2006). Predictable Performance in SMTProcessors: Synergy between theOS and SMTs. IEEE
Transactions on Computers, 55(7), 785–799.

24. Chandrakasan, A. P., Sheng, S., & Brodersen, R. W. (1992). Low-power cmos digital design.
IEICE Transactions on Electronics, 75(4), 371–382.

25. Charney, M. J. & Puzak, T. R. (1997). Prefetching and memory system behavior of the SPEC95
benchmark suite. IBM Journal of Research and Development, 41, 265–286.

26. Choi, S. & Yeung, D. (2006). Learning-Based SMT Processor Resource Distribution via Hill-
Climbing. In Proceedings of the 33rd International Symposium on Computer Architecture, ISCA
(pp. 239–251).: IEEE Computer Society.

27. Cooksey, R., Jourdan, S., & Grunwald, D. (2002). A Stateless, Content-directed Data Prefetch-
ing Mechanism. In Proceedings of the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS (pp. 279–290).: ACM.

28. Dahlgren, F., Dubois, M., & Stenstrom, P. (1993). Fixed and Adaptive Sequential Prefetching
in Shared Memory Multiprocessors. In Proceedings of the 22nd International Conference on
Parallel Processing, volume 1 (pp. 56–63).

29. Dahlgren, F., Dubois, M., & Stenstrom, P. (1995). Sequential Hardware Prefetching in Shared-
Memory Multiprocessors. Transactions on Parallel and Distributed Systems, 6(7), 733–746.

30. Denning, P. J. (1968). The Working Set Model for Program Behavior. Communications of the
ACM, 11(5), 323–333.

31. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J.,Martinell, L.,Martorell, X., & Planas, J. (2011).
OmpSs: a proposal forprogrammingheterogeneousmulti-core architectures. Parallel Processing
Letters, 21, 173–193.

32. Ebrahimi, E., Lee, C. J., Mutlu, O., & Patt, Y. N. (2011). Prefetch-Aware Shared Resource Man-
agement for Multi-Core Systems. In Proceedings of the 38th International Symposium on Com-
puter Architecture, ISCA (pp. 141–152).: ACM.

33. Ebrahimi, E., Mutlu, O., Lee, C. J., & Patt, Y. N. (2009a). Coordinated Control of Multiple
Prefetchers in Multi-core Systems. In Proceedings of the 42nd International Symposium on Mi-
croarchitecture, MICRO (pp. 316–326).: ACM.

34. Ebrahimi, E.,Mutlu,O.,&Patt, Y.N. (2009b). Techniques for Bandwidth-Efficient Prefetching
of Linked Data Structures in Hybrid Prefetching Systems. In Proceedings of the 15th Interna-
tional Symposium on High Performance Computer Architecture, HPCA (pp. 7–17).

35. Emma, P. G., Hartstein, A., Puzak, T. R., & Srinivasan, V. (2005). Exploring the limits of
prefetching. IBM Journal of Research and Development, 49(1), 127–144.

142

36. EPA (2007). EPA Report to Congress on Server and Data Center Energy Efficiency. Technical
report, U.S. Environmental Protection Agency.

37. Eranian, S. (2006). Perfmon2: a flexible performance monitoring interface for linux. In Pro-
ceedings of the 2006 Ottawa Linux Symposium (pp. 269–288).

38. Floyd,M., Allen-Ware, M., Rajamani, K., Brock, B., Lefurgy, C., Drake, A., Pesantez, L., Gloek-
ler, T., Tierno, J., Bose, P., & Buyuktosunoglu, A. (2011a). Introducing the Adaptive Energy
Management Features of the POWER7 Chip. IEEE Micro, 31(2), 60–75.

39. Floyd, M., Ware, M., Rajamani, K., Gloekler, T., Brock, B., Bose, P., Buyuktosunoglu, A., Ru-
bio, J., Schubert, B., Spruth, B., Tierno, J., &Pesantez, L. (2011b). Adaptive energy-management
features of the IBM POWER7 chip. IBM Journal of Research and Development, 55(3), 8:1–8:18.

40. Floyd, M. S., Ghiasi, S., Keller, T. W., Rajamani, K., Rawson, F. L., Rubio, J. C., & Ware, M. S.
(2007). System power management support in the IBM POWER6 microprocessor. IBM Jour-
nal of Research and Development, 51(6).

