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RESUMO 

 

No intestino, três tipos celulares são fundamentais na defensa do organismo perante as 

agressões externas: as células linfóides inatas, as células epiteliais e as células da glia. 

Esta relação funcional entre tecidos sugere a existência de um mecanismo de regulação 

entre o sistema imunitário, o epitélio e o sistema nervoso. 

As células linfóides inatas (ou innate lymphoid cells-ILCs) são os novos membros na 

família dos linfócitos. Como tais, apresentam morfologia linfóide mas por outro lado as 

ILCs não possuem os genes activadores da recombinação (ou recombination activating 

genes-RAG) nem marcadores específicos de outras linhagens celulares. As ILCs 

integram sinais do ambiente e respondem a citoquinas, alarminas e moléculas produzidas 

pelas células epiteliais, as células do estroma e outras células do sistema imunológico. 

Podem ser divididas em três grupos dependendo dos factores de transcrição que regulam 

o seu desenvolvimento e a sua função. 

O grupo 3 das ILCs têm como função regular os tecidos revestidos por mucosas sendo 

de grande importância na preservação da homeostasia. Este grupo compreende células 

indutoras de tecidos linfóides (ou lymphoid tissue inducer cells- LTis) e as células inatas 

linfóides do grupo 3 (ou innate lymphoid cells group 3 – ILC3s e possuem RORγt como 

factor de transcrição fundamental no seu desenvolvimento e função. No intestino, as 

ILC3s encontram-se principalmente agrupadas, junto com outras células do sistema 

imunológico e células do estroma, em estruturas chamadas cryptopatches. As ILC3s são 

de grande importância na formação de tecidos linfóides (LTis), na protecção frente a 

bactérias e são cruciais durante doenças inflamatórias devido ao seu grande potencial 

para produzir citoquinas importantes na protecção da barreira epitelial. Citoquinas como a 

IL-22 vão activar as células epiteliais que são as responsáveis de produzir proteínas 

antimicrobianas e mucus.  

No nosso laboratório, foi descoberto que as ILC3s expressam elevados níveis da proteína 

tirosina cinase RET, o receptor dos factores neurotróficos da família do GDNF (glial cell 

line-dereived neurotrophic factor) (GDNF family ligands – GFLs). Isto foi confirmado tanto 

ao nível de RNA como de proteína utilizando um modelo animal GFP (green fluorescent 

protein) para RET. 

Ret gene - em inglês “rearranged during transfection”- foi descrito em 1985 como um 

proto-oncogene que codifica para a proteína RET essencial para o correto 
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desenvolvimento, maturação e manutenção de diferentes tipos celulares e tecidos. RET é 

expresso em tecidos embrionários, está envolvido na formação dos rins, manutenção das 

células estaminais e no desenvolvimento do sistema nervoso. Para além disso, foi 

também demonstrado que possui um papel crucial na formação de tecidos linfóides, em 

particular nas células hematopoiéticas envolvidas na organogénese das placas de Peyer 

no intestino durante a vida embrionária.  

Dado que a deficiência em RET é embrionariamente letal, para poder perceber o papel 

do RET nas ILC3s foram desenvolvidas quimeras com o fígado fetal de ratinhos 

deficientes nesta proteína. Curiosamente, apesar de não terem sido encontradas 

diferenças no número de células nem de cryptopatches foi observada uma deficiência na 

função das ILC3s, em particular uma diminuição na produção da citoquina IL-22. Em 

concordância, no modelo animal em que há uma activação constitutiva de RET 

(RetMEN2B) encontramos um aumento na citoquina IL-22 procedente das ILC3s, o que 

se traduz numa maior protecção da barreira epitelial. 

Para conseguir estudar o papel de RET nas ILC3s foi desenvolvido no laboratório um 

modelo de ratinho com uma ablação específica de RET nas células com expressão de 

Rorγt. No modelo RorγtCreRetfl/fl (ou RetΔ) encontramos uma diminuição da IL-22 e uma 

redução dos genes envolvidos na reactividade epitelial: mucinas e defensinas.  

Com o fim de perceber o papel de RET não só em condições basais mas também em 

estados de inflamação, os animais RetΔ foram tratados com DSS (dextran sodium sulfate) 

para induzir colite. Nestes animais observamos uma redução na produção de IL-22 e 

consequentemente uma maior ruptura da barreira epitelial o que ao mesmo tempo produz 

maior translocação bacteriana desde o intestino para outros órgãos, tais como, nódulos 

linfáticos e o fígado. Do mesmo modo, os animais RetMEN2B foram tratados com DSS e 

após tratamento, mostraram uma maior produção de IL-22 junto com uma maior 

protecção da barreira epitelial e menor translocação bacteriana para órgãos periféricos. 

Estes resultados mostram o papel protector das RET+ILC3s em modelos de inflamação.  

De forma a estudar o processo inflamatório num contexto mais fisiológico, os animais 

RetΔ foram infectados com a bactéria Citrobacter rodentium que adere às células 

epiteliais e causa colite. Nestes animais, tanto a produção de IL-22 como a expressão 

dos genes de defesa aparecem diminuídos. Além disso observamos um aumento da 

inflamação intestinal, infecção e mortalidade.  

Com o objectivo de perceber a relação de RET e de GFLs na produção de IL-22 por parte 

das ILC3s foi usado um sistema in vitro de organóides epiteliais ou “mini intestinos”. 
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Observamos que quando são adicionados GFLs aumenta a expressão de genes de 

reactividade epitelial de forma dependente de IL-22. Para além disso a presença de GFLs 

nas ILC3s deficientes em RET (RetΔ) não afecta a expressão destes genes em relação 

aos controlos. Estes resultados mostram o papel fundamental de RET na activação das 

ILC3s através de factores neurotróficos.  

Por outro lado, descobrimos que a regulação molecular da produção de IL-22 tem lugar 

após a activação das RET+ILC3s por GFLs e da fosforilação da cascata de sinalização 

p38 MAPK/ERK-AKT. Isto leva a activação de STAT3 que se liga ao promotor da Il22 

iniciando a sua transcrição. 

O sistema nervoso entérico ou também chamado “segundo cérebro” contem uma enorme 

rede de células nervosas. Em particular, nas células da glia do intestino, foi descrita a 

presença de receptores de reconhecimento de patógenos tais como “toll like receptors ou 

TLRs”. Isto juntamente com o facto das células da glia produzirem GDNF – necessários 

para a sinalização de RET- levou-nos a pensar numa regulação nervosa das células do 

sistema imunitário, neste caso, das RET+ILC3s. 

As células da glia exprimem a proteína GFAP (glial fibrillary acidic protein) e para 

identificar a sua localização em relação às ILC3s foi preciso desenvolver um modelo de 

ratinho duplo fluorescente GFP/RFP para as proteínas RET e GFAP. Com este modelo, 

conseguimos perceber que as projecções das células da glia estão localizadas muito 

próximas as cryptopatches, na lâmina própria do intestino.  

Por outro lado, foram desenvolvidas co-culturas de ILC3s e células da glia que mostraram 

a capacidade para produzir GFLs em resposta à activação por TLR2 e TLR4 e também 

por IL-1β e IL-33 promovendo a produção de IL-22. Estudos in vivo com ratinhos 

deficientes em Myd88 (molécula adaptadora para a sinalização por TLRs) nas células da 

glia e tratados com DSS, manifestaram um aumento da inflamação e uma redução na 

expressão de GFLs e IL-22 para além de sofrer uma maior perda de peso em 

comparação com os controlos. Quando infectados com Citrobacter Rodentium os animais 

deficientes em Myd88 foram mais susceptíveis a inflamação intestinal e a infecção.  

Resumindo, as células de glia processam os sinais do ambiente via MYD88 para produzir 

GFLs que ao mesmo tempo activam as RET+ILC3s e pela cascata das MAP cinases e 

STAT3 induzem a transcrição de Il22. A produção de IL-22 por sua vez promove a 

produção de péptidos antimicrobianos e genes de defesa e reparação do epitélio. A 

unidade glia-ILC3-epitélio é crítica na manutenção da homeostasia intestinal sendo 

fundamental na protecção barreira epitelial. Esta descoberta abre mais uma porta na 
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compreensão e nos possíveis tratamentos de doenças inflamatórias intestinais tais como 

doença de Crohn ou cancro. 
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SUMMARY  

 

In this thesis we demonstrate that three distinct players form a novel multi-tissue defence 

unit in the intestinal wall: group 3 of innate lymphoid cells (ILC3s), intestinal epithelial cells 

and enteric glial cells (EGCs). This interplay reveals a neuro-immune interaction unit that 

regulates epithelial homeostasis and mucosal defense. 

ILC3s are major regulators at mucosal surfaces being critical in tissue repair and in the 

maintenance of gut homeostasis. Intestinal ILC3 – that mainly aggregate into 

cryptopatches - integrate environmental signals leading to the production of the pro-

inflammatory cytokines IL-22 and IL-17. IL-22 in turn induces intestinal epithelial cells to 

produce antimicrobial peptides and mucus. 

