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Abstract 

 

Germinal centers (GCs) are key structures where B cells are selected to produce high affinity 

immunoglobulins of the adequate class. This selection is dependent of B cell interactions 

with specialized follicular helper T (Tfh) cells that provide help for class switch 

recombination, somatic hypermutation, and selection signals to GC B cells. It was recently 

described that the GC reaction is controlled by specialized Foxp3+ follicular regulatory T 

(Tfr) cells. These cells regulate the size and magnitude of the GC reaction, and have been 

also implicated in the prevention of autoimmunity.  

This thesis aimed to answer two questions regarding Tfr cells biology. First, it was 

investigated whether Tfr cells derive from thymic-derived regulatory T (tTreg) cells. The 

second objective was to establish whether Tfr cells are specific for the non-self antigen 

driving the GC response, as Tfh cells, or if Tfr cells have a repertoire closer to Treg cells 

with specificity towards self-antigens. 

It was found that Tfr cells originate exclusively from tTreg cells. Also, Tfr cells were not 

specific for the immunizing antigen. Indeed, as antigen-specific TCR-transgenic Tfr cells 

were not specifically recruited into the GC, nor could antigen-specific Tfr cells be detected 

using class-II MHC tetramers. Moreover, Tfr cells did not specifically proliferate in vitro 

when stimulated with the immunizing antigen. Lastly, repertoire analysis of Tfr, Treg and 

Tfh cells demonstrated that Tfh cells and Tfr cells have different repertoires with the latter 

retaining a repertoire closer to Treg cells. 

Taken together, the presented results show a clear difference in the specificity and TCR 

usage by Tfh and Tfr populations from the same GCs. This distinct specificity is in line with 

different putative functions of the two populations: while Tfh cells promote antigen-specific 

B cell responses, Tfr cells prevent autoimmunity. 
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Resumo 

 

Os centros germinativos (GCs) são estruturas onde as células B sofrem hipermutação 

somática, seleção positiva e mudança de isotipo, de forma a produzirem anticorpos de alta 

afinidade e de isotipo adequeado à resposta imunitária em curso. No entanto, para que estes 

processos ocorram, as células B dos centros germinativos precisam de ajuda por parte de 

células T auxiliares foliculares (Tfh).  

Recentemente, foi descrita uma nova população de células reguladoras FOXP3 positivas, as 

células T reguladoras foliculares (Tfr), que se encontram dentro dos GCs. Estas células estão 

envolvidas na regulação dos GCs, nomeadamente, na quantidade e na qualidade (afinidade) 

de anticorpos produzidos durante uma resposta imunitária. Para além disso, as células Tfr 

parecem também estar envolvidas na prevenção de doenças autoimunes.  

As células Tfr partilham algumas características quer com as células T reguladoras (Treg) 

FOXP3 positivas, quer com as células Tfh. Tal como os linfócitos Treg, as células Tfr 

expressam FOXP3, CD25 e CTLA-4 e têm capacidade supressora. Por outro lado, assim 

como as células Tfh, as células Tfr expressam PD-1, ICOS, CXCR5 (que lhes permite migrar 

para o GC) e BCL-6, o principal factor de transcrição responsável pela diferenciação de 

células T CD4 foliculares. Tanto as células Tfr como as Tfh podem ser induzidas por 

imunização, já que esta induz GCs, num processo muito semelhante ao que é observado após 

vacinação. 

O trabalho descrito nesta tese tinha dois objectivos principais. O primeiro era estabelecer 

qual a origem das células Tfr., isto é, se estas células se diferenciam a partir de células Treg 

originadas no timo ou a partir de células T CD4 convencionais (Tconv). O outro objectivo 

consistia em determinar a especificidade das células Tfr, ou seja, se estas células são 

específicas para o antigénio da imunização, ao qual as células B do GC estão a responder e 

a maturar a sua afinidade. Três linhas de trabalho foram estabelecidas para responder a estas 

questões.  

Em primeiro lugar, efectuaram-se transferências de células Tconv específicas para um 

antigénio devido à expressão de um receptor de células T (TCR) transgénico. Foi verificado 

que estas células específicas, depois de uma imunização com o respectivo antigénio, não se 

diferenciavam em células Tfr. No entanto, quando uma população de células Treg 

específicas que se origina no timo está presente, estas dão origem a células Tfr. Assim, as 

células Tfr originam-se exclusivamente de células Treg que se originam no timo. 
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Para estabelecer se as células Tfr, como as células Tfh, são específicas para o antigénio que 

induz a resposta do GC, foram realizadas experiências in vivo e in vitro. Primeiro, 

realizaram-se transferências de células transgénicas específicas para um antigénio, entre as 

quais uma população de células Treg também específicas. Após imunização com o 

respectivo antigénio (ou um antigénio controlo), verificou-se um recrutamento específico de 

células transgénicas como Tfh para o centro germinativo. No entanto, as células Treg 

específicas não foram preferencialmente recrutadas como células Tfr já que a mesma 

percentagem de células foi observada após imunização com o antigénio específico e com o 

antigénio controlo. Para confirmar os resultados anteriores, mas sem a utilização de células 

transgénicas, estudou-se a existência de células Tfr específicas após imunização com dois 

péptidos, utilizando para isso dois tetrâmeros de MHC classe II. Detectou-se uma população 

de células Tfh específicas (tetrâmero positivas) em imunizações contendo o péptido 

correspondente. Porém, não foram detectadas células Tfr específicas (tetrâmero positivas) 

em nenhuma das imunizações efectuadas. Verificou-se ainda que as células Tfr não 

reconheciam especificamente o antigénio da imunização que lhe deu origem, já que a sua 

proliferação in vitro foi igual independentemente do antigénio fornecido durante a cultura. 

Por último, estudou-se o reportório das células Tfr, Tfh e Treg. O estudo do reportório, 

inicialmente feito através da determinação da distribuição do comprimento de CDR3 para 

cada segmento V da cadeia β do TCR, mostrou que as células Tfh apresentavam diferenças 

em relação à distribuição verificada para células T CD4 naïves. Estas diferenças consistiam 

principalmente em aumentos de utilização de comprimentos CDR3 específicos. A existência 

destes aumentos indica a presença de expansões clonais dentro da população de células Tfh. 

Os mesmos aumentos não foram observados nas células Tfr que, apesar de também 

apresentarem algumas diferenças em comparação com as distribuições das células T CD4 

naïves, tinham o seu reportório próximo das células Treg. Para confirmar os resultados da 

análise de utilização de comprimentos de CDR3 e obter uma maior informação sem as 

limitações da técnica anterior, o reportório da cadeia α do TCR de murganhos 1D2β foi 

também sequencido. Este modelo de murganho, para além de ser repórter para FOXP3, 

expressa uma cadeia β do TCR transgénica (não variável) e tem apenas um dos alelos da 

cadeia α do TCR disponível para recombinação. Apesar disso, estes animais são capazes de 

montar respostas específicas contra um antigénio, visto que após imunização há formação 

de células T CD4 foliculares e as células Tfh destes animais conseguem reconhecer 

especificamente o antigénio correspondente em ensaios in vitro. A utilização deste modelo 
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tem como vantagem obter a informação completa do reportório das populações em estudo 

sequenciando apenas a cadeia α do TCR. A análise do reportório das células Tfr, Treg e Tfh 

permitiu saber que, apesar de as células Tfr e Tfh serem oligoclonais, estas não têm 

clonótipos comuns. Por outro lado, a população celular que apresentava um reportório mais 

próximo das células Tfr era a população Treg, apesar desta última ser policlonal (sem 

expansões óbvias de clonótipos específicos). Estas observações permitem concluir que as 

células Tfr têm uma especificidade diferente das células Tfh, uma vez que o seu reportório 

é diferente, e que devem ser específicas para antigénios do próprio, tal como as células Treg 

de que se originam e com quem têm um reportório mais próximo. 

Assim, os resultados permitem concluir que as células Tfr originam-se de células Treg e, 

não sendo específicas para o antigénio que induz a resposta do GC, têm um reportório 

próximo das células Treg, com especificidade para antigénios do próprio. 

 

Palavras-chave: Centros germinativos; células Tfr; células Tfh; FOXP3 

  



 

xxvi 

 

  

 

 



 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. General Introduction 

 

 

  



 

2 

 

 



Introduction 

3 

 

Immune system 

The immune system is constituted by specialized cells and molecules which main role is to 

defend an organism from disease. Although immunity was first associated with protection 

against infectious disease, the immune system can also be activated by noninfectious foreign 

substances and damaged or altered cells of the self. 

The immune system is divided into two fundamentally different parts, the innate and the 

adaptive immune systems, that interact and complement each other. The innate immune 

system consists of cellular and biochemical mechanisms that are already in place even before 

infection, and provides protection to the same extension independently of how many times 

it has encountered the same infectious agent. The adaptive immune system, on the other 

hand, takes longer to respond, but is characterized by the exquisite specificity for each 

infection and the ability to improve its response upon re-exposure to the same infectious 

agent.  

 

Innate immune system 

When the need for an immune response arises, the innate immune system is activated first 

to respond against the threat to the organism. In the case of an infection, the response is 

initiated within minutes through an inflammatory response.  

The main activation mechanism of innate immune cells is through the recognition of a 

limited number of molecules called pathogen-associated molecular patterns (PAMPs) by 

pattern recognition receptors (PRRs). PRRs include Toll-like receptors (TLRs)1, C-type 

lectin receptors (like the mannose receptor2), scavenger receptors3, among others. These 

receptors, which can be present on the surface, in the endosomal vesicles, or in the cytoplasm 

of innate immune cells, bind different molecules from distinct pathogens, and consequently 

trigger different immune responses. TLRs, the most extensively studied PPRs, are divided 

in two groups based on their cellular localization: TLRs 1, 2, 4, and 5 are found in the cell 

surface and recognize bacterial and viral products on the extracellular space, while TLRs 3, 

7, 8, and 9 are expressed mainly in endosomal vesicles and detect the presence of bacterial 

and viral nucleic acids. Furthermore, some PRRs also recognize cell damage signals by 

dying cells, called DAMPs (damage-associated molecular patterns), which allow the system 

to identify candidate cells for phagocytosis and initiate an inflammatory and immune 

response with these signals. Examples of DAMP receptors are TLR2 and TLR4 that bind 

host heat shock proteins4,5 and TLR9 that binds Chromatin-IgG complexes6. The activation 
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of PRRs cause cell activation, production of cytokines, and presentation of co-stimulatory 

signals that lead to activation of the immune system through an initial inflammatory 

response, recruitment of more cells to the local of the ongoing immune response, and further 

activation of specialized cell through cell-to-cell contact. 

Cytokines are small molecules secreted by one or several cells to alter the behavior of itself 

(autocrine effect) or of other cells (paracrine effect if target cells in the vicinity or endocrine 

effect if the cytokine targets cells at long distances). Target cells receive the signal through 

receptors on their membrane that are specific for the cytokine which signaling will affect 

cell activation, division, apoptosis, or movement. While virtually all cells can produced 

cytokines, some immune cells, such as leukocytes, are specialized in that function. Cytokines 

are divided in subgroups depending on the function or target/producing cells: interleukins 

(IL) were initially described as being produced by, and affecting, white cells, but they have 

a very wide range of target cells and effects; chemokines induce cell migration by acting as 

chemoattractants; interferons (IFN) were initially associated with viral infections and their 

production mainly occurs in responses against intracellular pathogens; colony-stimulating 

factors (CSF) induce proliferation and differentiation of hematopoietic stem cells. 

The innate immune system is composed by different types of cells with different functions, 

the complement system, and acute-phase proteins. Innate cells can be divided into three 

categories: cells that have high phagocytic capacity, like neutrophils, macrophages, and 

dendritic cells (DCs); basophils, mast cells, and eosinophils that act as producers of 

inflammatory mediators; and innate lymphoid cells (ILCs).  

Macrophages and dendritic cells reside in different tissues and get activated upon onset of 

an immune response. Neutrophils, however, are the most abundant nucleated cells in the 

blood and are recruited into tissues due to local inflammatory signals. Macrophages and 

neutrophils are the main cells responsible for clearance of pathogens, infected cells, and 

immune complexes. Although DCs also have high phagocytic capacity, their main function 

is to connect the innate and adaptive immune system by, upon antigen uptake, migrating into 

the spleen and lymph nodes (LNs) where they act as antigen-presenting cells (APCs) to T 

cells. Other cell types can also act as APCs, as is the case of B cells and macrophages, but 

are not involved in the priming of T cells, a function mainly performed by DCs.  

Eosinophils7 protect against parasitic infections, particularly infections by nematodes. As 

these parasites are large, eosinophils action is not through direct phagocytosis, but rather the 

release of large granules containing cytotoxic mediators on the surface of the parasitic 
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organism. Tissue resident mast cells and blood basophils7 release inflammatory meditators 

and induce inflammatory responses.  

ILCs are divided in two main groups: cytotoxic ILCs and non-cytotoxic ILCs. The first 

comprises the long known natural killer (NK) cells, while the second is composed by group 

1, 2, and 3 of ILCs (ILC1-3). All these cells have common characteristics with the adaptive 

immune T cells, however, they lack the capability of recognizing specific antigens8. NK cells 

recognize and kill microbial-infected or tumor cells and their surveillance is performed 

throughout the entire organism9. ILCs are common at sites of potential invasion or 

colonization by pathogens, such as barrier surfaces, and upon activation they rapidly initiate 

the release of cytokines. The type of cytokines release depends on the group of ILCs 

activated that in turn will depend on the kind of required response: while ILC1s produce 

IFNγ, ILC2s produce IL-4, IL-5, IL-9, and IL-13, and ILC3s produce IL-17, IL-22 (the same 

signature cytokines as Th1, Th2, and Th17 described later on the CD4 T cells subsection)8.  

Another important component of the innate immune system is the complement system10. 

This system is composed by a set of proteins (C1-C9) which bind to each other on a 

proteolytic cascade to generate pro-inflammatory mediators, pathogen opsonization, and 

lysis of the target cell through membrane-penetrating pores called membrane-attack complex 

(MAC). Although there are three activation pathways (the classical, the alternative, and the 

lectin pathways), all cascades converge in the generation of C3 convertase which cleaves C3 

into the anaphylotoxin C3a, a peptide mediator of inflammation, and the opsonin C3b, the 

main effector molecule of the complement system. 

The innate immune system has a major impact on the adaptive immune system, since the 

latter is dependent on antigen presentation by innate immune cells for full activation. Also, 

the ability to determine the necessary type of response by the innate immune system has an 

important role in directing the effector responses by the adaptive immune system (namely, 

Th1, Th2, or Th17). However, adaptive immune responses also have an extensive impact on 

innate capacity to fight infections: Fc receptors are present in most of innate immune cells 

and either facilitate phagocytose or lead to release of inflammatory molecules. Also, the 

classical activation pathway of the complement system is dependent on antibodies for 

activation, contrary to the other two pathways (alternative and lectin pathways) that rely on 

PAMP recognition. 
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Adaptive Immune system 

The two main characteristics of the adaptive immunity that differentiates it from the innate 

immunity are the use of antigen-specific receptors and its ability to improve its response 

upon re-exposure to the same infectious agent.  

T and B cells are the cell types that constitute the adaptive immune system. While B cells 

are associated with antibody production and consequently humoral immunity, T cells are 

responsible for cellular immunity through the action of CD8 T cells. However, both types of 

adaptive immunity require help from CD4 T cells.  

One of the key points of these cells is their receptors, the T-cell receptor (TCR) in the case 

of T cells and the B-cell receptor (BCR) in the case of B cells. These receptors originate 

from the random recombination and mutation of multiple DNA segments that code for the 

antigen recognition area of the receptors, which in turn leads to the production of a very wide 

range of receptors: the T and B cell repertoires comprise over 108 different TCRs and over 

1010 BCRs to guarantee the recognition of all pathogens that can ever be encountered. 

The other key point of T and B cells is their capability to acquire a memory phenotype during 

a primary immune response that allows more robust and rapid responses upon subsequent 

exposure to the same pathogen. 

Both cell types derive from pluripotent stem cells, but, while B cells develop in the bone-

marrow, T cell progenitors migrate into the thymus during their initial stages of 

development. As T and B development occurs in the thymus and the bone marrow, these 

organs are considered primary lymphoid organs. Both T and B cell development is dictated 

by the rearrangement steps of their antigen receptors and the ability to recognize antigens. 

However, while the BCR can recognize free antigens, T cells need another cell to process 

and present antigen peptides in major histocompatibility complex (MHC) molecules for TCR 

recognition. Once their development is complete, these cells migrate from the primary 

lymphoid organs into secondary lymphoid tissues, such as the spleen, LNs, and mucosa 

associated lymphoid tissues, where they wait the direct recognition or the presentation (in 

the case of B or T cells, respectively) of an antigen that their unique receptor can recognize 

in order to start an adaptive immune response. 
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B cells  

The main function of B cells is the production of antibodies, which are key for the immune 

protection of the host against invading pathogens and are the basis for the vast majority of 

prophylactic vaccination strategies. 

Although antibodies immune action is in their secreted form, they can also be produced as a 

membrane-bound receptor – the BCR. They are constituted by two heavy chains (H-chains) 

and two light chains (L-chains) bound by disulfide bonds (see Figure 1). The two recognition 

zones (bivalent), formed by N-terminal of each H-chain with an L-chain, bind the antigen 

through three hypervariable complementarity-determining regions (CDR1-3). B cells only 

express a functional immunoglobulin gene after successfully perform gene segments 

rearrangement, a process called V(D)J recombination11. There are four kind of gene 

segments (or regions): V (variable), D (diversity), J (joining), and C (constant) segments 

(see Figure 1). While the H-chain comprises the four segment types, the L-chain does not 

have D segments. On the other hand, there are two sets of VL, JL, and CL segments, κ and λ, 

that can be rearranged and originate a functional L-chain. During V(D)J recombination, 

segments are cut and spliced together by the action of several enzymes, such as 

recombination-activating gene 1 (RAG-1) and RAG-2. To further increase the diversity on 

the antigen specificity of these molecules, the splicing action of the enzymes is inaccurate, 

leading to frameshifts in the encoded base pairs, while the enzyme terminal 

desoxyribonucleotidyl transferase (TdT) can also insert nucleotides to change the coding 

sequence. As the CDR3 comprises the segment junctions, the same combination of V(D)J 

segments may have different CDR3 lengths (see Figure 1). As result, these processes 

remarkably increase the antibodies variability and can produce more than 1010 different 

immunoglobulins. There are also several C regions for the heavy chain that encode for 

different classes and subclasses of the antibody. In mouse there are five immunoglobulins 

classes and one of them with four subclasses: IgM, IgD, IgG3, IgG1, IgG2b, IgG2a, IgE, 

and IgA (coded by eight C segments: Cμ, Cδ, Cγ3, Cγ1, Cγ2b, Cγ2a, Cε, and Cα, respectively, 

and ordered by gene order on the genome). 

The recombination process takes place during B-cell development in the bone marrow or in 

the splanchnopleural region and fetal liver of the embryo prior to the bone marrow 

development. Upon BCR recombination, when a B cell successfully expresses an IgM 

molecule as BCR on its cell surface, auto-reactivity is tested in order to prevent the 

generation of harmful B cells that recognize and react against the self12. B cells are positively 
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selected and leave the bone marrow as immature B cells when BCRs mildly recognize and 

respond to self-antigens; if not, tolerance is achieved by clonal deletion of non-autoreactive 

or highly autoreactive B cells 13-18. When still available, secondary rearrangements of the 

non-rearranged L-chains can still rescue BCR specificity in a process denominated receptor 

editing19-21. Nevertheless, some self-reactive cells escape into the periphery22. 

Only the H-chain C region recombination does not occur during the initial B cell 

development. B cells that have completed the initial development will only express IgM and 

IgD antibodies isotypes. For the other isotypes to be expressed by a B cell, class-switch 

recombination (CSR) has to occur. This process, mediated by the enzyme activation-induced 

cytidine deaminase (AID)23, involves the removal from the chromosome of portions of the 

antibody heavy chain locus, and the gene segments surrounding the deleted portion are 

rejoined to retain a functional antibody gene that produces antibody of a different isotype 

(see Figure 2). CSR occurs in secondary lymphoid organs upon activation and in the 

presence of specific cytokine signals.  

 

Figure 1 – VDJ recombination process of BCR heavy chain.  

The BCR is the result of a process denominated V(D)J recombination, where different gene segments are 

combined to obtain the final gene sequence. In the case of the heavy chain, a D segment is initially 

recombined with a J and the result is then recombined with a V segment. In the case of the light chain, there 

is only recombination of a J segment with a V segment (the light chain does not possess D segments). The 

recombination involves cut and splice in order to remove the unwanted gene sequences. Within the V(D)J 

rearranged sequences there are three complementarity-determining regions (CDR1-3) that are responsible 

for the direct recognition and binding of the antigen. These regions are hyper variable, especially in the case 

of the CDR3 that comprises the V(D)J segments junctions, which may suffer frameshifts in the encoded 

base pairs and insertion of nucleotides. 
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There are two subsets of B cells: B-1 and B-2 B cells. B-1 cells locate in peritoneal and 

pleural cavities and mucosal sites and are responsible for the production of natural IgM 

antibodies24.  

B-2 cells develop in the bone-marrow, but their early differentiation is only terminated upon 

migration into B cell follicles in the spleen, where they differentiate into naïve follicular or 

marginal zone (MZ) B cells25. When their early development is completed, naïve follicular 

B cells can migrate into other secondary lymphoid organs such as LNs and Payer patches.  

MZ B cells, as B-1 cells, are also part of the first line of defense against blood-borne 

pathogens through T cell independent (TI) humoral responses26. On the first couple of days 

after the onset of an immune response, these cells rapidly differentiate into extrafollicular 

IgM-producing plasma cells, which secrete IgM as a decavalent pentamer that forms immune 

complexes with the pathogen27. However, since these cells differentiate independently of T 

cell help, they are short-lived and of low specificity as there is no affinity maturation.  

Follicular B cells are also able to respond to TI antigens; however they, seem to be more 

specialized in responding to antigens that also activate CD4 T cells, thus gaining the help of 

these cells and consequently mounting T cell dependent (TD) humoral responses. Follicular 

B cells get initially activated by recognition of antigen brought to lymphoid tissues. The 

recognized antigen is internalized and processed by the B cell to be presented on class-II 

 

Figure 2 – Class Switch Recombination process. 

In order for B cells to express antibodies of different classes, CSR needs to occur. This process involves 

somatic recombination through the action of the AID enzyme. The recombination involves the removal of 

a DNA fragment from the Cμ segment (if no recombination has happened yet) until the sequence before the 

wanted C segment. Specific sequence motifs on the DNA (black lozenges) indicate sites where 

recombination can occur. At the end of development in the bone marrow, and prior to CSR, B cells will only 

express IgM and IgD. CSR mainly occurs on germinal centers after B cell activation. The type of isotype to 

be expressed by the B cell is determined by the cytokines produced by CD4 helper T cells. 
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MHC (MHC-II) molecules to primed antigen-specific and specialized T cells. Thus, upon 

antigen receptor-dependent activation, B cells migrate to the border of the T cell zone and B 

cell follicle (T-B border), where they encounter pre-activated antigen-specific T cells (pre-

follicular helper T cells or pre-Tfh cells). At this location, T and B cells form long-lived 

interactions, allowing B cells to proliferate and become fully activated (as well as leading to 

complete maturation of pre-Tfh cells into Tfh cells). Once a B cell becomes fully activated, 

it will reach a bifurcation between two fates: either join the extrafollicular response or the 

germinal center (GC) response.  

In the extrafollicular response, B cells differentiate into unswitched IgM memory B cells28 

or, after some rounds of division and in some cases CSR, into short-lived plasmablasts29. 

From the initial pool of activated B cells, cells with higher affinity to the antigen are the ones 

selected to become plasmablasts30,31; however, as they do not undergo affinity maturation, 

their antigen-specificity is rather low and unchanging. 

B cells that commit to the GC fate migrate back to the center of the follicle where, with the 

help of Tfh cells and follicular dendritic cells (FDCs), establish a GC32,33. Within GCs, B 

cells undergo proliferation, affinity maturation, and CSR, leaving them as plasma or memory 

B cells with high affinity to the antigen.  

Some published studies seem to indicate that the GC output is not plasma cells but rather 

plasmablasts not fully differentiated34,35. Then, these cells home mainly to the bone marrow, 

where they finally differentiate into long-lived plasma cells which have the capacity of 

sustaining a high level of antibody secretion for long periods of time36-38.  

Memory B cells are characterized by their longevity and the capacity to rapidly and robustly 

respond to antigen re-exposure. These properties are one of the basis of vaccine success. 

IgM and IgG memory B cells, from the extrafollicular and GC responses, respectively, are 

the most studied populations within the memory B cell compartment. These two populations 

seem to have different properties and roles on secondary responses. IgM memory B cells, 

not having undergone affinity maturation and CSR, have a more diverse specificity, are able 

to persist longer in the organism, and are more prone to proliferate and join the new GC 

response. IgG+ cells memory B cells, with high affinity to the antigen, readily differentiate 

into antibody secreting plasmablasts, allowing a rapid response upon antigen 

rechallenge39,40. 

 



Introduction 

11 

 

Germinal centers 

GCs are specialized structures where antibody affinity maturation and CSR occur41-45. The 

affinity maturation is the process that allows the improvement of antibody affinity over time 

during an immune response. This is accomplished through rounds of somatic hypermutation 

(SHM) of the V gene segment and selection of B cell clones with mutations that successfully 

improve their affinity to the antigen41,42,45. 

As described before, follicular B cells migrate into the T-B border upon activation, where 

they engage in cognate interactions with pre-Tfh cells46,47 (Figure 3). These long-lived 

interactions ultimately lead to commitment to the GC pathway of the B cells with higher 

affinity to the antigen, and consequent changes in their transcriptional profile48-51. Genes like 

interferon-regulatory factor 4 (IRF4), MYC, B cell lymphoma 6 (BCL-6), and myeloid cell 

leukemia 1 (MCL1) are critical for GC B cells generation, and their upregulation occurs 

during the early initiation phase until day 3 of response. While some genes are key during 

early activation and/or late differentiation and their expression is only observed during that 

time (as is the case of IRF452,53), other genes need to be expressed throughout the whole GC 

reaction. One of them is BCL-6 that acts as a transcription repressor and is a key regulator 

of the GC B cell phenotype54-56: it is responsible for enabling the migration of B cells back 

to the follicle after commitment to the GC pathway by downregulation of Epstein-Barr virus-

induced G-protein coupled receptor 2 (EBI2) and sphingosine-1-phosphate receptor 1 

(S1PR1) that are responsible for localization at the T-B border32,33,57,58; BCL-6 induces an 

pro-apoptotic state, through the silencing of BCL-2, that will lead to the deletion of low 

affinity or autoreactive clones59,60; BCL-6 induces cell tolerance to DNA damage originated 

from AID activity and rapid proliferation by downregulating p53 and ATR61,62; BCL-6 

regulates the expression of positive signaling mediators to allow a fine tune selection of high 

affinity BCRs63,64; and BCL-6 is involved in regulating plasma cell differentiation through 

the downregulation of BLIMP-163. 