41. Fu, J.W.C., Patel, J.H., & Janssens, B. L. (1992). StrideDirected Prefetching in Scalar Processors.
In Proceedings of the 25th International Symposium on Microarchitecture, MICRO (pp. 102–
110).: IEEE Computer Society Press.

42. Gioiosa, R., Petrini, F., Davis, K., & Lebaillif-Delamare, F. (2004). Analysis of system over-
head on parallel computers. In Proceedings of the 4th IEEE International Symposium on Signal
Processing and Information Technology (pp. 387–390).

43. Gioiosa, R., Sancho, J., Jiang, S., & Petrini, F. (2005). Transparent, Incremental Checkpointing
at Kernel Level: a Foundation for Fault Tolerance for Parallel Computers. In Proceedings of the
2005 ACM/IEEE Conference on Supercomputing (pp. 9–).

44. Google (2008). Google App Engine. https://en.wikipedia.org/wiki/Google_App_
Engine.

45. Haensch, W., Nowak, E., Dennard, R., Solomon, P., Bryant, A., Dokumaci, O., Kumar, A.,
Wang, X., Johnson, J., & Fischetti, M. (2006). Silicon CMOS devices beyond scaling. IBM
Journal of Research and Development, 50(4.5), 339–361.

46. Hamilton, J. (2010). Overall Data Center Costs. http://perspectives.mvdirona.com/
2010/09/18/OverallDataCenterCosts.aspx.

47. Harrell, F. E. (2001). Regression Modeling Strategies: With Applications to Linear Models, Lo-
gistic Regression, and Survival Analysis. Graduate Texts in Mathematics. Springer.

48. Henning, J. L. (2006). SPECCPU2006 BenchmarkDescriptions. SIGARCH Computer Archi-
tecture News, 34(4), 1–17.

143

https://en.wikipedia.org/wiki/Google_App_Engine
https://en.wikipedia.org/wiki/Google_App_Engine
http://perspectives.mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx
http://perspectives.mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx

49. Horowitz, M., Alon, E., Patil, D., Naffziger, S., Kumar, R., & Bernstein, K. (2005). Scaling,
power, and the future of CMOS. In International Electron Devices Meeting, IEDM (pp. 7–15).

50. Hur, I. & Lin, C. (2006). Memory Prefetching Using Adaptive Stream Detection. In Proceed-
ings of the 39th International Symposium on Microarchitecture, MICRO (pp. 397–408).: IEEE
Computer Society.

51. IBM (2014). Bluemix. https://en.wikipedia.org/wiki/Bluemix.

52. Intel (2014). Intel ®Xeon ®Processor E5 v2 and E7 v2 Product Families Uncore Performance
Monitoring Reference Manual. Intel. http://www.intel.com/content/www/us/en/
processors/xeon/xeon-e5-2600-v2-uncore-manual.html.

53. Intel (2016). Intel® 64 and IA-32 Architectures Software Developer’s Manual. Volume 3 (3A,
3B, 3C & 3D): System Programming Guide. Intel. http://www.intel.com/products/
processor/manuals.

54. Isci, C., Buyuktosunoglu, A., &Martonosi, M. (2005). Long-TermWorkload Phases: Duration
Predictions and Applications to DVFS. IEEE Micro, 25(5), 39–51.

55. Isci, C., Contreras, G., & Martonosi, M. (2006). Live, Runtime Phase Monitoring and Predic-
tion on Real Systems with Application to Dynamic Power Management. In Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture (pp. 359–370).

56. Jiménez, V., Buyuktosunoglu, A., Bose, P., O’Connell, F. P., Cazorla, F. J., & Valero, M. (2015).
Increasing multicore system efficiency through intelligent bandwidth shifting. In Proceedings
of the 21st International Symposium on High Performance Computer Architecture, HPCA (pp.
39–50).: IEEE.

57. Jiménez, V., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., Bose, P., O’Connell, F. P., &
Mealey, B. G. (2014). Adaptive prefetching on POWER7: improving performance and power
consumption. ACM Transactions on Parallel Computing, TOPC, 1(1), 4.

58. Jiménez, V., Cazorla, F. J., Gioiosa, R., Kursun, E., Isci, C., Buyuktosunoglu, A., Bose, P., &
Valero, M. (2011a). Energy-Aware Accounting and Billing in Large-Scale Computing Facilities.
IEEE Micro, 31(3), 60–71.

