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ABSTRACT 

Tinoco (2009) estimated that direct solution to the Navier-Stokes equation in 

line with the progress in the development of computing power and the algorithm in 

solving the non-linear partial differential equation can be made in the next 65 years 

from now [1]. Realizing the highly demanding computer power, the way to solve the 

flow problems is by adopting some sort of simplification of Navier-Stokes equation 

according to physical flow phenomena consideration. Such approach gives, for 

instance, to the case of flow past through a streamline body at high and at low 

Reynolds number to moderate angle of attack, the Navier-Stokes equation can be 

simplified by ignoring viscous effects resulting a new governing equation of fluid 

motion named Euler equation. However, this equation is still belongs to the class of 

non-linear partial differential equation, while result in numerical approach is 

required. The main features of compressible flow are the presence of discontinuity 

flow phenomena due to shock wave and a contact surface. Such flow phenomenon is 

always found if the flow in transonic or supersonic flow regimes. As a result, all the 

aircrafts designed to fly at transonic or supersonic speed will face such flow 

phenomenon. It is therefore, all numerical schemes designed to be a tool for 

aerodynamics analysis or aerodynamics design tool must be able to predict the 

presence of such discontinuity flow phenomena accurately. The present work 

focused on the development of computational fluid dynamics (CFD) aerodynamics 

analysis tool by solving the compressible Euler equation through a finite difference 

method (FDM) as well as a finite volume method (FVM). The FDM used the method 

developed based on Davis-Yee TVD scheme. While that, the FVM was developed by 

using Roe scheme. In view of TVD scheme, there were various methods in involving 

a limiter functions. The use of various limiter functions as part of the development of 

CFD software is also carried out in the present work. To validate the developed 

software, these two types of CFD code are applied for solving the high Mach number 

flow past through airfoil. The airfoils are (1) the conventional airfoil NACA0012 and 
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(2) the supercritical airfoil NASA SC (2)-0714. Then, the comparison is made by 

comparing their result with the ANYSYS-FLUENT software as well as with the 

experimental result as stated in the literature. Through results comparison for these 

two different airfoils operated at various angles of attack, it had been found that the 

developed CFD code based on Davis-Yee TVD scheme are able to produce the result 

close to the experimental result compared with the result produced by ANSYS-

FLUENT software or the code developed based on Roe finite volume scheme. 
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ABSTRAK 

Tinoco (2009) menganggarkan penyelesaian terus kepada persamaan Navier-

Stokes adalah selaras dengan kemajuan komputer dan algoritma dalam 

menyelesaikan persamaan pembezaan separa yang boleh dicapai 65 tahun dari 

sekarang [1]. Menyedari keperluan yang sangat tinggi terhadap kuasa komputer, cara 

terbaik untuk menyelesaikan masalah aliran dengan meringkasakan persamaan 

Navier-Stokes dengan mengambilkira fizikal aliran. Dengan pendekatan ini, sebagai 

contoh untuk kes aliran melalui satu badan yang nipis pada nombor Reynold yang 

tinggi atau rendah dan juga sudut serangan yang sederhana, persamaan Navier-

Stokes boleh dipermudahkan dengan mengabaikan kesan kelikatan yang mana 

persamaan baru digunakan ialah persamaan Euler. Walau bagaimanapun, persamaan 

ini masih tergolong dalam kelas persamaan pembezaan separa yang bukan linear, 

manakala pendekatan berangka diperlukan. Ciri utama aliran termampat adalah 

kehadiran fenomena aliran ketakselanjaran disebabkan gelombang kejutan dan 

permukaan sentuhan. Fenomena aliran seperti ini sering berlaku dalam aliran jika 

aliran dalam keadaan transonik dan supersonik. Oleh itu, semua pesawat yang direka 

untuk terbang pada kelajuan supersonik atau transonik akan menghadapi fenomena 

aliran tersebut. Maka, semua skim berangka yang direka sebagai alat untuk 

menganalisis aerodinamik atau alat merekabentuk aerodinamik perlu meramal 

fenomena kehadiran ketakselanjaran pada aliran secara tepat. Kajian ini memberi 

tumpuan kepada pembangunan pengkomputeran dinamaik bendalir (CFD) bagi alat 

untuk analisis aerodinamik dengan menyelesaikan persamaan Euler boleh mampat 

melalui kaedah perbezaan terhingga (FDM) dan juga sebagai kaedah isipadu 

terhingga (FVM). FDM menggunakan kaedah yang dibangunkan berdasarkan skim 

Davis-Yee TVD. Manakala FVM menggunakan skim Roe. Dalam konteks TVD, 

terdapat pelbagai kaedah yang melibatkan fungsi penghad. Dalam kajian ini turut 

menggunaan pelbagai jenis fungsi penghad sebagai sebahagian daripada 

pembangunan perisian CFD. Untuk mengesahkan perisian yang dibangunkan, kedua-
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dua jenis kod CFD digunakan untuk menyelesaikan aliran pada nombor Mach yang 

tinggi melalui aerofoil. Aerofoil yang digunakan adalah (1) konvensional aerofoil 

NACA 0012 dan (2) superkritikal aerofoil NASA SC (2)-0714. Seterusnya, 

perbandingan dibuat dengan membandingkan hasil yang deperolehi dengan hasil 

daripada perisian ANSYS-FLUENT dan juga dengan hasil eksperimen yang sediada. 