Thus, three to four days after initial activation by antigen encounter, GC B cell precursors, 

upon expression of BCL-6, are able to reverse their migratory properties and migrate back 

into the center of the B cell follicle. There, B cells form an early GC (already observable by 

microscopy) in-between a pre-existing network of C-X-C chemokine ligand 13 (CXCL13) 

secreting FDCs65,66. The GC B cell population has high expansion rates, and consequently a 

rapid increase in size of the GC occurs and leads to the formation of the B cell mantle 

compartment. This mantle is formed by the naïve B cells of the follicle that are pushed away 

by the GC67. Seven days after primary immunization, GCs have substantially increased in  
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size and are now denominated mature GCs67-69. Moreover, they can be easily divided in two 

regions: the light and dark zones (LZ and DZ, respectively)70. The light zone is populated 

by B cells, FDCs, macrophages, Tfh cells, follicular regulatory T (Tfr) cells, and other cell 

types68. FDCs are found not only on GCs, but also on primary follicles, and their main 

functions during a GC reaction are to present unprocessed antigen on their surface and 

secrete cytokines important for GC maintenance like IL-6 and the CXCL13 chemokine65,71-

 

Figure 3 – GC initiation and development. 

GC responses are initiated by antigen recognition by B cells within the follicle. Within 1-2 days after 

activation, B cells migrate into the T-B border where they engage in cognate interactions with pre-Tfh cells. 

Upon commitment to the GC program, Tfh and GC B cells migrate into the center of the follicle where an 

early GC establishes in between a network of FDCs. The formation of the GC pushes away pre-exiting naïve 

B cells which form the mantle zone. At day 7, the now mature GC has increased in size due to fast cell 

proliferation and it can be divided in two zones: the light zone composed by GC B cells, Tfh, Tfr, FDCs and 

other cell types, while the dark zone is mainly composed by rapidly dividing B cells. 
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73. Tingible-body macrophages are responsible for eliminating apoptotic B cells, thus 

preventing the accumulation of self-antigens which can lead to the generation and selection 

of autoreactive clones74-77. The dark zone is only densely populated with B cells among a 

network of CXCL-12 producing reticular cells (morphologically similar to FDCs)70. 

During the maturation process undergone on the GC, B cells repeatedly migrate between 

dark and light zones. This migration is enabled by the chemokine receptors C-X-C 

chemokine receptor 4 (CXCR4) and CXCR5: centrocytes express CXCR5 and are found in 

the CXCL13 rich LZ, while centroblasts that also express CXCR4 are localized in the DZ 

where CXCL12 is abundant78. Within the DZ, GC B cells proliferate and undergo SHM that 

introduces point mutations in the rearranged V gene41,42,67,79. As for CSR, SHM is also 

mediated by the action of AID23. As result, a high number of cells with a vast range of 

affinities for the antigen arise. B cells then migrate into the LZ for selection by Tfh cells68. 

B cells that have successfully gained high affinity to the antigen receive positive signals, 

perform CSR, and differentiate into memory B cells or plasma cells before leaving the GC. 

B cells that have only moderately increased the affinity of their BCR to the antigen also 

receive positive signals, may also undergo CSR, and are able to migrate back into the DZ to 

undergo a new round of SHM to increase their affinity to the antigen. B cells that have lost 

their capability to recognize the antigen, and therefore are not able receive positive signals, 

are eliminated by apoptosis69.  

The signals that trigger CSR are still poorly understood69. Nevertheless, the type of ongoing 

response and the signature cytokines of Th1, Th2, and Th17 responses determine the class 

of Ig to be produced80-82. IL-4 leads to the secretion of IgG1 and IgE, while IFNγ promotes 

IgG2a production. Published data so far favor the hypothesis that these cytokines are 

produced in situ by Tfh which can produce low levels of IL-4 or IFNγ83.  

The affinity maturation process is dependent on Tfh signals79,84. High affinity B cells in the 

LZ capture more antigen from FDCs (compared to cells with low affinity BCRs), and 

consequently perform more MHC-TCR interactions with Tfh cells that ultimately lead to 

positive selection signals79,85. Moreover, from the pool of B cells that are selected to re-enter 

the DZ, the ones with higher affinities receive stronger signals from Tfh and present higher 

proliferation rates after migrating back into the DZ86. Additionally, the changes of antigen 

availability on FDCs during a GC reaction also ensure the increase in affinity of the B cells 

leaving the GC overtime87. Antibodies produced by plasma cells originated early from the 

GC will coat the antigen deposited in FDC. Thus, only GC B cells with higher affinity to the 

antigen will be able to overcome this competition and acquire antigen to present to Tfh cells. 
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Since antibodies with increasing affinities are gradually produced, the level affinity required 

also increases over time87. Although SHM allows the generation of high affinity antibodies, 

it may also give rise to GC B cells with self-reactive BCRs that must be deleted to prevent 

the onset of auto-antibody mediate autoimmunity88,89.  

The signals that lead GC B cells to differentiate into memory B cells or plasma cells are still 

not very well understood. Nevertheless, differentiation of GC B cells into plasma cells or 

memory B cells seems to be time dependent90. Memory B cells, that present lower affinities 

and number of somatic mutation, are mostly generated first while differentiation into plasma 

only occurs at later stages, long after GCs peak in size. 

 

T cells 

T cells play a central role in adaptive immune responses since they are not only responsible 

for cytotoxic function, but are responsible for orchestrating the response by providing help 

to other cells. This functional duality is accomplished by the existence of two T cells 

populations: CD8 T cells and CD4 T cells, respectively. The designation “T cell” originated 

from the fact that its precursors leave the bone marrow and their differentiation occurs in the 

thymus. 

As for B cells, a key feature of T cells is their specialized receptor that can recognize a wide 

range of antigens. However, the TCR is not able to bind and recognize free antigens in their 

natural structure, but rather small peptides presented on MHC molecules91. The TCR is 

constituted by two chains which are also product of somatic V(D)J recombination (see 

Figure 4)91. The majority of T cells expresses the αβ TCR that is composed by α and β chains. 

Nevertheless, there are also γδ T cells, which TCR is composed by γ and δ chains and have 

a more restrict repertoire, and natural killer T (NKT) cells that, although express an αβ TCR 

receptor, their TCR is considered invariant (Vα24Jα18 combines with a limited TCRβ 

repertoire in the case of type-1 NKTs) and recognizes hydrophobic antigens such as 

glycolipids91-93.  

The TCR recombination process is performed in the same manner as the one described for 

the BCR recombination: a V, a D, and a J segments, in the case of the β chain, are cut and 

spliced together by the action of the same enzymes (RAG-1, RAG-2, and TDT); while in the 

case of the α chain, as there are no D segments, the recombination consists only in the 

junction of a V and a J segments (Figure 4). Again, besides the inaccuracy of the 

recombination process, the action of the enzyme desoxyribonucleotidyltransferase can insert 
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nucleotides in the coding sequence and further contributes for the high variability of the TCR 

repertoire.  

Consequently, the CDR3, that comprises the segment junctions, may have different CDR3 

lengths due to frameshift in the coding sequence. TCR specificity cannot be altered once the 

T cell finishes its receptor recombination, contrary to what is observed for the BCR that can 

improve its affinity to the antigen after the initial development by somatic hypermutation in 

GCs. Also, the TCR complex is not only composed by the αβ chains module (that recognize 

the peptides presented on MHC molecules) but also by invariant polypeptide chains 

responsible for intracellular signal-transmission, the CD3 module: CD3ε, CD3γ, CD3δ, and 

ζ.  

 

Figure 4 – V(D)J recombination of the TCR. 

As for the BCR, the TCR is also the result of V(D)J recombination. In the case of the α chain, there is the 

recombination of a J segment with a V segment, while for the β chain a D segment is recombined with a J 

followed by the recombination with a V. The three CDRs are the binding region of the TCR that not only 

recognize the peptide presented by a MHC molecule but also the MHC molecule itself. The three CDR3 

regions are represented as spheres in violet (α chain CDRs) and blue (β chain CDRs) in the three dimensional 

representation in the box on the right. 
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There are several fate decision steps important in T cell development. The first occurs when 

committed lymphoid progenitors, which arise in the bone marrow, migrate into the thymus, 

lose the potential to develop as B cells or NK cells, and become committed T cells 

precursors. A second fate decision occurs when thymocytes start expressing a rearranged 

TCRβ chain and lose the potential to differentiate into γδ T cells.  

Upon successful rearrangement of the α and β chains, thymocytes start co-expressing CD4 

and CD8, thus becoming double positive (DP) thymocytes. As DP thymocytes already 

express a mature αβ TCR, the next steps of differentiation and fate decision involve the 

selection of the TCRs that, based on their affinity, can leave the thymus and are capable of 

participating in immune responses without triggering responses against the self. For that, the 

selection comprises 3 distinguishable processes: death by neglect, negative selection, and 

positive selection94. Thymocytes bearing TCRs that interact poorly with self-antigens-MHC 

complexes, and consequently are unable to induce intracellular signaling required for 

survival, suffer death by neglect. On the contrary, cells with TCRs that present very high 

affinity to self-antigens-MHC complexes are instructed to commit apoptotic cell death. This 

negative selection process prevents potential T cells that could cause autoimmune pathology 

from leaving the thymus, although some self-reactive T cells escape deletion95. DP 

thymocytes that generate intercellular signaling levels between death by neglect and negative 

selection initiate the multi-step positive selection.  

The last important fate decision involves the CD4- or CD8-lineage commitment. This 

differentiation step comprises the passage from DP to single-positive (SP) state (CD4+CD8- 

or CD8+CD4-) by silencing the transcription of one co-receptor locus96,97. CD8 and CD4 co-

receptors are specific to class-I and class-II MHC molecules (MHC-I and MHC-II), 

respectively. Therefore, their expression restricts the interaction of the TCR to only one of 

the MHC molecules, and consequently establish the function of the cells when they leave 

the thymus. The selection of either CD4 or CD8 as co-receptor is determined by TCR affinity 

to self-peptides presented by either MHC-I or MHC-II molecules, as well as for the MHC 

molecule itself. This dichotomy on CD4 or CD8 expression, which results on T cell ability 

to recognize peptides presented by either MHC-I or MHC-II molecules and consequent 

associated function, is of high importance, since the two MHC molecules present peptides 

of different origins. MHC-I molecules, which are expressed by almost all nucleated cells, 

present peptides of intracellular (cytosolic and nuclear) origin to alert CD8 T cells for 

intracellular alterations and target cells for destruction. On the other hand, MHC-II 

molecules are only constitutively expressed on professional APCs (although their expression 
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can be induced in other cell types by IFNγ98-100) and present peptides derived from 

exogenous proteins degraded in the endocytic pathway. These peptides are then presented to 

CD4 T cells which in turn orchestrate intercellular immune responses. Nonetheless, there is 

a link between the two pathways (named cross-presentation) that allows exogenous peptides 

to be presented on MHC-I molecules and endogenous molecules on MHC-II 

molecules101,102. Taken all together, the commitment to CD4- or CD8-lineage depends on 

the capability of TCR to interact with MHC-II or MHC-I molecules in the thymus. This 

commitment then determines the function to be performed by the cell in the periphery. 

In the end of the development, mature CD4 and CD8 T cells, as well as γδ T cells and NKT 

cells, that have been positively selected, leave the thymus and migrate into secondary 

lymphoid organs. 

 

CD8 T cells 

CD8 T cells mediate cellular immunity by detecting infected or altered cells and inducing 

cell-mediated lysis, and these functions are primarily dependent on TCR recognition of 

antigens presented on MHC-I molecules.  

Naïve CD8 T cells are initially primed on secondary lymphoid organs such as draining LNs 

and spleen. Priming is preferentially performed by DCs and occurs on peripheral regions 

enriched for antigens during early immune responses97,103. Upon activation, CD8 T cells with 

antigen-specific TCRs start producing IFNγ and rapidly expand104-106. This initial activation 

and expansion is not only dependent on TCR affinity but also on co-stimulatory signals (e.g., 

OX40 and CD27) and the presence of inflammatory cytokines like IL-12 and IFNα107,108. 

However, upon activation, antigen recognition by the TCR is sufficient to trigger CD8 T 

cells to kill altered cells. After activation in central lymphoid organs, CD8 T cells upregulate 

CXCR3 and migrate into site of ongoing response, where they continue to be stimulated by 

interacting with altered cells, resulting in cytolysis of those cells, and further inducing CD8 

T cells proliferation109. Of note, in most types of responses, CD8 T cells initial activation by 

DCs and recruitment into infection site requires help from CD4 T cells110. Another important 

cytokine for CD8 T cells biology is IL-2. This cytokine, mainly produced by CD4 T cells, 

has not only an impact in the proliferation and cytolytic capacity of CD8 T cells but also 

regulates the formation of memory CD8 T cells111. 

CD8 T cells use two different mechanisms to induce cell death on target cells, namely the 

perforin/granzyme-mediated apoptosis112 and activation-induced cell death (AICD)113, and 
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both are initiated upon antigen recognition and consequent TCR signaling. The first 

mechanism involves the secretion close to the target cell of granzymes and perforin that are 

stored in lysosomes within CD8 T cells. Perforin can either form pores on the plasma 

membrane of target cells or mediate endocytosis to allow granzyme entrance inside the cells 

and induce apoptosis.  The AICD is dependent on the FAS ligand (FASL)-FAS interaction: 

the binding of the FASL on the CD8 T cell to the FAS receptor induces dead on the target 

cell by initiating a caspase dependent apoptosis process through the intracellular death 

domain of FAS.  

Besides inducing cell death to target cells, CD8 T cells also produce cytokines like IFNγ and 

IL-10. IFNγ further induces CD8 T cells proliferation and function, acting a feed forward 

loop. On the contrary, the immune suppressive cytokine IL-10 has a regulatory function and 

is essential to avoid excessive tissue injury and consequently prevent autoimmune pathology 

during a viral infection114,115.  

 

CD4 T cells 

CD4 T cells are responsible to support immune responses by activating innate immune cells, 

B cells, CD8 T cells as well as non-immune cells. Moreover, CD4 T cells are also responsible 

for regulating and suppressing immune reactions. To be able to perform all these functions, 

naïve CD4 T cells can differentiate into different effector subpopulations depending on the 

signals provided by cells of the innate immune system at the time of T cell activation (See 

Table 1). These signals will in turn depend on the PRRs triggered on the DCs, and 

consequently the type of immune response that needs to be mounted. The duality of 

responses against intracellular and extracellular pathogens lead to the early discovery of type 

1 T helper (Th1) and type 2 T helper (Th2) responses116. Since then, more differentiation 

subsets of CD4 T cells have been identified: Th17, Tfh, Th9, and Th22 cells that are involved 

in inflammatory responses, and forkhead box P3 positive (FOXP3+) regulatory T (Treg) and 

class 1 regulatory T (Tr1) cells that are engaged in immune suppression.  

For a naïve CD4 T cell to differentiate into any of these subsets it is necessary an initial 

activation step that includes TCR recognition and co-stimulation signals. TCR recognition 

occurs when a naïve CD4 T cell is able to specifically recognize a peptide presented by an 

activated APC on a MHC-II molecule. The strength of the TCR stimulation depends on the 

affinity of the TCR to the molecule, and may also have an impact on the lineage 

commitment117,118. For a CD4 T cell to get fully activated, co-stimulation signals are also  
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Table 1 – CD4 T cell subsets and its characteristics. 

CD4 

Subset 

Differentiation 

signals 
Key regulators 

Cytokines 

produced 
Surface markers 

Th1 IL-12, IFNγ T-BET, STAT1, STAT4 IFNγ, Lfα, IL-2 CXCR3+IFNγR+ 

Th2 IL-4, IL-2 
GATA3, STAT6, STAT5, 

STAT3, GFI-1, IRF4 

IL-4, IL-5,  

IL-13, IL-25 
CCR4+CCR6–ST2+ 

Th17 
IL-6, TGFβ, 

IL-21, IL-23 
RORγt, RORα, STAT3 

IL-17A, IL-17F, 

IL-21, IL-22 
CCR4+CCR6+ 

Th9 IL-4, TGFβ IRF4, PU.1 IL-9 CCR4– CCR6+ 

Th22 
IL-6, TNFα, 

IL-1β 
AHR 

IL-22, IL-13, 

TNFα 
CCR4+CCR6+CCR10+ 

Tfh IL-6, IL-21 
BCL-6, ASCL2, c-MAF, 

BATF, IRF4, STAT3, STAT1 
IL-21, IL-4 CXCR5+PD1+ICOS+ 

pTreg TGFβ, IL-2 
FOXP3, Smad2, Smad3, 

STAT5 
IL-10, TGFβ 

CD25+CTLA-4+ 

GITR+ 

Tr1 
IL-27, IL-10, 

IL-6 
c-MAF, AHR IL-10 CD49b+LAG-3+ 

 

required. These signals are provided by the DC that expresses CD80/CD86, inducible T cell 

co-stimulatory ligand (ICOSL), and OX40L, and provides positive signals through  

interaction with the CD4 T cells co-stimulatory receptors CD28, ICOS, and OX40, 

respectively. The last factors that determine the differentiation into a specific lineage are the 

cytokines produced by the DCs, which in turn depend on the PRRs triggered on the DC (see 

Table 1). 

Th1 cells 

Th1 cells are important for the protection against obligate intracellular pathogens, such as 

intracellular bacteria and viruses, as well as in immune response against tumors. Th1 

differentiation is promoted by IL-12 and IFNγ, together with TCR signaling. While IL-12 is 

highly secreted by APCs upon activation through their PRR, IFNγ is produced by NK cells 

when exposed to IL-12119,120.  

The master regulator of Th1 differentiation is the T-box transcription factor (T-BET), which 

activates genes necessary for the differentiation and is also capable of suppressing the 

differentiation into other cell lineages. T-BET expression is dependent on another 

transcription factor, the signal transducer and activator 1 (STAT1) which expression is 

upregulated by IFNγ121,122. Since T-BET induces high levels of IFNγ expression, a feed 

forward loop is established to ensure selective expansion and differentiation of Th1 cells123. 

Another important axis of Th1 differentiation is the IL-12-STAT4 pathway. IL-12 induces 

STAT4 which in turn activates IFNγ expression124. Since high levels of T-BET lead to the 

upregulation of IL-12 receptor β (IL-12Rβ) expression, Th1 differentiation is further 
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enhanced122. On the other hand, T-BET suppresses Th2 and Th17 lineages by impairing the 

function of their master regulators GATA3 and retinoic acid receptor-related orphan receptor 

gamma-T (RORγt), respectively125,126. Th2 development is further suppressed by inhibiting 

IL-4 expression127. 

Upon full differentiation, Th1 cells main function is to produce cytokines that mount and 

boost an intracellular immune response. The two main cytokines produced are IFNγ that 

activates phagocytes, like macrophages, to increase their phagocytic activity, and IL-2 that, 

besides inducing proliferation and acquisition of cytolytic phenotype by CD8+ T cells, is 

required for the development of memory CD8+ T cells128. 

Although the pro-inflammatory action of Th1 cells is of maximum importance for clearance 

of intracellular pathogens and tumors, their unregulated action can cause unwanted 

inflammatory diseases and self-reactivity. Th1 cells and their IFNγ production have been 

implicated in inflammatory diseases like inflammatory bowel disease (IBD), transplant 

rejection, graft-versus-host disease, and autoimmune diseases as type-1 diabetes and 

rheumatoid arthritis (RA)129-133. 

Th2 cells 

Th2 cells are involved in responses to extracellular parasites, including helminthes and 

nematodes, as well as in mucosal immunity of the lung, through the production of IL-4, IL-

5, IL-9, IL-10, IL-13, IL-25, and amphiregulin. 

Besides TCR recognition and initial activation, IL-4 and IL-2 are critical for a naïve CD4 T 

cell to follow the differentiation pathway to a Th2 cell. IL-4, the positive feedback cytokine 

for Th2 differentiation, induces STAT6 expression which in turn upregulates GATA3, the 

Th2 master regulator134-137. GATA3 is indispensable for Th2 response and it has been 

postulated that its action is mediated through three different mechanisms: (1) enhances Th2 

cytokines production, (2) induces Th2 cells proliferation, and (3) suppresses Th1 

differentiation by interacting with T-BET and suppressing STAT4 expression137,138. STAT6 

is also important for the full Th2 differentiation as GATA3 does not directly regulate all 

Th2-realted genes139. On the other hand, STAT6 interaction with several of those genes loci 

is in turn dependent on the presence of STAT3140. STAT5 is another key transcription factor 

for this differentiation pathway. STAT5 is activated by IL-2 signaling and in coordinated 

activity with GATA-3 induces IL-4 expression by Th2 cells141,142. Growth factor 

independent-1 (GFI-1), a transcriptional repressor which expression is induced by TCR 

signaling alone or the IL-4-STAT6 pathway, selectively leads to Th2 expansion since it 
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induces proliferation on GATA3 high expressing cells143. IRF4 is another transcription 

factor that also has an impact on Th2 differentiation by activating the IL-4 promoter and 

upregulating GATA3 expression144,145. 

During an ongoing immune response against extracellular pathogens, Th2 key effector 

cytokines act mainly upon innate cells. IL-4 induces the expression of IgE receptors: FcεRI 

on macrophages and B cells, while FcεRII expression is induced on basophils and mast 

cells146. Also, IL-4 induces lung mucus hypersecretion and secretion of inflammatory 

cytokines by lung fibroblasts147,148. Eosinophils and its precursors depend on IL-5 signaling 

for activation, recruitment, and apoptosis inhibition149,150. IL-9, firstly described as produced 

by Th2 cells, functionally activates several immune cell types such as B cells, neutrophils, 

eosinophils, and mast cells, while inducing mucin and chemoattractant factors production 

by airway epithelial cells151. IL-13 is involved in the elimination of gastrointestinal 

helminthes through the induction of mucus secretion and the increase of intestinal fluid 

content and intestinal contractility, and lung inflammatory responses by eosinophils 

activation and enhanced mucus secretion, as IL-4. Indeed, IL-4 and IL-13 seem to have 

redundant effects during Th2 responses. IL-25, a member of the IL-17 cytokines family, 

promotes Th2 responses by inducing IL-4, IL-5, and IL-13 production by a non-lymphocyte 

population152. Amphiregulin induces epithelial cell proliferation and is also involved in 

nematode expulsion153. Th2 cells also produce the anti-inflammatory cytokine IL-10 that, in 

this case, suppress Th1 proliferation and DC function154,155.  

Moreover, and contrary to what is observed in Th1, Th2 responses are characterized by the 

production of high levels of specific immunoglobulins that neutralize foreign organisms. IL-

4 and IL-13 production during this type of immune response have been implicated in 

inducing CSR and secretion of IgM, IgG1, IgE, and IgA antibodies. 

Dysregulation of Th2 responses are responsible for allergic diseases, especially airway 

allergic diseases such as persistent asthma. IL-4, IL-13, and IL-9 have been implicated and 

play major roles in the induction and the immuno-pathogenesis of asthma. 

Th17 cells 

Th17 cells were the first CD4 T cells independent subset described after Th1 and Th2 

discovery156. Th17 cells are involved in immune responses against fungi and extracellular 

bacteria and its action is mediated through the secretion of IL-17a, IL-17f, IL21, and IL-22. 

However, even before the discovery of Th17 cells, IL-17 production had already been 
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implicated in the generation of several autoimmune diseases like multiple sclerosis (MS), 

RA, psoriasis, and IBD157-159. 

Th17 differentiation is divided in three steps which in turn depend on different cytokines. 

Th17 differentiation is initiated in the presence of IL-6 and low levels of transforming 

growth factor beta (TGFβ) that induce the expression of RORγt160, the master regulator of 

this subset, as well as IL-21 and IL-23R161-163. In turn, the expression of RORγt induces the 

production of IL-17a and IL-17f164. However, RORγt is not able to fully commit into Th17 

differentiation, and several other transcription factors need to be present. That is the case of 

STAT3, which is activated in the presence of IL-6, IL-21, and IL-23, and that induces 

RORγt, IL-17a, and IL-17f expression165,166. Another transcription factor critical in this 

lineage is the retinoic acid receptor-related orphan receptor alpha (RORα), that also belongs 

to the ROR family of transcription factors, and Th17 development is aborted in its 

absence164. The basic leucine zipper transcription factor (BATF) and IRF4 have also been 

implicated in Th17 differentiation, since knockout mice for each of the transcription factors 

have impaired Th17 responses167,168. The second step, the self-amplification phase is 

dependent of TGFβ and IL-21. Contrary to what occurs in Th1 and Th2 differentiations, the 

Th17 main cytokines IL-17a and IL-17f do not act as amplifying signals. Therefore, the Th17 

amplification occurs by the action of IL-21, produced by Th17 cells169,170. The last phase 

that consists on the expansion and maintenance of the lineage is dependent on IL-23 that is 

mainly produced by APCs161,171. 

The use of IL-17RA chain for signaling by IL-17a and IL-17f indicates similar function by 

both cytokines, although IL-17a presents a higher affinity for the receptor172,173. Both IL-17a 

and IL-17f activate and recruit neutrophils. IL-17a can also induce inflammatory responses 

by inducing inflammatory cytokines, such as IL-6 and IL-1, and chemokines, such as 

CXCL8, that ensure chemotaxis of inflammatory cells to inflammation sites174. IL-21 has a 

large specter of target cells, activating CD8 T cells, NK cells, and DCs, and inducing B cells 

differentiation175. IL-22 targets non-immune cells and induces the production of anti-

bacterial peptides and proteins that differ depending on the target cell. In the mucosa, where 

IL-17 producing cells have critical roles in host defense against pathogens, IL-22 has been 

described as a mediator of mucosal host defense against bacterial pathogens176,177. 

Furthermore, intestinal Th17 cells have the capacity to differentiate into Tfh cells and play 

a major role in the development of host-protective IgA responses178. 
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Th9 cells  

Th9 cells are an IL-9 and IL-10 producing CD4 effector T cell subset that seem to have 

protective roles in melanoma tumors and intestinal parasitic infections, while having a 

pathogenic effect in some diseases like allergy, colitis, and experimental autoimmune 

encephalomyelitis (EAE)179,180. Th9 differentiation is dependent on IL-2, TGFβ, and IL-4179-

183. IL-2R signaling induces STAT5 which in turn binds Il9 gene locus184,185. TGFβ inhibits 

Th1 transcription factor T-BET and induces PU.1 expression that promotes Th9 

differentiation183,186-188. As for Th2 differentiation, IL-4R signaling leads to STAT6 

activation, which induces Gata3 and Irf4 expression that are essential for both Th2 and Th9 

differentiation134-137,145,180,189. Moreover, IRF4 directly binds the Il9 promoter and seems to 

play a role on Th9 differentiation, even though it is also involved in Th2 and Th17 

differentiation145,168,189. The contribution of Th9 cells to IL-9 production and the fact that 

Th9 cells are discrete Th cells subset are still matter of debate. For once, Th9 cells seem to 

be very plastic and easily change their differentiation profiles190,191. Also, even though IL-4 

and IL-9 seems not to be produced by the same cell, other cell types, namely Th17, 

peripherally-derived Treg (pTreg) cells, and innate lymphoid cells (ILCs) are also able to 

produce IL-9179,189,192-195. Indeed, a recent report showed that, in a model of mouse lung 

inflammation, ILCs and not Th9 cells were responsible for IL-9 production195. Furthermore, 

a specific master transcription factor of this lineage as not been found yet. 