59. Jiménez, V., Cazorla, F. J., Gioiosa, R., Valero, M., Boneti, C., Kursun, E., Cher, C., Isci, C.,
Buyuktosunoglu, A., & Bose, P. (2010). Power and thermal characterization of POWER6 sys-
tem. In Proceedings of the 19th International Conference on Parallel Architectures and Compila-
tion Techniques, PACT (pp. 7–18).

60. Jiménez, V., Cazorla, F. J., Gioiosa, R., Valero, M., Boneti, C., Kursun, E., Cher, C., Isci, C.,
Buyuktosunoglu, A., & Bose, P. (2011b). Characterizing power and temperature behavior of
power6-based system. IEEE Journal Emerging and Selected Topics in Circuits and Systems,
JETCAS, 1(3), 228–241.

144

https://en.wikipedia.org/wiki/Bluemix
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-2600-v2-uncore-manual.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-2600-v2-uncore-manual.html
http://www.intel.com/products/processor/manuals
http://www.intel.com/products/processor/manuals

61. Jiménez, V., Gioiosa, R., Cazorla, F. J., Buyuktosunoglu, A., Bose, P., &O’Connell, F. P. (2012).
Making Data Prefetch Smarter: Adaptive Prefetching on POWER7. In Proceedings of the 21st
International Conference on Parallel Architectures and Compilation Techniques, PACT (pp. 137–
146).: ACM.

62. Joseph, D. & Grunwald, D. (1997). Prefetching using Markov Predictors. In Proceedings of the
24th International Symposium on Computer Architecture, ISCA (pp. 252–263).: ACM.

63. Jouppi, N. P. (1990). ImprovingDirect-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers. In Proceedings of the 17th International Sympo-
sium on Computer Architecture, ISCA (pp. 364–373).: ACM.

64. Kadayif, I., Chinoda, T., Kandemir, M., Vijaykirsnan, N., Irwin, M. J., & Sivasubramaniam, A.
(2001). vEC: Virtual Energy Counters. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE (pp. 28–31).: ACM.

65. Kansal, A., Zhao, F., Liu, J., Kothari, N., & Bhattacharya, A. A. (2010). Virtual Machine Power
Metering and Provisioning. In Proceedings of the 1st ACM Symposium on Cloud Computing,
SoCC (pp. 39–50).

66. Karidis, J.,Moreira, J. E.,&Moreno, J. (2009). TrueValue: Assessing andOptimizing theCost of
Computing at the Data Center Level. In Proceedings of the 6th ACM Conference on Computing
Frontiers, CF (pp. 185–192).: ACM.

67. Lange, K.-D. (2009). Identifying Shades of Green: The SPECpower Benchmarks. Computer,
42(3), 95–97.

68. Le, H. Q., Starke, W. J., Fields, J. S., O’Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., Sauer,
W.M., Schwarz, E.M.,&Vaden,M.T. (2007). IBMPOWER6microarchitecture. IBM Journal
of Research and Development, 51(6), 639–662.

69. Lee, C. J., Mutlu, O., Narasiman, V., & Patt, Y. N. (2008). Prefetch-Aware DRAM Controllers.
In Proceedings of the 41st International Symposium on Microarchitecture, MICRO (pp. 200–
209).: IEEE Computer Society.

70. Lefurgy, C.,Wang,X.,&Ware,M. (2007). Server-Level PowerControl. InProceedings of the 4th
International Conference on Autonomic Computing, ICAC (pp. 4–14).: IEEE Computer Society.

71. Li, Y., Skadron, K., Brooks, D., & Hu, Z. (2005). Performance, energy, and thermal considera-
tions for SMT and CMP architectures. In Proceedings of the 11th International Symposium on
High Performance Computer Architecture (pp. 71–82).

72. Liao, S.W.,Hung, T.-H., Nguyen,D., Chou, C., Tu, C., &Zhou,H. (2009). Machine Learning-
Based Prefetch Optimization for Data Center Applications. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC (pp. 1–10).:
ACM.

145

73. Lin,W.-F., Reinhardt, S. K., Burger, D., & Puzak, T. R. (2001). Filtering Superfluous Prefetches
Using Density Vectors. In Proceedings of the International Conference on Computer Design:
VLSI in Computers and Processors, ICCD (pp. 124–132).: IEEE Computer Society.