We found that ILC3s express high levels of RET, a neuroregulatory receptor for GDNF 

family ligands (GFLs). In order to address the effect of RET in ILC3s development and 

function RET-deficient mice foetal liver chimeras were analyzed. Interestingly a decrease 

of IL-22 expressing ILC3s was observed when compared to WT controls. In addition a 

RET gain of function model (RetMEN2B) resulted in increased IL-22 expressing ILC3s.  

In line with these experiments, cell-autonomous ablation of RET in Rorγt expressing cells 

was performed. RorγtCreRetfl/fl, (RetΔ) mice had decrease IL-22 expressing ILC3s and a 

reduction of epithelial reactivity genes such as mucins and defensins comparing with their 

littermate controls. Upon infection with the attaching and effacing bacteria Citrobacter 

rodentium, RetΔ mice had marked gut inflammation, reduced IL-22 producing ILC3, 

increased C. rodentium infection and translocation, reduced epithelial reactivity genes, 

increased weight loss and reduced survival. All these data together, suggest that RET cell 

autonomous ILC3 signals regulate IL-22 production. 

Signals downstream of Ret were regulated via GFLs which directly controled rapid 

phosphorylation of the p38 MAPK/ERK-AKT cascade and STAT3 activation in ILC3s. In 

turn, STAT3 bound to the Il22 promoter to induce transcription.  

Finally, we found that enteric glial cells integrated commensal and environmental signals 

to produce GFLs that control IL-22 production. Physical localization of glial cells in the 

vicinity of ILC3 was observed taking advantage of double reporter mice for GFAP (glial 

fibrillary acidic protein) and RET. Enteric glial cells had a stellate shape morphology, 

projecting into cryptopatches.  
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In vitro co-culture studies showed EGCs capacity to produce GFLs in response to TLR2 

and TLR4 activation and IL-1β and IL-33 stimulation, promoting IL-22 production by 

ILC3s. In vivo studies with DSS induced colitis in glial specific Myd88 deficient mice 

(Gfap-Cre.Myd88Δ) showed an increase of gut inflammation and weight loss along with a 

reduced expression of intestinal GFLs and ILC3-derived IL-22 levels compared with their 

littermate controls. When infected with Citrobacter Rodentium Myd88 deficient mice 

exhibited a pronounced susceptibility to bowel inflammation and infection. 

In summary, we were able to show that the enteric glial cells sense environmental cues 

through MYD88 to produce GFLs that in turn activate RET expressing ILC3s and via MAP 

kinase and STAT3 induce the transcription of Il22. The production of IL-22 promotes the 

expression of defence and repair genes. Thus, this novel glial-ILC3-epithelial unit is critical 

in the maintenance of intestinal homeostasis providing protection and repairing the 

epithelial barrier after injury. 

  



11 

 

INTRODUCTION 

 

The intestinal mucosal barrier isolates the internal body from the external environment 

and is necessary for nutrient absorption and waste secretion1,2. Epithelial cells in the 

mucosa are in contact with the commensal gut microbiota and through recognition of 

multiple receptor molecules are able to identify danger signals from the environment, thus 

avoiding pathogen penetration into the gut wall. Furthermore, the gut mucosa contains a 

vast number of immune cells responsible for the maintenance of tissue homeostasis. 

Importantly, disruptions of the intestinal mucosal barrier and dysfunction of any of its 

components can produce disease3. 

Malfunction of immune cells and their secreted molecules can increase gut permeability, 

altering nutrient absorption and allowing microbial product translocation that further 

increases inflammation4. However, many other factors are involved in the progression of 

intestinal pathologies. As such, we need to take into consideration not only immune 

alterations, but also environmental changes, genetic backgrounds, alterations in the gut 

microbiota and the extensive cell network that constitutes the enteric nervous system, 

which was shown to be altered in inflammatory bowel pathologies3,5. Interactions between 

the central and the enteric nervous system with the intestinal microbiota, diet products and 

immune responses are currently being investigated6. Nevertheless, the mechanisms by 

which the nervous system contribute to inflammatory intestinal pathologies remains 

unclear7–9.  

In Europe approximately 3 million people suffer from inflammatory bowel diseases (IBD) 

costing to the health-care system billions of euros annually10. Bowel inflammation 

pathologies are a worldwide group of diseases that cause patients significant suffering 

due to gastrointestinal tract inflammation and tissue damage. There are two major clinical 

manifestations: Ulcerative colitis (UC) and Crohn´s disease (CD). Despite all efforts made 

so far trying to eradicate these pathologies, there is still no cure for IBD3.  

Since IBD is a chronic inflammation pathology actual treatments are focused on immune 

suppressive drugs that target cytokines and their receptors3. To improve therapeutic 

design and implement new effective treatments to IBD, a better understanding of the 

mechanisms that regulate intestinal barrier homeostasis is needed. 
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The intestinal barrier 

 

After birth, new-borns are exposed to millions of different microorganisms through contact, 

inhalation and ingestion11. Body surfaces such as the skin, the respiratory tract and the 

intestine start to be colonised. From then on, the intestine and its epithelia will act as 

barriers and as a reservoir for trillions of microorganisms from hundreds of different 

species: the gut microbiota12–16. Different organs, cells and molecules are involved in the 

maintenance of a healthy tissue microenvironment and to ensure that, not only the 

immune system but also the nervous system is intimately connected to provide protection 

against infection17,18,6. 

The intestinal epithelial barrier (IEB) is the largest exchange surface between the body 

and the external environment. The IEB consists of a monolayer of epithelial cells 

organized into invaginations, or Lieberkühn crypts (proliferation compartment), and finger-

like projections or villi (differentiation compartment)19. The brush border of epithelial cells 

constitutes an essential interface during infection with adhering bacterial pathogens20,21. 

Importantly, epithelial cells have the ability to repair wounds after an insult22,23, 

proliferating and migrating into the injured tissue while integrating microbial signals 

through pattern recognition receptors. These receptors can sense a wide range of 

microbial products such as peptidoglycans, flagellins, amino acids, microbiota derived 

short-chain fatty acids and butyrate, among others57. 

The IEB allows for absorption of nutrients, but it also controls the passage of pathogens 

and toxins; therefore, changes in paracellular permeability can lead to multiple 

inflammatory and digestive diseases. The IEB plays a critical role in the protection against 

aggressions by deploying different mechanisms: i. the production of antimicrobial peptides 

by enterocytes and Paneth cells; ii. electrolyte production by enterocytes; iii. hormone 

secretion by enteroendocrine cells; and iv. mucus production by goblet cells (Figure 1). 

Epithelial cell renewal in the small intestine relies on pluripotent intestinal stem cells 

located in the base of the crypts with a high rate of cell turnover. Differentiation occurs 

while they migrate upwards into the villi, acquiring their specific absorption and secretion 

functions24. In contrast, Paneth cells migrate downwards to the base of the crypt where 

they become majors elements of the epithelial stem cell niche21. In conclusion, the 

intestinal epithelial barrier is the first line of defence against enteric pathogens and the 

maintenance of an intact IEB function is crucial to ensure health17. 
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Goblet cells and mucus production 

 

The intestinal mucus is produced by specialized mucin secreting cells, or Goblet cells,   

derived from the secretory epithelial cell lineage25. Mucins are synthesized in the 

endoplasmic reticulum and final glycosylations occurs in the Golgi26. Mature mucins are 

then packed into secretory granules to be secreted into the lumen27–30. 

Mucins are proteins with serines, prolines, threonines and carbohydrate chains attached 

by glycoside bonds31. There is a wide range of different mucins classified into three 

groups: i. gel forming; ii. soluble; and iii. membrane-bound mucins21. Changes in the 

composition of mucus and goblet cell function was reported in response to changes in the 

microbiota or in the presence of pathogens, but the mechanism behind these changes 

remains poorly understood26. 

The intestinal mucus allows for protection and lubrication of the epithelium but it is also 

known to be involved in the regulation of foetal development, epithelial renewal and 

carcinogenesis32. Moreover, some enteric bacteria can use mucus for nutrition purposes, 

which facilitates their growth and colonization of the gut33,34. As the mucus layer acts as a 

physical barrier, enteric pathogens have developed mechanisms to interfere with mucin 

production and to cross the mucus barrier34. However, resident commensal bacteria have 

also developed mechanisms to inhibit the adherence of pathogens by means of increasing 

the production of mucins35. 

 

Paneth cells and antimicrobial peptides 

 

Antimicrobial peptides (AMPs) are mostly produced by Paneth cells at the base of the 

crypts of Lieberkühn and are part of the innate immune response being the front line of 

enteric defence36. This antimicrobial system is also present in the airways, gingival 

epithelium, cornea, reproductive tract, urinary and gastrointestinal tract where they can 

develop a rapid response before the adaptive immune system become active37,38. 