Th22 cells 

Th22 cells were identified in humans as an IL-22 producing CD4 T cell lineage, independent 

of Th17 cells, and implicated in epithermal immunity196-198. Th22 cells also produce low 

levels of TNFα and IL-13, while no production of IFN, IL-4, and IL-17 could be observed196-

198. Their differentiation occurs in the presence of IL-6 and tumor necrosis factor-α (TNFα) 

and is further promoted by IL-1β197. The transcription factor aryl hydrocarbon receptor 

(AHR) has been associated with this lineage, but whether it is the master regulator of this 

lineage is still controversial196,197. Th22 cells express not only the chemokine receptor CCR6 

but also CCR10 and CCR4 that allow them to locate in the skin196-198. Therefore, these cells 

not only seem to play a role in host defense against some pathogens but also have been 

implicated in skin inflammation diseases, such as psoriasis, atopic dermatitis, and allergic 

contact dermatitis199,200. Their action is mediated by IL-22 which targets non-immune cells 

and induces the production of different anti-bacterial peptides and proteins depending on the 

area of the body176,177,201. In keratinocytes, IL-22 promotes the expression of β-defensin 2, 
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β-defensin 3, and lipocalin 2 among other anti-bacterial molecules201. Nevertheless, further 

studies are necessary to confirm if Th22 cells are indeed an independent CD4 T cell subset: 

the signaling pathways involved in this differentiation are not very clear and, though Th22 

have been implicated on several diseases, the contribution of IL-22 produced by this subset 

still needs to be evaluated.  

 

Follicular helper T cells 

Although the first studies showing the requirement of T cell help for antibody mediated B 

cell responses date back to the 1960s, only in 1999-2000 the first reports were published 

showing that Tfh cells were an independent CD4 T cells subset that expressed CXCR5+ and 

were able to migrate into the GC and give help to B cells to produce antibodies. Moreover, 

CXCR5 was described as the chemokine receptor that allowed the migration of those CD4 

T cells into B cell follicles where its ligand CXCL13 is produced202-204. The confirmation 

that Tfh cells were an independent subset of CD4 cells came in 2009 with identification of 

its master regulator BCL-6205-210. Since then, further studies have shown that Tfh 

differentiation is a complex multi-step process, tightly controlled, with many transcriptional 

and post-transcriptional mechanisms involved211 (Figure 5). 

Initial priming by dendritic cells 

The initial priming of naïve CD4 T cell to become a Tfh is given by DCs, while B cells are 

involved in the second differentiation step to fully induce the Tfh differentiation212-215. This 

initial activation by DCs is dependent on TCR recognition of antigen presented by MHC-II, 

co-stimulation through CD28-CD80/CD86 and ICOS-ICOSL, and secretion of cytokines 

such as IL-6212-214,216-218. Co-stimulation through OX-40-OX40L also seems to further 

induce Tfh differentiation but its signals are not mandatory219,220. After the first antigen 

encounter, activated CD4 T cells undergo a few rounds of division and undertake a cell-fate 

decision to become pre-Tfh upon expression of BCL-6211.  

The transcription repressor BCL-6 is the master regulator of Tfh differentiation by not only 

regulating genes required for Tfh differentiation, migration, and function, but also by directly 

repressing the Tfh differentiation antagonist BLIMP1 as well as promoters and enhancers 

involved in the differentiation into other CD4 subsets (Tbx21, Gata3, Rorα, etc.)208-210,221. 

BCL-6 directly or indirectly regulates the expression of receptors involved in T cell 

migration: it upregulates CXCR5 which expression allows migration towards the B cell 

follicle, while it downregulates CCR7 and P-selectin glycoprotein ligand 1 (PSGL-1) that 
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bind CCL19 and CCL21 produced in the T cell zone and lead T cells to stay in the T cell 

zone222. Furthermore, BCL-6 also downregulates S1PR1, expressed on activated T cells that 

binds S1P and leads cells to migrate into the lymph and blood, and EBI2 that reduces CXCR5 

affinity to CXCL13 by dimerization with CXCR5 while its ligand is abundant in outer 

follicular regions thus preventing migration into B cell follicles222. BCL-6 expression is 

triggered upon CD28 signaling and cytokines signaling, mainly IL-6 and IL-21 which induce 

STAT1 and STAT3 activation208,218,223,224. Indeed, IL-6 is able to induce an early expression 

of BCL-6218. However, BCL-6 is also expressed in its absence which indicates that IL-6 has 

an important, but not essential, role in the initial differentiation of Tfh cells, probably due to 

signaling overlap between IL-6 and IL-21225,226. 

 

Figure 5 – Tfh differentiation steps. 

The Tfh differentiation is a multi-step process. The first step involves CD4 T cell priming by DCs in the T 

cell zone where some cells pre-commit to the Tfh program and migrate into the T-B border, while other 

differentiate into other Th subsets (1). During the second step, pre-Tfh engage in cognate interactions with 

pre-activated B cells and full commit to the Tfh differentiation (2). In the last step, committed Tfh cells 

migrate into the GC within the B cell zone where they give help to GC B cells and in turn continue to receive 

signals to survive and maintain the differentiation program. 
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Besides BCL-6, which expression is imperative for Tfh differentiation, ASCL2 is another 

transcription factor which expression is also important at early stages of differentiation227. 

ASCL2 expression occurs before BCL-6 and is key to initially regulate genes involved in  

cell migration: it upregulates CXCR5 and downregulates CCR7 and PSGL-1227. Moreover, 

ASCL2 also represses expression of Th1-associated genes, such as Ifng and Tbx21227.  

More recently, two other transcription factors have been involved in the early steps of Tfh 

differentiation: LEF-1 and TCF-1228-230. As for ASCL2, their expression occur prior to BCL-

6 and they regulate expression of molecules important for Tfh differentiation such as BCL-

6, IL-6R, ICOS, BLIMP1, and IL-2R228-230. 

Ultimately, expression of BCL-6 leads CXCR5+ pre-Tfh cells to migrate into the T-B border 

to receive further stimulation from B cells.  

Full commitment to the Tfh program at the T-B border 

After migrating into the T-B border, pre-Tfh cells encounter pre-activated B cells and engage 

in long-lived interactions that ultimately lead pre-Tfh and some B cells to definitely commit 

to the GC pathway and to become Tfh cells and GC B cells211 (Figure 6). These interactions 

between pre-Tfh and pre-activated B cells include TCR recognition of antigen presented by 

MHC-II and co-stimulation through ICOS-ICOSL and CD28-CD80/CD86 in a manner 

similar to the ones observed between T cells and DCs212.  

 

Figure 6 – Tfh-B cell signals. 

Tfh and B cells engage in long-lived interactions at the T-B border and within the GC. Besides antigen 

presentation and recognition by TCR and MHC-II interactions, Tfh cells receive positive signals through 

CD28-CD80/CD86, ICOS-ICOSL, and CD84-CD84. On the contrary, Tfh receive negative signals from 

LY108-LY108 and PD-1-PDL1/PDL2 interactions. B cells receive positive signaling through CD40-CD40L 

and apoptotic signals through FAS-FASL. Lastly, Tfh cells produce IL-21 that stimulates both Tfh and B 

cells.  
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ICOS-ICOSL interactions are very important for Tfh commitment231. ICOS signaling, 

mediated by phosphoinositide 3-kinase (PI3K), induces c-MAF and consequently IL-21 

production232,233. In turn, IL-21 has an autocrine effect and, by signaling through the IL-21R,  

further activates STAT3 and STAT1, creating a positive loop that stabilizes the Tfh 

differentiation224,234. Additionally, ICOS signaling also targets FOXO1 for degradation 

which in turn no longer represses Bcl-6 expression or activates Krüppel-like factor 2 (Klf2) 

expression223,235. Consequently, KLF2, which is highly expressed on naïve CD4 T cells, no 

longer promotes expression of receptors against migration into the B cell zone (CCR7, 

PSGL-1, S1PR1) or genes involved in other CD4 subsets differentiation (Prdm1, Tbx21, and 

Gata3), or represses CXCR5 expression, that would inhibit Tfh differentiation223,236. ICOS 

is also involved in Tfh migration into follicles by interaction with bystanders B cells237. 

Besides TCR and co-stimulation receptor binding, T:B cell conjugates are further stabilized 

by homophilic binding of signaling lymphocytic activation molecule (SLAM) family 

members 5 (SLAMF5 or CD84) and 6 (SLAMF6 or LY108) that provide positive and 

negative signals, respectively238,239. The link to the intracellular signaling cascades is then 

performed by SLAM-associated proteins (SAP) that balance the positive and negative 

signals required for long-lived interactions, and consequently GC Tfh and B cell 

differentiation47,238,239.  

A few days after the migration into the T-B border, pre-Tfh cells commit to the Tfh subset, 

by stabilizing BCL-6 expression, further upregulate CXCR5, downregulate CCR7,  PSGL-

1, and EBI2, and migrate into developing GCs where they will provide help to B cells211. 

Tfh function and maintenance at germinal centers 

In the GC, Tfh cells are responsible for providing help to GC B cells undergoing the 

processes of affinity maturation, selection, and CSR.  

As described previously, GC B cells in the LZ establish cognate interaction with Tfh cells. 

The duration and strength of these interactions are determined by the capability of GC B 

cells to uptake antigen and present it on MHC-II molecules to Tfh cells79. Thus, B cells that 

have higher affinity to the antigen will be able to receive further stimulation by Tfh cells: 

high number of TCR-MHC interactions lead to a rapid externalization by Tfh cells of CD40L 

and establishment of CD40L-CD40 interactions240. In turn, CD40-CD40L interactions 

promote increased expression of ICOSL that permits longer T:B interactions240. Moreover, 

CD40 together with BCR signaling also provide positive signals of survival, proliferation, 

and differentiation241-244. Furthermore, IL-21 produced by Tfh cells also targets GC B cells 
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and stimulates BCL-6 expression maintenance, the key regulator of GC B cell program, thus 

controlling the affinity maturation process245,246. In opposition, IL-21 also induces BLIMP-

1 expression that is involved in plasma cell differentiation247. Hence, B cells with higher 

affinity to the antigen receive more Tfh stimulation that leads them either to migrate back 

into the DZ, where they undergo higher rates of expansion and mutation (compared to cells 

that received less stimulation from Tfh cells), or to differentiate into memory B cells or 

plasma cells86. On the other hand, B cells that have lost their affinity to the antigens and, 

consequently, do not successfully engage in cognate interactions with Tfh cells receive 

signals to die: GC B cells express high levels of FAS and, in the absence of positive signals, 

Tfh cells induce AICD through FASL-FAS interactions248,249. Besides IL-21, Tfh cells also 

produce IL-4 which provides survival signals to B cells and enhances plasma cell 

differentiation83,250,251. 

Tfh cells also require surviving signals from B cells in the GC. GC B cells stimulate Tfh 

cells by providing TCR and ICOS stimulation signals that induce Tfh proliferation and 

survival212,231. Furthermore, IL-21 produced by Tfh cells not only targets GC B cells but also 

has an autocrine effect that stabilizes the Tfh differentiation224,234.  

Tfh cells express high levels of program cells death 1 (PD-1), which is already expressed by 

pre-Tfh cells, but, as for other markers such as CXCR5, ICOS, and BCL-6, its maximum 

expression is observed on Tfh cells252,253. Thus, Tfh cells can be identified by the double 

expression of CXCR5 and PD-1, or CXCR5 and ICOS. PD-1 is an inhibitory receptor 

induced by extended TCR signaling and its ligands, PD-1 ligand 1 (PD-L1) and PD-L2, are 

expressed by GC B cells254,255. Thus, PD-1 signaling is involved in preventing excessive Tfh 

proliferation and may also dampen the duration of T:B interactions, thus leading to higher 

affinity requirements255,256. Another inhibitory receptor expressed by Tfh cells is the B and 

T lymphocyte attenuator (BTLA)257. BTLA inhibits T cell proliferation by binding of the 

herpesvirus entry mediator (HVEM)258. In the case of Tfh cells, BTLA does not impact on 

differentiation but decreases Tfh functional capacity, especially IL-21 production. In 

agreement, in the absence of BTLA, GC B cell number, as well as antibody titers, increase 

after immunization257. 

Additional transcription factors involved in Tfh differentiation 

There are other transcription factors known to have a role in Tfh differentiation. However, 

their function, and/or the differentiation step when their action is necessary, are still poorly 

understood. This it is the case of BATF and IRF4. BATF is required for Tfh and Th17 
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differentiation; in the case of Tfh, it induces expression of BCL-6 and c-MAF259. Besides its 

involvement in Th2, Th17, and Th9 differentiation and in the repressive ability of Treg cells, 

IRF4 also plays a major role in Tfh differentiation, since in its absence Tfh differentiation is 

stalled260. 

Tfh cells memory 

Besides the formation of memory B cells during primary responses, the capacity for rapid 

responses upon antigen rechallenge also depends on the formation of memory Tfh cells261,262. 

There are CXCR5+CCR7+ and CXCR5+CCR7- memory Tfh cells that can arise prior or after 

migration into the GC263,264. CXCR5+CCR7+ memory Tfh cells are abundant in the blood 

and upon antigen encounter can rapidly differentiate into Tfh cells and migrate into GC to 

support GC B cells263. The presence of these cells in the blood allows a faster response in 

subsequent reinfections at different locations or a better control of pathogen systemic 

disseminations. 

Tfh cells in human beings 

Tfh cells have been studied not only in mice but also on human samples. In mice most of the 

studies are conducted in tissue samples (draining LNs and spleen). However, the difficulty 

in obtaining these kind of samples from human subjects led to the majority of human studies 

to be performed on CXCR5+ CD4 T cells from peripheral blood. These CXCR5+ CD4 T 

cells have been denominated circulating Tfh (cTfh) cells. The first studies on cTfh cells were 

performed in samples from HIV-infected patients (and healthy donors), since Tfh cells from 

these individuals are greatly dysregulated in function and number265,266. Moreover, several 

reports have also compared cTfh cells from healthy donors to cTfh cells from patients with 

autoimmune pathologies associated with auto-antibody production or patients with immune 

deficiencies267-274.  

Several differences have been detected between mouse and human Tfh cells. For once, while 

Tfh cell differentiation in mice is dependent of IL-6 and IL-21, in humans IL-12, IL-23, and 

TGFβ are the key cytokines for Tfh differentiation226,275. These differences are even more 

surprising since in mice TGFβ has the contrary effect and inhibits Tfh differentiation276.  

Another difference is the capacity to identify subsets within cTfh cells. Three subsets have 

been described based on CXCR3 and CCR6 expression: CXCR3+CCR6- cells have Th1-like 

properties, CXCR3-CCR6- share characteristics with Th2 cells, and CXCR3-CCR6+ have 

common characteristics with Th17 cells277. Furthermore, although CXCR3+CCR6- Th1-like 

Tfh cells are not capable to provide help to naïve or memory B cells,  CXCR3-CCR6- Th2-
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like Tfh cells and CXCR3-CCR6+ Th17-like Tfh cells give help to B cells and have different 

capacities to induce CSR: the first induce IgG and IgE production, while the second induce 

IgG and IgA secretion277. Nevertheless, the role of these cell subsets on subsequent responses 

still needs to be elucidated and, in particular, the relationship between time and cTfh cells. 

 

Regulatory T cells 

Antigen receptors of the adaptive immune cells originate from the random recombination of 

multiple DNA segments that leads to the production of a very wide range of receptors and 

receptor affinities. This characteristic allows the specific recognition and response against 

virtually any pathogen. On the downside, T and B cells with receptors that recognize the self 

(or environmental antigens) can also arise. To avoid detrimental responses against the self, 

the adaptive immune system employ several mechanisms to induce tolerance. During T and 

B cell development, self-reactive cells are deleted in the thymus and bone marrow, 

respectively. Also, in the periphery, two other mechanisms are used to control T cell 

responses. First, T cells that receive chronic TCR stimulation are rendered anergic. Second, 

in order for T cells to be activated, DCs have to provide TCR signaling stimuli and co-

stimulation signals through CD80/CD86; since DCs only upregulate CD80/CD86 upon 

PPRs activation, this two-signal requirement guarantees that T cells only get activated during 

inflammatory responses. Nevertheless, another mechanism that involves a specialized T cell 

subset is also required to maintain immune tolerance throughout life278-280. 

The most studied regulatory T (Treg) cells are CD4+ T cells with high suppressive capacity 

that were initially identified by their high expression of the IL-2 receptor α chain (CD25)278. 

Furthermore, SP CD4+CD25+ T cells could be identified in the thymus indicating that Treg 

cells originated in that organ278. Although it is now known that Treg cells from the periphery 

can recirculate into the thymus, the differentiation of Treg cells in this organ has been fully 

elucidated281,282. However, activated CD4 T cells also express high levels of CD25 and that 

common characteristic hampered for some time further studies on the mechanistic action of 

these cells.  

Mutations in the Foxp3 gene were first identified as the cause of fatal and early-onset, T cell 

dependent, lymphoproliferative, immune-mediated disorder in scurfy mice and human 

patients with IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) 

syndrome283-286. The impact and characteristics of the Foxp3 mutations then lead to the 

identification of FOXP3 as the key transcriptional factor for Treg cells279,287,288. FOXP3 is 
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not only required for Treg differentiation but it is also critical for its suppressor function and 

phenotype maintenance279,289,290. Treg cells are usually characterized by the double 

expression of FOXP3 and CD25. However, other markers like cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) and glucocorticoid-induced TNF receptor-related protein 

(GITR) are also characteristic of this population287. 

Although the majority of FOXP3+ Treg cells originate in the thymus (tTreg), conventional 

CD4 T (Tconv) cells can also differentiate into Treg cells in the periphery (pTreg). These 

two populations have different characteristics, such as antigen-specificity, but whether both 

populations perform the same functions is still a matter of debate. 

Thymic derived Treg cells 

The main characteristic of tTreg cells is their TCR capability to recognize self-antigen. Thus, 

for a T cell to differentiate into a Treg cell, its TCR avidity for self-antigens has to be in 

between the affinities that lead to positive selection of Tconv cells and negative 

selection291,292 (see Figure 7). Therefore, even though other signals are needed, TCR 

signaling is crucial for FOXP3 induction and commitment to the Treg lineage. Treg 

differentiation is also influenced by intraclonal precursor competition that restricts the 

differentiation of numerous Treg cells expressing the same TCR while facilitates the 

generation of Treg cells with a broad TCR repertoire293,294. In turn, this competition for Treg 

differentiation signals may explain the small, but existent, overlap of TCR repertoire 

between Treg and Tconv cells295,296. Besides TCR signaling, CD28 co-stimulatory signals 

and cytokine signaling (mainly IL-2 and, to a lesser extent, IL-7 and IL-15, all of which 

 

Figure 7 – TCR signaling strength determines Treg differentiation in the thymus. 

During selection in the thymus, the avidity that T cells demonstrates to the self-antigen and MHC molecule 

determines the TCR signaling strength obtained by the cell and consequently the T cell fate. Most of the 

cells present either very high or no avidity leading to their deletion (negative selection and death by neglect, 

respectively). SP CD4+ T cells undergoing positive selection that receive TCR signals of intermediate-low 

strength become Tconv. SP CD4+ T cells that present intermediate-high TCR signaling strength differentiate 

into Foxp3+ Treg cells in the presence of IL-2. Some cells present TCR signaling strengths that, in the 

absence of IL-2, may suffer deletion or may differentiate into a Tconv cell. 
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signal through the common γ chain) are also essential for Treg development297-299. The 

critical role of IL-2 led to the proposal of a two-step differentiation model, where the first 

step depends on TCR signaling and leads to the upregulation of CD25, while the second step 

depends on IL-2 signals, which in turn depends on the previous CD25 upregulation, that are 

required for FOXP3 induction300. 

Peripherally induced Treg cells 

While tTreg cells specificity is biased towards self-antigens, pTreg cells are induced by 

recognition of non-self antigens like food, allergens, and commensal microbiota. These 

antigens are continuously present in the organism in homeostatic and non-inflammatory 

conditions and support differentiation of pTreg cells. Accordingly, pTreg differentiation 

requires high-affinity TCR signaling in combination with low co-stimulation (low CD28, 

but increased CTLA-4 signaling) to induce FOXP3 expression301-303. Moreover, cytokine 

signaling is also necessary: induction of pTreg cells is enabled in the presence of high 

amounts of TGFβ304. Furthermore, TCR sub-optimal activation also seems to favor Treg 

conversion in a TGFβ-dependent way305. Taking into account the necessary conditions, such 

as the requirement for antigen exposure without triggering an immune response, as well as 

the antigens that usually induce pTreg, one would expect that the mucosal tissues are 

environment favorable for pTreg differentiation. Indeed, mesenteric LNs, Peyer’s patches, 

and gut-associated lymphoid organs are environments of excellence for pTreg induction. 

Furthermore, the capability to generate pTreg cells in these organs is further favored due to 

the presence of CD103+ DCs which present the antigen and produce TGFβ and retinoic acid 

in homeostatic conditions306,307. 

Treg cells suppression mechanisms 

Treg cells rely on several suppression mechanisms to induce tolerance and control on going 

immune responses: cytokine deprivation, release of inhibitory cytokines, induce cell death 

to target cells, and cell-to-cell suppression of APCs. 

The cytokine deprivation mechanism depends on the fact that Treg cells express high levels 

of CD25, which is indispensable for Treg cells homeostasis298,308. Since IL-2 is an effector 

cytokine required for survival and expansion of effector T cells, the expression of high levels 

of CD25 by Treg cells consumes the IL-2 present in the environment, thus diminishing the 

proliferation and survival of effector T cell309. On the other side, Treg cells produce the 

immune suppressive cytokines IL-10, IL-35, and TGFβ. IL-10 and IL-35 have important 

roles in maintaining tolerance: the first is important in environments like the lung and colon, 
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while the second is required to keep immune cells of the gut in check310,311. TGFβ produced 

by Treg cells suppresses Th1 and Th17 responses312. Another mechanism employed by Treg 

cells is the induction of cell death to APCs and activated T cells by granzyme B-mediated 

apoptosis313,314. Moreover, Treg cells suppress APC by cell-to-cell interactions mediated by 

receptors CTLA-4 and lymphocyte-activation gene 3 (LAG-3). The principal mechanism 

through which CTLA-4 acts is still a matter of debate. CTLA-4 binds the co-stimulatory 

molecules CD80 and CD86 with higher affinity than CD28. Thus, the proposed mechanisms 

involve regulation of co-stimulatory signals that APCs provide to effector T cells by 

competition or removal of CD80 and CD86 from APC cell surface by transendocytosis315. 

LAG-3 is a CD4 homologue that suppresses DC maturation and co-stimulatory capacity by 

binding MHC-II molecules with high affinity316,317. Two other highly expressed receptors 

involved in Treg suppression are CD39 and CD73. These two ectoenzymes release cyclic 

adenosine monophosphate (cAMP) to the extracellular matrix which directly inhibits 

proliferation and function of T cells and DCs, respectively318-321. 

Treg cell subsets 

Treg cells control different types of immune responses and effector cells. Therefore, Treg 

cells need to acquire specific features depending on the environmental properties of the 

response and where it takes place. In order to acquire these features, Treg cells sense the 

ongoing responses by the cytokines present in the environment and accordingly upregulate 

transcription factors associated with ongoing Th response322. Thus, during Th1 responses, 

Treg cells also upregulate T-BET, which in the case of Treg cells allows the expression of 

CXCR3 and consequent migration, proliferation, and accumulation where Th1 responses 

take place323. Moreover, Treg cells are able to obtain Th2 features and regulate Th2 

responses by expression of IRF4 and GATA3, while upregulation of RORγt grants Th17-

like properties important for intestinal inflammation control324-327. Another Treg cell subset 

recently described is the Tfr cell subset. This Treg subset is responsible for controlling Tfh 

cells and GC responses by expressing the Tfh master transcription regulator BCL-6 and 

migrating into B cell follicles328-330. 

Foxp3- regulatory T cells 

Besides FOXP3+ CD4 T cells, two other regulatory CD4 T cells populations that do not 

express FOXP3, Tr1 and Th3 cells, have been described as being also involved in 

suppressing and regulating the immune system331,332. Tr1 cells are immune suppressive CD4 

T cells that exert their function through the production of high amounts of IL-10, and can 
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suppress antigen-specific T cell responses and prevent colitis332. Tr1 differentiation is 

induced by IL-27 or IL-6333. Although many characteristic receptors and transcription factors 

have been associated to these cells and their functions, no unique transcription factor or 

master regulator for this subset has been described yet. Besides IL-10 production, Tr1 cells 

are also characterized by expression of the receptors LAG-3 and CD49b, and expression of 

transcription factors like c-MAF and AHR334-336. Th3 cells are also immune suppressive CD4 

T cells, but this subset is characterized by the secretion of high amounts of TGFβ337. Th3 

cells develop upon oral tolerance induction in a TGFβ-dependent fashion and are specific to 

the antigen provided by oral administration. Moreover, Th3 cells can suppress both Th1 and 

Th2 responses in an antigen independent way, and also provide help for IgA CSR and 

production331. Once again, no master transcription factor is known for the Th3 subset, 

however, they can be identified by the expression of TGFβ, CTLA-4, and low CD25337,338. 

 

Follicular regulatory T cells 

In order for Treg cells to control and suppress immune responses, they have to acquire 

phenotypic characteristics of effector Th cells and migrate into the local of immune reaction. 

That is the case of the recently described Tfr cells, a subset of Treg cells that migrates into 

GC to regulate the GC responses. 

The importance of Treg cells on the control of antibody responses has been observed since 

the discovery of these cells. Indeed, one of the consequences of their absence is the increased 

level of circulating antibodies (both IgG and IgE that originate in GCs)339,340. Further studies 

showed that Treg cells are capable of controlling antibody responses by inhibiting AID 

expression and CSR, and by directly killing B cells314,341. Also, CXCR5+ Treg cells could be 

found within GCs of immunized mice. However, the confirmation of the existence of a 

specialized subset of Treg cells that migrated into GC and controlled antibody responses 

came with the identification of a population with mixed characteristics of Tfh and Treg 

cells328-330. These Tfr cells express not only the Treg master regulator FOXP3 but also CD25, 

CTLA-4, GITR, and granzyme B. On the other hand, Tfr cells express Tfh cell markers like 

CXCR5, ICOS, PD-1, SAP, and the master transcription factor of the Tfh subset BCL-6. 

Thus, Tfr cells present Tfh characteristics, but have a suppressive function as Treg cells. 