74. Liu, F. & Solihin, Y. (2011). Studying the Impact of Hardware Prefetching and Bandwidth Par-
titioning in Chip-Multiprocessors. In Proceedings of the International Conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS (pp. 37–48).: ACM.

75. Liu, Q., Jiménez, V., Moretó,M., Abella, J., Cazorla, F. J., & Valero,M. (2014a). Per-task energy
accounting in computing systems. Computer Architecture Letters, 13(2), 85–88.

76. Liu, Q., Moreto, M., Abella, J., Cazorla, F. J., & Valero, M. (2014b). DReAM: Per-task DRAM
energy metering in multicore systems. In Proceedings of the 20th International European Con-
ference on Parallel and Distributed Computing, Euro-Par (pp. 111–123).: Springer.

77. Liu, Q., Moretó, M., Jiménez, V., Abella, J., Cazorla, F. J., & Valero, M. (2013). Hardware
support for accurate per-task energy metering in multicore systems. ACM Transactions on Ar-
chitecture and Code Optimization, TACO, 10(4), 34.

78. Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P., &Kozyrakis, C. (2015). Heracles: Improv-
ing Resource Efficiency at Scale. In Proceedings of the 42nd Annual International Symposium
on Computer Architecture, ISCA (pp. 450–462).: ACM.

79. Lu, J., Chen, H., Fu, R., Hsu, W.-C., Othmer, B., Yew, P.-C., & Chen, D.-Y. (2003). The Perfor-
mance of Runtime Data Cache Prefetching in a Dynamic Optimization System. In Proceedings
of the 36th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO (pp.
180–190).: IEEE Computer Society.

80. Luque, C., Moreto, M., Cazorla, F., Gioiosa, R., Buyuktosunoglu, A., & Valero, M. (2009a).
Itca: Inter-task conflict-aware cpu accounting for cmps. In Proceedings of the 18th International
Conference on Parallel Architectures and Compilation Techniques, PACT (pp. 203–213).

81. Luque, C., Moreto, M., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., & Valero, M. (2009b).
CPU Accounting in CMP Processors. IEEE Computer Architecture Letters, 8(1), 17–20.

82. Martin,M., Sorin, D., Hill, M., &Wood, D. (2002). Bandwidth adaptive snooping. In Proceed-
ings of the 8th International Symposium on High-Performance Computer Architecture, HPCA
(pp. 251–262).

83. Meisner, D., Gold, B. T., & Wenisch, T. F. (2009). PowerNap: Eliminating Server Idle Power.
In Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS (pp. 205–216).: ACM.

84. Merten,M., Trick, A., George, C., Gyllenhaal, J., &Hwu,W.-M. (1999). A hardware-driven pro-
filing scheme for identifying programhot spots to support runtime optimization. InProceedings
of the 26th Annual International Symposium on Computer Architecture, ISCA (pp. 136–148).

146

85. Mochel, P. (2005). The sysfs Filesystem. Proceedings of the Annual Linux Symposium.

86. Moreira, J. E. & Karidis, J. P. (2010). The Case for Full-Throttle Computing: An Alternative
Datacenter Design Strategy. IEEE Micro, 30(4), 25–28.

87. Moreto, M., Cazorla, F. J., Ramirez, A., Sakellariou, R., & Valero, M. (2009). FlexDCP: a QoS
Framework for CMP Architectures. SIGOPS Operating Systems Review, 43(2), 86–96.

88. Mowry, T. C., Lam,M. S., &Gupta, A. (1992). Design and Evaluation of a Compiler Algorithm
for Prefetching. In Proceedings of the 5th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS (pp. 62–73).: ACM.

89. Murphy, R. C., Wheeler, K. B., Barrett, B. W., & Ang, J. A. (2010). Introducing the Graph 500.
Craig User’s Group, CUG.

90. Mutlu, O., Kim,H., Armstrong, D.N., & Patt, Y. N. (2005). Using the First-level Caches As Fil-
ters to Reduce the Pollution Caused by Speculative Memory References. International Journal
of Parallel Programming, 33(5), 529–559.

91. Nagarajan, V. & Gupta, R. (2009). ECMon: Exposing Cache Events for Monitoring. In Pro-
ceedings of the 36th Annual International Symposium on Computer Architecture, ISCA (pp.
349–360).: ACM.

92. Nathuji, R. & Schwan, K. (2007). VirtualPower: Coordinated Power Management in Virtual-
ized Enterprise Systems. SIGOPS Operating Systems Review, 41(6), 265–278.