Paneth cells are pyramid shaped exocrine cells containing secretory granules with AMPs 

and other antimicrobial molecules such as lysozyme and phospholipase A21,39. 

Antimicrobial peptides are able to control the bacterial composition and, in conjunction 

with the innate immune system, contribute to maintain the crypt microenvironment free 

from pathogens39–42. AMPs are small hydrophobic peptides of 20 to 40 amino acids and 
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are subdivided in two groups: the defensins and the cathelicidins43–45. The antimicrobial 

peptides have also been subdivided according to their secondary molecular structure as 

α-defensins (α helical structure) and β-defensins (β -sheet structure)45. AMPs have a wide 

spectrum of microbicide activity against gram negative and gram positive bacteria, fungi, 

protozoa and viruses21. AMPs can induce damage to microorganisms, binding to their 

surface and forming transmembrane pores46,47. Nevertheless, certain enteric pathogens 

have developed AMPs resistance48. 

 

 

 

  

B 

A Figure 1 - The intestinal epithelial 
barrier. A. Enteric pathogens (red bacteria) 

interact with the host epithelial cells lining 
the villi. At the base of the crypt, Paneth 
cells releas AMPs (red and yellow rings) 
upon exposure to undesirable harmful 
pathogens and/or their bacterial products. 
The commensal (green and blue bacteria) 
intestinal bacteria in the lumen also 
produced antibacterial molecules. B. Four 

epithelial cell lineages are present in the 
intestinal epithelium: Enterocytes 
harbouring microvilli at their apical domain; 
mucus-secreting goblet cells: cell with large 
yellow granules; enteroendocrine cells: cells 
with small, dark granules;Paneth cells: cell 
with small, red granules. In yellow, secreted 
mucins coating the epithelial surface. 
Adapted from Liévin-Le Moal and Servin 

21
.  
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Gut associated lymphoid tissue 

 

The gastrointestinal tract is considered the largest immune organ due to its well-organized 

immune system: the gut associated lymphoid tissue (GALT). The GALT (Figure 2) is 

composed by different lymphoid organs, such as mesenteric Lymph Nodes (mLN), 

Peyer’s Patches (PP), Cryptopatches (CP) and Isolate Lymphoid Follicles (ILF) where T 

and B cells can interact and become activated49. Development of secondary lymphoid 

organs is a well characterized50 process that starts between day 12.5 and 15.5 during 

embryogenesis where foetal liver hematopoietic progenitors start to colonize the gut51,52. 

Enteric secondary lymphoid organ development depends on lymphoid tissue inducer (LTi) 

cells53,54 and it was shown that LTi deficient animals fail to develop LNs, PPs, CPs and 

ILFs55–59. Peyer´s patches formation occurs due to interactions between RET+ lymphoid 

tissue initiator (LTin) and LTi cells with VCAM+ICAM+ lymphoid tissue organiser (LTo) 

stromal cells60. RET and LTo-derived ARTN signalling is crucial in the formation or PPs60. 

Nevertheless, it was shown that RET is not required for the development of LTin or LTi 

cells,  but Ret deficient LTin and LTi cells fail to aggregate into PPs51,52. Different 

cytokines such as TRANCE or IL-7 induce LTi differentiation into LTαβ expressing cells 

which are attracted by chemokines such as CXCL13, CCL19 and CCL21 into the 

emergent anlagen structures60. 

Similar to Peyer´s patches, during the formation of lymphoid nodes LTi cells aggregate 

close to endothelial cells regulating the differentiation of LTo cells61. In this process, 

CD11c+ LTin cells are observed in the primitive lymph node but these cells and RET-

ARTN interactions are dispensable for their development61. 

In the lamina propria of the murine intestine we can also found clusters of group 3 (ILC3s) 

surrounded by dendritic cells (DC) named as cryptopatches. Although CPs start to 

aggregate around day 14 after birth49,62–65, they do not rely on microbiota, thus, it was 

observed that in germ free mice the number of CPs is unperturbed66,67. After contact with 

bacteria or during an inflammation,  B cells are recruited to CP where critical IgA 

mediated-responses develop49,68,69. As occurs in PP, follicular B cells become plasma 

cells controlling microbiota in the lumen of the gut68,70,71. These mature follicles are named 

isolate lymphoid follicles (ILFs) and are large lymphoid structures composed by a single B 

cell follicle surrounded by ILC369. In contrast to LNs and PPs, ILFs maturation depends on 

microbiota62,72, notably in germ free mice that CPs fail to recruit B cells66,67. Thus, ILFs 

only form around weaning time and continuously throughout life when solid food intake 

increase bacterial load67. Pathogen associated molecular patterns induce ILFs 
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aggregation via NOD-1-dependent recognition by epithelial cells67. In addition, expression 

of LTα1β2 and CXCL13 by ILCs regulates ILFs development. LTα1β2 binds to LTβR on 

stromal cells73 up-regulating the expression of the chemokine CXCL13 and adhesion 

molecules in order to recruit and retain lymphocytes72,74. In agreement, LTα and LTβ-

deficient mice do not have  CPs and ILFs 14,75–77. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intestinal microbiota 

 

Presumably, when thinking of a human body the first thing that comes into mind is the 

idea of a separate and unique entity. Far from this, we are the result of millions of years of 

co-evolution with prokaryotic entities which resulted into a balanced host-microbial 

symbiotic relationship. In the last decade the intestinal microbiota got our attention due to 

its capacity to affect the host´s metabolism, immune system and its response to infection. 

Recent studies also showed that the microbiota can affect and be affected by factors such 

as the diet, genetics and immune signals, thus, microbiota sensing by the host may have 

a critical impact in organismic homeostasis, in health and disease78–80. As an example, 

Figure 2 - Associated lymphoid tissue or GALT. The lymphoid 

structures of the gastrointestinal tract include mesenteric lymphoid 
nodes, Peyer´s patches, cryptopatches and ILFs.  Development of PPs 
and MLNs occurs during embryogenesis. After birth, ILC3s induce the 
formation of cryptopatches that, upon challenging with microbiota and 
recruitment of B cells may develop into ILFs

66
. 
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chronic infectious, inflammatory and metabolic diseases in humans have been associated 

with alterations in the composition or localization of commensal bacteria81. 

The intestinal bacterial load is 10 times more abundant than the total number of cells in 

the body.  The microbiome - the collective genome of the microbiota -  contains at least 

100 times more genes than the human genome12, therefore, the microbial composition 

and its metabolites can significantly shape gut microenvironment and dysbiosis can relate 

to disease82. Importantly, the gut microbiota, the epithelial cells and the immune system in 

the gut act together in order to provide protection against deviating pathobionts and 

pathogenic microbes, ensuring the maintenance of a balanced commensal bacterial 

population49,83,84.  
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The enteric immune system 

 

It is well-established that a healthy immune system is necessary to prevent disease and 

immune cells are fundamental to limit pathogen invasion. For that purpose, the immune 

system deploys two major arms of response: the innate and the adaptive immune system.  

The innate immune system first appeared 750 million years ago at almost every level of 

the evolutionary tree of life, that is, vertebrates, invertebrates and plants. It has been 

remarkably conserved throughout the evolution. From a Darwinian point of view innate 

immunity has been crucial for surviving in the so-called “struggle for existence” 85–87.  

The innate immune system is composed by different cell types such as phagocytic cells, 

antigen presenting cells, killer cells and we should also take in consideration epithelial 

cells that are physical barriers, cytokine and chemokines producers, and express a broad 

repertoire of innate immune receptors88. This arm of the immune system also includes 

soluble recognition molecules and the complement system89. Innate immune sensing 

mechanisms include pattern recognition molecules that are able to integrate and perceive 

danger signals from the microenvironment. 

The adaptive immune system arose 500 million years ago and is restricted to vertebrates. 

Its response is mediated by T and B lymphocytes that evolved to express a high number 

of recombinant receptors: the T-cell receptor and the immunoglobulins, respectively, and 

which are capable to recognize defined antigens. B and T lymphocytes have the ability to 

recall previous antigens encounters and mount memory responses that are stronger and 

faster that previous primary immune responses11,86,87,90. 

Although adaptive immune responses are highly specific, they are slow as a consequence 

of the requirement for specific B and T cell clones to be activated and expanded after the 

first contact with a pathogen. The orchestration of immune responses and the production 

of cytokines is crucial for adaptive immunity to infection91. Since single bacteria can 

produce a 20 million progeny in an hour, the adaptive immune system can take a week 

before the response is effective. Accordingly, during the first critical hours and days after 

exposure to a new pathogen we mostly rely on our innate immune system to protect us 

from infection. As such, the innate immune system acts instantaneously as a first line of 

defence and is important until the adaptive immune system become efective11,89. 

Adaptive T cells are activated after binding of their T cell receptor (TCR) with an antigen 

presenting cell. However, in order to control their response many different signals are 

integrated by the T cell; notably, diet derived products, cytokines, microbial products and 
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oxygen levels92. As an example, recent work showed T cell oxygen sensing by prolyl-4-

hydroxylase domain (PHD) proteins as being critical for tumour metastasis into the lung93. 