Tfr cells were initially described in mouse and also humans. Indeed, one of the first reports 

that described Tfr cells demonstrated the presence of these cells within GC of human 

tonsils328. However, as for Tfh cells, the difficulty in obtaining human samples led to the 
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majority of the work to be performed in mice. Nevertheless, recent studies have investigated 

a population of circulating CXCR5+FOXP3+ CD4 T cells from human blood, considered 

circulating Tfr cells, and that has been correlated with autoimmune diseases342-345. 

There is some controversy regarding the origin and specificity of Tfr cells. These cells were 

initially described as deriving from tTreg cells328-330. However, a recent report suggests that 

these cells can originate from Tconv cells by initially conversion into pTreg cells followed 

by differentiation of those pTreg cells into Tfr cells. Consequently, these cells would be 

specific to the immunizing antigen346.  

Tfr cell differentiation 

Although less studied than Tfh cell differentiation, Tfr cells also seem to undergo a multi-

step differentiation process. In this process, the initial priming is dependent on DCs, while 

B cells are required for full development and expansion264,329,347. Nevertheless, circulating 

Tfr cells with memory characteristics can differentiate in the absence of B cells, indicating 

that, as for Tfh cells, these cells can originate upon the first commitment with DCs before 

fully commitment264. Another similarity between the differentiation processes of Tfh and 

Tfr cells is the requirement of TCR stimulation and co-stimulatory signals through CD28 

and ICOS329,348. However, Tfr cells differentiation also seems to be affected by co-inhibitory 

signals. PD-1 that is expressed by Tfr and Tfh cells has a detrimental effect on Tfr cells 

differentiation which is dependent on the binding of PD-L1 (but not PD-L2)348. CTLA-4 is 

expressed by Treg and Tfr cells (but not by Tfh cells) and, as PD-1, also has negative impact 

on Tfr differentiation349,350. 

There are also similarities and differences in the transcription factors involved in Tfr and 

Tfh cell differentiation. For once, BCL-6 is a master regulator for both subsets and both 

require STAT3 signaling351,352. Surprisingly, Tfr cells express the mutual antagonists and 

repressors BCL-6 and BLIMP-1: while the first is important to acquire a Tfh-like phenotype, 

the second may be necessary for the Treg-like suppressive function of Tfr cells329. Another 

difference is that, while ASCL2 is important for initial CXCR5 expression in Tfh 

differentiation, Tfr cells do not express ASCL2, and CXCR5 expression requires the 

transcription factor nuclear factor of activated T cells 2 (NFAT2)227,353. The TNF receptor-

associated factor 3 (TRAF3) is also important for Tfr differentiation and function, and is 

involved in the regulation of ICOS in Treg cells354.  



 

36 

 

GC regulation by Tfr cells 

Tfr cells are involved in GC regulation. The first studies that described these cells already 

showed that Tfr cells controlled the GC size and the amount of antibodies produced328-330. 

However, the impact on the antibody affinity generated has been controversial. One of the 

first studies claimed that Tfr cells did not have an impact on antibody affinity, while recent 

studies demonstrated that, in the absence of this regulatory population, the amount of 

antibodies produced is higher, but the affinity generated is lower328,350,355. This possible 

effect on antibody affinity, could be explained by facilitated help from Tfh cells to B cells 

in the absence of Tfr cells, and consequent generation of low affinity plasma cells356. Indeed, 

Tfr cells not only suppress Tfh proliferation and the production of IL-21 and IL-4, but also 

have been implicated in the regulation of non-antigen-specific B cell clones in the GC264,329. 

Moreover, Tfr cells seem to regulate Tfh and GC B cells by affecting their metabolism: Tfr 

cells induce a suppressive state on Tfh and GC B cells that persists in the absence of Tfr cells 

and is associated with epigenetic changes357.  

Even though several mechanisms have been suggested to explain Tfr cells suppressive 

action, only one has been confirmed so far358(see Figure 8). Two recent reports have shown 

 

Figure 8 – Tfr cell suppression mechanisms. 

Tfr cells have a suppressive effect on GC. However, only the suppressive mechanism mediated by  

CTLA-4 action has been described so far. Nevertheless, three other have been suggested: induction of 

cytolysis by release of granzyme B, mechanic disruption of interactions between Tfh and GC B cells, and 

production of the inhibitory cytokines IL-10 and TGFβ. 
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that, as Treg cells, Tfr cells express CTLA-4 and this receptor is involved in the suppressive 

capacity of these cells349,350. One of the mechanisms suggested for Tfr action is through the 

production of the suppressive cytokines IL-10 and TGFβ. However, although Tfr cells 

produce IL-10, this cytokine was detected in higher amounts in the supernatants of Tfh and 

GC B cells cultures when Tfr cells were not added to the culture264. Even though Tfr cells 

seem to inhibit IL-10, this effect may still be in agreement with their functions, since IL-10 

is important for B cell survival and proliferation359. Nevertheless, the effect of IL-10 

produced by Tfr cells requires further study in vivo. On the other hand, since Tfh cells are 

suppressed by TGFβ, the production of this cytokine may also be a mechanism of Tfr 

suppression276. Tfr cells also express granzyme B, though in lower levels than Treg cells, 

and granzyme B-mediated cytolysis may be another regulatory mechanism employed by 

these cells329. Lastly, Tfr cells may exert a suppressive effect by mechanical disruption of 

T:B interactions that are required by Tfh and GC B cells358. 

Tfr cells memory 

As observed in Tfh cells, there is a circulating Tfr cells population that develops upon 

immunization. These memory Tfr cells can originate prior to the migration into the GC as 

only stimulation from DCs is required. These cells can persist in the system for long periods 

of time and be recruited into the GC to suppress further responses264. 

 

GCs and autoimmunity 

Several autoimmune diseases are caused by the production of autoantibodies. It is the case 

of systemic lupus erythematosus (SLE), RA, Sjögren’s syndrome, and myasthenia gravis. 

Besides the increased antibodies titers, these diseases are also associated with an increased 

number of circulating Tfh cells, and both may be associated with GC dysregulation267-270. 

Since Tfr cells functions involve the regulation and suppression of GC, it is likely that a 

diminished function of these cells leads to the onset and development of auto-antibody-

mediated autoimmune diseases. In agreement, several studies have so far associated altered 

circulating Tfr:Tfh ratios to humoral autoimmune diseases in humans, such as ankylosing 

spondylitis, myasthenia gravis, MS, and IPEX-like disease342-345. Moreover, alterations on 

the Tfr population were also observed in murine models of spontaneous and induced lupus-

like disease as well as in murine arthritis models353,360-364. Nevertheless, further studies are 

needed to determine if Tfr cells are directly implicated in humoral autoimmunity, and a better 
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knowledge of Tfr cells biology may provide strategies to modulate humoral immune 

responses. 
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A key outstanding question regarding Tfr cell biology is its ontogeny. Tfr cells were initially 

described as originating from tTreg cells, but a recent report claimed that these cells can also 

derive from Tconv cells when favorable conditions to pTreg differentiation are present.  

Another open question, perhaps with greater implications, resides on the specificity of Tfr 

cells. Tfr cells present themselves as perfect candidates for the detection and elimination of 

auto-reactive B cells that can arise during affinity maturation in the GC, namely because of 

(1) their regulatory and suppressive functions as regulators of the GC, (2) the necessity of a 

mechanism to prevent the arise of auto-reactive B cells from the GC, and (3) the reports 

associating the reduction of this population to the onset and development of autoimmune 

diseases in both human and mouse. In turn, that capacity of preventing the generation of 

auto-reactive B cells would be in agreement with Tfh and Tfr having different specificities: 

Tfh cells specific to the immunizing antigen, while Tfr cells, originating from tTreg cells, 

with specificity towards self-antigens.  

 

Therefore, this dissertation aimed to answer those two questions. In brief: 

1. What is the cellular ontogeny of Tfr cells? 

2. What is the specificity of Tfr cells? 

Three lines of experiments were conducted to answer those questions. Accordingly, the 

results obtained are presented in three chapters.  

For the first question, several in vivo TCR-transgenic model were used to verify if Tfr cells 

could originate from Tconv cells.  

The second line of experiments involved in vivo and in vitro experiments to demonstrate 

whether Tfr cells were preferentially specific to an immunizing antigen. These experiments 

involved TCR-transgenic models to show that antigen-specific TCR-transgenic tTreg cells 

were not preferentially recruited into the GC, the use of tetramers to demonstrate the absence 

of antigen-specific tetramer+ Tfr cells, and in vitro cultures of Tfr cells to show that the 

presence of the immunizing antigen did not give any advantage in terms of proliferation or 

survival. 

Lastly, the TCR repertoire of Tfr, Tfh, and Treg cells was investigated and used to show that 

Tfr cells had a repertoire closer to the one of Treg cells than to Tfh cells. 
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Mice 

C57BL/6, C57BL/6.Thy1.1, Foxp3GFP, Foxp3hCD2, Balb/c, TCRβ-/-, DO11.10.Rag-/-,  

OT-II.Rag-/-, OT-II.Rag+.Thy1.1+.Thy1.2+, P25, and 1D2β mice were bred and maintained 

at Instituto de Medicina Molecular and Instituto Gulbenkian de Ciência in specific pathogen-

free facilities. Animals of both sexes (same sex per experiment) and with age ranging from 

2 to 6 months were used. Procedures were conducted in accordance with guidelines from the 

Animal User and Institutional Ethical Committees. 

 

Immunizations and cell transfers  

Animals were immunized subcutaneously in the footpad with six different antigens in 

combination with two adjuvants listed on Table 2. Antigens were prepared by mixing the 

antigen solution 1:1 (v:v) with the adjuvants. 50 μl of emulsion were injected in each 

footpad.  

For adoptive cell transfers, purified CD4 T cells were injected i.v. in saline solution. In all 

experiments, the immunization occurred 1 day after the adoptive cell transfers, and 

collection of popliteal LN at day 11 following immunization. 

 

Flow cytometry and cell sorting 

For flow cytometry analysis and cell sorting, single cell suspensions were obtained and 

stained with the monoclonal antibodies listed on Table 3. Intracellular FOXP3 staining was 

performed using the FOXP3 Staining Set (eBioscience) according to the manufacturer’s 

instructions. OVA323-339 or Ag85B280-294 specific T cells were detected with a PE-(OVA) or 

APC-(Ag85B) conjugated MHC-II I-Ab tetramer containing an OVA329-337 (AAHAEINEA) 

or Ag85B280-294 (FQDAYNAAGGHNAVF) peptide, respectively (both offered by the NIH 

Tetramer Core Facility). Staining was performed for 1h at RT as described before365. 

Enrichment of tetramer+ cells was performed using MACS cell separation system and anti-

PE and anti-APC magnetic beads (Miltenyi Biotec) according to the manufacturer’s 

instructions. 

 All samples were acquired on a BD LSRFortessa flow cytometer and acquisition data were 

analyzed with the FlowJo software (Tree Star). For flow cytometry analysis of cultured cells 

and tetramer enriched cell samples, 10 μm latex counting beads were added to cell 

suspensions to obtain total cell counts (Counter Beckman). 
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Table 2 – List of antigens and adjuvants used for immunization 

Antigen Adjuvant Brand (Ag/Adjuvant) 
Ag Concentration 

on emulsion 

Ovalbumin (OVA) IFA Sigma-Aldrich/Sigma-Aldrich 1.6 mg/ml 

β-lactoglobulin (βLG) IFA Sigma-Aldrich/Sigma-Aldrich 1.6 mg/ml 

OVA323-339-BSA IFA 
Thermo Fisher Scientific or  

Schafer-N/Sigma-Aldrich 
1.6 mg/ml 

Ag85B240-254-BSA IFA 
Thermo Fisher Scientific or  

Schafer-N/Sigma-Aldrich 
1.6 mg/ml 

OV323-339 peptide 

(ISQAVHAAHAEINEAGR) 
IFA/CFA Schafer-N/both Sigma-Aldrich 2 mg/ml 

Ag85B240-254 peptide 

(FQDAYNAAGGHNAVF) 
IFA/CFA Schafer-N/both Sigma-Aldrich 2 mg/ml 

 

Table 3 – Antibodies used for flow cytometry analysis 

Antibody Clone Brand Conjugation 

CD4 RM4-5 
Biolegend or 

eBioscience 
BV510, PE, APC, APC-e Fluor 780 

CD19 ebio1D3 eBioscience FITC, PE, PerCP-Cy5.5, APC, APC-e Fluor 780 

CD25 PC61.5 eBioscience Alexa Fluor 488, PE-Cy7, APC-e Fluor 780 

CXCR5 2G8 BD Pharmigen Biotin 

FOXP3 FJK-16s eBioscience eFluor 450, Alexa Fluor 488, APC 

GITR DTA.1 BD Pharmigen PE 

hCD2 RPA-2.10 eBioscience APC 

PD-1 J43 eBioscience FITC, PE, PE-Cy7 

Thy1.1 HIS51 eBioscience PerCP-Cy5.5, APC-eFluor 780 

Thy1.2 53-2.1 eBioscience PE-Cy7, APC-e Fluor 780 

TCRβ H57-597 eBioscience FITC, APC-eFluor 780 

Vα2 B20.1 eBioscience eFluor 450 

Vβ5 MR9-4 BD Pharmigen FITC 

 

For cell sorting of CD4 T cells for adoptive cell transfers, cells were purified from spleen 

and mesenteric LNs using MACS cell separation system and anti-CD4 (L3T4) magnetic 

beads (Miltenyi Biotec). FACS-sorting of cells for in vitro assays and RNA extraction with 

monoclonal antibodies was performed on a BD FACSAria cell sorter.  

 

In vitro cultures 

Bone marrow derived DCs were generated in vitro. Bone marrow progenitors were cultured 

for 7 days in presence of 20 ng/ml GM-CSF (PeproTech); medium was changed on days 3 
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and 6 of culture. DCs specific antigen loading was performed for 3h at 37ºC in presence of 

1 mg/ml of protein.  

In OT-II Treg/WT Treg and Tfr/Tfh/Treg cultures, CD4 T cells were pre-incubated with 

CellTrace Violet (Life Technologies) for tracking cell proliferation according to 

manufacturer’s instructions. A 3:2 ratio of CD4 T cells to DCs was used in these experiments 

to a final number of 5x104 cells per well in the case of OT-II Treg/WT Treg cultures and 

2.5x104 cells per well in the case of Tfr/Tfh/Treg cultures. Cells were co-cultured in the 

presence of 2 ng/ml IL-2 (eBioscience) and, in some conditions, 3 μg/ml anti-CD3 (145-

2C11, eBioscience) were also added to the culture. After 3 days of culture, cells were stained 

with monoclonal antibodies and analyzed by flow cytometry. 

For the Tfh radioactive proliferation assay, 2.0x104 Tfh cells were cultured with the same 

number of DCs. In the wells where unloaded DCs were cultured, 3 μg/ml anti-CD3 were 

added to the culture. After 3 days of culture, cells were incubated with 1.0 μCi/well of 3H-

thymidine (Perkin Elmer) at 37ºC for 6 hours and stored at –20°C until harvesting.  Cells 

were harvested on a Tomtec Harvester (Tomtec) into a Filtermat, covered with Meltilex, and 

scintillation counted on a Microbeta Trilux (all PerkinElmer). 

All cultures were performed in complete RPMI (RPMI-1640 with glutamine and 25mM 

HEPES [Lonza] supplemented with 10% FBS (v:v) [Gibco], 100U/ml 

penicillin/streptomycin [Gibco], 1mM sodium pyruvate [Gibco] and 50μM β-

mercaptoethanol [Gibco]) and kept at 37ºC with 5% CO2 level. 

  

RNA extraction, cDNA synthesis and CDR3 length analysis 

RNA extraction from cell-sorted populations (2x105 - 5x106 cells) was performed using 

TRIzol (Life Technologies). cDNA was amplified using Random Primers and SuperScript 

III Reverse Transcriptase (both Invitrogen). Both RNA extraction and cDNA synthesis were 

performed following the manufacturer’s instructions. CDR3 spectratyping was performed as 

described previously366. Briefly, each obtained cDNA was used to perform 23 PCR reactions 

in parallel with a common Cβ reverse primer and 23 Vβ-specific forward primers (GoTaq 

DNA Polymerase from Promega and primers from Life Technologies). Run-off reactions 

were done using dye-labelled Cβ primer. All used primers are listed on Table 4. Run-off 

products were run on ABI 3130XL Automatic Sequencer (Applied Biosystems) together 

with GeneScan 500 ROX dye Size Standard (Applied Biosystems), and consequently  
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Table 4 – Primers used for CDR3 spectratyping/immunoscope analysis 

Sequence Direction Target gene/region 

TCACTGATACGGAGCTGAGGC Forward TRBV1 
GCCTCAAGTCGCTTCCAACCTC Forward TRBV2 
CACTCTGAAAATCCAACCCAC Forward TRBV3 
ATCAAGTCTGTAGAGCCGGAGGA Forward TRBV4 
CTGAATGCCCAGACAGCTCCAAGC Forward TRBV5 
AAGGTGGAGAGAGACAAAGGATTC Forward TRBV12-1 
CATTATGATAAAATGGAGAGAGAT Forward TRBV12-2 
TGCTGGCAACCTTCGAATAGGA Forward TRBV13-1 
CATTATTCATATGGTGCTGGC Forward TRBV13-2 
CATTACTCATATGTCGCTGAC Forward TRBV13-3 
AGGCCTAAAGGAACTAACTCCAC Forward TRBV14 
GATGGTGGGGCTTTCAAGGATC Forward TRBV15 
GCACTCAACTCTGAAGATCCAGAGC Forward TRBV16 
TCTCTCTACATTGGCTCTGCAGGC Forward TRBV17 
CTCTCACTGTGACATCTGCCC Forward TRBV19 
CCCATCAGTCATCCCAACTTATCC Forward TRBV20 
CTGCTAAGAAACCATGTACCA Forward TRBV21 
TCTGCAGCCTGGGAATCAGAA Forward TRBV23 
AGTGTTCCTCGAACTCACAG Forward TRBV24 
CCTTGCAGCCTAGAAATTCAGT Forward TRBV26 
TACAGGGTCTCACGGAAGAAGC Forward TRBV29 
CAGCCGGCCAAACCTAACATTCTC Forward TRBV30 
ACGACCAATTCATCCTAAGCAC Forward TRBV31 
GCCCATGGAACTGCACTTGGC Reverse TRBC(1) 
FAM-CTTGGGTGGAGTCACATTTCTC Reverse TRBC(2)-FAM 

 

separated based on their nucleotide size. Gene Mapper software (Applied Biosystems) was 

used to obtain nucleotide length and area of each peak. 

 

RNA extraction, cDNA synthesis, TRA gene amplification, and deep sequencing 

RNA from 1D2β mice sorted cell populations (1.1x104 – 1.0x106 cells) was extracted using 

RNeasy Midi kit (Qiagen) following manufacturer’s instructions.  Full-cDNA library was 

prepared using Mint-2 kit (evrogen) which introduces 5-prime adapters to cDNA fragments. 

TRA was then specifically amplified using Pfx DNA polymerase (Invitrogen) and a primer 

pair specific for the 5’-adapter and the C region of the TRA gene. Primers used for full-

cDNA library preparation and TRA amplification can be found on Table 5. The sequencing 

library was prepared using the Nextera kit, in which each sample was barcoded and 

sequenced using 250bp paired-end illumina MiSeq technology (both illumina).  
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Table 5 – Primers used for TCRα sequencing 

Sequence 
Primer 

direction 
Target gene/region 

AAGCAGTGGTATCAACGCAGAGTGGCCATTACGGCCGGGGG Forward 5’ PlugOligo adapter 
AAGCAGTGGTATCAACGCAGAGTACTGGAG(T)20VN Reverse 3’ CDS adapters 
CAACGCAGAGTGGCCATTAC Forward 5’ adapter primer 
GCAGGTGAAGCTTGTCTGGT Reverse TRBC(3) 

 

CDR3 data analysis 

In order to have adequate representation of a complete TRBV repertoire, it is necessary to 

analyze at least 2x105 cells. To achieve this number of cells, it was necessary to pool draining 

LNs from 15 mice for each biological replicate. In our experiments, at least three biological 

replicates were used for each T cell subset. The ISEApeaks® software was used to extract 

and analyze the data obtained for CDR3 fragment size367,368. Briefly, this software quantifies 

the percentage of use of each CDR3 length, obtained by dividing the area of CDR3 peaks by 

the total area of all peaks within the profile. On C57BL/6 mice, TRBV21 and 24 are 

pseudogenes and thus ignored on the analysis. TRBV12-2 was also discarded since it could 

not be detected on three of the samples. To facilitate the comparison between samples and 

populations, a perturbation score369 was computed to obtain the overall differences between 

TRBV CDR3 spectratypes of each sample and the average profiles of naïve CD4 T cells or 

Tfr cells as control group for each TRBV. Calculated scores were used to perform 

hierarchical clustering (using Euclidean distance and average linkage).  

 

Deep sequencing data analysis 

Paired-end 250bp illumina sequencing data were initially trimmed and subsequently merged 

using PEAR370. clonotypeR371 toolkit was then used to perform TCR sequence annotation. 

Two samples had to be discarded due to low sequencing quality (mouse 3 Tfh sample and 

mouse 4 Tfr sample). Out of the 7,547,998 raw reads obtained for the 18 remaining samples, 

25,099 TCR clonotypes were identified from 949,729 productive TCR sequences. For the 

samples to be comparable, the analyses were performed on 9,000 randomly selected TCR 

sequences for each dataset as it was the lowest number of TCR sequences found in a dataset. 

The presented clonality metric is 1- Pielou’s evenness index372, and can vary from 0 to 1 

(more diverse to less diverse). The Pielou’s evenness corresponds to the Shannon’s 

entropy373,374 (using log 2) for each sample divided by the number of unique clonotypes (in 

log 2) of the same sample. For the histogram of cumulative frequency, the 20 most 
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predominant clonotypes were determined for each sample, and gathered across all samples 

to plot the cumulative frequency of those clonotypes for each sample. The 20 most 

predominant Tfr clonotypes were selected from each of the three Tfr samples and gathered 

into a list used to perform hierarchical clustering in all samples (using Euclidean distance 

and average linkage). The same was performed for the 20 most predominant clonotypes of 

each Tfh sample. Dendrogram of overall relation between all samples was obtained using 

Horn-Morisita index375,376 as distance and average linkage. This index assesses the similarity 

between samples taking into account the abundance of each clonotype in the sample. 

Approximately unbiased (AU) p-values and bootstrap probability (BP) values were 

calculated for each cluster through 1000 bootstrap resampling iterations377. 

 

Statistical analysis 

Scatter plots and column bar graphs were obtained using GraphPad PRISM. Unless 

otherwise stated, n represents the number of individual mice analyzed per experiment. To 

determine statistical significance, two-tailed nonparametric Mann–Whitney U test were 

performed, and p<0.05 was deemed significant (in figures: * p<0.05; ** p<0.01). Clustering 

analysis, Venn diagrams, ANOVA, pairwise multiple comparison analysis with Holm-

Bonferroni correction for multiple sampling, and multivariate analysis were performed using 

R software (http://www.r-project.org/). 
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1.1. Introduction 

Tfr cells are a recently described population of FOXP3+ Treg cells found within the GCs 

resembling Treg and Tfh cells328-330. Several studies have so far demonstrated that these cells 

have not only a direct impact on the GC size, but are also involved in the regulation of the 

quantity and quality of the antibodies produced330,350,355. In spite of the advances in the 

understanding of Tfr biology, their ontogeny is still a matter of debate. Initial experiments, 

mostly performed in lymphopenic conditions, demonstrated that Tfr cells derive from tTreg 

cells. However, it was recently reported that Tfr cells can also originate from Tconv cells: 

upon immunization, and if favorable conditions for pTreg differentiation are present, Tconv 

cells initially convert into pTreg cells which then are able to differentiate into Tfr cells and 

migrate into the GC346.  

To clarify whether Tfr cells originate from tTreg or Tconv cells, the precursors of Tfr cells 

were investigated by determining if FOXP3- antigen-specific TCR-transgenic CD4 T cells 

were able to differentiate into Tfr cells upon immunization with OVA in IFA. These 

experiments were performed in non-lymphopenic mice in order to avoid potential non-

physiological effects. Also, two distinct genetic backgrounds were used to account for 

possible biological heterogeneity. It was found that, under all conditions tested, virtually all 

Tfr cells derived from tTreg cells. 

 

1.2. Results 

In order to avoid the analysis of Tfh and Tfr cells unrelated to the immunization, mice were 

immunized in the footpad. As shown in Figure 9a, popliteal LNs, the draining LNs of this 

location of immunization, are virtually free of T follicular cells prior to immunization, but 

these populations greatly increase upon immunization with OVA-IFA, a process similar to 

what is observed following vaccination. This conclusion is well illustrated on Figure 9b, 

where the numbers of Tfh and Tfr cells between non-immunized C57BL/6 and OVA 

immunized mice are compared. 

To determine if Tfr cells originate from Tconv cells, OVA-specific TCR-transgenic CD4 T 

cells from DO11.10.Rag–/– or OT-II.Rag–/– mice, devoid of thymic FOXP3+ Treg cells 

(Figure 10a), were adoptively transferred into naïve wild-type (WT) Balb/c.Thy1.1 or 

C57BL/6.Thy1.1 hosts, respectively (Figure 10b). These cells, besides being specific for 

OVA, are also trackable after transfer by identification of the congenic markers Thy1.1 and 
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Figure 9 – T follicular cells are virtually inexistent on popliteal LNs prior to immunization. 

(a) Relative frequency of T follicular cells in popliteal LNs of non-immunized (left) and OVA-immunized 

(right) C57BL/6 mice. (b) Absolute number of Tfh and Tfr cells within popliteal LNs from non-immunized 

C57BL/6 mice compared to OVA-immunized mice. Popliteal LNs were analyzed 11 days after 

immunization. Mean ± SEM is presented for n=3. 

 

 

 

 

Figure 10 – Tfr cells do not differentiate from FOXP3- T cell precursors. 

(a) CD4 T cells from OVA-specific OT-II.Rag–/– or DO11.10.Rag–/– mice are devoid of FOXP3+ Treg cells. 

(b) 106 CD4 T cells from OT-II.Rag–/– or DO11.10.Rag–/– mice were adoptively transferred into, 

respectively, C57BL/6 or BALB/c hosts subsequently immunized with OVA-IFA in the footpad. At day 11, 

popliteal LNs were analyzed by flow cytometry. (c) Gating strategy for detection of DO11.10.Rag-/- (upper 

panel) or OT-II.Rag-/- (bottom panel) within Tfh and Tfr cell populations. (d) Percentages of TCR-transgenic 

DO11.10 (top) or OT-II cells (bottom) within Tfh and Tfr cells from the analysis in (c). While Tfh 

(CD4+CXCR5highPD-1highFOXP3–) cells contained ~25-30% TCR-transgenic cells, those adoptively 

transferred cells could not be detected among the Tfr (CD4+CXCR5highPD-1highFOXP3+) population in any 

of the two genetic backgrounds. Mean ± SEM are presented for n=5. 
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Thy1.2 (transgenic cells were Thy1.2 while recipient mice were Thy1.1). Recipient mice 

were subsequently immunized with OVA-IFA in the footpad and 11 days later, at the peak 

of GC response, draining LNs were analyzed by flow cytometry. Day 11 was considered the 

peak of the response since it has been previously described as when higher numbers of Tfh 

and Tfr cells can be obtained330,378. Popliteal LNs were found to contain Tfh populations 

derived to a great extent from transferred TCR-transgenic cells, while Tfr cells derived 

exclusively from endogenous T cells (Figure 10c,d).  