Melalui keputusan perbandingan dalam pelbagai sudut serangan oleh kedua-dua 

aerofoil, didapati bahawa kod CFD yang dibangunkan berdasarkan skim Davis-Yee 

TVD mampu menghasilkan keputusan yang hampir dengan hasil eksperimen 

berbanding dengan keputusan yang dihasilkan oleh perisian ANSYS-FLUENT atau 

kod yang dibangunkan berdasarkan kaedah isipadu terhingga mengunakan skim Roe. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of study  

The development of modern computational fluid dynamics (CFD) began with the 

introduction of the digital computer in the early 1950s. Since then, the aircraft 

manufactures such as Boeing (US), Airbus (Europe), Aerospatiale (France), British 

Aero Space, CASA and many others have started using CFD as a tool for design and 

analysis in development of new aircraft products. Basically, CFD has been used for 

more than three decades in the aircraft design activities. Boeing experiences 

indicated that since 1980, the number of hours in the use of wind tunnel involved in 

the design phase of new aircraft had been reduced up to 50 % [2]. 

Currently, there are various CFD codes that have been developed. However, 

it is necessary to be noted that the earliest CFD code was the code developed based 

on the use of potential flow theory. This code was firstly developed by Hess and 

Smith in 1962 through the solving of Laplace‟s equation according to a linear 

potential flow approach [3]. This method was known as a Panel method. In 1970, 

Murman and Cole, introduced a CFD code which was developed by solving the 

transonic small disturbance equation [4]. This code represents the enhancement of 

the capability in solving the aerodynamics problem. If the panel method is limited to 

case subsonic flow, the Murman and Cole approach will be able to solve the flow 

problem at transonic speed. However, there‟s a limitation to the Murman and Cole 

approach where it is only suitable to the case of flow past through a streamline body 

with a small thickness. In other words, the presence of body immersed in the flow 

field only created a small disturbance to the flow field. To increase the capability in 

solving the flow problem, in 1973, Jameson had successfully developed and 

established the CFD code called FLO22 and FLO27, which solve the flow problem 
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based on a transonic potential full equation. This code had been used by Boeing with 

the given code name as Boeing code A488 [5]. Another successful code based on 

potential flow is PANAIR and TRANAIR code. These codes are well established and 

have been used until today. 

Another high level CFD code is the code that was based on Euler equation. 

The code was developed in early 1980s. In 1981, Jameson, Schmidt and Turkel 

developed FLO57 based on three-dimensional (3D) Euler equation [6, 7] This code 

has been considered as a great code and it has been used extensively by Boeing, with 

a code name A588. Aerodynamics software which was developed by solving Euler 

equation but dedicated for two-dimensional (2D) airfoil analysis and design was also 

known as an ISES code. This code was developed by Drela and Giles, it has been 

used extensively for the design and analysis of advanced airfoil. Besides ISES, there 

is another 2D Euler code called MSES code [8]. The success of solving flow problem 

based on Euler equation had opened up solutions to the flow problem based on the 

Time Averaged Navier-stokes. From 1993 until today, there have been various 

attempts to solve the flow problem based on this approach. 

Considering the possibility of solving flow problems, various research 

agencies such NASA, ONERA, NLR, etc, have shown an interests in solving 

particular engineering problems. Besides that, there are a lot of universities involved 

in the development of a new numerical scheme for use in CFD as well as in the form 

of CFD code. Currently, the ability of CFD codes has been increasing rapidly. They 

can solve the flow problem with more complexities and varieties in their flow 

phenomena. CFD codes have reached their mature capability, which allows use CFD 

for flow analysis without needing a supporting experimental result for comparison. A 

commercial CFD code such as ANSYS-FLUENT and CFDRF may represent an 

example of a well-established CFD code. Unfortunately, the most well-established 

aircraft companies such as Boeing, Airbus, and MacDonald Douglas prefer to 

develop in-house CFD code by their own methods instead of using readymade 

commercial software. They consider these commercial CFD code are not yet suitable 

for a design tool in the Aircraft industry activities [9, 10].  

Basically the computational approach used solved a mathematical equation 

by describing the governing equation of fluid motion. The governing equation of 

fluid motion is normally in the form of partial differential equation (PDE) which 

consist of terms involved with partial derivatives with respect to space and time. 
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There are three approaches that can be used for solving such equation. They are 

known as (i) finite difference method (FDM), (ii) finite element method (FEM) and 

(iii) the extension of FDM and FEM which is known as the finite volume method 

(FVM). FDM approach is the oldest method used and uses a Taylor expansion in 

converting the PDE into a discrete form. Meanwhile, FVM uses integral form of 

PDE which requires the volume or cell to solve the equation. FEM also uses same 

approach with FVM but usually used for solving a structure problem. 

When all significant aspects have been taken into account in the fluid 

behaviour, fluid flow can be governed by the Navier-Stokes equation which applies 

mass, momentum and energy conservation. This equation has the highest degree in 

the hierarchy of fluid flow problem. Generally, it is very difficult to solve it. As a 

result, some assumptions were made to simplify the equation by considering the 

behaviour effects due to a viscous effect, a compressibility effect, vorticity and 

others. 

Compressible flow is a group of fluid dynamics that deals with flows having 

significant changes in density properties. In general, gases are highly compressible 

and liquids have very low compressibility. Physical observation had found that gas 

flows under incompressible flow condition if the gas is flowing at the Mach number 

less than 0.3. Otherwise, the gas must be considered as a compressible flow. 

Basically compressibility of a fluid is measured by the change in density that will be 

produced in the fluid in the presence of a specific change of pressure and 

temperature. The change of density will be less than 5% if the fluid moves with 

speed below Mach number, M = 0.3. 