Interestingly, B cells can also sense environmental cues, such as calcium. Notably, B cells 

can sense calcium levels fluctuations shaping B cell function94.  

 

Pattern recognition receptors  

 

The expression of microbe-associated molecular patterns or MAMPs in endogenous 

bacterial populations and pathogen-associated molecular patterns or PAMPs in enteric 

pathogens can be distinguish through pattern recognition receptors (PRRs)95. Sensing is 

one of the capacities that the organism implements to protect itself from aggressions. 

PAMPS can be recognized by different types of PRRs depending on their localization. 

They can be sub-divided in 3 groups: secreted, cytosolic and transmembrane receptors96. 

 

 The secreted PRRs are the collectins, ficolins and pentraxins and are involved in 

virus, bacteria and fungi infections, clearance of apoptotic and necrotic cells, 

resolution of allergic processes and inflammation96. These proteins can bind to the 

pathogen cell surface, activate the complement or opsonize the pathogen for 

phagocytosis by neutrophils and macrophages96. 

 

 The cytosolic PRRs include the retinoic acid inducible gene I (RIG-I) like receptors 

(RLRs) and the nucleotide-binding domain and leucine-rich repeat containing 

receptors (NLRs). These receptors can detect viral nucleic acids, microbial 

products and a variety of different stress signals95,97. 

  

 The transmembrane PRRs are the family of toll-like receptors (TLR) (Figure 3) and 

C-type lectin receptors that are express either in endosomal organelles or in the 

plasma membrane. Mammals possess 10–13 types of TLRs and each of them 

depends on the PAMP that can recognize. Thus, TLR4 recognizes 

lipopolysaccharide (LPS) of gram- bacteria; TLR1/TLR2 and TLR2/TLR6 

lipoteichoic acids of gram+ bacteria and bacterial lipoproteins respectively and 

TLR5 recognizes flagellin. In addition, endosomal TLRs can sense microbial 

nucleic acids. For instance, dsRNA can be recognized by TLR3, ssRNA by TLR7 

and dsDNA by TLR9. The C-type lectin family of receptors include Dectin-1 that 

recognizes β-glucans and Dectin-2 which senses fungi98.  
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TLRs are membrane-bound glycoproteins with leucine-rich repeats and cysteine-

rich repeats ligand-binding motifs and with a Toll/IL-1 receptor [TIR] as cytoplasmic 

signalling domain99. TIR domains are involved in inflammation100. After activation, 

TIR domains use the adaptor molecule myeloid differentiation primary response 

gene 88 (MyD88) or the TIR domain–containing adapter-inducing INF- β (TRIF). 

Essentially, TLR responses are subdivided in two types depending on the 

molecular pathway that is used: Myd88 or TRIF100. For instance, TLR3 exclusively 

signal through TRIF but other TLRs signal primarily through MyD88. As an 

exception, TLR4 can activate both signalling pathways95,97,99. Interestingly was 

shown that TLRs are express not only in immune cells but also in non-immune 

cells as the enteric nervous cells in the intestine101–103 

 

  

Figure 3 - Localization, signaling pathways and regulation of 
Toll-like receptors (TLRs). TLR1, TLR2, TLR4, TLR5 and TLR6 

localize in the cell surface, TLR3, TLR7, TLR8 and TLR9 localize in 
the endosomes and sense microbial and host-derived nucleic acids. 
TLRs are membrane-bound glycoproteins with a Toll/IL-1 receptor 
[TIR] as cytoplasmic signalling domain. TIR domains use the adaptor 
molecule myeloid differentiation primary response gene 88 (MyD88) 
or the TIR domain–containing adapter-inducing INF- β (TRIF). TLR 
responses are subdivided depending on the molecular pathway that 
is used: Myd88 or TRIF. dsRNA, double-stranded RNA; LPS, 
lipopolysaccharide; miRNA, microRNA; ssRNA, single-stranded 
RNA. Adapted from O'Neill, L. A. et al.

403
. 

 



21 

 

Innate lymphoid cells 

 

In addition to adaptive T lymphocytes, the immune system also harbours the recently 

identified family of innate lymphoid cells (ILCs). ILCs are members of the lymphoid lineage 

and are characterized by their lymphoid morphology, the absence of recombination 

activating genes (RAG) and the lack of cell lineage phenotypical markers83,104. ILC 

responses are important to resolve inflammation and infection53,91. Contrary to T cells, 

ILCs mainly reside in non-lymphoid tissues105. Importantly, ILCs can also express MHC 

class II and present antigens to adaptive lymphocytes106,107. Thus, ILCs can interact with 

other immune cells, such as T cells being important in the coordination of adaptive 

immune responses108–111. Deregulated ILC functions were also shown to contribute to 

chronic inflammatory diseases, metabolic disorders and cancer83. Several studies have 

investigated the role of ILCs in humans112, but little is known on their role in inflammatory 

bowel pathologies. 

Different nomenclatures have been proposed for innate lymphoid cells53, nevertheless, 

there is a consensus in which ILCs can be sub-divided in three main groups based on 

their cytokine production and the expression of transcription factors that regulate their 

development and function (Figure 4). Innate lymphoid cell subsets mirror the T helper cell 

compartments104. As such, ILCs are the innate counterparts of the Th1, Th2 and Th17 

subsets. 

 Group 1 ILCs (ILC1) comprises the cytotoxic NK cells113 - INFγ, TNF, perforin and 

granzyme producers- and helper ILC1s – INFγ and TNF producers - that express 

the transcription factor T-bet. Group 1 ILCs participate in immunity to viruses, 

intracellular pathogens and in tumour surveillance being involved in inflammatory 

diseases114,115. 

 

 Group 2 ILCs (ILC2) comprises IL-5, IL-9, IL-13 and amphiregulin producing cells. 

ILC2 dependent on GATA3, RORα and Notch for their development and function. 

ILC2s are involved in helminthic infections, wound healing and are associated with 

allergy and asthma116–118.  

 

 Group 3 ILCs (ILC3) comprises the foetal Lymphoid Tissue inducer cells (LTis) and 

helper ILC3 - IL-17 and/or IL-22, GM-CSF, TNF and lymphotoxin producers - that 

require RORγt, AHR and Notch for their development and function. Group 3 ILCs 

are involved in lymphoid tissue development, intestinal homeostasis, immunity to 
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extracellular bacteria and are associated with inflammation bowel disease91,119–122. 

Crohn´s disease patients were shown to have altered innate IL-17 119 and reduced 

ILC3 numbers together with increased ILC1s, possibly suggesting that ILC1s may 

derived from the ILC3s counterparts115. 

 

 

 

Development of Innate Lymphoid cells 

 

Innate lymphoid cells derive from a Flt3+IL7Rα+ Common Lymphoid Progenitor (CLP)123 

(Figure 5). Therefore, CLPs in either adult bone marrow or foetal liver can give rise of all 

ILC subsets124. Downstream of CLPs, a common lymphoid precursor (αLP) and the early 

innate lymphoid progenitor (EILPs) are further committed to the helper ILC and NK cell 

lineages125,126. αLP was described as IL7Rα+CXCR6+NFIL3+TOX+α4β7+ 127,128 and EILPs 

as NFIL3+IL7Rα-TCF-1+129. EILPs express Id2 which is not required for their 

development129. NFIL3 regulates the expression of TOX, that is required for the 

development of NK cells and ILC subsets130 and also promotes the expression of the 

transcriptional repressor inhibitor of DNA binding 2 (Id2)131. Differentiation of ILC subsets 

requires ID2 mediated suppression of lymphoid cell fates (as B or T cells) 132. Restriction 

of αLPs into the specific ILC lineages occurs after losing NK-cell and LTi-cell potential131. 

Figure 4 – Innate lymphoid cells. ILCs can be subdivided in cytotoxic ILCs or NK cells and in non-

cytotoxic or helper ILCs which include ILC1s, ILC2s and ILC3s. These different subsets were grouped 
depending on their transcription factors and cytokines that regulate their development and function. ILCs 
respond to a diverse range of signals such as neuropeptides, hormones or cytokines contributing to 
immunity, inflammation and homeostasis. However, dysregulated ILC responses can also contribute to 
chronic inflammatory diseases, metabolic disorders and cancer. AHR, aryl hydrocarbon receptor; Areg, 
amphiregulin; GM-CSF, granulocyte macrophage colony-stimulating factor; IFNγ, interferon-γ; IL, 
interleukin; LTi, lymphoid tissue inducer; NCR, natural cytotoxicity receptor; NK, natural killer; TNF, tumour 
necrosis factor; TSLP, thymic stromal lymphopoietin

83
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ILC1s, ILC2s and ILC3s subsets differentiate via a common helper innate cell precursor 

(ChILP) present in adult bone marrow and foetal which expresses IL-7Rα, α4β7 and ID2. 