On the contrary, TCR-transgenic CD4 T cells from OT-II.Rag+ mice that, unlike RAG-

deficient counterparts harbor a population of TCR-transgenic FOXP3+ tTreg cells (Figure 

11a), can support the differentiation of Tfr cells, following adoptive transfer into T cell 

deficient mice (Figure 11b). Indeed, and as shown on Figure 11c, when OT-II.Rag+ CD4 T 

cells were transferred into TCRβ–/– mice, they readily gave rise to a population of Tfr cells 

upon immunization with OVA-IFA.  

These results show that, while adoptive transfer of tTreg cells can differentiate into Tfr cells, 

FOXP3– Tconv cells only differentiate into Tfh. 

 

1.3. Discussion 

In order to avoid the presence of pre-existent Tfh and Tfr cells unrelated to the response 

against the immunizing antigen, mice were immunized in the footpad and the popliteal LNs 

analyzed at the peak of the response. In that anatomic location, the numbers of CD4 T 

follicular cells prior to immunization are very low; thus, nearly all Tfh and Tfr cells are 

derived from GCs induced by the immunizing antigen (with negligible contaminants). 

Tfr cells were initially described as originating from tTreg cells. Indeed, experiments from 

initial reports, using lymphopenic conditions, demonstrated that, upon immunization, Tfr 

 

Figure 11 – Antigen-specific FOXP3+ tTreg cells can differentiate into Tfr cells. 

(a) OT-II.Rag+ mice have FOXP3+ Treg cells. (b) Adoptive transfer of CD4 T cells from OT-II.Rag+ mice 

into TCRβ–/– hosts subsequently immunized with OVA-IFA in the footpad. Draining LNs were analyzed 11 

days after immunization. (c) Contour plots showing FOXP3+ Tfr and FOXP3- Tfh cells within CD4 T 

follicular cells. Under these conditions, the transferred TCR-transgenic cells originated both Tfh and Tfr 

cells. 
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cells derived exclusively from CD4 T cells that harbored a population of WT tTreg 

cells328,330. Moreover, it was demonstrated that antigen-specific TCR-transgenic cells from 

RAG knockout background (that do not contain a tTreg cell population) were not capable of 

differentiating into Tfr cells329. However, a recent report suggested that Tfr cells could also 

originate from Tconv cells, by initial conversion into pTreg followed by differentiation into 

Tfr cells346. This double differentiation occurred in the presence of favorable conditions for 

pTreg induction, which had not been used in the previous experiment. Such favorable 

conditions had been previously described and involved the use of IFA as adjuvant379.  

The presented results show that TCR-transgenic cells, upon immunization with the antigen 

to which they are specific to, did not differentiate into Tfr cells, even though in these 

experiments IFA was used as adjuvant. In contrast, Tfr cells were detected in mice containing 

TCR-transgenic cells with a population of tTreg cells. These results suggest that, on the 

tested conditions, only tTreg cells were capable of differentiating into Tfr cells. Thus, Tfr 

cells originate from tTreg cells, but not Tconv cells. 

It is possible that, under certain conditions, Tfr cells may be specific for the immunizing 

antigen and differentiate from peripherally induced Treg cells as reported. However, besides 

constituting a minority within the population, these Tfr cells of pTreg origin do not seem 

capable to substitute Tfr cells that originate from tTreg cells: Tfr cells seem to influence the 

affinity maturation process350,355 and it has been shown that mice lacking tTreg cells able to 

migrate into the GC have impaired affinity maturation355. 
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2.1. Introduction 

TCR recognition and specificity to the external antigen that drives the GC response is very 

important for Tfh differentiation and function. On one hand, Tfh differentiation depends on 

the TCR recognition of the antigen presented first by DCs and later by B cells, and there 

seems to exist a relation between TCR affinity to the antigen and the capacity of a CD4 T 

cell to differentiate into a Tfh cell117,118. On the other hand, the TCR specificity to the antigen 

driving the GC response is important for Tfh function in the GC as it allows these cells to 

distinguish between GC B cells that have improved their affinity to the antigen from the ones 

that suffered detrimental mutations to their affinity79. 

The specificity of Tfr cells, however, is still mostly unknown. For once, based on published 

results and the results presented on the previous chapter, the vast majority, if not all in 

physiological conditions, of these cells seems to originate from tTreg cells. Consequently, 

one would expect Tfr cells to share specificity towards self-antigens with the cells they 

originate from. Moreover, Tfr cells are involved in controlling the quantity and affinity of 

the antibodies produced as well as in preventing the development of auto-reactive B cells, 

and these functions are also in line with a different TCR usage between Tfr and Tfh cells. 

The only report that so far addressed Tfr cells specificity stated that a small percentage of 

Tfr cells could be specific for the immunizing antigen by originating not from tTreg, but 

from Tconv cells346. Nonetheless, the report only addressed the specificity of a small portion 

of the Tfr population, leaving the specificity of the overall Tfr population still unknown. 

In order to determine if Tfr cells are specific for the antigen driving the GC response, three 

lines of experiments were performed. First, it was investigated if TCR-transgenic FOXP3+ 

tTreg cells, specific for the immunizing antigen, are preferentially recruited into the GC upon 

immunization with the corresponding antigen, as occurs in the case of TCR-transgenic 

FOXP3- Tconv that are recruited as Tfh cells. It was also assessed if antigen-specific Tfr 

cells could be detected using MHC-II I-Ab tetramers upon immunization. Lastly, it was 

studied the ability of Tfr cells to survive and proliferate in vitro when cultured in the presence 

of antigen signals. 

 

2.2. Results 

OVA-specific TCR-transgenic CD4 T cells from OT-II.Rag+ mice that, as previously 

described, harbor a population of TCR-transgenic FOXP3+ tTreg cells, capable of 

differentiation into Tfr cells, were used to assess the specificity requirements of Tfr cells. As 
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schematized in Figure 12a, OVA-specific TCR-transgenic CD4 T cells from these mice were 

transferred into congenic C57BL/6 mice, subsequently immunized with OVA or a control 

antigen (βLG) in IFA. It was possible to quantify the frequency of TCR-transgenic cells 

within the Tfh and Tfr populations using congenic markers (Figure 12a,b). It was found that 

a large fraction of Tfh cells in mice immunized with OVA were derived from OVA-specific 

precursors, while those TCR-transgenic precursors were almost excluded from Tfr cells even 

in OVA-immunized mice (Figure 12b,c).  

To exclude a potential incapacity of TCR-transgenic FOXP3+ tTreg cells to differentiate into 

Tfr cells due to over-representation of host FOXP3+ tTreg cells, adoptive cell transfers were 

performed into TCRβ–/– mice, allowing competition of the same number of WT and TCR-

transgenic cells (Figure 13a). Once again, recipient mice were immunized 1 day after transfer 

and 11 days later draining LNs were analyzed by flow cytometry. Under those conditions, 

TCR- transgenic cells became vastly over-represented among Tfh cells in mice immunized 

with OVA (Figure 13b,c). In addition, TCR-transgenic cells differentiated into Tfr in 

significant numbers, but their frequency (approximately 1/5 of Tfr cells) did not change 

regardless of the immunizing antigen. Additionally, the percentage of OT-II.Rag+ Treg cells 

 

Figure 12– Preferential accumulation of OVA-specific cells within Tfh, but not Tfr cells. 

(a) 107 CD4 T cells from OT-II.Rag+ mice were transferred into C57BL/6 hosts, subsequently immunized 

with OVA-IFA or βLG-IFA in the footpad. (b) Popliteal LNs were analyzed for the presence of OT-II.Rag+ 

TCR-transgenic cells within Tfh and Tfr populations based on Thy1.2 staining. Tfh cells were defined as 

CD4+CXCR5highPD-1highFOXP3– and Tfr cells as CD4+CXCR5highPD-1highFOXP3+. The same gating 

strategy was applied on Treg cells (CD4+CXCR5-PD-1-FOXP3+) and Tconv cells (CD4+CXCR5-PD-1-

FOXP3-) to determine the percentage of Thy1.2+ OT-II.Rag+ TCR-transgenic cells within these two 

populations. (c) OVA-specific TCR-transgenic cells were over-represented within Tfh and Tconv 

populations in mice immunized with OVA (* p<0.05). Within Tfr and Treg cells there was no significant 

increase in OVA-specific cells in mice immunized with OVA, compared to βLG immunized animals. 

Similar results were obtained in two additional independent experiments, with n=5. 

 



Results 

63 

 

that differentiated into Tfr was approximately 8% for both immunizing antigens, although, 

as expected, in OVA-immunized mice the percentage of OT-II.Rag+ Tconv that differentiate 

into Tfh was much higher than in βLG-immunized mice (Figure 13d,e). 

FOXP3+ Treg cells from OT-II.Rag+ mice co-express endogenous TCR-chains, in addition 

to the transgene, that allow their thymic selection as Treg cells380. In fact, WT T cells can 

also express more than one TCR, due to recombination of both TCRα-chains381. 

Accordingly, and as previously described, a proportion of Treg cells (~30%) do not co-

express the transgenic TCR chains Vα2 and Vβ5, unlike Tconv cells which are virtually all 

double-positive. Nevertheless, upon adoptive transfer into TCRβ-/- mice and immunization, 

 

Figure 13– Recruitment of OVA-specific cells as Tfr cells is independent of the immunizing antigen. 

(a) An equal number (107) of CD4 T cells from OT-II.Rag+ and C57BL/6 mice were transferred into T cell 

deficient TCRβ–/– mice, subsequently immunized with OVA-IFA or βLG-IFA in the footpad. (b) Gating 

strategy to analyze the presence of OT-II.Rag+ TCR-transgenic cells within Tfh and Tfr populations based 

on Thy1.1 staining. (c) Under these conditions, there was a higher representation of OVA-specific cells 

within Tfh and Tconv populations (* p<0.05; ** p<0.01). Although ~20% of Tfr cells derived from the 

OVA-specific TCR-transgenic population, that frequency remained similar in mice immunized with OVA 

or βLG. (d) Gating strategy to determine the percentage of OT-II Treg and Tconv cells that differentiate into 

Tfr and Tfh cells, respectively. (e) While the percentage of OT-II Tconv that differentiate into Tfh is higher 

in mice immunized with OVA than βLG (left), the same percentage of OT-II Treg originates Tfr cells in 

both immunizations (right). (f) Frequency of Vα2 Vβ5 double-positive cells within Tfr, Treg, Tfh, and Tconv 

populations from several conditions. Mean ± SD are presented in all graphs. Similar results were obtained 

in two additional independent experiments, with n=5. 
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the percentage of OT-II.Rag+ Treg and Tfr cells co-expressing Vα2 and Vβ5 remained 

unchanged (Figure 13f). Therefore, a preferential enrichment of Vα2 Vβ5 double-positive 

cells, more likely to be specific for the immunizing antigen, could not be found within the 

regulatory populations after OVA immunization. 

The above observations may question the ability of FOXP3+ cells from OT-II.Rag+ mice to 

properly respond to OVA stimulation. Therefore, the capacity of OT-II Treg cells to be 

activated by OVA was confirmed in vitro. Sorted Treg (CD4+CD25+GITR+) cells from OT-

II.Rag+ and C57BL/6 WT mice were cultured in presence of IL-2 and OVA-pulsed bone 

marrow-derived DCs. As control, Treg cells from both strains were also cultured with DCs 

loaded with a control antigen (βLG) or unloaded DCs with or without anti-CD3. As can be 

observed on Figure 14, OVA-loaded DCs, unlike DCs loaded with a control antigen, 

promoted proliferation of OT-II Treg cells to a similar extent as stimulation with anti-CD3. 

Moreover, WT Treg cells show lower proliferation and cell numbers when cultured in the 

presence of both antigens compared to cultures with anti-CD3. These data demonstrate that 

OT-II Treg cells, in spite of the co-expression of endogenous TCR chains, specifically 

recognize and proliferate in presence of OVA stimulation. As a consequence, the poor 

differentiation of OT-II Treg cells into Tfr cells following OVA-immunization does not 

appear to be due to loss of OVA-reactivity. 

The low recruitment of OT-II.Rag+ Treg cells as Tfr cells could be due to an intrinsic 

characteristic of OT-II transgenic cells. Thus, to test this possibility, the experiment was  

 

Figure 14– OT-II Treg cells specifically proliferate with OVA signals. 

(a) FACS-sorted C57BL/6 and OT-II.Rag+ Treg (CD4+CD25+GITR+) cells were labelled with CellTrace 

Violet (CTV) and cultured for three days in presence of IL-2 and bone marrow DCs loaded with OVA or 

βLG. In control groups, T cells were cultured with unloaded DCs with or without soluble anti-CD3. 

Histograms are representative of Treg (CD4+TCRβ+CD25+FOXP3+) cell proliferation at the end of the 

culture. (b) Quantification of the number of proliferating cells. Data are representative of three independent 

experiments. Mean ± SD are presented in all graphs. 

 



Results 

65 

 

repeated with a second TCR-transgenic model.  P25.Rag+ is a TCR-transgenic mouse strain 

which CD4 cells are specific for the residues 280-294 of Mycobacterium tuberculosis 

Ag85B382. Like OT-II.Rag+, this strain is on a RAG sufficient background and also has 

thymic-derived Treg cells (Figure 15a). An equal number of CD4 T cells from OT-II.Rag+ 

and P25.Rag+ mice was transferred, simultaneously, into WT C57BL/6 hosts (Figure 15b). 

Recipient mice were immunized in the footpad with OVA323-339 or Ag85B280-294 peptides 

coupled to BSA in IFA 1 day later. Eleven days after immunization, Tfh cells from the 

 

Figure 15– Recruitment of P25-specific and OVA-specific T cells into the Tfh pool of mice immunized 

with the corresponding antigens. 

(a) P25.Rag+ mice have similar frequency of tTreg cells as OT-II.Rag+ mice. (b) C57BL/6 mice were 

transferred simultaneously with 107 CD4 T cells from OT-II.Rag+ and P25.Rag+ mice, and subsequently 

immunized with either OVA323-339BSA-IFA or Ag85B280-294BSA-IFA in the footpad. (c) Gating strategy to 

determine the percentage of OT-II.Rag+ and P25.Rag+ cells within Tfh and Tfr populations in mice 

immunized with OVA323-339BSA-IFA (upper panel) or Ag85B280-294BSA-IFA (bottom panel). (d) T cell 

subsets from draining LNs show that mice immunized with OVA323-339 have a large accumulation of OVA-

specific cells within the Tfh and Tconv populations while, conversely, Ag85B280-294-immunized mice 

accumulate P25-specific T cells among Tfh cells (* p<0.05; ** p<0.01). A very small increase of T cells 

specific for the immunizing antigen is observed among the Tfr population. Mean ± SD are presented in all 

graphs. Data are representative of three independent experiments, each with n=5. 
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draining LNs had a substantial increase in the frequency of TCR-transgenic cells specific for 

the immunizing antigen: a high frequency of OT-II cells in mice immunized with OVA323-

339BSA, and P25 cells in mice immunized with Ag85B280-294BSA (Figure 15c,d). However, 

within the Tfr population there was only a small increase of TCR-transgenic cells specific 

for the immunizing antigen.  

These results suggest that, while TCR-transgenic cells specific for the immunizing antigen 

are able to become Tfr cells, those cells are not preferentially selected into the Tfr pool.  

To obtain an independent validation in vivo of the previous results, without the use of TCR-

transgenic mice, two MHC-II I-Ab tetramers were used to detect antigen-specific CD4 T 

cells: a PE-labelled tetramer containing an OVA peptide sequence (AAHAEINEA) to 

identify OVA-specific T cells and an APC-labelled tetramer containing the Ag85B peptide 

sequence (FQDAYNAAGGHNAVF) to identify Ag85B-specific T cells. Antigen-specific 

tetramer+ Tfr and Tfh cells were detected on draining LNs of WT C57BL/6 mice 11 days 

after immunization with several combinations of antigens and adjuvants: OVA323-339-CFA, 

OVA323-339-IFA, OVA323-339BSA-IFA, Ag85B280-294-CFA, Ag85B280-294-IFA, and Ag85B280-

294BSA-IFA (Figure 16a). In all immunizations with OVA323-339, the number of OVA-

tetramer+ cells was increased among the Tfh population compared to mice that were not 

immunized with this peptide (Figure 16b,c). The same pattern was observed in mice 

immunized with Ag85B280-294, where larger populations of Ag85B-tetramer+ Tfh cells were 

also found (Figure 16d,e). However, in neither case there was an enrichment of tetramer+ 

cells within the Tfr population (Figure 16b-e). Once again, these results demonstrate that Tfr 

cells, unlike Tfh cells, do not preferentially contain cells specific for the non-self antigen 

driving the GC response. 

Lastly, it was investigated whether Tfr and Tfh TCRs recognize different peptides from the 

same antigen. Proliferation of Tfh, Tfr, and Treg cells was assessed after stimulation with 

DCs loaded with the immunizing antigen in order to verify if they specifically proliferate 

with these signals. Sorted Tfh (CD4+CXCR5highPD1highFOXP3-) cells from OVA-

immunized C57BL/6 FOXP3 reporter mice (FOXP3hCD2)383 were cultured with DCs loaded 

with OVA or βLG as a control antigen. Tfh cells showed higher proliferation and survival 

on OVA cultures compared to DCs loaded with βLG or unloaded DCs, demonstrating that 

this population specifically recognizes antigen signals (Figure 17a,b). On the contrary, Tfr 

(CD4+CXCR5highPD1highFOXP3+) cells cultured with OVA presented some proliferation, 

but that proliferation was not higher than in the presence of βLG or unloaded DCs (Figure 
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17c,d). Nevertheless, the presence of anti-CD3 induced a higher proliferation rate and 

survival of Tfr cells that translated into higher number of cells at the end of culture compared 

to the other conditions, indicating that if Tfr cells were specific for the immunizing antigen, 

TCR signaling would have led to higher proliferation and cell numbers in the end of culture 

(Figure 17d). As Tfr cells, Treg (CD4+CXCR5-PD1-FOXP3+) cells sorted from immunized 

 

Figure 16– Tetramer+ cells are predominantly found among the Tfh population. 

(a) C57BL/6 mice were immunized with four different antigens combined with two different adjuvants on a 

total of 6 different immunizations. On day 11, draining LNs were collected for tetramer binding cells detection 

by flow cytometry. (b) Gating strategy to identify OVA-tetramer+ Tfh and Tfr cells within CD4+ cells. The Tfh 

population from mice immunized with the three conditions containing OVA323-339 (independently of the 

adjuvant) was enriched on cells with TCRs capable of binding the OVA-tetramer. Such OVA-tetramer+ cells 

were almost absent in the Tfr population in all immunizations. Scatter plots are representative of the results 

obtained for each of the immunizations with OVA323-339 and of the controls immunized with different 

formulations of Ag85B280-294. (c) Total number of OVA-tetramer+ cells in the draining LNs. (d) Scatter plots 

of Ag85B-tetramer+ Tfh and Tfr cells within follicular CD4 T cells. As observed for the OVA-tetramer, a large 

population on tetramer+ Tfh cells was observed on immunizations containing Ag85B280-294 peptide while low 

number of tetramer+ Tfr cells were found in all immunizations. Scatter plots are representative of the results 

obtained for each of the immunizations with Ag85B280-294 and of the controls immunized with OVA323-339. (e) 

Total number of Ag85B280-294-tetramer+ cells in the draining LNs. Mean±SEM are presented. Data are 

representative of two independent experiments, each with n=5. 
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mice also show lower proliferation and cell numbers when cultured with DCs loaded with 

OVA or βLG compared to the culture in the presence of anti-CD3 (Figure 17e,f) and as 

previously observed on Figure 14. Taken together, these results demonstrate that, while Tfh 

cells specifically benefit from signals derived from the immunizing antigen, Tfr and Treg 

cells do not. 

 

 

Figure 17– Tfr cells do not proliferate or survive with antigen signals. 

(a)(c)(e) Histograms of proliferation of sorted (a) Tfh (CD4+CXCR5highPD-1highFOXP3-), (c) Tfr 

(CD4+CXCR5highPD-1highFOXP3+), and (e) Treg (CD4+CXCR5-PD-1-FOXP3+) cells from OVA-

immunized FOXP3hCD2 reporter mice cultured for three days with DCs loaded with OVA or βLG proteins. 

Cultures with unloaded DCs with or without anti-CD3 were performed as positive and negative controls, 

respectively. All cultures were performed in the presence of exogenous IL-2. (b)(d)(f) Bar graphs of total 

cell numbers obtained at end of culture as in (a), (b), and (c), respectively. Only Tfh cells show higher 

proliferation and total number on OVA-pulsed DCs cultures compared to βLG-pulsed ones, demonstrating 

that only this cell population specifically recognizes OVA-signals. Triplicate cultures were performed: one 

replicate is presented on the histograms; triplicates Mean±SD are presented on the bar graphs. 
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2.3. Discussion 

Three different approaches were used to address the question of whether Tfr cells are specific 

for the non-self antigen driving the GC response. 

The first set of experiments, with TCR-transgenic cells, suggests that tTreg cells specific to 

the non-self immunizing antigen do not preferentially differentiate into Tfr cells. TCR-

transgenic models on RAG-sufficient background were used since, as shown on the previous 

results chapter, these mice harbor a population of TCR-transgenic FOXP3+ tTreg cells that 

can differentiate into Tfr cells. The differentiation as tTreg cells in the thymus is possible 

due to the expression of more than one TCR. Nevertheless, OT-II.Rag+ tTreg cells still 

expressed the transgene and were capable of recognizing and specifically proliferating with 

OVA signals, the antigen to which the transgene is specific.  

Of note, on the experiments where the capacity of OT-II Treg cells proliferation with OVA 

signals was assessed, some unspecific proliferation of WT Treg cells was observed 

regardless of the antigen in culture. This observation is in line with previous reports 

describing that Treg cells do proliferate in vitro when cultured with activated DCs and in the 

presence of exogenous IL-2384,385. Furthermore, this unspecific proliferation is observed 

without providing the specific antigen to the culture, but it is dependent on TCR signaling 

(possibly driven by self antigens present in the APC).  

Another important aspect of the results presented with this approach is the percentage of 

TCR-transgenic cells recruited into the GC when cells are transferred into the TCRβ-/- mice. 

In this case, approximately 1/5 of Tfr cells originated from TCR-transgenic cells 

independently of the immunizing antigen. These results are an indication that, in 

physiological conditions, some Tfr cells may present some reactivity against the antigen 

driving the GC response. However, such antigen-specificity is not the main driver of these 

cells towards the GC.  

On the second approach MHC-II I-Ab tetramers were used to detect antigen-specific Tfr and 

Tfh cells on mice immunized with the corresponding peptides in different formats and 

adjuvants. As expected, high numbers of tetramer+ Tfh cells were detected in all 

immunizations where the corresponding antigen was present. However, Tfr cells were 

almost not detected even in conditions described as propitious for pTreg differentiation and 

induction of antigen-specific Tfr cells. These data suggest that, contrary to Tfh cells, the Tfr 

population does not preferentially contain cells specific for the immunizing antigen. 
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This approach has been extensively used by others to detect antigen-specific cells using 

MHC-II tetramers within activated CD4 T cells. Moreover, it has also been used to detect 

antigen-specific Tfh and Tfr cells. The presented results regarding tetramer+ Tfh cells are in 

agreement with other groups’ results, which have shown the presence of antigen-specific 

Tfh cells, detectable with MHC-II tetramers upon infection or immunization118,229,346,349. 

However, the two reports that also verified the existence of antigen-specific tetramer+ Tfr 

cells upon immunization are contradictory: while one detected a tetramer+ Tfr population, 

the other did not346,349. Thus, the data presented here are in line with the first published report 

as almost no tetramer+ Tfr cells could be detected. 

Interestingly, Ag85B-tetramer+ Tfh cells were not only detected on mice immunized with 

Ag85B280-294 or CFA (which contains Mycobacterium tuberculosis and consequently the 

antigen), but also on mice immunized with OVA323-339BSA. These results suggest the 

existence of some cross-reactivity between Ag85B280-294 and a BSA epitope (in OVA323-339 

immunization this population was not detected). The presence of this tetramer+ population 

on every mouse (in all experiments performed) immunized with OVA323-339BSA is quite 

striking. However, it may be explained by the size of the initial tetramer+ population prior to 

immunization. It has been described that the size of a response to an antigen depends on the 

size of the initial population capable of recognizing that antigen386,387. Moreover, it has been 

also shown that Tconv cells that suffer low clonal deletion in the thymus, and consequently 

have a higher initial population, are associated with highly cross-reactive TCRs388. 

Accordingly, in the results presented, the number of Ag85B-tetramer+ cells found after 

immunization with the corresponding antigen was higher than in the case of OVA-tetramer+ 

cells. This indicates that a relatively larger population of Ag85B-tetramer+ cells was present 

in steady-state. Thus, these Ag85B-tetramer+ cells have an advantage in getting activated 

during an immune response, since they are initially present in higher numbers and potentially 

have cross-reactive TCRs. 

As last approach, the capacity of Tfr cells to recognize and proliferate with signals from the 

immunizing antigen was assessed in vitro. As expected, Tfr cells showed the same level of 

proliferation, reaching similar cell numbers, at end of culture independently of the antigen 

provided in the DCs. Like before, background proliferation was observed when Treg cells 

were cultured with DCs and exogenous IL-2. This background proliferation was even higher 

in the case of Tfr cells, but this result may be due to Tfr cells activated and proliferative state 
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(compared to Treg cells). Once again, these results suggest that the Tfr population is not 

enriched in cells specific for the immunizing antigen. 

Therefore, the overall results presented here are in line with the hypothesis that Tfr cells are 

not specific for the non-self immunizing antigen driving the GC response. 
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3.1. Introduction 

The TCR and its ability to specifically recognize antigens is one of the key characteristics of 

T cells and their ability to mount specific immune responses. Accordingly, the study of the 

TCR repertoire of a population may provide insights into the specificity, origin, and biology 

of those cells.  

Numerous studies have described the TCR usage of distinct cell populations using different 

methods. However, the TCR usage of Tfr and Tfh cells as not been addressed yet.  

The results presented on previous sections support a model where Tfr cells originate from 

tTreg cells and are not specific to the antigen driving the immune response. Thus, by 

obtaining information on the repertoire of these cells, further data supporting the model may 

be obtained.  