Another branch of fluid dynamics is called an inviscid flow. This flow 

indicates that the viscous effects can be neglected. The assumption of inviscid flow is 

generally valid where viscous forces are small compared to the inertial forces. As a 

result the high Reynolds numbers flow indicates the type of flow in which the inertial 

forces are more significant than the viscous forces. The combination of flow under 

condition inviscid and compressible can be represented by the governing equation of 

fluid motion in the form of compressible Euler equation. This equation can be 

classified as a hyperbolic PDE if the flow is having a supersonic speed and it behaves 

as an elliptic-hyperbolic PDE if the flow is under transonic speed. However in view 

of CFD approach, the hyperbolic have been is extensively used to solve problems in 

CFD.  
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There are many numerical schemes that can be adopted for solving the PDE 

from the splitting method until high-order scheme. The high-order scheme may 

represent the most common scheme and currently practiced to solve the hyperbolic 

partial differential equation. Before more elaboration is made on discretisation 

schemes, it is important to know the basic idea of discretisation. There are two types 

of discretisation that is considered in a governing equation. They are temporal 

discretisation and spatial discretisation.  

Temporal discretisation method can be divided into two approaches; they are 

explicit and implicit approach. Explicit method allows a direct computation of the 

dependent variable that can be made in terms of known quantities. In other words, 

the explicit method uses known data from the current time step in order to find the 

unknown data to the following time step. In 1981, Jameson et al introduced a very 

famous and convenient time step by using multi-stage time stepping [6, 7]. This 

scheme was called Runge-Kutta scheme. In contrast, the implicit approach is very 

hard and complex to implement, but it leads to a faster convergence. The present 

work focuses on explicit method with multi-stage time step. 

Another part of discretisation is spatial discretisation. This discretisation 

approach is used to approximate the convective and viscous term. There are varieties 

of spatial discretisation scheme in literatures and researchers are continuously trying 

to find a more accurate, robust and cheap scheme. In general, there are two types of 

schemes, a central scheme and upwind scheme. The central scheme is less accurate 

in handling the discontinuities but easier to code. An example of the central scheme 

is the Lax scheme that was introduced in 1954 and being represented as the first-

order explicit scheme. The Lax-Wendroff scheme was introduced in 1960 

representing a second-order explicit scheme. In 1969, MacCormak introduced two-

stages of central scheme. While that, the upwind scheme developed by considering 

the physical properties of Euler equation can be categorised into four groups, they 

are a Flux-Vector (FVS) scheme, a Finite Difference Splitting (FDS) scheme, a Total 

Variation Diminishing (TVD) scheme and a Fluctuation-Splitting scheme. In this 

respect, the present work will emphasize to two schemes, the FDS scheme and the 

TVD scheme. 

FDS scheme can be stated as a second level of upwind scheme after FVS 

scheme. This scheme which is often called as approximate Riemann solver, in 

solving the flow problem is not only considering the direction of wave propagation 
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but also the wave itself (expansion wave or compression wave or contact surface 

discontinuity). The idea on how to solve the problem is by considering the wave 

behaviour which was firstly introduced by Godunov in 1959 [11]. Through such 

approach, the computational effort required for solving the Riemann problem can be 

reduced. The approximate Riemann solver based Osher et al and Roe may represent 

the most popular scheme in CFD community [12]. However, the approximate 

Riemann solver provided by Roe offers a high accuracy to their solution compared to 

other approximate Riemann solver.  

The TVD scheme was firstly introduced by Harten in 1983 [13, 14]. This 

scheme is based on the concept of avoiding a creation of new extrema points in the 

solution. This scheme with property of monotonic preserving and combinining a flux 

limiter (limiter) made the TVD condition fulfilled and the scheme has a second order 

accurate. Among the common TVD limiters are Davis-Yee, Harten-Yee, Roe-

Sweaby, etc.  

The present work deals with the flow problem related to streamline body of a 

relatively low angle of attack in which the viscous effect can be neglected. In solving 

this type of flow, the two computer codes are developed and designed to be able to 

solve a compressible flow past through airfoil in transonic speed. The first computer 

code is the code developed based on FDM according to Davis-Yee TVD scheme, 

while the second computer code was developed by the use of FVM according to Roe 

scheme. Two types of airfoil were tested for validation purpose. These two airfoils 

are (1) the conventional airfoil NACA0012 and (2) the supercritical airfoil NASA SC 

(2)-0714. The code validation was carried out by comparing their results with the 

available experimental result obtained from literature and the result obtained from 

running commercial CFD code ANSYS-FLUENT software.  

1.2 Problem statement 

Currently CFD had been considered as an important tool for solving engineering 

problems. The application of CFD had been used intensively in the aircraft industries 

in design a new aircraft or in the effort of improvement on the existing aircraft. In 

terms of CFD computer code, the CFD code differs with other may due to the 

difference in the numerical scheme have been used in developing that code.  In the 
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case of inviscid compressible flow, the CFD code may be developed by using 

MacCormack Scheme, Steger-Warming scheme or the method derived from TVD 

schemes.  Basically, each of numerical schemes has its own capabilities in solving 

the flow problem.  In the case of transonic flow past through an airfoil, the important 

features of this flow is the presence of shock wave in the flow field. This shock wave 

generates a change of flow properties sharply to form some kind discontinuity flow 

phenomena in the flow field. Any numerical scheme which capable to predict such 

discontinuity and the location where discontinuity occurred accurately will produce a 

CFD code which give capabilities to provide their results close to the aerodynamics 

experimental result. As the result, the corresponding CFD code would be truly useful 

tool for the aerodynamic analysis and design activities normally found in the aircraft 

industries.  There are various numerical schemes had been developed for solving 

inviscid compressible flow problem, but to achieve successful CFD code dedicated 

to solving a 2D compressible flow accurately, it requires developing CFD code step 

by step. It needs to start with the development of CFD code applied to the case of 1D 

shock tube problem and 2D symmetric model as a stage for evaluating various 

numerical schemes before selecting one of them as the numerical scheme for solving 

2D compressible flow. Therefore, through this study able to develop a robust CFD 

code that able to predict shock location close to experimental.    