A subset of ChILP that express promyelocytic leukemia zinc finger (PLZF) and GATA3 

was designated as helper ILC progenitors (ILCP). ILCP give rise to all helper ILC subsets. 

In contrast, NK cells differentiate from a NK progenitor (NKP) whereas LTi cells from a 

PLZF-ChiLP83,124,127,133. Recently, it was demonstrated the role of PD-1 in ILC progenitors. 

A committed ILC progenitor identical to ILCP was described as PD-1hiIL-25Rhi and is 

critical in ILC2 development134,135. 

ILC progenitors can be found in both in the embryo and adult sharing similar phenotypes 

and developmental programs136. The vast majority of peripheral ILCs are tissue resident 

cells and it was established that these cells have a slow cell turnover in steady state, thus 

suggesting that the majority of ILCs may arise during foetal life137. Nevertheless, it is 

believed that ILC replacement occurs in inflammation or stress situations136. In contrast, 

NK cells continuously move from the blood to tissues regenerating their peripheral pool137. 

The exact mechanism of how resident ILCs and 

NK cells are regenerated and the pathways 

leading to cytotoxic or helper potential are not 

fully understood. It was proposed that ILCs may 

share the same factors that regulate T cell 

differentiation programs138. However, there are 

at least some differences between both systems 

such as the requirement for NFIL3 and ID2136. It 

remains unknown how different cell progenitors 

differentiate into adaptive lymphocytes, NK cells 

or LTis and how they acquired or lose their 

transcription factors. As an example, ILC3 were 

shown to loose RORt expression and give rise 

to IFN producing ILC1 (ex-ILC3s) in certain 

conditions136. 

 

 

 

  

Figure 5 - Development of Innate lymphoid 
cells. Innate lymphoid cells derived from a 

common lymphoid progenitor (CLP). The 
common ILC/NK precursor also express the 
α4β7 integrin. Downstream is an Id2-
expressing precursor and a Id2

+
PLZF

+
 

precursor for non-cytotoxic ILCs. However, 
LTi cells are not derived from that Id2

+
PLZF

+
. 

AHR, aryl hydrocarbon receptor
83

. 
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Group 3 Innate lymphoid cells  

 

ILC3s are key regulators of mucosal barrier defence, notably for the maintenance of a 

healthy gut microbial environment contributing for tissue repair and homeostasis83,53,132. 

ILC3s are required for the proliferation of intestinal stem cells and replenishing the 

epithelial barrier after tissue damage during inflammation139. Interestingly, during 

chemotherapy ILC3s were shown to be radio-resistant mediating interleukin 22 (IL-22) 

production required for tissue protection139. ILC3s have been most studied in the intestinal 

mucosa where they aggregate into cryptopatches and isolate lymphoid follicles134.  

ILC3s rely on the transcription factor RORt140 which is necessary to regulate critical 

genes such as Il17 or Il22. ILC3 are also regulated by the transcription factor AHR, that is 

essential for Th17 and ILC3 survival and function in particular the production of IL-22 by 

NCR+ILC3 cells141 . Noteworthy, AHR is activated by environmental and endogenous 

signals such as diet-derived ligands and microbial products141,142. Another master 

regulator required for ILC3 development is ID2, which acts upstream of RORt and it was 

shown to affect the susceptibility to C. rodentium colonization143. RUNX3 is also required 

for the development of ILC1s and ILC3s144. RUNX3 binds to Rorc (which encodes RORt) 

and it is necessary for optimal RORt expression and also for Ahr transcription144. 

Likewise GATA3 regulates ILC3 development through regulation of CD127 (which 

encodes IL-7Rα) and controls RORt and T-bet in ILC3s145–147.  

ILC3s can be further subdivided according to the expression of the chemokine receptor 

CCR6: i. CCR6+ ILC3 include LTi cells (CD4+ and CD4-); ii. CCR6- ILC3s. CCR6+ LTi cells 

were discover in 1997148 and are crucial in the formation of secondary lymphoid organs 

during embryogenesis60,149. In the embryo, they are known for their Lin- CD45+ RORt+ 

CD4+LTα+LTβ+CD127+CD117+ phenotype150. In adulthood they mature into LTi-like cells 

and are capable of producing IL-22 and IL-17104. LTi-like cells may be fundamental in the 

reconstruction of lymph nodes after acute viral infection151. However, their exact immune 

function in adulthood is still unknown53,152,153. 

CCR6- ILC3s can express the expression of the natural cytotoxicity receptor (NCR) 

NKp46. NCR+ ILC3 are specific IL-22 producers while NCR- can express IL-22 and IL-

17154. Nevertheless, NCR- IL-17 producers can also produce GM-CSF having an important 

role in colitis154. NCR+ cells reside predominantly in mucosal tissues like the skin, lungs 

and intestinal tract mediating the balance between the symbiotic microbiota and the 

immune system91. These ILC populations also rely on signalling through IL-7Rα 53. Innate 



25 

 

IL-22- producers have also been shown to play a critical role against bacterial infections 

such as Citrobacter rodentium83,156. C.rodentium is an attaching and effacing bacteria that 

induce colitis in mice and mirrors the effect of E.coli in humans157. ILC3s were shown to 

have an essential function in C. Rodentium infection model being critical for IL-22 

production121,158. In this model, ILC3s are the predominant population of IL-22 producers in 

the first weeks of infection121,159. Nevertheless, whether innate and adaptive lymphocyte 

functions are redundant is not fully understood. A specific mouse model for ILC3 deletion 

will be extremely useful to understand the exact contributions of T cells and ILC3s. 

Nevertheless, recent work of ILC3 deficiency in humans demonstrated that the functions 

of this subset may be redundant with T cells112, while in long-term-treated HIV-1-infected 

individuals with reduced T cell-derived IL-22 but preserved innate IL-22 displayed intact 

sigmoid mucosa integrity 160. 

 

Environmental sensing by ILC3s 

 

ILCs lack pattern recognition receptors but instead, they can sense cytokines, alarmins, 

lipids, hormones, dietary and microbial products and other molecules released by 

epithelial cells, stromal cells and other immune cells161. In contrast to mouse, human 

ILC3s can also be activated by recognition of pathogen-associated molecular patterns via 

the expression of Toll-like receptors162. As such, ILC3 have the capacity to sense their 

environment and integrate these signals in their functions. For instance, ILC1s can sense 

IL-12161; ILC2s, IL-33 or IL-25163–165 and ILC3s can sense IL-23 and IL-1β among 

others162,165. Innate lymphoid cells were also shown to work as hubs in the crosstalk 

between different systems. As an example, ILC2s can be activated by enteric neurons 

through the neuropeptide VIP possibly regulated by the circadian clock166 and ILC3s were 

shown to express molecules that might allow them to interact with the nervous system167. 

 

ILC3s can respond to a sort of environmental signals, such as diet-derived molecules, 

microbial products and cytokines165. Several sensing mechanisms were shown to affect 

the development and function of different immune cells and organs. 

Vitamin A-derived retinoic acid (RA), can bind to RAR or RXR nuclear receptors in the 

ILCs. Vitamin A is crucial for LTi cell differentiation and for the development of lymphoid 

organs in the embryo168 acting upstream of RORt169. As was previously mention, in the 

formation of lymphoid nodes, LTis are attracted by the chemokine CXCL13 from 

mesenchymal lymphoid organizer cells through LTβR61,170. For this to happen, stimulation 
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by TRANCE, IL-7 and RA is required72,165. This interaction promote the production of 

chemokines which will attract T cells and B cells into the follicle increasing the expression 

adhesion molecules72. In adult mice, RA signals promote ILC3 responses contrary to 

ILC2s that are supressed171. Hence, vitamin A deficient mice fail to resolve Citrobacter 

rodentium infection168,171 although they can effectively resolve helminth infections. 

Another dietary product sense by ILCs is the indole-3-carbinol (I3C) derived from 

cruciferous vegetables such as broccoli172. I3C ligands bind to the nuclear receptor aryl 

hydro-carbon receptor or AHR expressed in the ILC3s172. CCR6−ILC3s are dependent on 

Ahr while CCR6+ILC3s can develop in its absence although their function is affected 

producing less IL-22173. Accordingly, Ahr deficient mice failed to develop cryptopatches 

and to control C. Rodentium infection142,174 .  

ILC3s can sense IL-23 produced by dendritic cells (DCs) or mononuclear phagocytes 

inducing the production of IL-22 and IL-17, the master pro-inflammatory cytokines of the 

ILC3 lineage175. Stimulation of DCs is initiated by the LTβR-LTαβ binding on the ILC3s 

within the cryptopatches and is crucial for IL-23 production176. DCs-derived IL-23 is 

dependent of Notch2 and is required for ILC3 activation. Accordingly IL-23 deficient mice 

were shown to fail in resolving C. Rodentium infection165,175. 