To study the repertoire of Tfr, Treg, Tfh, and Tconv cells, the TRBV CDR3 length usage of 

these populations was initially analyzed by spectratyping.  

Additionally, to obtain further information on the repertoire of Tfr, Treg, and Tfh, as well as 

activated and non-activated CD4 T cells, the TRA of these populations from immunized 1D2 

β was also sequenced. These mice express a transgenic (fixed) TRB chain and only one Tra 

allele is available for recombination; thus, the TRA sequencing provides a complete insight 

to the repertoire of the analyzed populations. 

 

3.2. Results 

TCR usage analysis of Tfr cells from C57BL/6 mice immunized with OVA-IFA was 

performed to obtain a better insight into the TCR specificity of Tfr cells. Taking advantage 

of the FOXP3gfp reporter system, Tfh (CD4+CXCR5+PD1+FOXP3-), Tfr (CD4+ 

CXCR5+PD1+FOXP3+), Treg (CD4+CXCR5-PD1-FOXP3+), and Tconv (CD4+CXCR5-

PD1-FOXP3-) cells from the draining LNs were sorted, and the TRBV repertoire of the 

different populations analyzed by CDR3 spectratyping/Immunoscope®366. 

Once again, in order to minimize the contamination with pre-existent Tfh and Tfr cells from 

prior immune responses, mice were immunized in the footpad and popliteal LNs were 

collected at the peak of the GC response: in this anatomical location there are negligible 

numbers of Tfh and Tfr cells prior to immunization. 

As described before and shown in Figure 18, TRBV CDR3 length profiles (or spectratypes) 

obtained from naïve polyclonal CD4 T cells resemble Gaussian distributions366. Therefore, 

by comparing the CDR3 length usage for each TRBV of the four sorted populations to naïve  
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CD4 T cells (used as control population), variations to this polyclonal distribution can be 

detected which, in the case of over-representations in specific CDR3 lengths, may be an 

indication of clonal expansions. Indeed, in the Tfh population there was an over-

representation of specific CDR3 lengths, demonstrated by the red lines on Figure 19a. There 

were also some over-representations for the Tfr cells, but the majority of these, besides not 

being common to Tfh cells, were also present in Treg cells. In fact, detailed analysis of 

specific TRBV segments allowed the identification of clonal expansions among Tfh cells 

that were absent in the other T cell subsets (Figure 19b, arrows). Moreover, perturbation 

scores369 were calculated for every TRBV segment between all samples and the naïve CD4 

T cells average or the Tfr group average. The perturbation scores reveal the divergent TRBV 

usage of all cell populations compared to the chosen control group. Hierarchical clustering 

was then performed using the calculated perturbation scores to reveal the divergent TRBV 

usage of all cell populations compared to the control populations. As shown on Figure 20, 

independently of the population used as control group (the naïve CD4 T cells average on 

Figure 20a and the Tfr group average on Figure 20b), Tfh cells  are clustered separately from 

Tfr cells, while there is a proximity between Tfr and Treg cells). Also, as it can be observed 

on Figure 20b, Tfh samples present the higher perturbation scores when Tfr cells are used as 

control group which indicates a more divergent TRBV CDR3 length usage compared to Tfr 

 
Figure 18 – CDR3 spectratypes obtained from naïve CD4 T cells. 

CDR3-length usage distribution of 20 TRBV segments from CD4+ T cells from naïve mice that presents a 

Gaussian-like distribution. Bar graphs present Mean±SEM of four samples. 
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Figure 19 – Tfh cells present over-representations of specific CDR3 lengths. 

(a) Heatmap showing the differences between the percentage of usage for each CDR3 length of each TRBV 

of Tfh, Tfr, Treg, and Tconv populations compared to the Gaussian-like distribution of CD4 naïve T cells 

(used as a control population). Similar TRBV CDR3 length frequencies (compared to control population) 

are displayed in white, while higher/lower frequencies of specific CDR3 lengths are represented, 

respectively, in red and blue. The heatmap is representative of, at least, three independent experiments per 

population. (b) Distribution of CDR3-length usage for three representative TRBV segments where greatest 

variation is observed. Bars represent CDR3-length usage distribution for indicated populations, with the 

reference values (naïve CD4 T cells) superimposed in red. Arrows indicate over-representation of a specific 

CDR3 length on Tfh cells, a putative consequence of clonal selection and expansion. Neither Treg nor Tfr 

cells show similar expansions (bar graphs below). Mean ± SEM of at least three independent replicates are 

represented on the bar graphs. Cells from 10 – 15 mice were sorted to obtain each replicated. 

 

 

Figure 20 – Analysis of CDR3 length distribution unveils a closeness between Tfr and Treg cells. 

(a) Hierarchical clustering of the samples from the four populations based on their TRBV perturbation 

scores, calculated using the naïve CD4 T cells CDR3 length distributions as control group. Heatmap color 

code indicates variations of TRBV scores between each sample and the average of naïve CD4 T cells, while 

the dendrogram shows distance between sample populations. (b) Same as in (a) but using the Tfr group 

average as reference. For each T cell population, at least three independent replicates were used, each one 

with cells sorted from 10 – 15 mice. 
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cells. Moreover, as depicted on Table 6, ANOVA and multiple comparison analysis with 

Holm-Bonferroni correction for multiple sampling established the significance of the 

differences observed between populations, and between Tfh samples and each sample from 

the other populations. 

Taken together, our data show that, within LNs draining the immunizing site, Tfh cells 

exhibit clear oligoclonal expansions of specific TRBV CDR3 lengths. The same pattern of 

TRBV CDR3 usage is not observed within the Tfr population that retain distributions of 

CDR3 lengths usage similar to Treg cells.  

To further verify the different TCR usage between Tfr and Tfh cells, the TRA of 1D2β mice, 

which express a fixed TCRβ chain and variable TCRα chains, was sequenced. 

This 1D2β mouse line (kindly provided by Dr Shohei Hori, RIKEN, Japan), of C57BL/6 

background, was established using nuclear-transferred ES (NT-ES) cells that had been 

generated using peripheral CD25highCD4+ T cells as donor of nuclei. The productively 

rearranged TRB gene of one NT-ES cell line was successfully transmitted to germline and 

the resulting 1D2β mice were mated with FOXP3hCD2 and TRA-/- mice to generate 

FOXP3hCD2.TRB1D2.TRA-/WT mice. Thus, 1D2β mice TRA sequencing provides a complete 

Table 6 – Pairwise Multiple Comparison Analysis with Holm-Bonferroni Correction 

between Samples TRBV Perturbation Scoresa 
 

Tconv1 Tconv2 Tconv3 Tconv4 Tfh1 Tfh2 Tfh3 Tfr1 Tfr2 Tfr3 Treg1 Treg2 

Tconv2 1 - - - - - - - - - - - 

Tconv3 1 1 - - - - - - - - - - 

Tconv4 1 1 1 - - - - - - - - - 

Tfh1 
0,014 

 

0,015 

 

0,033 

 

0,016 

 
- - - - - - - - 

Tfh2 
0,000 

 

0,000 

 

0,000 

 

0,000 

 
0,673 - - - - - - - 

Tfh3 
0,007 

 

0,009 

 

0,012 

 

0,009 

 
1 0,473 - - - - - - 

Tfr1 1 1 1 1 
0,017 

 

0,000 

 

0,007 

 
- - - - - 

Tfr2 1 1 1 1 0,162 
0,000 

 
0,101 0,495 - - - - 

Tfr3 1 1 1 1 
0,002 

 

0,000 

 

0,002 

 
1 1 - - - 

Treg1 1 1 1 1 
0,046 

 

0,000 

 

0,004 

 
1 1 1 - - 

Treg2 1 1 1 1 
0,037 

 

0,000 

 

0,018 

 
1 1 1 1 - 

Treg3 1 1 1 1 
0,007 

 

0,000 

 

0,007 

 
1 1 1 1 1 

a Perturbation scores calculated using Tfr  group average as reference 

* p<0.05, ** p<0.01, *** p<0.001  
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insight to the repertoire of the analyzed populations, while WT mice do not, as the 

corresponding TRB does not vary and only one Tra allele is available for recombination.  

Although these mice have a restricted TRB repertoire, it was confirmed that their CD4 T 

cells were able to recognize OVA and differentiate into Tfh cells following OVA-

immunization (Figure 21a). Furthermore, to show that 1D2β Tfh cells that arise after OVA-

immunization can specifically recognize the antigen, in vitro proliferation assays were 

performed (Figure 21b). 1D2β mice were immunized with OVA-IFA and 11 days later Tfh 

(CD4+CXCR5highPD1highFOXP3-) cells from three individual mice were sorted and cultured 

with DCs pulsed with OVA. Tfh cells from all three mice were able to proliferate with OVA 

signals, but not with the control antigen βLG (Figure 21b). Thus, these mice, while not being 

able to recombine the TRB, still have a repertoire capable of specifically recognizing OVA. 

Five T cell populations were sorted for TRA repertoire analysis on day 11 following OVA-

IFA immunization from draining LNs of individual mice: Tfr (CD4+CXCR5high 

PD1highFOXP3+), Tfh (CD4+CXCR5highPD1highFOXP3-), Treg (CD4+CXCR5-PD1-

FOXP3+), activated CD4 T (Tact: CD4+CXCR5-PD1-FOXP3-CD44+) cells, and non-

activated CD4 T (Tconv: CD4+CXCR5-PD1-FOXP3-CD44-) cells. TRA gene was then 

specifically amplified and sequenced on an illumina MiSeq platform. In order to perform an 

unbiased analysis, 9,000 TCR sequences were randomly selected from each dataset per 

sample (9,000 being the lowest number of TCR sequences identified on a sample).  

As first analysis, the number of common clonotypes between Tfr cells and other populations 

was verified. As showed on Figure 22a, the number of shared clonotypes is higher between  

 

Figure 21 – 1D2β mice can mount specific responses against OVA. 

(a) Frequency of follicular CD4+CXCR5+PD1+ T cells on popliteal LNs of 1D2β mice before (left), and 11 

days after OVA-IFA immunization (middle), when both Tfr and Tfh cells are present (right). (b) 

Proliferation of Tfh cells from OVA-IFA immunized 1D2β mice cultured with DCs pulsed with OVA or 

βLG (anti-CD3 was used as positive control). Cell proliferation was measured by 3H-thymidine 

incorporation. Mean±SEM of culture triplicates are presented and are representative of two independent 

experiments. 
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 Tfr and Treg cells than any other population. However, from the 9,000 TCR sequences, it 

was also observable that the number of identifiable clonotypes was lower for Tfr, Tfh, and 

Tact when compared to Treg and Tconv (Figure 22a,b). To determine if this observation was 

in line with a different clonality in the populations, a clonality score was calculated for each 

sample (Figure 22c). Indeed, the clonality score was higher for the populations with lower 

numbers of identifiable clonotypes. Furthermore, from the frequency distribution of the 20 

most predominant clonotypes for each sample across all samples on Figure 22d, it was  

 

Figure 22 – Tfr cells are oligoclonal and have more common clonotypes with Treg than Tfh cells. 

(a) Venn diagrams showing the number of shared clonotypes between Tfr cells and the other four 

populations for mouse 1, 2, and 3. Sequencing results for Tfh sample of mouse 3 are not available (NA). Tfr 

cells have more common clonotypes with Treg cells than any other cell population. (b) Number of unique 

clonotypes identified for the five populations. (c) Clonality score for the five populations. (d) Histogram of 

cumulative frequency of the 20 most predominant clonotypes for each sample across all samples. Each color 

corresponds to a unique clonotype. In (b) and (c) Mean±SEM are presented with n=4, except for Tfh and 

Tfr where n=3. 
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observable that the 5 most abundant clonotypes represented in average up to ~50% of the 

total frequency for Tfh and Tact and ~40% for Tfr cells. Remarkably, the most common 

clonotypes from Tfh cells are shared in different mice (yellow), and the same happens for 

the most common Tfr clonotypes (green), although without a significant overlap between 

Tfh and Tfr clonotypes (Figure 22d). To further investigate the proximity between Tfr and 

 

Figure 23 – Tfr cells are closer to Treg cells than to any other population. 

(a) Heatmap and hierarchical clustering of the 20 most predominant clonotypes of Tfr replicates across all 

samples. Tfr most predominant clonotypes are mostly shared with Treg samples, with the exception of one 

sequence that is common with Treg and Tfh samples. (b) Same as in (a) but for the 20 most predominant 

clonotypes of Tfh replicates. The predominant clonotypes are mainly shared between Tfh and Tact samples. 

(c) Dendrogram showing the overall relation of all sequenced samples using Horn-Morisita index distance 

method. Bootstrap resampling was performed to calculate approximately unbiased (AU, left in red) p-values 

and bootstrap probability (BP, right in green) values for each cluster. In the case of the Tfr and Treg cluster, 

AU = 96% thus the existence of the cluster is strongly supported by the data.  
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Tfh TCR repertoire, it was investigated if the 20 most predominant clonotypes from each 

Tfr sample are shared with other populations. The results, depicted on Figure 23a, show that 

the cell population that shares more clonotypes with the predominant Tfr clonotypes is the 

Treg population. Among the most abundant clonotypes, there is only one shared between all 

Tfr and Tfh samples, but that clonotype is also present on all Treg samples. The same 

approach was performed to obtain the 20 most predominant clonotypes for each Tfh sample 

(Figure 23b) where it is shown that Tfh cells present more shared clonotypes with Tact. 

Lastly, to establish the closeness between all samples regardless of the clonality of the 

populations, hierarchical clustering using Horn-Morisita index was performed376. This index 

has been described as appropriate to compare immune repertoires, since it is able to assess 

the similarity between samples, while taking into account the abundance of each clonotype 

in each sample. As shown on Figure 23c, Tfr and Treg samples clustered together (AU = 

96%), indicating that Tfr samples have a repertoire closer to Treg than to any other 

population (Figure 23c). 

These results indicate that, although Tfr cells undergo proliferation, their TCR is not specific 

for the antigen driving the GC reaction, since the TCR usage is almost not common with Tfh 

cells. Instead, Tfr cells present a TCR repertoire closer to Treg cells. 

 

3.3. Discussion 

The initial assessment of the TCR usage by CDR3 spectratyping showed that over-

representation of specific CDR3 lengths was shared between Tfh samples. These results are 

in agreement with published data, demonstrating that these cells undergo selection and clonal 

expansion. Yet, such expansions were not observable on the Tfr population even though 

some CDR3 lengths were over-represented in some TRBVs. Moreover, on the analysis of 

the overall differences between the CDR3 length distributions of the four analyzed 

populations, using naïve CD4 T cells or Tfr cells as reference group, Tfh and Tfr cells were 

never clustered together. This observation suggests a different repertoire between these two 

cell populations. On the contrary, on both hierarchical clustering analyses, Tfr and Treg cells 

clustered together, which indicates a close relation between these two Foxp3+ cell 

populations. Regarding Tconv cell distributions, the small deviations detected to the 

distributions of naïve CD4 T cells may be due to the presence of Th cells within this 

population, as overall CD4+CXCR5-PD1-FOXP3- cells were sorted without the exclusion of 

non-follicular activated CD4 T cells. 
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There are some limitations to CDR3 spectratyping/immunoscope technique. For once, the 

analysis is only made on the TRBV, and the corresponding TRA usage is not known. Also, 

although there is an indication of expanding clones of specific CDR3 lengths within each 

TRBV analyzed, the actual number of clones that composed the population is not assessed. 

Furthermore, the number of cells required to have a representation of all possible CDR3 

lengths in the parallel PCRs requires the pooling of LNs from several mice which may also 

introduce bias on the analysis.  

Thus, to obtain more detailed data on the TCR repertoire of the populations of interest, the 

next approach was to sequence the TCR of five cell populations (Tfr, Treg, Tfh, Tact, and 

Tconv) from individual immunized mice. The 1D2β mouse allows a complete insight into 

the repertoire of the analyzed populations by only sequencing the TRA: these mice express 

a transgenic TCRβ chain and only one of the Tra alleles is available for recombination. The 

disruption of one of the Tra alleles is important to avoid the existence of cells expressing 

more than one TCRα which would influence the sequence results. Although the variability 

of the repertoire on these mice only depends on the recombination of one Tra gene, these 

mice were capable of mounting immune responses upon immunization with OVA-IFA. Of 

note, for this experiment, activated CD4 T (Tact) cells were analyzed separately from non-

activated T (Tconv) cells in order not to have mixed information as occurred in the 

spectratyping analysis.  

The sequencing data obtained gave a new understanding into Tfr cells biology. Tfr cells had 

a high clonality score meaning that they suffer oligoclonal expansion as Tfh and Tact cells; 

this characteristic was somehow expected since these three populations almost do not exist 

in non-immunized mice and must expand upon immunization. However, the most expanded 

clonotypes of Tfr and Tfh cells are not shared between them (with exception of one 

clonotype) indicating that these two populations, besides having different specificities, 

originate from different precursors. This idea is even more evident when the similarity of the 

five populations is assessed and the Tfr and Treg cells are clustered together. Thus, the 

results obtained further confirm the previous findings that Tfr cells originate from tTreg cells 

and are not specific for the antigen driving the GC response.  

Another interesting observation from the sequencing data is that some clonotypes are shared 

between Tfh and Tact cells, but have different frequencies in the two populations. This 

observation is in line with previous published data118. Indeed, it has been described that the 

same CD4 T cells can originate Tfh and Th cells. However, different clones favor one of the 
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differentiation pathways, as higher affinities for the antigen, and consequently longer TCR 

interactions with peptide-MHC-II, favor the Tfh differentiation.  
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The ontogeny of Tfr cells has remained an important issue and it may be related to the 

function of this population. In the agreement with the first published reports, the data 

presented here supports the hypothesis that Tfr cells originate from tTreg cells: by using a 

model of cell transfer of T cells with defined TCR specificity, it was shown that, in GC 

induced upon immunization, Tfr cells differentiated exclusively from pre-existing tTreg 

cells. Moreover, analysis of the TCR usage, by CDR3 spectratyping and sequencing, 

revealed a proximity between Tfr and Treg cells repertoire. 

Upon determining the origin of Tfr cells, the question if Tfr, as Tfh cells, were specific for 

the immunizing antigen remained to be answered. Four distinct approaches were used to 

address that issue: one based on cell transfer of T cells with defined TCR specificity; an 

approach using tetramers to identify antigen-specific Tfh and Tfr cells in WT mice; another 

strategy based on the capacity of Tfr cells to proliferate in vitro with immunizing antigen 

signals; and a final approach based on the analysis of the TCR repertoire. All experiments 

led to the same conclusion that T cell clones specific for the immunizing antigen are enriched 

within the Tfh pool, but not within Tfr cells. 

Thus, the results presented in this thesis answered the questions regarding Tfr cells ontogeny 

and specificity. The answers to these two questions, especially the second, are of major 

importance since it has implications on possible mechanisms by which Tfr cells prevent the 

development of auto-reactive B cells. Moreover, further understanding of these mechanisms, 

as well as the antigen-specificity requirements for Tfr function, may unveil new strategies 

to prevent the onset of auto-antibody-mediated autoimmune diseases. 

The findings that Tfr cells originate from tTreg cells and are not specific for the immunizing 

antigen are in line with the idea that Tfr cells, as Treg cells from which they derive, have 

TCR specificity towards self-antigens. However, these new observations rise new questions 

regarding Tfr cells differentiation and function.  

During GC reaction, the BCR undergoes affinity maturation leading to formation of higher 

affinity receptors selected by Tfh cells. However, some mutations may lead to auto-reactive 

receptors or receptors that are cross-reactive with auto-antigens. Tfr cells, as regulatory cells 

with TCR specificity biased towards self-antigens, may be involved in preventing the 

generation of auto-antibody-mediated autoimmunity. In agreement with this hypothesis, 

recent reports have associated Tfr cells with the onset of auto-antibody-mediated  
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autoimmunity in human diseases and mouse models342-345,353,360-364. But how do Tfr cells, by 

having a specificity towards self-antigens, prevent the selection of auto-reactive B cells that 

originate due to SHM in the GC? The most reasonable hypothesis would be the recognition, 

by Tfr cells, of self-antigens presented by auto-reactive B cells in their MHC-II molecules. 

As a result, Tfr would induce cell death on such B cells. This mechanism would be even 

more important in the case of B cells that acquired cross-reactivity to a self-antigen. In that 

case, even though those B cells are able to uptake and present the antigen driving the GC 

response to Tfh cells, their ability to also recognize self-antigen, and consequent presentation 

of those self-antigens to Tfr cells, would allow their deletion. One of the limitations of this 

hypothesis lies on the limited variety of self antigens present within the B cell follicle and, 

consequently, available for uptake and presentation by GC B cells. Reactivity to self-

antigens that are not present could not be tested. However, this limitation may be in line with 

the results obtained. The sequencing data showed that a few Tfr clones, some of which 

shared between samples, represented more than half of the population. Consequently, Tfr 

cells have a diminished capability of multiple self-antigens recognition. However, this over-

representation of some clones may be due to Tfr cells selection and/or expansion based on 

their affinity to self-antigens present in the GC. Since reactivity to self-antigens that are not 

present in the GC cannot be tested by Tfr cells, these cells may retain specificity to the ones 

 

Figure 24 – Tfr cells origin and specificity. 

The results obtained on this thesis demonstrate that Tfr cells originate from tTreg cells. Moreover, although 

Tfr cells suffer clonal expansion and have an oligoclonal repertoire as Tfh cells, they are not specific for the 

non-self antigen driving the GC response, and keep a repertoire closer to Treg cells.  
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that are present. In that scenario, B cells that gain affinity to self-antigen present in the GC 

would uptake and present such antigens, in the attempt to obtain positive signals from Tfh 

cells; however, those B cells would instead be detected and eliminated or functionally 

inactivated by Tfr cells (Figure 25). Nevertheless, further studies are necessary to unveil the 

mechanism through which Tfr cells may prevent auto-antibody-mediated autoimmunity. 

Tfh cells differentiate by antigen recognition of peptides presented first by DCs followed by 

B cells. Moreover, the differentiation process requires long-lived interactions between Tfh 

and GC B cells. Thus, antigen recognition plays a major role in Tfh differentiation and 

migration into the GC. Since Tfr cells are not specific for the antigen driving the immune 

response, what are the signals that drive Treg cells to differentiate into Tfr cells? There are 

several common requirements for Tfh and Tfr differentiation: both require priming from 

DCs and express common transcription factors like BCL-6 and STAT3. However, there are 

several evidences that the initial steps of activation are different between Tfr and Tfh cells. 

 

Figure 25 – Speculative hypothesis on how Tfr cells prevent the selection of auto-reactive B cells. 

Tfh and Tfr cells are involved in the positive and negative selection of GC B cells. GC B cells undergo 

affinity maturation in the GC: (1) if GC B cells successfully improve their affinity to the non-self antigen 

driving the GC response, they receive positive signals from Tfh cells and may differentiate into plasma or 

memory B cells; (2) if they lose their specificity to the antigen GC driving the response and gain specificity 

to self-antigen, GC B cells receive negative signals from Tfh – due to lack of non-self antigen presentation 

– and Tfr cells – due to presentation of self-antigen present within the GC; (3) lastly, if GC B cells maintain 

or improve their affinity to the non-self antigen driving the GC response but also gain affinity to self-antigens 

present in the GC, although Tfh cells may provide positive signals, Tfr cells detect the presentation of self-

antigen and induce cell death or functional inactivation of these cells. 
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Pre-Tfh cells upregulate ASCL2 that induces CXCR5 expression, while expression of 

CXCR5 in Tfr cells is dependent on NFAT2227,353. Tfr cells express BLIMP-1, a repressor 

of BCL-6 expression, that in Foxp3- CD4 T cells repress Tfh differentiation329. Moreover, 

Tfh and Tfr cells may require different cytokine signals since IL-21, an important cytokine 

for Tfh, has a detrimental impact on Tfr differentiation and function363. Thus, the results 

presented, as well as published data support, the hypothesis of different signaling 

requirements for Tfr and Tfh differentiation. However, further studies are required to 

elucidate which signals drive the Tfr differentiation. 

Overall this thesis have established that Tfh and Tfr populations from the same GCs have 

different ontogeny and specificity: while Tfh cells originate from Tconv cells and are 

specific to the non-self antigen driving the GC response, Tfr cells originate from tTreg cells 

and are not specific for the antigen driving the GC response. Moreover, Tfr cells have a 

repertoire closer to tTreg thus with specificity towards self-antigens. 
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ABSTRACT 

Immunization leads to the formation of germinal centers (GCs) that contain both T follicular 

helper (Tfh) and T follicular regulatory (Tfr) cells. Whether T cell receptor (TCR) specificity 

defines the differential functions of Tfh and Tfr cells is unclear. Here we show that antigen-

specific T cells after immunization are preferentially recruited to the GC to become Tfh cells, 

but not Tfr cells. Tfh cells, but not Tfr cells, also proliferate efficiently upon restimulation with 

the same immunizing antigen in vitro. Ex vivo TCR repertoire analysis shows that immunization 

induces oligoclonal expansion of Tfh cells; by contrast, the Tfr pool has a TCR repertoire that 

more closely resembles that of regulatory T (Treg) cells. Our data thus indicate that the GC 

Tfh and Tfr pools are generated from distinct TCR repertoires, with Tfh cells expressing 

antigen-responsive TCRs to promote antibody responses, and Tfr cells expressing potentially 

autoreactive TCRs to suppress autoimmunity. 
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INTRODUCTION 

Thymus-dependent humoral immune responses are not only critical for protection against 

pathogens, but are also a central protective mechanism of most vaccines. These antibody-

mediated responses depend on germinal centers (GCs) - anatomical structures inside the B 

cell zone – where T follicular helper (Tfh) cells interact with and provide help to B cells, enabling 

affinity maturation and isotype switching1. Affinity maturation is a critical event in the GC 

reaction in which B cells edit their B cell receptor (BCR) and undergo a selection process 

leading to higher receptor affinity. However, during affinity maturation, autoreactive BCRs may 

be generated, resulting in production of autoantibodies and the potential for autoimmune 

disease. Several autoimmune diseases are characterized by formation of ectopic GCs and 

production of autoantibodies2.  

Tfh cells are required for GC formation and maintenance3-7, and Foxp3+ T follicular regulatory 

(Tfr) cells participate in the regulation of GC reactions8-12. Lack of Tfr cells or an altered Tfr:Tfh 

ratio can increase the risk of autoimmunity and autoantibody production13-16. This contribution 

of Tfr cells to the prevention of autoimmunity has been detected in several experimental 

models of autoimmunity and inferred from human pathology13-17. 

Here we test the hypothesis that populations of Tfh and Tfr cells have different T cell receptor 

(TCR) repertoires, leading to different antigenic targets for effector versus regulatory action. 

Protective immune responses are promoted by Tfh cells which, with a TCR repertoire specific 

for an immunizing antigen, provide help to B cells and enable BCR affinity maturation, whereas 

the Tfr cell TCR repertoire, which is predominantly autoreactive, enables these cells to 

suppress autoreactive affinity-matured B cell clones, thus preventing autoantibody-mediated 

autoimmunity.  