93. Naveh, A., Rotem, E., Mendelson, A., Gochman, S., Chabukswar, R., Krishnan, K., & Kumar,
A. (2006). Power and thermal management in the Intel Core Duo processor. Intel Technology
Journal, 10(2).

94. Nesbit, K. J., Dhodapkar, A. S., & Smith, J. E. (2004). AC/DC: An Adaptive Data Cache
Prefetcher. In Proceedings of the 13th International Conference on Parallel Architectures and
Compilation Techniques, PACT (pp. 135–145).

95. Palacharla, S. & Kessler, R. E. (1994). Evaluating Stream Buffers as a Secondary Cache Replace-
ment. In Proceedings of the 21st International Symposium on Computer Architecture, ISCA (pp.
24–33).: IEEE Computer Society Press.

96. Pallipadi, V. (2007). Cpuidle - Do nothing, efficiently... Linux Symposium.

97. Pallipadi, V. & Starikovskiy, A. (2006). The Ondemand Governor. Past, Present, and Future.
Linux Symposium.

98. Petrica, P., Izraelevitz, A. M., Albonesi, D. H., & Shoemaker, C. A. (2013). Flicker: A Dynam-
ically Adaptive Architecture for Power Limited Multicore Systems. In Proceedings of the 40th
Annual International Symposium on Computer Architecture, ISCA (pp. 13–23).: ACM.

147

99. POWER ISA (2013). Power ISA™ Version 2.07. IBM. https://www.power.org/
wp-content/uploads/2013/05/PowerISA_V2.07_PUBLIC.pdf.

100. Prat, D., Ortega, C., Casas, M., Moreto, M., & Valero, M. (2015). Adaptive and application
dependent runtime guided hardware prefetcher reconfiguration on the IBM POWER7. In Pro-
ceedings of the 6th International Workshop on Adaptive Self-tuning Computing Systems, ADAPT
(pp. 1–6).

101. Qureshi,M.K.&Patt, Y.N. (2006). Utility-BasedCache Partitioning: ALow-Overhead,High-
Performance, RuntimeMechanism to Partition Shared Caches. In Proceedings of the 39th Inter-
national Symposium on Microarchitecture, MICRO (pp. 423–432).: IEEE Computer Society.

102. Radojković, P., Čakarević, V., Moretó, M., Verdú, J., Pajuelo, A., Cazorla, F. J., Nemirovsky,
M., & Valero, M. (2012). Optimal Task Assignment in Multithreaded Processors: A Statistical
Approach. In Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS (pp. 235–248).: ACM.

103. Raghavendra, R., Ranganathan, P., Talwar, V.,Wang, Z., & Zhu, X. (2008). No “Power” Strug-
gles: Coordinated Multi-level Power Management for the Data Center. SIGOPS Operating
Systems Review, 42(2), 48–59.

104. Rogers, B. M., Krishna, A., Bell, G. B., Vu, K., Jiang, X., & Solihin, Y. (2009). Scaling the Band-
widthWall: Challenges in andAvenues forCMPScaling. InProceedings of the 36th International
Symposium on Computer Architecture, ISCA (pp. 371–382).: ACM.

105. Roth, A., Moshovos, A., & Sohi, G. S. (1998). Dependence Based Prefetching for Linked Data
Structures. In Proceedings of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS (pp. 115–126).: ACM.

106. Sarikaya, R., Isci, C., & Buyuktosunoglu, A. (2010). Runtime workload behavior prediction us-
ing statistical metric modeling with application to dynamic power management. In Proceedings
of the 2010 IEEE International Symposium on Workload Characterization, IISWC (pp. 1–10).

107. Sarikaya, R., Isci, C., & Buyuktosunoglu, A. (2013). Runtime application behavior prediction
using a statistical metric model. IEEE Transactions on Computers, 62(3), 575–588.

108. Schneider, F. T., Payer, M., & Gross, T. R. (2007). Online Optimizations Driven by Hardware
PerformanceMonitoring. In Proceedings of the 28th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI (pp. 373–382).: ACM.

109. Shalf, J., Quinlan, D., & Janssen, C. (2011). Rethinking hardware-software codesign for exascale
systems. Computer, (11), 22–30.