1.3 Objective  

The aim of the research work is to develop a CFD code for aerodynamic analysis. In 

order to achieve this aim, the following specific objectives have to be accomplished: 

i. To develop a CFD code which is applicable for solving 2D inviscid 

compressible flows. 

ii. To compare developed CFD code and commercial CFD code in terms of 

value of flow variables such as pressure and Mach number distribution in the 

flow domain. 

iii. To validate the aerodynamic properties through developed CFD code with the 

available experimental results.  
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1.4 Scope of study 

In this research, there are a few scopes of this study addressed as below:  

i. Develop CFD code by using FORTRAN programming language and 

ANSYS-FLUENT for commercial code. 

ii. The study only focuses on 2D compressible flows.  

iii. Limit to single-block topology. 

iv. Numerical grid generation by using of algebraic grid generator or elliptic grid 

generator. 

v. Solution on the governing equation of fluid motion based on FDM and FVM. 

vi. Study effect of the flux limiter. 

vii. The spatial discretisation in relationship with upwind scheme. 

viii. The temporal discretisation in relationship with a multi-stage time stepping. 

1.5 Importance of the research 

Understanding aerodynamic characteristics are required in every design of a new 

aircraft activity. To obtain the aircraft aerodynamics characteristics, it can be done 

either through experimental aerodynamics by putting the aircraft model inside wind 

tunnel or by solving the governing equation of fluid motion. The first approach may 

be time consuming and costly since there are a lot of parameter geometry which give 

influence to the aerodynamics characteristics need to be assessed. Hence, 

determination of the aerodynamics characteristics through solving the governing 

equation of fluid motion may represent the most feasible manner in the early stage of 

aircraft design. In addition to this, the aircraft designers are always design their 

aircraft shapes belonging to the class of streamline body and operated at a relatively 

a low angle of attack. As a result, the corresponding flow problem needs to be treated 

and adequately represented as solving compressible inviscid flow problems.    

The research work focused on the development of CFD code for providing 

detail on flow phenomena of compressible inviscid problem as in the case of quasi 

1D compressible flow past through nozzle and in the case of 2D flow problems such 

as flow past through airfoil. The second case is useful for the aircraft designer in 
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evaluating the aerodynamics characteristics of an airfoil or in selecting the types of 

airfoil which will be used as its wing cross section.  

1.6 Organization of the thesis 

This thesis is organized into five chapters. The first chapter describes the 

introductory of the study, the explanation of research objectives and the scope of 

study will be conducted.  

Chapter 2 gives an explanation on the governing equation of fluid motions of 

the problem in hand including the existence of various level of governing equation of 

fluid motion. Overviews over available CFD code in the market as well as the 

commonly used codes in the aircraft manufacturers are presented. This chapter also 

provideds the literature on the numerical method that has been used for CFD as well 

as a literature study to the selected scheme used in the present research work. 

Chapter 3 presents the numerical scheme used in the development of CFD 

code in view to the manner of the governing equation of fluid motion which are 

solved and the numerical grid generation required. This chapter included the 

pseuocode needed in developing the CFD code in the present work.  

Chapter 4 presents the discussion results of the implementation CFD code in 

solving one- and two-dimensional inviscid compressible flow problems for various 

flow conditions. The comparison result between the developed CFD codes are 

carried out by comparing the experimental result available from literature and 

running the available CFD Code ANSYS-FLUENT.  

Chapter 5 presents the conclusion and recommendations for future works on 

this research area. 

 



 

 

 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The governing equation of fluid motion is already well-established more than a 

century ago. This equation called the Navier-Stokes equation represents the 

governing equation of fluid motion which is capable of describing whatever flow 

phenomena that may exist in the flow field. Unfortunately, in the aeronautics 

applications there is no analytical solution for this kind of equation. Therefore, in 

order to solve the Navier-Stokes equation, it has to rely on the numerical approach. 

This approach opens up a possibility in solving the Navier-Stokes equation directly 

through the method known as Direct Numerical Simulation (DNS) method.  