Another important environmental factor is represented by the microbiota. Commensals 

can induce IL-25 production in intestinal epithelial cells and IL-25 acts on DCs to limit 

ILC3s derived IL-22159. In addition, microbial products can be presented by CCR6+ILC3s 

to CD4+T cells through MHC class II inducing apoptotic cell death of activated commensal 

bacteria-specific T cells in the mesenteric lymph node111. Furthermore, in Crohn´s disease 

patients it was observed a reduction of ILC3s MHCII+ cells suggesting a role of this 

pathway in inflammatory bowel pathologies111.  

In conclusion, a better understanding of ILC biology will certainly encompass the 

discovery of metabolites, microbial products and neuron-derived factors that are sensed 

by ILCs and can affect their function. 
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Dual effects of Interleukin 22 

 

Interleukin (IL) -22 belongs to the IL-10 cytokine family (IL-10, IL-19, IL-20, IL-24 and IL-

26)177 and its expressed by innate (DCs, natural killer (NK) cells and ILCs) and adaptive (T 

cells) immune cells178. IL-22 can be regulated by many cytokines such as IL-23, IL-6 or IL-

1β and transcription factors such as STAT3, RORγt or AHR. In this way, ILCs can respond 

to cytokines and produce IL-22 due to their expression of IL-1R and IL-23R104. IL-22 

receptor is an heterodimer composed by IL-22R1 and IL10R2179. In contrast to IL10R2, 

which is expressed by most cells types, IL-22R1 is restricted to non-hematopoietic cells 

such as epithelial cells, stromal cells, keratinocytes or hepatocytes179,180. In enteric 

epithelial cells, IL22-IL-22R1-IL10R2 complex induces the activation of the STAT3 

cascade that regulates many repairing genes, notably MYC, cyclin D1 and other proteins 

involved in proliferation and cell cycle as well as the expression of anti-apoptotic genes 

such as Bcl2, Bcl2l1, and Mcl1181–183. IL-22-derived ILC3 is necessary and sufficient for 

induction of epithelial cell fucosylation, a type of protein glycosylation which protects 

against enteric pathogens, possibly inducing epithelial cells to produce antimicrobial 

molecules158,184–188. The expression of IL22R1 in non-hematopoietic cells makes IL-22 an 

ideal therapeutic candidate specifically affecting tissue responses without targeting 

immune cells. Since Interleukin 22 is associated with IBD, the usage of IL-22 recombinant 

protein was proposed as an anti-inflammatory treatment189.  

 

A dual “beneficial vs pathogenic” role was assigned to IL-22 due its ability to induce pro-

inflammatory (IL-8 or IL-6)190,191 and anti-inflammatory or regulatory (antibacterial peptides 

or IL-10) molecules. IL-22 promotes epithelial cell proliferation to restore the epithelial 

barrier after an insult. IL-22 function is tissue specific contributing to the regulation of 

diseases like hepatitis or IBD187,192 and IL-22 is critical for mucosal homeostasis and tissue 

repair. Nevertheless, exacerbated production of IL-22 can also lead to 

inflammation188,190,193–195. Thus, IL-22 can be beneficial for the host in many diseases but 

in some others it can also be pathogenic showing a strong pro-inflammatory effect that 

can be enhanced when acting together with other pro-inflammatory cytokines such as IL-

17. 

In the C. rodentium colitis model, IL-22 deficient mice fail to resolve infection and to 

induce the expression of antimicrobial proteins, such as epithelial cell-derived 

defensins156, and mucus192. During colitis, IL-22 also induces wound healing through the 

STAT3 pathway196. IL-22 often acts together with IL-17; nevertheless the main role of IL-
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17 is to recruit neutrophils and to induce the expression of pro-inflammatory 

cytokines197,198. In the DSS model, overexpression of IL-22 in T-cell receptor (TCRα)-

deficient mice reduces disease192. Accordingly, blocking of the IL-22 pathway increases 

DSS induced colitis score183,192. Interestingly, IL-23R was shown to be a susceptible gene 

during Crohn’s disease and elevated levels of IL-22 were found in IBD patients, 

correlating levels of cytokine with disease severity199. 

Constitutive expression of IL-22 in the small intestine contributes to the anatomical 

containment of commensal bacteria. While IL-22 is produced constitutively by ILC3s in the 

small intestine, depletion of ILC3s resulted in peripheral dissemination of commensal 

bacteria and systemic inflammation, which could be prevented by administration of IL-22 

recombinant protein200.  

Additionally, IL-22 can also be beneficial in allergy airway inflammation, graft-versus-host 

disease (GFHD) and autoimmune diseases201–203. In liver diseases, IL-22 stimulates the 

proliferation of hepatocytes and regenerates the tissue204. However, in many situations, 

IL-22 acts as a pro-inflammatory cytokine and the dysregulation of its expression can lead 

to pathology. During Toxoplasma gondii infection, IL22-deficient mice show decreased 

signs of inflammation in the small intestine205 while wild type IL-22 sufficient mice die of 

necrosis in the ileum.  

A clear example of the dual effect of IL-22 is found in the skin. IL-22 induces tissue 

defence and wound healing; nevertheless, overexpression of IL-22 can cause skin 

inflammation. In fact, this overexpression produces psoriasis; an hyper proliferation and 

abnormal differentiation of keratinocytes (thickness of the skin) and infiltration of 

leukocytes206. This beneficial or pathogenic role of IL-22 depends on different factors such 

as the concentration and duration of local cytokine, the target tissues and the cytokine 

microenvironment. For instance IFN-α and TNF-α increase IL-22R and IL-10R2 

expression on keratinocytes, thus increasing the capacity to respond to IL-22194,207. In 

addition IFN-α induce differentiation of monocytes into DCs that via IL-23 leads to IL-22 

production208.  

IL-17 has a pro-inflammatory role, but both IL22 and IL-17 can act together to determine 

the protective or pathogenic effect of IL-22198. Acute airway inflammation is lethal in wild 

type mice but is ameliorated in Il22 deficient mice, indicating a pro-inflammatory role of IL-

22. In contrast, Il17 deficient mice are more protected from airway inflammation despite 

higher IL-22 production, thus indicating that IL-17 regulates the pro-inflammatory function 

of IL-22181. 
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Finally, the IL-22 effects can be neutralize by the soluble-secreted receptor IL-22 binding 

protein (IL-22BP)209–211 mainly produced by colon DCs212,213. During DSS-induced colitis 

IL-22 beneficial role was supressed in the presence of IL-22BP, nevertheless during acute 

colitis IL-22BP was downregulated192. It is known that inflammation may predispose to the 

development of colon cancer. In this way, IL-22BP regulates epithelial cell proliferation 

limiting colon tumorigenesis212,214. In a model of IL-22BP deficient mouse tumour induction 

was linked to the insufficiency to control IL-22 effects212. After tissue damage, the 

inflammasomes NLRP3 and NLRP6 downregulate the expression of IL-22BP, which 

increases the proliferative effect of IL-22 promoting tumour development212. 

 

Inflammatory bowel pathologies 

 

Malfunction of the intestinal epithelial barrier is related with ulcerative colitis (UC) and 

Crohn´s disease (CD). Ulcerative colitis was first described in 1859 by Samuel Wilks while 

Crohn´s disease was first reported in 1932215. Although UC and CD are different entities 

from a pathophysiological point of view, both pathologies share clinical manifestations 

including bowel inflammation. Inflammatory bowel diseases (IBD) can course with bloody 

diarrhoea, weight loss, fever, abdominal pain, anxiety, depression and other psychological 

issues216,217. Unfortunately, these diseases are incurable and the available treatments are 

focused on reducing bowel inflammation and infection control218. Nevertheless, different 

factors are involved on the onset and progression of IBD, including environmental 

conditions, lifestyle, genetics and gut microbiota content. 

 

Inflammatory bowel pathologies were shown to correlate with smoking, high fat and high 

sugar diets, stress and drug consumption219. As such, IBD is a “modern pathology” as its 

incidence has increased in the last century220. Interestingly, smokers have milder disease, 

fewer hospitalizations and less need of medications221.  

 

A large number of genes are involved in the modulation of UC and CD, as an example, 

defects in the recognition molecule NOD2 were found in Crohn´s disease patients222,223. It 

is currently known that genetic factors greatly influence Crohn´s disease while their role in 

ulcerative colitis might be less pronouced224. Nevertheless, genetic screenings are not 

indicated to assess the risk of these pathologies218. Another abnormality in this 

pathologies is the high production of pro-inflammatory cytokines such as TNF-α, IL1-β and 

IL-6, but there is no specific pattern allowing to discriminate UC from CD222,223,225,226. 

Differences in humoral and cellular immunity such as IgM, IgA and IgG were found in IBD, 
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while specific increase of IgG1 was found in UC patients227. An important immunological 

feature that distinguishes UC from CD are CD4+ T cell responses. Crohn´s disease 

patients exhibit Th1 responses producing INF while ulcerative colitis patients are 

characterised by atypical Th2 response (with NK cells) producing IL-13 and IL-5227–230.   