110. Siddha, S., Pallipadi, V., & Ven, A. V. D. (2007). Getting maximum mileage out of tickless.
Linux Symposium.

148

https://www.power.org/wp-content/uploads/2013/05/PowerISA_V2.07_PUBLIC.pdf
https://www.power.org/wp-content/uploads/2013/05/PowerISA_V2.07_PUBLIC.pdf

111. Sinharoy, B., Kalla, R., Starke, W. J., Le, H. Q., Cargnoni, R., Van Norstrand, J. A., Ronchetti,
B. J., Stuecheli, J., Leenstra, J., Guthrie, G. L., Nguyen, D. Q., Blaner, B., Marino, C. F., Retter,
E., & Williams, P. (2011). IBM POWER7 multicore server processor. IBM Journal of Research
and Development, 55(3), 1–29.

112. Sinharoy, B., Van Norstrand, J., Eickemeyer, R., Le, H., Leenstra, J., Nguyen, D., Konigsburg,
B., Ward, K., Brown,M., Moreira, J., Levitan, D., Tung, S., Hrusecky, D., Bishop, J., Gschwind,
M., Boersma, M., Kroener, M., Kaltenbach, M., Karkhanis, T., & Fernsler, K. (2015). IBM
POWER8 processor core microarchitecture. IBM Journal of Research and Development, 59(1),
1–21.

113. Smith, A. J. (1978). Sequential Program Prefetching in Memory Hierarchies. IEEE Computer,
11(12), 7–21.

114. Solihin, Y., Lee, J., & Torrellas, J. (2002). Using a User-Level Memory Thread for Correlation
Prefetching. In Proceedings of the 29th International Symposium on Computer Architecture,
ISCA (pp. 171–182).: ACM.

115. SPECjbb2005 (2005). Standard Performance Evaluation Corporation. http://www.spec.
org/jbb2005/.

116. Srinath, S., Mutlu, O., Kim, H., & Patt, Y. N. (2007). Feedback Directed Prefetching: Improv-
ing the Performance and Bandwidth-Efficiency of Hardware Prefetchers. In Proceedings of the
13th International Symposium on High Performance Computer Architecture, HPCA (pp. 63–
74).: IEEE Computer Society.

117. Srinivas, M., Sinharoy, B., Eickemeyer, R., Raghavan, R., Kunkel, S., Chen, T., Maron, W.,
Flemming, D., Blanchard, A., Seshadri, P., Kellington, J., Mericas, A., Petruski, A., Indukuru,
V., & Reyes, S. (2011). Ibm power7 performance modeling, verification, and evaluation. IBM
Journal of Research and Development, 55(3), 4:1–4:19.

118. Srinivasan, V., Davidson, E. S., &Tyson, G. S. (2004). A prefetch taxonomy. IEEE Transactions
on Computers, 53(2), 126–140.

119. Srinivasan, V., Shenoy, G. R., Vaddagiri, S., Sarma, D., & Pallipadi, V. (2008). Energy-Aware
Task and Interrupt Management in Linux. Linux Symposium, 2.

120. Suh, G., Devadas, S., & Rudolph, L. (2002). A new memory monitoring scheme for memory-
aware scheduling and partitioning. In Proceedings of the 8th International Symposium on High-
Performance Computer Architecture, HPCA (pp. 117–128).

121. Suh, G. E., Rudolph, L., &Devadas, S. (2004). Dynamic Partitioning of Shared CacheMemory.
The Journal of Supercomputing, 28(1), 7–26.

149

http://www.spec.org/jbb2005/
http://www.spec.org/jbb2005/

122. Tang, L., Mars, J., Vachharajani, N., Hundt, R., & Soffa, M. L. (2011). The Impact of Memory
Subsystem Resource Sharing on Datacenter Applications. In Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA (pp. 283–294).: ACM.

123. Tikir, M. M. & Hollingsworth, J. K. (2004). Using Hardware Counters to Automatically Im-
prove Memory Performance. In Proceedings of the 2004 ACM/IEEE Conference on Supercom-
puting, SC (pp. 46–).: IEEE Computer Society.

124. Tullsen,D.M., Eggers, S. J., Emer, J. S., Levy,H.M., Lo, J. L., & Stamm,R. L. (1996). Exploiting
Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multithreading Pro-
cessor. In Proceedings of the 23rd Annual International Symposium on Computer Architecture,
ISCA (pp. 191–202).: ACM.