Using antigen-specific CD4+ T cells from TCR-transgenic mice, we demonstrate that 

recruitment of Tfh cells into GCs is predominantly controlled by specificity for the immunizing 

antigen. By contrast, recruitment of Tfr cells for the same GCs was not biased towards 

specificity for the immunizing antigen. These findings are confirmed in wild-type (WT) mice 
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using MHC class II tetramers: while we detect a large population of tetramer-positive Tfh cells, 

almost no tetramer-positive Tfr cells are found. In addition, we use an independent approach, 

analysing the TCR diversity from sorted T cell subsets (including Tfh and Tfr) to demonstrate 

that Tfh cells from GCs induced by immunization with a defined antigen present oligoclonal 

expansions that are not observed on the Tfr subset. Moreover, the Tfr cell TCR repertoire 

closely resembles the thymic regulatory T (Treg) cell repertoire. Thus, our data not only confirm 

that Tfh cells differentiate predominantly from naïve Foxp3– T cells, and that Tfr cells originate 

from thymic Foxp3+ Treg cells, but also show that the ontogeny of Tfh and Tfr cells corresponds 

to a distinct TCR usage.  

 

RESULTS 

Tfr cells differentiate from thymic Foxp3+ Treg cells. We had previously shown that under 

lymphopenic conditions, immunization with a foreign antigen leads to GC formation containing 

Tfr cells that differentiate from adoptively transferred thymic Foxp3+ Treg cells8. In order to 

exclude a potential artifact elicited from lymphopenic conditions we now investigated, using 

congenic markers, the precursors of Tfr cells following immunization in two distinct genetic 

backgrounds (Fig. 1). Magnetic-activated cell sorting (MACS)-purified OVA-specific TCR-

transgenic CD4+ T cells from OT-II.Rag-/- or DO11.10.Rag-/- mice, devoid of thymic Foxp3+ Treg 

cells, were adoptively transferred into naïve C57BL/6 or Balb/c hosts, respectively (Fig. 1a,b). 

Recipient mice were subsequently immunized with OVA in incomplete Freund’s adjuvant (IFA) 

in the footpad and draining popliteal lymph nodes (LNs) were analysed by flow cytometry, at 

the peak of GC response, when higher numbers of Tfh and Tfr cells can be obtained (day 11)8, 

18. Popliteal LNs were found to contain Tfh populations derived to a great extent from 

transferred TCR-transgenic cells, while Tfr cells derived exclusively from endogenous T cells 

(Fig. 1c,d). On the contrary, TCR-transgenic CD4+ T cells from OT-II.Rag+ mice that, unlike 

Rag-deficient counterparts, harbour a population of TCR-transgenic thymic Foxp3+ Treg cells 

(Fig. 1e), can support the differentiation of Tfr cells, following adoptive transfer into T cell 
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deficient mice (Fig. 1f). Indeed, when OT-II.Rag+ cells were transferred into TCRβ-/- mice we 

found that they readily gave rise to a population of Tfr cells. Note that the popliteal LN allows 

the study of GCs driven by the immunizing antigen since Tfh and Tfr cells, abundant in 

immunized mice, are virtually absent on equivalent LNs of non-immunized C57BL/6 mice (Fig. 

1g,h). These results show that, while adoptive transfer of thymic derived Foxp3+ Treg cells can 

differentiate into Tfr cells, Foxp3– T cells only differentiate into Tfh. 

 

No preferential recruitment of antigen-specific Tfr cells. In order to assess the specificity 

requirements of Tfr cells, we took advantage of OT-II.Rag+ mice. OVA-specific TCR-transgenic 

CD4+ T cells from these mice were transferred into congenic C57BL/6 mice subsequently 

immunized with OVA-IFA or a control antigen (β-lactoglobulin, βLG) (Fig. 2a). Again, using 

congenic markers, it was possible to quantify the frequency of TCR-transgenic cells within the 

Tfh and Tfr populations (Fig. 2a,b). We found that a large fraction of Tfh cells in mice 

immunized with OVA were derived from OVA-specific precursors, while those TCR-transgenic 

precursors were almost excluded from Tfr cells even in OVA-immunized mice (Fig. 2b,c). To 

exclude that the low number of TCR-transgenic Foxp3+ Tfr cells observed was due to 

competition by a much larger number of endogenous cells, we performed adoptive cell 

transfers into T cell deficient mice, allowing competition of the same number of TCR-transgenic 

and WT T cells. Thus, the same number of CD4+ T cells from OT-II.Rag+ and WT mice was 

co-transferred into TCRβ-/- mice followed by immunization with OVA or a control antigen (Fig. 

2d). Under those conditions, and 11 days after immunization, TCR-transgenic cells became 

vastly over-represented among Tfh cells in mice immunized with OVA (Fig. 2e). In addition, 

we found that TCR-transgenic cells were able to differentiate into Tfr, but their frequency 

(approximately 1/5 of Tfr cells) did not change significantly regardless of the immunizing 

antigen. Additionally, the percentage of OT-II.Rag+ Treg cells that differentiated into Tfr is 

approximately 8% in both immunizations although, as expected, in OVA-immunized mice the 
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percentage of OT-II.Rag+ conventional T (Tconv) cells that differentiate into Tfh is higher than 

in βLG-immunized mice (Supplementary Fig. 1).  

Foxp3+ Treg cells from OT-II.Rag+ mice co-express endogenous TCR chains, in addition to the 

transgene, that allow their thymic selection as Treg cells19. In fact, WT T cells can also express 

more than one TCR, due to recombination of both TCRα chains20. We found that, as previously 

described, a proportion of Treg cells (~30%) do not co-express the transgenic TCR chains Vα2 

and Vβ5 unlike Tconv cells which are virtually all double-positive. Nevertheless, upon adoptive 

transfer into TCRβ-/- mice and immunization, the percentage of OT-II.Rag+ Treg and Tfr cells 

co-expressing Vα2 and Vβ5 remained unchanged (Fig. 2f). Therefore, we could not find a 

preferential enrichment of Vα2 Vβ5 double-positive cells, more likely to be specific for the 

immunizing antigen, within the regulatory populations after OVA immunization.  

As the above observations may question the ability of Foxp3+ cells from OT-II.Rag+ mice to 

properly respond to OVA stimulation, we confirmed that OT-II Treg cells can be activated by 

OVA. We cultured sorted Treg (CD4+CD25+GITR+) cells from OT-II.Rag+ and C57BL/6 WT 

mice in presence of IL-2 and OVA-pulsed bone marrow-derived DCs (Fig. 2g,h and 

Supplementary Fig. 2a). We found that OVA-loaded DCs, unlike DCs loaded with a control 

antigen, promoted proliferation of OT-II Treg cells to similar extent as stimulation with anti-

CD3. Moreover, WT Treg cells show lower proliferation and cell numbers when cultured in the 

presence of both antigens compared to cultures with anti-CD3. Of note, it was previously 

described that some unspecific proliferation is induced on Treg cells when cultured with 

activated DCs in the presence of exogenous IL-221, 22, which is in line with what we observed 

in the cultures of WT Treg cells with OVA/βLG-loaded DCs and OT-II Treg cells with βLG-

loaded DCs. These data demonstrate that OT-II Treg cells, in spite of the co-expression of 

endogenous TCR chains, specifically recognize and proliferate in presence of OVA stimulation. 

As a consequence, the poor differentiation of OT-II Treg cells into Tfr cells following OVA-

immunization does not appear to be due to loss of OVA-reactivity.  
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The low recruitment of OT-II.Rag+ Treg cells as Tfr cells could be due to an intrinsic 

characteristic of OT-II transgenic cells. To test this possibility, we repeated the experiment with 

a second TCR-transgenic model. We transferred, simultaneously, an equal number of CD4+ T 

cells from OT-II.Rag+ and P25.Rag+ mice (TCR-transgenic specific for the residues 280-294 

of Mycobacterium tuberculosis Ag85B) that also have thymic-derived Treg cells (Fig. 3a,b)23. 

Recipient mice were immunized in the footpad with OVA323-339 or Ag85B280-294 peptides coupled 

to BSA in IFA. We used peptides coupled to a carrier protein (BSA) because it has been 

reported that immunization with linear epitopes may fail to generate optimal antibody 

responses24. We found that Tfh cells from the draining LNs have a substantial frequency 

increase of TCR-transgenic cells specific for the immunizing antigen (a high frequency of OT-

II cells in mice immunized with OVA323-339BSA, and P25 cells in mice immunized with Ag85B280-

294BSA; Fig. 3c,d). Within the Tfr population there was only a small increase of TCR-transgenic 

cells specific for the immunizing antigen.  

These results suggest that, while TCR-transgenic cells specific for the immunizing antigen are 

able to become Tfr cells, those cells are not preferentially selected into the Tfr pool. 

 

Tfr cells do not recognize the immunizing antigen. To obtain an independent validation of 

our findings without the use of TCR-transgenic mice, we used two MHC-II I-Ab tetramers: a 

phycoerythrin (PE)-labelled tetramer containing an OVA peptide sequence (AAHAEINEA) to 

identify OVA-specific T cells and an allophycocyanin (APC)-labelled tetramer containing the 

Ag85B peptide sequence (FQDAYNAAGGHNAVF) to identify Ag85B-specific T cells. Antigen-

specific tetramer+ cells were detected on draining lymph nodes of C57BL/6 mice 11 days after 

immunization with several combinations of antigens and adjuvants (Fig. 4a). In all 

immunizations with OVA323-339, the number of OVA-tetramer+ cells was increased among the 

Tfh population compared to mice that were not immunized with this peptide (Fig. 4b,c). The 

same pattern was observed in mice immunized with Ag85B280-294, where we found larger 

populations of Ag85B-tetramer+ Tfh cells (Fig. 4d,e). However, in neither case did we observe 
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an enrichment of tetramer+ cells within the Tfr population (Fig. 4b-e). Once again, these results 

demonstrate that Tfr cells, unlike Tfh cells, do not preferentially contain cells specific for the 

non-self antigen driving the GC response.  

To investigate whether Tfr and Tfh TCRs recognize different peptides from the same antigen, 

we assessed proliferation of sorted Tfh (CD4+CXCR5+PD-1+Foxp3-), Tfr (CD4+CXCR5+PD-

1+Foxp3+), and Treg (CD4+CXCR5-PD-1-Foxp3+) cells stimulated with DCs loaded with the 

immunizing antigen to verify if they specifically proliferate with these signals (Supplementary 

Fig. 2b). Tfh cells from OVA-immunized C57BL/6 Foxp3 reporter mice (Foxp3hCD2)25 were 

cultured with DCs loaded with OVA or βLG as a control antigen. Tfh cells showed higher 

proliferation and survival on OVA cultures compared to DCs loaded with βLG or unloaded DCs, 

demonstrating that this population specifically recognizes antigen signals (Fig. 4f). On the 

contrary, Tfr cells cultured with OVA presented some proliferation (probably due to the same 

non-specific effect observed on Treg cell cultures on Fig. 2g,h) but that proliferation was not 

higher than in the presence of βLG or unloaded DCs (Fig. 4g). The presence of anti-CD3 

induced a higher proliferation rate and survival of Tfr cells that translated into higher number 

of cells at the end of culture compared to the other conditions. Therefore, if Tfr cells were 

specific for the immunizing antigen, TCR signalling would have led to higher proliferation and 

cell numbers in the end of culture (Fig. 4g). Of note, follicular T cells seem to be fragile, with 

low survival capacity when they are not receiving TCR signalling. In fact, non-proliferating cells 

die quickly in culture and only cells that undergo some degree of background proliferation 

survive. Tfh, but not Tfr, can be rescued when the immunizing antigen is added to the culture. 

As Tfr cells, Treg cells sorted from immunized mice also show lower proliferation and cell 

numbers when cultured with DCs loaded with OVA or βLG compared to the culture in the 

presence of anti-CD3 (Fig. 4h) and as previously observed on Fig. 2g,h. Taken together, these 

results demonstrate that, while Tfh cells specifically benefit from signals derived from the 

immunizing antigen, Tfr and Treg cells do not. 
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Tfr and Tfh have different TRBV CDR3 length distributions. We next performed TCR usage 

analysis in C57BL/6 mice, bearing a Foxp3gfp reporter system, immunized with a model antigen 

(OVA-IFA). In order to minimize the contamination with pre-existent Tfh and Tfr cells from prior 

immune responses, we used footpad immunization with collection of popliteal LNs at the peak 

of the GC response. As shown in Fig. 1g,h, there are negligible numbers of Tfh and Tfr cells 

in this anatomic location prior to immunization. 

Taking advantage of the Foxp3gfp reporter system, we sorted Tfh (CD4+CXCR5+PD-1+Foxp3-

), Tfr (CD4+CXCR5+PD-1+Foxp3+), Treg (CD4+CXCR5-PD-1-Foxp3+), and Tconv 

(CD4+CXCR5-PD-1-Foxp3-) cells from the draining LNs (Supplementary Fig. 2c). The TRBV 

repertoire of the different populations was then analysed by CDR3 

spectratyping/Immunoscope26. The TRBV CDR3 length profiles (or spectratypes) of naïve 

polyclonal CD4+ T cells resemble Gaussian distributions26 (Supplementary Fig. 3). Therefore, 

by comparing the CDR3 length usage for each TRBV of the four sorted populations to naïve 

CD4+ T cells (used as control population), we can detect variations to this polyclonal 

distribution. Indeed, in the Tfh population there is an over representation of specific CDR3 

lengths (in red, Fig. 5a).There are also some over representations for the Tfr cells but the 

majority of these, besides not being common to Tfh cells, are also present in Treg cells (Fig. 

5a). In fact, detailed analysis of specific TRBV segments can identify clonal expansions among 

Tfh cells that are absent in the other T cell subsets (Fig. 5b, arrows). Also, we calculated a 

perturbation score27 for every TRBV segment between all samples and the Tfr group average. 

Hierarchical clustering and principal component analysis (PCA) were performed using the 

calculated perturbation scores to reveal the divergent TRBV usage of all cell populations 

compared to Tfr group average. On the heatmap, Tfh cells present the higher perturbation 

scores (more divergent TRBV CDR3 length distributions from Tfr cells) and are clustered 

separately, while we observe a proximity between Tfr and Treg cells (Fig. 5c). Moreover, the 

same relation between sample populations can be observed when we perform PCA: the first 

two principal components, which describe 77.3% of the samples variability, separate the Tfh 

from the remaining samples, while clustering Tfr, Treg, and Tconv together (Fig. 5d). ANOVA 
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and multiple comparison analysis with Holm-Bonferroni correction for multiple sampling 

established the significance of the differences observed between populations, and between 

Tfh samples and each sample from the other populations (Supplementary Table 1).  

Taken together, our data show that, within LNs draining the immunizing site, Tfh cells exhibit 

clear oligoclonal expansions of specific TRBV CDR3 lengths. The same pattern of TRBV CDR3 

usage is not observed within the Tfr population that retain distributions of CDR3 lengths usage 

similar to Treg cells.  

 

The TCR repertoire of Tfr cells resembles that of Treg cells. The spectratyping data 

demonstrate that, although Tfr and Tfh cell numbers increase after immunization, they present 

different TRBV CDR3 length usage. To further verify the different TCR usage between both 

populations, we sequenced the TRA of 1D2β mice, which express a fixed TCRβ chain and 

variable TCRα chains. This 1D2β mouse line, of C57BL/6 background, was established using 

nuclear-transferred ES (NT-ES) cells that had been generated using peripheral CD25highCD4+ 

T cells as donor of nuclei. The productively rearranged TRB gene of one NT-ES cell line was 

successfully transmitted to germline and the resulting 1D2β mice were mated with Foxp3hCD2 

and TRA-/- mice to generate Foxp3hCD2.TRB1D2.TRA-/WT mice. Thus, 1D2β mice TRA 

sequencing provides a complete insight to the repertoire of the analysed populations, 

compared to WT mice, as the corresponding TRB does not vary.  

Although these mice have a restricted TRB repertoire, we confirmed that their CD4+ T cells 

were able to recognize OVA and differentiate into Tfh cells following OVA-immunization (Fig. 

6a). To show that 1D2β Tfh cells that arise after OVA-immunization can specifically recognize 

the antigen, we performed in vitro proliferation assays (Fig. 6b). 1D2β mice were immunized 

with OVA-IFA and 11 days later Tfh (CD4+CXCR5+PD-1+Foxp3-) cells from three individual 

mice were sorted and cultured with DCs pulsed with OVA (Supplementary Fig. 2d). Tfh cells 

from all three mice were able to proliferate with OVA signals but not with the control antigen 
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βLG (Fig. 6b). Thus, these mice, while not being able to recombine the TRB, still have a 

repertoire capable of specifically recognizing OVA. 

Five T cell populations were sorted for TRA repertoire analysis on day 11 following OVA-IFA 

immunization from draining LNs of individual mice: Tfr (CD4+CXCR5+PD-1+Foxp3+), Tfh 

(CD4+CXCR5+PD-1+Foxp3-), Treg (CD4+CXCR5-PD-1-Foxp3+), activated CD4+ T (Tact: 

CD4+CXCR5-PD-1-Foxp3-CD44+), and non-activated CD4+ T (Tconv: CD4+CXCR5-PD-1-

Foxp3-CD44-) cells (Supplementary Fig. 2d). TRA gene was then specifically amplified and 

sequenced on an illumina MiSeq platform. In order to perform an unbiased analysis, 9,000 

TCR sequences were randomly selected from each dataset per sample (9,000 being the lowest 

number of TCR sequences identified on a sample).  

We started by verifying the number of common clonotypes between Tfr cells and other 

populations. The number of shared clonotypes is higher between Tfr and Treg cells than any 

other population (Fig. 6c and Supplementary Fig. 4a). However, we found that from the 9,000 

TCR sequences the number of identifiable clonotypes was lower for Tfr, Tfh, and Tact when 

compared to Treg and Tconv. To determine if this observation was in line with different clonality 

in the populations, we calculated a clonality score for each sample (Fig. 6d). Indeed, the 

clonality score was higher for the populations with lower numbers of identifiable clonotypes, as 

expected, given the fact that Tfh, Tact, and Tfr have undergone cell proliferation, unlike Treg 

and Tconv. When we checked the frequency distribution of the 20 most frequent clonotypes 

for each sample across all samples, we observed that the 5 most abundant clonotypes 

represented in average up to ~50% of the total frequency for Tfh and Tact and ~40% for Tfr 

cells (Fig. 6e). This was somehow expected since Tfr, Tfh, and Tact almost do not exist prior 

to immunization and must expand upon immunization, in contrast to Treg and Tconv. (Fig 6a). 

Remarkably, the most common clonotypes from Tfh cells are shared in different mice (yellow), 

and the same happens for the most common Tfr clonotypes (green), although without a 

significant overlap between Tfh and Tfr clonotypes (Fig. 6e). To further investigate the 

proximity between Tfr and Tfh TCR repertoire, we investigated if the 20 most predominant 

clonotypes from each Tfr sample are shared with other populations. We found that the cell 



 

Maceiras et al.  12 
 

population that shares more clonotypes with the predominant Tfr clonotypes is the Treg 

population (Fig. 6f). Among the most abundant clonotypes there is only one shared between 

all Tfr and Tfh samples, but that clonotype is also present on all Treg samples. The same 

approach was performed to obtain the 20 most predominant clonotypes for each Tfh sample 

(Supplementary Fig. 4b) where it is shown that Tfh cells present more shared clonotypes with 

Tact. Lastly, we wanted to establish the closeness between all samples regardless of the 

observed expansions. For that, we performed hierarchical clustering using Horn-Morisita 

index28. This index has been described as appropriate to compare immune repertoires since it 

is able to access the similarity between samples while taking into account the abundance of 

each clonotype in each sample. We found that Tfr and Treg samples are clustered together 

(AU = 96%), indicating that Tfr samples have a repertoire closer to that of Treg cells, rather 

than to that of any of the other populations (Fig. 6g). 

These results indicate that, although Tfr cells undergo proliferation, their TCR is not specific 

for the antigen driving the GC reaction since the TCR usage has little in common with Tfh cells 

repertoire. Instead, Tfr cells present a TCR repertoire that closely resembles that of Treg cells. 

 

DISCUSSION  

During GC reaction the BCR undergoes affinity maturation leading to formation of higher 

affinity receptors selected by Tfh cells. However, some mutations may lead to autoreactive 

receptors or receptors that are cross-reactive with autoantigens. Given the documented 

capacity of Tfr cells to prevent auto-antibody-mediated autoimmunity13-17, we investigated the 

possibility that the TCR usage by Tfh and Tfr populations from the same GCs is different: only 

the Tfh repertoire is biased towards the immunizing antigens.  

We used three distinct approaches to address that issue: one approach based on cell transfer 

of T cells with defined TCR specificity; another approach using tetramers to identify antigen-

specific Tfh and Tfr cells in WT mice; and a final approach based on the analysis of the TCR 

repertoire. All experiments led to similar conclusions, showing that T cell clones specific for the 

immunizing antigen are enriched within the Tfh pool, but not within Tfr cells. Our experiments 
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do not directly show that Tfr cells recognize self antigens and, as a consequence, the antigen-

specificity of Tfr cells remains to be established. Nevertheless, as the TCR repertoire of Tfr 

cells is closer to that of Treg cells, rather than to that of any of the other populations, we 

speculate that Tfr cells share the same specificity as the Treg population which is biased 

towards self antigens. 

We cannot exclude that, under certain conditions, Tfr cells may be specific for the immunizing 

antigen and differentiate from peripherally induced Treg cells. Indeed, a recent report claims 

that Tfr cells can differentiate from Foxp3- T cells and can be specific for the immunizing 

antigen29. However, even under those conditions tested, the percentage of tetramer binding 

Tfr cells was only ~3% of total Tfr cells (which we did not observe on our experiments even 

after enrichment) and only a percentage of those Tfr cells presented markers indicating their 

differentiation from Foxp3- T cells. Moreover, these cells alone do not seem to substitute Tfr 

cells that originate from thymic Treg cells: Tfr cells seem to influence the affinity maturation 

process30, 31 and it has been also shown that mice lacking Treg cells able to migrate into the 

GC have impaired affinity maturation31. 

We studied popliteal LNs in mice immunized in the footpad. In that location nearly all Tfh and 

Tfr cells are derived from GCs induced by the immunizing antigen (with negligible 

contaminants). As a consequence, the different TCR usage between Tfr and Tfh cells, as 

shown in Fig. 5 and 6, suggests different antigen-specificity requirements. Furthermore, the 

fact that Tconv and Treg from draining LNs have Gaussian-like TRBV distributions and a low 

clonality score is in line with our observations with adoptively transferred TCR-transgenic cells: 

adoptive transfer of TCR-transgenic T cells into non-lymphopenic hosts (Fig. 2c and 3d) leads 

only to a minor expansion of antigen-specific cells among Tconv (4-6%), unlike what is 

observed within Tfh cells (30-40%). In addition, the results obtained with tetramers 

corroborated our hypothesis: we could detect antigen-specific tetramer binding Tfh, but not Tfr, 

cells indicating a different TCR usage. 

The ontogenic origin of Tfh and Tfr cells has remained an important issue as it may be related 

to the distinct functional specialization of the two T follicular populations. Indeed, following 
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immunization with an antigen in adjuvant, a process similar to what is observed following 

vaccination, Tfr cells associated with those induced GCs originate from pre-existing thymic 

Treg cells (Fig. 1). Such ontogenic proximity between Tfr and Treg has a repercussion on the 

TCR usage by the two populations: the TCR usage by Tfr cells remains largely similar to the 

TCR usage of Treg cells.  

The different ontogeny of Tfr and Tfh cells suggests an attractive model for distinct functions 

of the two populations: while Tfh cells predominantly promote humoral responses targeting 

non-self antigens, Tfr cells prevent the generation of auto-antibody-mediated autoimmunity. 

An expected consequence of this model is a different TCR repertoire of Tfh vs Tfr cells, which 

is confirmed by our present results. The ability of Tfr cells to regulate non-antigen-specific B 

cell clones has been suggested9. The distinct range of antigen targets of Tfh and Tfr cells from 

the same GCs provides a molecular basis for such differential behaviour. It should be noted, 

however, that such distinction is not complete: it was shown that Tfr cells can partially regulate 

the amount of antibodies produced targeting a foreign antigen8. 

In conclusion, our data establish a different antigen-specificity of Tfr and Tfh populations from 

the same GCs. Tfh cells repertoire comprises oligoclonal expansions in response to 

immunizing antigens. Such expansions are not observed in Tfr cells that bear a TCR repertoire 

resembling that of Treg cells, and thus, possibly, biased towards autoreactivity. 
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METHODS 

Mice and animal procedures 

C57BL/6, C57BL/6.Thy1.1, Foxp3gfp, Foxp3hCD2, Balb/c, TCRβ-/-, DO11.10.Rag-/-, OT-II.Rag-/-, 

OT-II.Rag+.Thy1.1.Thy1.2, P25, and 1D2β mice were bred and maintained in our institute 

specific pathogen-free facilities. Animals of both sex (same sex per experiment) and with age 

ranged from 2 to 6 months were used. For animal studies, no randomization or blinding was 

done. Permission for animal experimentation was granted by the ORBEA-iMM (the institutional 

Animal Welfare Body) and DGAV (Portuguese competent authority for animal protection). 

Animals were immunized subcutaneously in the footpad with different antigens: Ovalbumin 

(Sigma-Aldrich, Cat#A5503), β-lactoglobulin (Sigma-Aldrich, Cat#L3908), OVA323-339 

(ISQAVHAAHAEINEAGR) peptide, Ag85B280-294 (FQDAYNAAGGHNAVF) peptide (Schafer-N) 

and with OVA323-339 or Ag85B280-294 conjugated with BSA (synthesized by Thermo Fisher 

Scientific or Schafer-N). Antigens were prepared by mixing the antigen solution 1:1 (v:v) with 

incomplete or complete Freund's adjuvant (IFA or CFA, respectively) (Sigma-Aldrich, 

Cat#F5506 and Cat#F5881) to a final concentration of 1.6 mg ml-1  (proteins and peptides 

coupled to proteins) or 2 mg ml-1 (peptides alone). 50 μl of emulsion was injected in each 

footpad. For adoptive cell transfers, purified CD4+ T cells were injected i.v. in saline solution. 

In all experiments the immunization occurred 1 day after the adoptive cell transfer, and 

collection of popliteal LNs at day 11 following immunization. 