Unfortunately, solving the Navier-Stokes equation directly is very demanding 

on computer performance and highly time consuming. The flow domain of the flow 

problem needs to be discretised in such way that distance between two neighbouring 

control points must be less than the Kolmogorov scale, . This scale describes the 

distance of particle travel before it loses its identity. It has the order of magnitude 

1x10
-6

 m. As a result to evaluate the flow behaviour which occupied the flow domain 

1.0 m
3
, it will require at least 1x10

18 
control points. The flow variables at each 

control point, which involves variables in terms of velocity components in three 

direction, pressure p, temperature T and the density  has to be updated through a 

time marching process to achieve a steady state solution. This approach make the 

process has to be carried out by time stepping method with time increment t which 

is very small to fullfil numerical stability requirement. Such requirements make the 

DNS through solving directly to the Navier-Stokes equation cannot be applied for 

solving the fluid dynamics problem of the interest of aeronautics applications.  
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DNS method can be applied in the aeronautics applications, especially in 

solving the aerodynamics problems become viable may after 2080 when more 

powerful computer resources and better algorithm in solving the partial differential 

equations than the present time are available [1]. It is true that the direct solution to 

the Navier-Stokes equation will give a very accurate and detailed solution to the 

physical flow phenomena that may appear in the flow field. However in the interest 

of engineering application, such detailed flow phenomena may not be required. The 

engineer may require overall solution such as the pressure distribution on the body 

surface in which the detail of particle movements in the flow field are not necessary 

to be known.  

In this aspect, it may reduce the complexity of the Navier-Stokes equation to 

the level in which the present computer performance and numerical algorithm are 

able to solve the flow problems in reasonable CPU time and accuracy. There are 

various levels of governing equation of fluid motion that can be implemented and 

adopted in solving a particular flow problem. The following sub-chapter discusses 

the various forms of governing equation that can be introduced as part of reducing 

the complexity of the Navier-Stokes equation. Reducing the Navier-Stokes equation 

in the form of its lower level means to solve the problem in partial differential 

equation (PDE) in an ordinary differential equation (ODE) or others. It also has to 

deal with the problem of PDE as a non-linear equation but less demanding in spatial 

as well as temporal discretisation.  

There are various numerical approaches that have been introduced on how to 

solve the governing equation of fluid motion in the form of derivative of the Navier-

Stokes equation approach which is known as a Computational Fluid Dynamic (CFD). 

Hence the chronology of CFD code development since 1980s and also the 

application of CFD code especially in aircraft industries are presented also in the 

next sub-chapter. Finally, this chapter reviews experimental result for selected airfoil 

as a data comparison to validate the CFD code.  

2.2 Hierarchy of CFD solver  

Before further discussing CFD in detail, it is necessary to look at the map on how the 

CFD is developed. CFD is the way to solve the flow problem numerically. So, it 
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starts from the governing equation of fluid motion. Figure 2.1 shows the road map in 

solving the flow problem by using CFD. The governing equation can be basically 

presented in either differential form or integral form. If the need chooses the 

governing equation in differential form, it may need to adopt a finite difference 

method (FDM) to solve that governing equation. Since the Euler equation represents 

the non-linear partial differential equation, a certain numerical technique needs to be 

introduced. With this, it will adopt particular manner of FDM for solving the Euler 

equation to be implemented and may also choose a MacCormack Scheme, Flux 

splitting Steger Warming or TVD scheme. The TVD scheme can be used according 

to Harten-Yee, Roe-Sweby or Davis-Yee TVD schemes. Meanwhile, if the need uses 

an integral form in representing the governing equation of fluid motion; it may use a 

finite volume method (FVM). In this respect, an idea of FVM based on cell vertex 

method or cell center method can be used. These two methods are basically 

concerned with the way the control point for each element is defined. While that, in 

terms of solving the non-linear partial differential equation, the method as introduced 

by Roe can be used. This method describes the flux of the flow variables. Hence the 

Roe method can also be used in the finite difference approach as well. The yellow 

bars and blue bars indicate the CFD code processes that have been developed in this 

study. 

 

 

Figure 2.1: Hierarchy of CFD solver   

  

Governing Equation of inviscid compressible  
flow (Euler Equation)   

Differential form   Integral form   

Finite Difference  
Method   
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  Scheme   

TVD Scheme   
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Cell centred    Cell vertex   

Roe Scheme   
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2.3 Governing equation  

Basically describing the flow behaviour can be done by writing it in the form of 

governing equation of fluid motion. This governing equation of fluid motion can be 

written in differential form or in the integral form. Both forms are formulated based 

on three physical conservation laws. They are known as (1) conservation of mass 

(continuity equation), (2) conservation of linear momentum (Newton‟s second law) 

and (3) conservation of energy (first law of thermodynamics). The manner on how to 

derive the governing equation of fluid motion in differential form as well as in 

integral form can be obtained in various fluid mechanics text books [15-19]
 
or CFD 

text books [20-25]  

The governing equations of fluid motion expressed in differential form 

presented in vector notation and Cartesian are given in Eq. (2.1) to Eq. (2.5). The 

continuity equation can be written as below, 

  0



V



t
  (2.1)

   

In Eq. (2.1), the ρ, V and t represent the density of fluid, vector velocity and time 

respectively. The momentum equations in three components can be written as below,  
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In Eq. (2.2) to Eq.(2.3) p is static pressure, τ is shear stress and f is flux vector. 

Meanwhile, u, v, w are the x, y, z components of the velocity. The energy equation 

can be written as below: 
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where   is vector operator, V is vector velocity, f is vector of body force per unit 

mass. It can be defined as below 

zyx 
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 kji  (2.6)

      

kjiV wvu   (2.7) 

kjif zyx fff   (2.8)

  

Namely, Eq. (2.1) to Eq. (2.5) are representing the governing equation for 

viscous flow which considers the transport phenomena of friction and thermal 

conduction. These equations are known as Navier-Stokes equation.  

2.4 Euler equation  

If viscosity effect can be neglected in a fluid flow, the flow is considered to be non-

viscous or inviscid. That means all elements of friction and thermal conduction will 

be neglected. As a result, the continuity in Eq. (2.1) can be written as below. 