 

While intestinal microbial communities are essential for efficient digestion and protection 

against invasive microbes, there is limited evidence on what defines a beneficial gut 

microbiota for intestinal health. Different studies showed that patients with UC or CD have 

a higher density of particular microbes when comparing with healthy patients231, 

nevertheless no particular group of commensal or pathogenic microbes was identified as 

the cause of IBD232.  

 

Faecal microbiota transplantation studies 

 

Microbiota is a key component in inflammation bowel pathologies shaping the response of 

the immune system. Some bacteria populations can affect the development of T 

regulatory cells and pro-inflammatory cells, therefore, dysbiosis can be critical for immune 

responses and any alteration in the microbiota composition can led to disease. Dysbiosis 

implies changes in microbial metabolic products affecting environmental sensing and the 

recognition of pathogenic microbes233. Altered microbial composition was reported in 

Crohn´s disease patients showing invasion of pathogenic enterobacterias, such as 

E.coli231,234–236.  

The fact that dysbiosis is related with disease makes microbial manipulation an interesting 

tool to treat inflammatory bowel pathologies. Gut microbiota is now considered as a virtual 

organ and faecal microbiota transplantation (FMT) has emerged recently as a new 

strategy to ameliorate IBD symptoms237. Nevertheless, clinical trials with IBD patients 

showed diverse results that is in some cases a reduction of inflammation after FMT238 and 

in some others no symptoms remission239. 

Other studies with Irritable bowel syndrome (IBS) patients focused in bacterial genomic 

DNA from faecal samples240. As observed in IBD, microbiota of healthy donors was 

distinct from the one in IBS patients, which had increased Firmicutes and 

Bacteroidetes241. 

Interestingly, many studies have associated microbiota with mental disorders such as 

Parkinson, Multiple sclerosis or autism242. After alteration of gut microbiota with antibiotic 

treatments Parkinson symptoms resolved9,243–245. Coffee and smoking were considered 
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neuroprotective against Parkinson disease, yet through an unknown  mechanism243. 

Additionally, autism was shown to be associated with intestinal microbes. In many patients 

suffering of chronic diarrhoea, antimicrobial treatments led to the appearance of autism 

and distinct bacteria populations where found when compared to healthy controls246. 

The brain-gut axis association was also considered to be involved in many gastrointestinal 

and neurodegenerative disorders. For instance, germ free mice have an over activation of 

the hypothalamic-pituitary-adrenal axis when responding to stress and this was reversed 

only with microbial treatment247. Several studies showed how FMT can alter behaviour, 

however, there is still no evidence on what type of beneficial microbiota may ameliorate 

these kinds of disorders248–250. 

Despite the large amount of correlative data on microbiota and disease, the physiology of 

this process and the exact healthy bacterial populations for each disease remain elusive. 

Nevertheless, the use of FMT could be in the near future an exciting treatment for both 

bowel and mental disorders. 
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Enteric nervous system  

 

The gastrointestinal tract harvests the largest number of nerves and glial cells outside the 

central nervous system (CNS). Our “second brain” is the enteric nervous system251.  

 

The ENS (Figure 6) is composed by more than 100 million neurons and 400 million glial 

cells organized in two major plexus: the myenteric plexus (Auerbach´s plexus) that 

controls gut motor activity and the submucosal plexus (Meissner´s plexus) which role is to 

regulate mucosal processes251,252. The axons that reach the intestinal mucosa are critical 

contributors of neuromediators such as acetylcholine, vasoactive intestinal peptide (VIP), 

substance P and neuropeptide Y. While the ENS has the ability of regulate the 

gastrointestinal functions independently from the central nervous system (CNS), the CNS 

can modulate the activity of the ENS affecting digestive functions253. 

 

The ENS controls a large number of processes including intestinal motility and vascular 

blood flow. However, recent evidence indicates that enteric neurons and enteric glial cells 

can also control intestinal epithelial barrier functions251. Signals released by the microbiota 

were shown to influence the interactions between macrophages and enteric neurons in 

the intestinal muscular layer contributing to gastrointestinal motility254. Thus, the ENS 

together with the immune system and the microbiota should be consider  as major actors 

in the maintenance of the intestinal epithelial barrier 17.  

 

 

 

 

 

 

 

 

 

  

Figure 6 - The enteric nervous 
system. The ENS has 

ganglionated plexuses, the 
myenteric plexus between the 
longitudinal and circular layers of 
the external musculature and the 
submucosal plexus that has outer 
and inner components. Nerve 
fibres connect the ganglia and 
form plexuses that innervate the 
longitudinal muscle, circular 
muscle, muscularis mucosae, 
intrinsic arteries and the mucosa. 
Most immune cells accumulate in 
the lamina propria of the mucosa 
regions, while neuronal cell 
bodies are restricted to the 
submucosal and myenteric 
plexuses. Red processes, 
afferent; light-blue processes, 
efferent

6,404.
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Enteric glial cells 

 

Enteric glial cells (EGCs) were first identified in 1899 by Dogiel255 as nucleated satellite 

cells localized in the proximity of enteric neurons17. As astrocytes from the CNS, enteric 

glial cells express the glial fibrillary acidic protein (GFAP), S100β 256,257 and can also 

express SOX10 258,259 in mature differentiation stages. Different levels of expression of 

those proteins were found in distinct glial cells from the same layer or from different 

compartments, thus suggesting the existence of enteric glial cell subpopulations260,261.   

 

The colon and the small intestinal mucosa are highly innervated by neurons and glial cells 

that derived from neural crest progenitors and colonize the gut during 

embryogenesis262,263. In the intestinal lamina propria a dense network of glial cells is 

known to locate predominantly at the base of the crypts185 and their close proximity to 

intestinal epithelial cells and axons suggests the possibility of paracrine communication 

between these cell types265,266.   

 

In the past decade the knowledge on enteric glial cells increased dramatically thanks to 

new tool implementations6. EGCs have an important role in the maintenance of the IEB 

integrity and paracellular permeability, demonstrated by in vivo ablation of those cells in 

mouse models17,267,268. 

 

Previous studies have also shown regulation of GFAP during intestinal inflammation. For 

instance, upregulation of GFAP in inflamed areas was observed in patients suffering from 

Crohn´s disease and ulcerative colitis268,269. This upregulation of GFAP was also 

associated with an increase in GDNF expression269 and was correlated with a protective 

role on both epithelial cells and enteric neurons270,271. In addition, the RET ligand GDNF 

was described to be synthetized and secreted by enteric glial cells contributing to the 

maintenance of intestinal homeostasis and being critical in colitis and inflammation 

processes. In fact, it was shown that GDNF helps to resolve inflammation after dextran 

sodium sulphate (DSS) induced colitis via regulation of enteric neurons269,270,272,273. 

 

In the intestinal mucosa TLRs are critical for environmental sensing mediating 

inflammation and protection against pathogens274–276. Notably, TLR2 was found to play a 

crucial role in gut homeostasis and its absence relates with inflammatory bowel 

pathologies277,278. Interestingly, TLRs are also expressed in tissues that are not usually 

exposed to microbes such as the nervous system and the smooth muscle. Interestingly, 

enteric glial cells also express TLR299,101,279–281. 
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The lack of murine TLR2 was demonstrated to produce alterations in the enteric nervous 

system together with a dysfunction in mucus secretion and a low production of GDNF101. 

Interestingly, in TLR2 deficient mice those abnormalities were corrected by the 

administration of GDNF101. In addition after DSS induced colitis, TLR2 deficient mice were 

more susceptible to inflammation when compared their wild-type counterparts101. 

Nevertheless, the mechanisms that regulate GDNF expression and its specific target cells 

still needs to be elucidated. 
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RET tyrosine kinase receptor 

 

The Ret gene - rearranged during transfection- was first described as a proto-oncogene in 

1985282–284. The Ret proto-oncogene encodes the protein RET, a tyrosine kinase receptor 

essential for neural crest cell migration and normal proliferation, maturation and survival  

of the enteric nervous system285–287. RET is highly express during development288,289 and 

additionally it has been implied in kidney development, spermatogonial stem cell 

maintenance and it also was recently established a role for RET in the survival and 

function of hematopoietic stem cells290–294. Furthermore, RET is expressed in 

neuroendocrine cells of the thyroid and chromaffin cells of the adrenal gland288,289.  

In humans, Ret is located in the chromosome 10q11.2295 and due to alternative splicing it 

can generate three different protein isoforms RET9, RET43 and RET51 differing on their 

C-terminal amino acid composition296. RET is composed by a large extracellular domain 

with four cadherin-like repeats, which are important to stabilize RET dimers; a cysteine-

rich domain crucial for protein conformation and ligand binding; a transmembrane domain 

and an intracellular kinase domain284,297,298. In the endoplasmic reticulum RET proteins are 

glycosylated to produce immature proteins which have to be processed to obtain the final 

mature protein. 