125. Vera, J., Cazorla, F. J., Pajuelo, A., Santana, O. J., Fernández, E., & Valero, M. (2007). FAME:
FAirlyMEasuringMultithreaded Architectures. In Proceedings of the 16th International Confer-
ence on Parallel Architectures and Compilation Techniques, PACT (pp. 305–316).

126. Waldspurger, C. A. (2002). Memory Resource Management in VMware ESX Server. SIGOPS
Operating Systems Review, 36, 181–194.

127. Wang, Z., Burger, D.,McKinley, K. S., Reinhardt, S. K., &Weems, C. C. (2003). GuidedRegion
Prefetching: A Cooperative Hardware/Software Approach. In Proceedings of the 30th Interna-
tional Symposium on Computer Architecture, ISCA (pp. 388–398).: ACM.

128. Wu, C. J. & Martonosi, M. (2011). Characterization and Dynamic Mitigation of Intra-
Application Cache Interference. In Proceedings of the International Symposium on Performance
Analysis of Systems and Software, ISPASS (pp. 2–11).: IEEE Computer Society.

129. Wulf, W. A. & McKee, S. A. (1995). Hitting the Memory Wall: Implications of the Obvious.
SIGARCH Computer Architecture News, 23, 20–24.

130. Yang, C. L. & Lebeck, A. R. (2000). Push vs. Pull: Data Movement for Linked Data Struc-
tures. InProceedings of the 14th International Conference on Supercomputing, ICS (pp. 176–186).:
ACM.

131. Yasin, A. (2014). A top-down method for performance analysis and counters architecture. In
Proceedings of the International Symposium on Performance Analysis of Systems and Software,
ISPASS (pp. 35–44).

132. Zagha, M., Larson, B., Turner, S., & Itzkowitz, M. (1996). Performance analysis using the mips
r10000 performance counters. In Proceedings of the 1996 ACM/IEEE Conference on Supercom-
puting, SC (pp. 16–16).: IEEE.

150

133. Zhou, P., Pandey, V., Sundaresan, J., Raghuraman, A., Zhou, Y., &Kumar, S. (2004). Dynamic
Tracking of PageMissRatioCurve forMemoryManagement. InProceedings of the 11th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS (pp. 177–188).: ACM.

134. Zhuang, X.&Lee,H.-H. S. (2003). A hardware-basedCache Pollution FilteringMechanism for
Aggressive Prefetches. InProceedings of the 32nd International Conference on Parallel Processing
(pp. 286–293).

151

This thesis was typeset using LATEX,
originally developed by Leslie Lamport
and based on Donald Knuth’s TEX. The

body text is set in 11 point Egenolff-Berner
Garamond, a revival of Claude Garamont’s
humanist typeface. A template that can be
used to format a PhD thesis with this look
and feel has been released under the per-
missive mit (x11) license, and can be found
online at github.com/suchow/Dissertate
or from its author, Jordan Suchow, at su-
chow@post.harvard.edu.

152

https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu
mailto:suchow@post.harvard.edu

	Introduction
	Sensors and Actuators
	Problem Statement
	Using Hardware Data Prefetching as an Actuator
	Contributions
	List of Publications
	Dissertation Organization

	Related Work
	Hardware Solutions for Resource Management
	Sampling-Based Online Adaptive Systems
	Solutions Exposing Custom Sensors and Actuators to the Software
	Thread Mapping
	General Prefetching
	Local Adaptive Prefetching
	CMP-Aware Adaptive Prefetching
	Adaptive Prefetching Solutions for Real Systems
	Per-Task Energy Accounting

	Motivation: Impact of Hardware Actuators
	The IBM POWER6 Processor
	Effect of Workload Characteristics
	Effect of Core Usage
	PMC-Based Power Model
	Improving Efficiency Through Hardware Knobs
	Conclusions

	Platform Characterization and Methodology
	The IBM POWER7 Processor
	Methodology

	Adaptive Prefetching: Improving Per-Application Performance
	Introduction
	Adaptive Prefetching
	Results
	OS-Based Implementation
	Conclusions

	Bandwidth Shifting: Improving System-Wide Performance
	Introduction
	Effect of Prefetching on Performance and Bandwidth
	Intelligent Bandwidth Shifting
	Results
	Comparing Bandwidth Shifting to Adaptive Prefetching
	Conclusions

	Per-Task Energy Accounting
	Introduction
	Benefits of Energy-Aware Accounting/Billing
	Target Facilities
	Energy Accounting Design and Trade-Offs
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	References