  0



V



t
 (2.9)

  

and momentum equation in Eq. (2.2), Eq. (2.3) and Eq. (2.4) can be written as, 
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For energy equation in Eq. (2.5), it can be written as, 
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In the above equations, Eq. (2.9) until Eq. (2.13), are known as Euler 

Equation. These equations can be used whether the flow problem belongs to the class 

of compressible flow or incompressible flow. Both may be in steady or unsteady 

flow conditions.  

2.5  Available CFD code for air vehicle design and analysis  

The application of CFD especially in aerodynamics field has been widely use since 

30 years ago. CFD together with wind tunnels and flight test may represent the main 

tools in the aerodynamic analysis and design of flying vehicles. However, as the 

CFD starts in use as aerodynamics tool, the aircraft manufacturers are no longer 

depending too much on the use of wind tunnels. These are due to the fact that, for the 

same purposes, the use of wind tunnels are very costly and time consuming 

compared to the use of CFD. However, wind tunnels are still needed to confirm the 

results provided by CFD that are still in line with the result produced by wind tunnel 

test. In addition to this, it can be said that the wind tunnel and CFD can 



15 

 

complemented each others. The wind tunnel result can be used to validate the CFD 

results, on other hand the CFD results can be used to calculate the wind tunnel wall 

correction factors. Other benefits offered by CFD would be that, this approach can 

narrow down the number of design constraints and parameters in which further 

detailed flow analysis can be conducted through wind tunnel tests. This means that 

CFD will identify some important flow regions where further study purposes will be 

carried out in wind tunnel tests by using some instrumented models [26].  

Basically, the development of CFD throughout the history of Boeing 

Commercial Airplane in the process of producing their various types of commercial 

passenger aircrafts can be looked on. Figure 2.2 shows the Boeing aircraft generation 

and the corresponding CFD code associated with the development of these aircrafts. 

The Boeing 767 and Boeing 757 represent two examples of passenger type aircraft in 

which their aerodynamics analysis and design are obtained by using a CFD code 

named as PANAIR. While that, Boeing 737-300 series are using CFD code called 

FLO22 and TRANAIR. The aircraft Boeing 787 series as the most lastet aircraft are 

designed on the CFL3D OVERFLOW‟s CFD code [2].  

 

 

Figure 2.2: Chronology of Boeing aircraft production [27]  

 

The presence of various softwares such that is being used in Boeing aircraft 

cannot separate the existence of various levels of governing equations of fluid 

motion. Basically in a manner of the flow problems that can be solved are not 

unique. They depend on the kind of solutions they are looking for. Strictly speaking, 
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the governing equation of fluid motion can be divided into several levels of 

governing equation as shown in Figure 2.3. 

 

 

Figure 2.3: Hierarchy of governing equation [28] 

 

Figure 2.3 describes that the highest level of governing equation of fluid 

motion is the three-dimensional (3D) Navier-Stokes equation. This equation is 

derived directly from three conservation laws, mass, momentum and energy. 

Basically, this equation can be solved directly; it needs to supplement additional 

information concerning flow properties of viscosity and thermal conductivity. For 

special case of laminar flow, any experiment in laminar flow regime can be 

accurately duplicated from the solution of this equation. Unfortunately, most 

engineering problem of interest enters the flow into a particular form of instability, 
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called turbulence. This instability phenomenon occurs in almost all flow situations 

when the velocity, or more precisely, the Reynolds number, defined as the product of 

representative scales of velocity and length divided by the kinematic viscosity, 

exceeds a certain critical value. The particular form of instability generated in the 

turbulent flow regime is characterized by the presence of statistical fluctuations to 

the all flow quantities. These fluctuations can be considered as superimposed on 

mean or averaged values and can attain, in many situations, the order of 10% of the 

mean values, although certain flow regions, such as separated zones, can attain much 

higher levels of turbulent fluctuations. The numerical description of the turbulent 

fluctuations is a formidable task which puts very high demands on computer 

resources. As mentioned earlier, the numerical approach designed to solve the 

Navier-Stokes equation directly is DNS that is possible to be used for industrial 

applications which may become viable after 2080. The present computer capability is 

not yet sufficient enough to fulfil the DNS requirements. An attempt on reducing 

computer demand can be done through deep observation of the flow behaviour. It has 

been found that most flow problems have two types of turbulent fluctuations, a large 

and small scale fluctuations. In this respect, the large scale turbulent fluctuations are 

solved directly from the Navier-Stokes equation while a smaller scale is through its 

simplified form of the Navier-Stokes equation. Such approach is known as Large 

Eddy Simulations (LES). Unfortunately the implementation of this method to deal 

with industrial applications is still time consuming, it can be fully utilized after 2045 

as shown in Figure 2.4 [1].  

 

 

Figure 2.4: Usage of CFD on aircraft development [1] 
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The third level of the governing equation of fluid motion is the Reynolds 

Averaged Navier-Stokes equation (RANS). This equation can be obtained through 

representing turbulent flow phenomena consisting of two quantities which are the 

average value and the fluctuated value. If the ratio between fluctuated value and the 

average value is small and the average value of the fluctuated quantity goes to zero 

for sufficient time, then the Navier-Stokes equation can be reformulated to become a 

RANS. However in solving this equation, it has to introduce a turbulence modelling. 

It is true that the spatial and temporal discretisation requirements are far less than the 

DNS or LES approach, but their solution are depending on the turbulence modelling 

invoked and also the numerical scheme in use.  