 

Flow cytometry and cell sorting 

For flow cytometry analysis and sorting, single cell suspensions were obtained and stained 

with the following mAbs: CD4 (RM4-5, dilution 1/200), CD19 (ebio1D3, dilution 1/100), CD25 

(PC61.5, dilution 1/400), Foxp3 (FJK-16s, dilution 1/100), human CD2 (RPA-2.10, dilution 

1/200), PD-1 (J43, dilution 1/100), Thy1.1 (HIS51, dilution 1/200), Thy1.2 (53-2,1, dilution 

1/400), TCRβ (H57-597, dilution 1/100), and Vα2 (B20.1, dilution 1/200) from eBioscience; 

GITR (DTA.1, dilution 1/200), CXCR5 (2G8, dilution 1/50) and Vβ5.1, 5.2 (MR9-4, dilution 

1/200) from BD Pharmingen; and CD4 (RM4-5, dilution 1/100) from Biolegend. Intracellular 
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Foxp3 staining was performed using the Foxp3 Staining Set (eBioscience, Cat#00-5523-00) 

according to manufacturer’s instructions. OVA323-339 or Ag85B280-294 specific T cells were 

detected with a PE-(OVA) or APC-(Ag85B) conjugated MHC-II I-Ab tetramer containing an 

OVA329-337 (AAHAEINEA) or Ag85B280-294 (FQDAYNAAGGHNAVF) peptide, respectively. 

Staining was performed for 1h at RT32. Enrichment of tetramer+ cells was performed using 

MACS cell separation system and anti-PE and anti-APC magnetic beads (Miltenyi Biotec, 

Cat#130-048-801 and Cat#130-090-855). Samples were acquired on a BD LSR Fortessa flow 

cytometer. Acquisition data was analysed on FlowJo software (Tree Star). For cell sorting: 

CD4+ T cells for adoptive cell transfers were purified from spleen and mesenteric LNs using 

MACS cell separation system and anti-CD4 (L3T4) magnetic beads (Miltenyi Biotec, Cat#130-

049-201). FACS-sorting, with mAbs mentioned above, was performed on a BD FACSAria cell 

sorter. For flow cytometry analysis of cultured cells and tetramer enriched cell samples, 10 μm 

latex counting beads were added to cell suspensions to obtain total cell counts (Counter 

Beckman). 

 

In vitro cultures 

Bone marrow derived DCs were generated by culturing progenitors for 7 days in presence of 

GM-CSF (PeproTech). Specific antigen loading was performed for 3h at 37ºC in presence of 

1 mg ml-1 of protein. In OT-II Treg/WT Treg and Tfr/Tfh/Treg cell cultures, T cells were pre-

incubated with Cell Trace Violet (Life Technologies) for tracking cell proliferation according to 

manufacturer’s instructions. A 3:2 ratio of CD4+ T cells to DCs was used to a final number of 

5x104 cells per well in the case of OT-II Treg/WT Treg cell cultures and 2.5x104 cells per well 

in the case of Tfr/Tfh/Treg cell cultures. Cells were co-cultured in the presence of 2 ng ml-1 IL-

2 (eBioscience, Cat#14-8021-64) and, in some conditions, 3 μg ml-1anti-CD3 (145-2C11, 

eBioscience) was added to the culture. After 3 days, cells were stained and analysed by flow 

cytometry. For Tfh proliferation assay, 2.0x104 Tfh cells were cultured with the same number 

of DCs. In the wells where unloaded DCs were cultured, 3 μg ml-1 anti-CD3 was added to the 

culture. After 3 days of culture, cells were incubated with 1.0 μCi per well of 3H-thymidine 
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(Perkin Elmer, Cat#NET027W001MC) at 37ºC for 6 hours, harvested on a Tomtec Harvester 

(Tomtec) and scintillation counted on a Microbeta Trilux (PerkinElmer). 

 

CDR3 length analysis 

RNA extraction from cell-sorted populations (2x105 - 5x106 cells) was performed using TRIzol 

(Life Technologies, Cat#15596). cDNA was amplified using Random Primers and SuperScript 

III Reverse Transcriptase (Invitrogen, Cat#48190011  and Cat#18080-044). Both RNA 

extraction and cDNA synthesis were performed following the manufacturer’s instructions. To 

perform CDR3 spectratyping26, each obtained cDNA was divided into 23 parallel PCR 

reactions with a common Cβ reverse primer and 23 Vβ-specific forward primers (GoTaq DNA 

Polymerase from Promega, Cat#M7801, and primers from Life Technologies). Run-off 

reactions were done using dye-labelled Cβ primer. All primer sequences can be found on 

Supplementary Table 2. Run-off products were run on ABI 3130XL Automatic Sequencer 

(Applied Biosystems) together with GeneScan 500 ROX dye Size Standard (Applied 

Biosystems, Cat#401734) and consequently separated based on their nucleotide size. Gene 

Mapper software (Applied Biosystems) was used to obtain nucleotide length and area of each 

peak. 

 

Deep sequencing 

RNA from 1D2β mice sorted cell populations (1.1x104 – 1.0x106 cells) was extracted using 

RNeasy Mini kit (Qiagen, Cat#74104) following manufacturer’s instructions. Full-cDNA library 

was prepared using Mint-2 kit (evrogen, Cat#SK005), which introduces 5-prime adapters to 

cDNA fragments, according to manufacturer’s instructions. TRA was then specifically amplified 

using Pfx DNA polymerase (Invitrogen, Cat#11708013) and a primer pair (Life Technologies) 

specific for the 5’-adapter and the C region of TRA gene. Primers used for TRA amplification 

can be found on Supplementary Table 2. Sequencing library was prepared using the Nextera 

kit (Cat#FC-121-1030 and Cat#FC-131-1002), in which each sample was barcoded, and 

sequenced using 250bp paired-end illumina MiSeq technology (all illumina). 
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CDR3 data analysis 

In order to have adequate representation of a complete TRBV repertoire, it is necessary to 

analyse at least 2x105 cells. To achieve this number of cells, it was necessary to pool draining 

LNs from 15 mice for each biological replicate. In our experiments, we used at least three 

biological replicates for each T cell subset. To extract and analyse the data obtained for CDR3 

fragment size we used ISEApeaks®33, 34. Briefly, this software quantifies the percentage of use 

of each CDR3 length, obtained by dividing the area of CDR3 peaks by the total area of all 

peaks within the profile. On C57BL/6 mice, TRBV21 and TRBV24 are pseudogenes and thus 

ignored on the analysis. TRBV12-2 was also discarded since it could not be detected on three 

of the samples. To facilitate the comparison between samples and populations, a perturbation 

score27 was computed to obtain the overall differences between TRBV CDR3 spectratypes of 

each sample and the average profiles of Tfr samples as control group. Calculated scores were 

used to perform the hierarchical clustering (using Euclidean distance and average linkage) and 

PCA. 

 

Deep sequencing data analysis 

Paired-end 250bp illumina sequencing data was initially trimmed and subsequently merged 

using PEAR35. clonotypeR36 toolkit was then used to perform TCR sequence annotation. Two 

samples had to be discarded due to low sequencing quality (mouse 3 Tfh sample and mouse 

4 Tfr sample). Out of the 7,547,998 raw reads obtained for the 18 remaining samples, we 

identified 25,099 TCR clonotypes from 949,729 productive TCR sequences. For the samples 

to be comparable, the analyses were performed on 9,000 randomly selected TCR sequences 

for each dataset as it was the lowest number of TCR sequences found in a dataset. We 

repeated this sampling process 100 times to obtain the Mean ± SD values presented on the 

Venn diagrams. The presented clonality metric is 1- Pielou’s evenness index37, and can vary 

from 0 to 1 (more diverse to less diverse). The Pielou’s evenness corresponds to the 

Shannon’s entropy38, 39 (using log 2) for each sample divided by the number of unique 

clonotypes (in log 2) of the same sample. For the histogram of cumulative frequency, the 20 
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most predominant clonotypes were determined for each sample, and gathered across all 

samples to plot the cumulative frequency of those clonotypes for each sample. The 20 most 

predominant Tfr clonotypes were selected from each of the three Tfr samples and gathered 

into a list used to perform hierarchical clustering in all samples (using Euclidean distance and 

average linkage). The same was performed for the 20 most predominant clonotypes of each 

Tfh sample. Dendrogram of overall relation between all samples was obtained using Horn-

Morisita index28, 40 as distance and average linkage. This index assesses the similarity between 

samples taking into account the abundance of each clonotype in the sample. Approximately 

unbiased (AU) p-values were calculated for each cluster through 1000 bootstrap resampling 

iterations41. 

 

Statistical analysis 

Scatter plots and column bar graphs were obtained using GraphPad PRISM. Unless stated 

otherwise, n represents the number of individual mice analysed per experiment. To determine 

statistical significance, two-tailed nonparametric Mann–Whitney U tests were performed, and 

p<0.05 was deemed significant (in figures: * p<0.05; ** p<0.01). A minimum of 5 mice per group 

were used on in vivo experiments to allow usage of non-parametric statistical tests. Clustering 

analysis, PCA, Venn diagrams, ANOVA, pairwise multiple comparison analysis with Holm-

Bonferroni correction for multiple sampling, statistical analysis, and multivariate analysis were 

performed using R software (http://www.r-project.org/). 

 

Data availability 

Sequence data that support the findings of this study have been deposited in the Sequence 

Read Archive (SRA) with the accession code SRP096953. All other relevant data are available 

from the corresponding author upon reasonable request.  

  

https://www.ncbi.nlm.nih.gov/sra/SRP096953
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FIGURES AND FIGURE LEGENDS 

 

Figure 1. Tfr cells do not differentiate from Foxp3- T cell precursors. (a) CD4+ T cells from 

OVA-specific OT-II.Rag-/- or DO11.10.Rag-/- mice are devoid of Foxp3+ Treg cells. (b) 106 CD4+ 

T cells from OT-II.Rag-/- or DO11.10.Rag-/- mice were adoptively transferred into, respectively, 

C57BL/6 or Balb/c hosts subsequently immunized with OVA-IFA in the footpad. At day 11 

popliteal LNs were analysed by flow cytometry. (c) Gating strategy for detection of 

DO11.10.Rag-/- (upper panel) or OT-II.Rag-/- (bottom panel) within Tfh and Tfr cell populations. 

(d) While Tfh (CD4+CXCR5+PD-1+Foxp3–) cells contained ~25-30% TCR-transgenic cells, 

those adoptively transferred cells could not be detected among the Tfr (CD4+CXCR5+PD-

1+Foxp3+) population in any of the two genetic backgrounds. Mean ± SEM are presented for 

n=5. (e) OT-II.Rag+ mice have Foxp3+ Treg cells. (f) Adoptive transfer of CD4+ T cells from 
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OT-II.Rag+ mice into TCRβ-/- hosts followed by immunization as described in (b). Under these 

conditions the transferred TCR-transgenic cells originated both Tfh and Tfr cells. (g) Relative 

frequency of T follicular cells in popliteal LNs of non-immunized C57BL/6 mice. (h) Absolute 

number of Tfh and Tfr cells within popliteal LNs from non-immunized C57BL/6 mice compared 

to OVA-immunized mice. Mean ± SEM is presented for n=3.  
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Figure 2. No preferential accumulation of OVA-specific cells within the Tfr population. (a) 107 

CD4+ T cells from OT-II.Rag+ mice were transferred into C57BL/6 hosts, subsequently 

immunized with OVA-IFA or βLG-IFA in the footpad. (b) Popliteal LNs were analysed for the 

presence of OT-II.Rag+ TCR-transgenic cells within Tfh and Tfr populations based on Thy1.2 

staining. Tfh cells were defined as CD4+CXCR5+PD-1+Foxp3– and Tfr cells as 

CD4+CXCR5+PD-1+Foxp3+. The same gating strategy was applied on Treg (CD4+CXCR5-PD-

1-Foxp3+) and Tconv (CD4+CXCR5-PD-1-Foxp3-) cells to determine the percentage of Thy1.2+ 

OT-II.Rag+ TCR-transgenic T cells within those two populations. (c) OVA-specific TCR-

transgenic cells were over-represented within Tfh and Tconv populations in mice immunized 

with OVA (* p<0.05 using two-tailed nonparametric Mann–Whitney U tests). Within Tfr and 
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Treg cells there was no significant increase in OVA-specific cells in mice immunized with OVA, 

compared to βLG immunized animals. (d) An equal number (107) of CD4+ T cells from OT-

II.Rag+ and C57BL/6 mice were transferred into T cell deficient TCRβ-/- mice, subsequently 

immunized as described above. (e) Under these conditions there was an even greater 

representation of OVA-specific cells within Tfh and Tconv populations (* p<0.05 and ** p<0.01 

using two-tailed nonparametric Mann–Whitney U tests). Although ~20% of Tfr cells derived 

from the OVA-specific TCR-transgenic population, that frequency remained similar in mice 

immunized with OVA or βLG. Similar results were obtained in two additional independent 

experiments, all with n=5. (f) Frequency of Vα2 Vβ5 double-positive cells within Tfr, Treg, Tfh, 

and Tconv populations from naïve or OVA-immunized mice. (g) Fluorescence-activated cell 

sorting-purified C57BL/6 and OT-II.Rag+ Treg (CD4+CD25+GITR+) cells were labelled with 

CellTrace Violet (CTV) and cultured for 3 days in presence of IL-2 and bone marrow DCs 

loaded with OVA or βLG. In control groups T cells were cultured with unloaded DCs with or 

without soluble anti-CD3. Histograms are representative of Treg (CD4+TCRβ+CD25+Foxp3+) 

cell proliferation at the end of the culture. (h) Quantification of the number of proliferating cells. 

Culture triplicates are presented on the histogram and are representative of three independent 

experiments. Mean ± SEM are presented in all graphs.  
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Figure 3. P25 cells are not preferentially recruited into the Tfr pool. (a) P25.Rag+ mice have 

similar frequency of thymic Treg cells (6.0 ± 0.9%) as OT-II.Rag+ mice (6.4 ± 0.7%). (b) 

C57BL/6 mice were transferred simultaneously with 107 CD4+ T cells from OT-II.Rag+ and 

P25.Rag+ mice and subsequently immunized with either OVA323-339BSA-IFA or Ag85B280-

294BSA-IFA in the footpad. (c) Gating strategy to determine the percentage of OT-II.Rag+ and 

P25.Rag+ cells within Tfh and Tfr populations in mice immunized with OVA323-339BSA-IFA 

(upper panel) or Ag85B280-294BSA-IFA (bottom panel). (d) T cell subsets from draining LNs 

show that mice immunized with OVA323-339 have a large accumulation of OVA-specific cells 

within the Tfh and Tconv populations while, conversely, Ag85B280-294-immunized mice 

accumulate P25-specific T cells among Tfh cells (* p<0.05 and ** p<0.01 using two-tailed 

nonparametric Mann–Whitney U tests). We observed a very small increase of T cells specific 
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for the immunizing antigen among the Tfr population. In all graphs, Mean ± SEM are presented. 

Data are representative of three independent experiments, each with n=5.  
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Figure 4. Tfr cells neither bind antigen-specific tetramers nor proliferate in vitro upon 

restimulation. (a) C57BL/6 mice were immunized with four different antigens combined with 

two different adjuvants on a total of 6 different immunizations. On day 11, draining LNs were 

collected for tetramer binding cells detection. (b) Gating strategy to identify OVA-tetramer+ Tfh 

and Tfr cells within CD4+ T cells. Relative percentages for the two gates are presented on the 

contour plot on the left, while event counts for each quadrant are presented on the four scatter 

plots on the right. The Tfh population from mice immunized with the three conditions containing 

OVA323-339 was enriched on cells with TCRs capable of binding the OVA-tetramer. Such OVA-
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tetramer+ cells were almost absent in the Tfr population in all immunizations. Scatter plots are 

representative of the results obtained for each of the immunizations with OVA323-339 and of the 

controls immunized with different formulations of Ag85B280-294 (c) Total number of OVA-

tetramer+ cells in the draining LNs. (d) Scatter plots of Ag85B-tetramer+ Tfh and Tfr cells within 

follicular CD4+ T cells; the numbers represent the event counts for each quadrant. As observed 

for the OVA-tetramer, a large population of tetramer+ Tfh cells was observed on immunizations 

containing Ag85B280-294 peptide, while low numbers of tetramer+ Tfr cells were found in all 

immunizations. Scatter plots are representative of the results obtained for each of the 

immunizations with Ag85B280-294 and of the controls immunized with OVA323-339 (e) Total 

number of Ag85B-tetramer+ cells in the draining LNs. Mean ± SEM are presented. Data are 

representative of two independent experiments, each with n=5. (f-h) Histograms of proliferation 

and bar graphs of total cell numbers of sorted Tfh (CD4+CXCR5+PD-1+Foxp3-) (f), Tfr 

(CD4+CXCR5+PD-1+Foxp3+) (g), and Treg (CD4+CXCR5-PD-1-Foxp3+) cells (h), from OVA-

immunized Foxp3hCD2 mice cultured for 3 days with DCs loaded with OVA or βLG or unloaded 

DCs with or without anti-CD3 and in the presence of IL-2. Only Tfh cells show higher 

proliferation and total numbers on OVA-pulsed DCs cultures compared to βLG-pulsed ones. 

Two independent experiments were performed: Mean ± SEM of one experiment triplicates are 

presented on the histograms.  
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Figure 5. Tfh cells display antigen-induced oligoclonal proliferation that is absent from Tfr cells. 

(a) Heatmap showing the differences between the percentage of usage for each CDR3 length 

of each TRBV of Tfh, Tfr, Treg and Tconv populations compared to the Gaussian-like 

distribution of CD4+ naïve T cells (used as a control population). Similar TRBV CDR3 length 

frequencies (compared to control population) are displayed in white, while higher/lower 

frequencies of specific CDR3 lengths are represented, respectively, in red and blue. The 

heatmap is representative of, at least, three independent experiments per population. (b) 

Distribution of CDR3-length usage for three representative TRBV segments where greatest 

variation is observed. Bars represent CDR3-length usage distribution for indicated populations, 

with the reference values (naïve CD4+ T cells) superimposed in red. Arrows indicate over-

representation of a specific CDR3 length on Tfh cells, a putative consequence of clonal 

selection and expansion. Neither Treg nor Tfr cells show similar expansions (bar graphs 
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below). Mean ± SEM are represented on the bar graphs. (c) Hierarchical clustering of the 

samples from the four populations based on their TRBV perturbation scores, calculated using 

the Tfr group average as reference. Heatmap colour code indicates variations of TRBV scores 

between each sample and the average of Tfr group, while the dendrogram shows distance 

between sample populations. (d) Replicates from different T cell subsets were projected 

according to the first two PCA components. Tfh samples are apart from all the other subsets. 

In all panels, for each T cell population, we used at least three independent replicates, each 

one with cells sorted from 10 – 15 mice. 
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Figure 6. Deep sequencing analysis unveils a different repertoire between Tfr and Tfh cells. 

(a) Frequency of follicular CD4+CXCR5+PD-1+ T cells on popliteal LNs of 1D2β mice before 

(left), and 11 days after OVA-IFA immunization (middle), when both Tfr and Tfh cells are 

present (right). (b) Proliferation of Tfh cells from OVA-IFA immunized 1D2β mice cultured with 

DCs pulsed with OVA or βLG (anti-CD3 was used as positive control). Cell proliferation was 

measured by 3H-thymidine incorporation. Mean ± SEM of culture triplicates are presented and 

are representative of two independent experiments. (c) Venn diagrams showing the number 

of shared clonotypes between Tfr cells and the other four populations for mouse 1. Numbers 

are the Mean ± SD of clonotypes identified after 100 iterations of the sampling process. Tfr 
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cells have more common clonotypes with Treg cells than any other cell population. (d) Clonality 

score for the five populations. (e) Histogram of cumulative frequency across all samples of the 

union of the 20 most predominant clonotypes for each sample. Each colour corresponds to a 

unique clonotype. (f) Heatmap and hierarchical clustering of the 20 most predominant 

clonotypes of Tfr replicates across all samples. Tfr most predominant clonotypes are mostly 

shared with Treg samples, with the exception of one sequence that is common with Treg and 

Tfh samples. (g) Dendrogram showing the overall relation of all sequenced samples using 

Horn-Morisita index distance method. Bootstrap resampling was performed to calculate 

approximately unbiased (AU, in red) p-values for each cluster. In the case of the Tfr and Treg 

cluster, AU = 96% thus the existence of the cluster is strongly supported by the data. For 

sequencing data, histograms present Mean ± SEM for n=4, except for Tfh and Tfr where n=3. 
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Supplementary Figure 1. OT-II.Rag+Treg cells differentiate into Tfr cells independently of the 

immunization and keep Vα2 and Vβ5 expression. (a) Gating strategy to determine the percentage 

of OT-II Treg and Tconv cells that differentiate into Tfr and Tfh cells, respectively. (b) While the 

percentage of OT-II Tconv that differentiate into Tfh is higher in mice immunized with OVA than 

βLG (left), the same percentage of OT-II Treg originates Tfr cells in both immunizations (right). 

Mean ± SEM presented for n=5. 

  



 

 

Supplementary Figure 2. Gating strategies used for cell sorting. (a) Gating strategy to sort Treg 

(CD4+CD25+GITR+) cells from OT-II.Rag+ and C57BL/6 WT mice for in vitro cultures presented on 

Fig. 2g,h. (b) Gating strategy to sort Tfh (CD4+CXCR5+PD-1+Foxp3-), Tfr (CD4+CXCR5+ 

PD-1+Foxp3+), and Treg (CD4+CXCR5-PD-1-Foxp3+) cells from Foxp3hCD2 mice used on the in vitro 

proliferation assay presented on Fig. 4f-h. (c) Gating strategy to sort Tfh (CD4+CXCR5+PD-

1+Foxp3-), Tfr (CD4+CXCR5+PD-1+Foxp3+), Treg (CD4+CXCR5-PD-1-Foxp3+), and Tconv 

(CD4+CXCR5-PD-1-Foxp3-) cells from Foxp3gfp mice for TRBV CDR3 spectratyping/Immunoscope 

analysis (Fig. 5). (d) Gating strategy to sort Tfh (CD4+CXCR5+PD-1+Foxp3-), Tfr (CD4+CXCR5+PD-

1+Foxp3+), Treg (CD4+CXCR5-PD-1-Foxp3+), Tact (CD4+CXCR5-PD-1-Foxp3-CD44+), and Tconv 

(CD4+CXCR5-PD-1-Foxp3-CD44-) cells from 1D2β mice for TRA sequencing analysis (Fig. 6c-g) 

The same strategy was used to sort Tfh cells for the in vitro proliferation assay presented on Fig. 

6b. 

  



 

 

 
Supplementary Figure 3. CDR3 spectratypes obtained from naïve CD4+ T cells. CDR3-length 
usage distribution of 20 TRBV segments from CD4+ T cells from naïve mice that present a 
Gaussian-like distribution. Bar graphs present Mean ± SEM of four samples. 
  



 

 

Supplementary Figure 4. Common clonotypes for Tfr cells and 20 most predominant clonotypes 

of Tfh samples. (a) Venn diagrams of the shared clonotypes between Tfr and other populations for 

mouse 2 and 3. Numbers presented are the Mean ± SD of clonotypes identified after 100 iterations 

of the sampling process. As it was observed on Fig. 6, Tfr cells share more clonotypes with Treg 

cells. Sequencing results for Tfh sample of mouse 3 are not available (NA). (b) Heatmap and 

hierarchical clustering of the 20 most predominant clonotypes for each Tfh sample. The 

predominant clonotypes are mainly shared between Tfh samples and Tact samples.  
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Supplementary Table 1. Pairwise Multiple Comparison Analysis with Holm-Bonferroni Correction 
between Samples TRBV Perturbation Scores. 

 

Tconv1 Tconv2 Tconv3 Tconv4 Tfh1 Tfh2 Tfh3 Tfr1 Tfr2 Tfr3 Treg1 Treg2 

Tconv2 1 - - - - - - - - - - - 
Tconv3 1 1 - - - - - - - - - - 
Tconv4 1 1 1 - - - - - - - - - 

Tfh1 0,014  0,015  0,033  0,016  - - - - - - - - 

Tfh2 0,000   0,000  0,000  0,000  0,673 - - - - - - - 

Tfh3 0,007   0,009  0,012  0,009  1 0,473 - - - - - - 

Tfr1 1 1 1 1 0,017  0,000  0,007  - - - - - 

Tfr2 1 1 1 1 0,162 0,000  0,101 0,495 - - - - 

Tfr3 1 1 1 1 0,002  0,000  0,002  1 1 - - - 

Treg1 1 1 1 1 0,046  0,000  0,004  1 1 1 - - 

Treg2 1 1 1 1 0,037  0,000  0,018  1 1 1 1 - 

Treg3 1 1 1 1 0,007  0,000  0,007  1 1 1 1 1 
 

p<0.05 *, p<0.01 **, p<0.001 *** 

  



 

Supplementary Table 2. List of Primers Used on This Study. 

Sequence Target gene/region Orientation Application 
TCACTGATACGGAGCTGAGGC TRBV1 Forward Spectratyping 
GCCTCAAGTCGCTTCCAACCTC TRBV2 Forward Spectratyping 
CACTCTGAAAATCCAACCCAC TRBV3 Forward Spectratyping 
ATCAAGTCTGTAGAGCCGGAGGA TRBV4 Forward Spectratyping 
CTGAATGCCCAGACAGCTCCAAGC TRBV5 Forward Spectratyping 
AAGGTGGAGAGAGACAAAGGATTC TRBV12-1 Forward Spectratyping 
CATTATGATAAAATGGAGAGAGAT TRBV12-2 Forward Spectratyping 
TGCTGGCAACCTTCGAATAGGA TRBV13-1 Forward Spectratyping 
CATTATTCATATGGTGCTGGC TRBV13-2 Forward Spectratyping 
CATTACTCATATGTCGCTGAC TRBV13-3 Forward Spectratyping 
AGGCCTAAAGGAACTAACTCCAC TRBV14 Forward Spectratyping 
GATGGTGGGGCTTTCAAGGATC TRBV15 Forward Spectratyping 
GCACTCAACTCTGAAGATCCAGAGC TRBV16 Forward Spectratyping 
TCTCTCTACATTGGCTCTGCAGGC TRBV17 Forward Spectratyping 
CTCTCACTGTGACATCTGCCC TRBV19 Forward Spectratyping 
CCCATCAGTCATCCCAACTTATCC TRBV20 Forward Spectratyping 
CTGCTAAGAAACCATGTACCA TRBV21 Forward Spectratyping 
TCTGCAGCCTGGGAATCAGAA TRBV23 Forward Spectratyping 
AGTGTTCCTCGAACTCACAG TRBV24 Forward Spectratyping 
CCTTGCAGCCTAGAAATTCAGT TRBV26 Forward Spectratyping 
TACAGGGTCTCACGGAAGAAGC TRBV29 Forward Spectratyping 
CAGCCGGCCAAACCTAACATTCTC TRBV30 Forward Spectratyping 
ACGACCAATTCATCCTAAGCAC TRBV31 Forward Spectratyping 
GCCCATGGAACTGCACTTGGC TRBC(1) Reverse Spectratyping 

FAM-CTTGGGTGGAGTCACATTTCTC 
TRBC(2)  

(spectratyping run-off) 
Reverse Spectratyping 

CAACGCAGAGTGGCCATTAC Mint-2 universal adapter Forward Sequencing 
GCAGGTGAAGCTTGTCTGGT TRAC Reverse Sequencing 

 


