RANS can be further simplified if the flow problem belongs to the class of 

high Reynolds number flow with the flow separation covered up in small flow 

domain. In this situation, it can ignore the viscous and turbulent diffusion terms in 

the main stream direction. Here the RANS equation becomes an equation known as 

Thin Shear Layer Equation. While that, if the pressure gradient in the normal 

direction of the body surface is equal to zero, then the RANS equation becomes a 

Parabolized Navier-Stokes equation. 

The fourth level of governing equation of fluid motion is split into two 

equations models. The first equation describes the governing equation of inviscid 

flow motion while the second one describes the influence of viscous effects. Such 

flow phenomenon may exist if the flow problem deals with the flow at high 

Reynolds number past through a streamline body at relatively low angle of attack. 

Here, the flow domain around the body can be divided into two regions, the flow 

domain that are relatively away from the body surface where the flow will behave as 

inviscid flow while the flow domain close to the body surface gets a strong influence 

of the viscosity. As a result, the flow domain relatively far away from the body 

surface is governed by Euler equations. This equation is simply obtained from the 

Navier-Stokes equation through eliminating viscous term. While that, the governing 

equation of fluid motion for the flow close to the body surface which can be obtained 

through the implementation order of magnitude analysis upon the Navier-Stokes 

equation resulting in the governing equation known as the Boundary Layer Equation. 

The Euler equation still represents a non-linear partial differential equation and it is 

not easy to be solved. In the absence of viscous effects, in the inviscid flow domain 

may impose the flow is irrotational flow. Imposing such flow condition, the Euler 
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equation can be reduced to become the the continuity equation that needs to be 

solved. The momentum equation was initially in the form of differential equation; 

they can be converted to become an algebraic equation in relating the flow variables 

of pressure and flow velocity. The reduced form of the Euler Equation is known as a 

Full Potential Equation. Through a Full potential Equation further simplification can 

be done by considering the presence of the body immersed in the flow field creating 

a small perturbation into the flow field. Such flow condition makes the Full Potential 

Equation can be simplified to become a Prandtl-Glaured equation. This equation is 

applicable to the case of compressible flow at high subsonic flow or supersonic flow. 

In the case of transonic flow, the Full Potential Equation becomes a Transonic Small 

Perturbation Equation (TSP-equation). If the inviscid flow problem applied to the 

incompressible flow and in addition with the flow considered as irrotational flow, the 

Euler equation can be reformulated to become a Laplace equation. This represents 

the lowest level of the governing equation of fluid motion. The level of complexity 

of the governing equation of fluid motion is shown in Figure 2.5.    

 

 

Figure 2.5: The level of complexity of the governing equation of fluid motion 

2.5.1 CFD Linear potential flow equation 

Most aeronautics applications are involved with the flow problem past through a 

streamline body. Aircraft as a flying vehicle was designed for having a streamline 

body and operated at a low angle of attack and high Reynolds number. Such flow 

conditions make their flow problems can be treated as inviscid flow problems and 
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irrotational flow condition can be invoked. As a result, the governing equation of 

fluid motion can be formulated in the form of Laplace equation if the flow belongs to 

the class of incompressible flow or in the form of Prandtl-Glaured equation if the 

compressible effect needs to be taken into account. Both equations correspond with 

each other. The method was used for solving the Laplace equation for solving the 

Prandtl-Glaured equation. Initially an attempt to solve the Laplace equation is carried 

out by using an analytical approach. Using a complex variable, the two-dimensional 

(2D) flow past through shape like airfoil can be solved, so the pressure distribution 

along the airfoil surface can be predicted.  

The advancement of computer technology had opened up ways on how the 

Laplace equation can be solved in order to obtain the aerodynamics characteristics 

over an arbitrary body shape.  The first attempt for such flow problem solving is 

carried out by Hess and Smith in 1962. The manner on how the Laplace equation is 

solved is called as the Panel method [3]. This method was developed based on the 

Laplace equation invention which represents the governing equation in the form of 

partial differential equation that can be converted into an integral form. The flow 

problem which represents the field problem becomes the body surface problem, since 

the unknown of the quantity of the flow is now determined on the body surface. The 

success of Hess and Smith in solving the Laplace equation by using Panel method 

had encouraged researchers around the world to develop other versions of Panel 

method. Table 2.1 shows some list of well known Panel method.  
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Table 2.1 List of some major Panel Method [29] 

 
  

Among those Panel method as mentioned in above table, PANAIR, VSAERO 

and PMARC will be described further in the following sub-chapter.  

2.5.1.1 PANAIR code [30]  

This code was developed by Boeing and funded by a variety of government agencies 

such NASA. PANAIR (an abbreviation for "panel aerodynamics") is a state-of-the 

art computer program developed to predict inviscid subsonic and supersonic flows. It 

is about an arbitrary configuration by means of a higher-order Panel method. A Panel 

method can solve a linear partial differential equation numerically by approximating 

the configuration surface by a set of panels on which unknown "singularity 

strengths" are defined, imposing the boundary conditions at a discrete set of points, 

thereby generating a system of linear equations relating the unknown singularity 

strengths. These equations solved problems for singularity strengths which provide 

information on the properties of the flow. PANAIR method differs from earlier Panel 

method by employing a "higher-order" panel method wherethe singularity strengths 

are not constant on each panel. This is necessitated by the more stringent 

requirements on the supersonic problem. The potential for numerical error is greatly 

reduced in the PANAIR program by requiring the singularity strength to be 
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continuous. It is also this "higher order" attribute which allows PANAIR to be used 

to analyse flow on arbitrary configurations. PANAIR can handle the simple 

configurations considered in the preliminary design phase and later serves as the 

"analytical wind tunnel" which can analyse the flow on the final detailed, complex 

configurations. In general, the aircraft surface is partitioned into several networks of 

surface grid points, such as a fore body network, a wing network, and so forth. The 

coordinates of the input grid points must be computed and entered by the user. The 

theoretical background on how to develop this code according to the Panel method is 

described in [30-33]. While that, [34-36] gives some examples on the application of 

the PAN AIR code for solving various flow problems  

2.5.1.2 VSAERO code [37]  

This code was developed by Ames Research Centre by AMI (Analytical Mechanics 

Inc). The code implements the surface singularity panel method using quadrilateral 

panel on which doublet and source singularities distributed piecewise constant form. 

The panel source values are directly determined by the external Neuman boundary 

condition controlling the normal local resultant flow. The doublet values are solved 

after imposing the internal Direchlet boundary condition of zero perturbation 

potential at the centres of the panels simultaneously. Surface perturbation velocities 

are obtained from the gradient of the doublet solution while field velocities are 

obtained by direct summation of all singularity panel contributions. In order to 

accommodate the ability to predict the non-linear aerodynamic characteristics, the 

vortex separation and vortex/surface interaction are treated in an iterative wake-

shape calculation procedure, while the effects of viscosity are treated in an iterative 

loop coupling potential flow and integral boundary layer calculations.  The user 

manual on how to use the VSAERO Code including its theoretical back ground can 

be referred to [32, 38, 39]. 

2.5.1.3 PMARC [40]  

PMARC is a computer code for aerodynamics analysis around a complex 3D 

geometries by using a Low order Panel Method. PMARC stand for “A Panel Method 
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of Ames Research Centre”. Basically PMARC represents the extension of VSAERO 

code. This computer code has the same capabilities as the VSAERO codes; it has 

several advanced features such as the ability in dealing with the internal flow model, 

a simple jet wake model, and a time-stepping wake model. In addition to that, the 

data management within the code has been optimized by the use of an adjustable size 

arrays for rapidly changing the size capability of the code, reorganization of the 

output file and adopting a new plot file format. The Panel method which had been 

used in developing PMARC code may be referred to [41, 42]. 

2.5.2 Potential flow equation  

Basically, there are three conservative formulations used for inviscid transonic flow. 

They are followed by transonic small-disturbance equation, full potential equation 

and Euler equation for the exact inviscid formulation. Transonic small-disturbance is 

suitable to solve transonic flow with simple geometry. Transonic small-disturbance 

has been solved for lifting, sweat-wings and simple wing-fuselage combination. 

Meanwhile, the full potential for complex body includes bodies of revolution, 

asymmetric and planar inlet nacelles and yawed [43]. The solver for transonic-small 

disturbance has been developed in the early 1970s by Murman and Cole by using 

concept within subsonic regions and backward differences within supersonic regions. 

Then the modification of Murman and Cole scheme has been used to solve full 

potential flow equation [4].  

2.5.2.1 FLO22 & FLO27 [5] 

These codes were developed by Jameson for Boeing Company by using rotated finite 

volume scheme. The FLO22 code is the first transonic potential flow solution for 3D 

swept wing. This code has been used for the wing design of the Canadair Challenger, 

later marketed as XFLO22 by the Dutch NLR. The code is still in use today for 

preliminary design at Boeing and other aircraft companies. It is useful in this role, as 

it is capable of computing 3D flow fields on grids containing about 150,000 cells in 

less than 15 seconds on a current laptop computer. The next is FLO27 and it has been 

incorporated in Boeing A488 software.  



24 

 

2.5.2.2 TRANAIR [44] 

This code was also developed by Boeing Company and NASA. This code has been 

used heavily on commercial transport designs since the 777 – 200. TRANAIR code 

development began under contract with NASA as a feasibility study in 1984. The 

technology to analyze transonic flow with a uniform orthogonal field grid was 

developed under this initial contract. Further development under a second NASA 

contract led to the development of grid refinement techniques. Today TRANAIR 

code is a fully functional analysis and design tool with continuous development in 

design, adaptive grid refinement, coupled boundary layer and design capability 

2.5.3 Euler equation  

The highest level of the inviscid flow is Euler equation. For many practical 

aerodynamic applications, this equation is relatively accurate for representing the 

flow field which includes both rotational and discontinuous (shock) phenomena in 

the flow and providing an excellent approximation for lift induced drag and wave 

drag. Furthermore, a robust Euler solver is an essential part of any Navier-Stokes 

solver. In addition to this, Euler equations promised to provide more accurate 

solutions of transonic flows. 

The Euler equation was used by Jameson in developing computer code for 

solving a 3D flow problem named FLO57 code in 1981. It was used to develop other 

codes called a MGAERO code. MGAERO code is unique in being a structured 

Cartesian mesh code.  Besides that, Jameson also developed the AIRPLANE code 

which made use of unstructured tetrahedral grids. In the 2D, Drela and Giles 

developed the ISES code for airfoil design and analysis. This code first became 

available in 1986 and has been further developed to design, analyze and optimize 

single or multi-element airfoils, also known as MSES code.  

2.5.3.1 FLO57 [6] 

This code was developed by Jameson and had been used extensively in Airbus 

Company. FLO57 code uses 3D Euler code to analyse the inviscid transonic flow 

http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Antony_Jameson
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