 

Increasing evidence indicates an important role of RET in the immune system and its 

relevance in the formation of Peyer´s Patches in the intestine60,299. Interestingly, RET is 

express in a subset of lymphoid tissues initiator cells (LTin) (CD45+CD3-CD4-IL-7R-c-

kit+CD11c+
) cells. LTin cells are able to interact with stromal cells via ARTN/GFRa3 axis 

attracting LTi (CD45+CD3-CD4+IL-7R+c-kit+) cells which cluster into Peyer’s patches 

primordia in a chemokine-dependent manner60. RET is also express in hematopoietic 

stem cells (HSC) and it was shown to regulate HSC survival and function293. 

The expression of RET in human B cells, T cells and monocytes was reported several 

years ago300. Similarly to nervous cells in the central nervous system (CNS), immune cells 

were also shown to produce the RET ligands NRTN and GDNF. CNS-derived RET 

ligands were thought to affect immune cells and vice versa, but at that time, the exact 

mechanisms that regulated those processes was unclear300. 

 

Years later another set of data indicated that patients suffering from Hirschsprung disease 

(HSCR), and with hypomorphic mutations of Ret, had increased inflammatory cytokines in 

peripheral blood mononuclear cells (PBMCs).  Notably, PBMC stimulated with the RET 
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ligand GDNF had increased chemokines and inflammatory cytokines such as IL-1β, IL-6 

and IL-8301. 

 

Activation of the RET receptor requires a group of soluble proteins of the glial cell line 

neurotrophic factor (GDNF) family ligands (GFL). GFL protein components includes 

neurturin (NRTN), artemin (ARTN), persephin (PSPN) as well as GDNF first described in 

1993 by Li and colaborators302,303 (Figure 7). However, RET does not bind directly to 

GFLs, it requires additional co-receptors, the GDNF family receptor-α (GFRα) members  

located in the cell surface through a glycosylphosphatidylinositol (GPI) anchor298,302. 

GFRα-GFLs form binary complexes that bind to RET recruiting it into lipid rafts where RET 

signaling takes place304.  

 

Despite some possible cross-talk, GDNF, NRTN, ARTN and PSPN bind preferably to 

GFRα1, GFRα2, GFRα3 and GFRα4, respectively285. This provides specificity and 

selectivity for RET-activating complexes in different cells. Furthermore RET can also 

crosstalk with other tyrosine kinase receptors, adhesion molecules and other cell surface 

proteins helping to stabilize signalling complexes and increase RET activity305–308.  

 

After binding of the GFRα-GFLs complex to RET, the latter dimerizes and auto- 

phosphorylation of intracellular tyrosine residues occurs285,309. This leads to the 

recruitment of adaptor and signalling proteins and the stimulation of multiple downstream 

pathways302,309 along with the activation of RAS–MAPK and PI3K–AKT signalling 

pathways or to the recruitment of the CBL family of ubiquitin ligases that functions in RET 

downregulation290,310,311.  

 

RET controls important biological processes such as cell proliferation, migration, invasion 

and survival  and accordingly act as a potent oncogene being critical in the initiation and 

progression of multiple human malignancies associated to both, loss and gain of RET 

function 285. 



38 

 

Figure 7 - The RET tyrosine kinase receptor. A. RET is the receptor for a family of soluble 

neurotrophic factor ligands, the glial cell line-derived neurotrophic factors (GFLs). Each of these 
ligands interacts with RET via a cell surface co-receptor,  which consists of two to three globular 
protein domains linked to the cell membrane by a glycosylphosphatidylinositol anchor. B. Once 

RET bounds to the ligand–co-receptor complex, conformational changes facilitate RET monomer 
association via the cadherin homology domains and lead to receptor dimerization and 
autophosphorylation (P)

285
. 

       A                                                                         B 
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 RET associated pathologies 

 

The dominantly inherited multiple endocrine neoplasia type 2 (MEN2), a cancer syndrome 

characterized by medullary thyroid carcinoma, is caused by amino acid substitutions in the 

RET protein leading to a constitutive ligand-independent RET aberrant activation and 

stimulation of downstream signals312. There are three clinical types of MEN2 syndromes: 

MEN2A, MEN2B and FMTC (familiar medullary thyroid carcinoma). In particular, MEN2B 

is caused usually by the substitution of a threonine for a Met918 converting the Ret gene 

in an oncogene313. MEN2B is characterized by developmental abnormalities including 

neuromas of the lips, tongue and conjunctivas and intestinal ganglioneuromas289,314. 

Those RET activations are mostly found in thyroid and lung carcinomas285,315–317. Although 

RET mutations are rare in other neoplasms, these were also detected in patients with 

chronic myelomonocytic leukemia and colorectal cancer285.  

Other tumours such as pancreatic carcinoma are associated with RET wild-type protein 

expression318. RET ligands are secreted by pancreatic nerves and stimulate in a paracrine 

manner migration of RET-expressing tumour cells319. It was also found in breast cancer 

that co-expression of RET and GFLs leads to an autocrine activation of tumour cells 

relating with metastasis320. Somatic mutations in RET were also  identify in sporadic 

tumours and are the consequence of Ret locus rearrangements as occur in papillary 

thyroid carcinoma (PTC), lung adenocarcinoma or chronic myelomonocytic 

leukaemia321,322. Inversions or translocations that involve the Ret locus can produce 

chimeric proteins resulting in constitutive cytosolic activated proteins323. 

 

Since RET is express in a wide range of cells, loss of function mutations can also give rise 

to different pathologies including Hirschsprung disease (HSCR) and congenital 

abnormalities of the kidney (CAKUT). HSCR is characterized by abnormalities in the 

embryo neuroblasts migration into the gut leading to the incapacity of neurons and ganglia 

to mature324–326 and producing intestinal motility alterations, aganglionosis and myenteric 

disorders287. Strikingly, fulminant gastroenteritis is frequently associated with paediatric 

cases of HSCR285. 
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Neuro-immune interactions at barrier sites 

 

The Immune and the nervous system recognize, integrate and respond to different signals 

and are the main sensory interfaces between the internal and the external environment18. 

Although well established that these systems  can share similar regulatory 

mechanisms327.  

Every day organisms are faced with external aggressions and the immune and nervous 

systems are continuously evolving to guarantee protection. The immune and the nervous 

system form sophisticated barriers such as the blood/brain and the intestine/body barriers 

that share similar principles: they are physical barriers supported by cells with functional 

and morphological similarities. Despite their distinct embryological origin, nervous and 

immune cells have identical features suggesting shared mechanisms that may have 

evolved in different compartments of the body 328. 

Both systems have a range of similarities such as the usage of transmitters and signalling 

molecules329 being capable of communicate via cytokines, chemokines, neuropeptides, 

neurotransmitters and their receptors330–332. Cytokines and their receptors are produced 

not only by immune cells but also by nervous cells such as microglia, astrocytes and 

neurons333.  

The immune and the nervous system can recognize environmental cues via surface 

receptors. As an example, the TCR in T cells or GABBA receptors in neurons and they 

have the ability to connect and carry information from and to distant parts of the body 

using dendrites and axons in the case of neurons and active or passive mobility in the 

immune cells327. As already referred, TLRs are found in immune and nervous cells and 

are a clear example of a common feature between these two systems103. Another 

example is the neuropeptide Y that is produced by the central nervous system but also by 

lymphocytes affecting cell migration, cytokine release and antibody production 334. 

In contrast, the interplay between the two systems can also be based on synaptic signals. 

Thus, the information is passed through specialized membrane interactions between cells 

of the nervous and immune systems335,336. Strong evidence is emerging suggesting that 

the nervous and the immune system are communicating through synapsis337–339. The 

immune and nervous system functions have somehow converged, raising questions about 

a possible common evolution from an ancestral progenitor cell 327,340. 
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AIMS OF THIS THESIS 

 

The maintenance of a healthy intestinal epithelial barrier is critical to prevent pathologies. 

Previous studies have demonstrated that the commensal microbiota and enteric tissues 

play a critical role in the protection against aggressions. In particular, group 3 innate 

lymphoid cells are main regulators of mucosal barriers, sensing the environment and 

producing cytokines that in turn activate the epithelium to produce antimicrobial peptides 

and mucus156,180. 

Innate lymphoid cells (ILC) are an emergent family of effectors abundantly present at 

mucosal sites. Group 3 ILC (ILC3) produce pro-inflammatory cytokines and regulate 

mucosal homeostasis, anti-microbial defence and adaptive immune responses. ILC 

development and function have been widely perceived to be programmed. However, 

recent evidence indicates that ILC are also controlled by dietary signals. Nevertheless, 

how ILC3 perceive, integrate and respond to environmental cues remains utterly 

unexplored. 

In this thesis, we hypothesise that ILC3 sense their environment and exert their function 

as part of a novel epithelial-glial-ILC unit orchestrated by neurotrophic factors. Thus, we 

employed genetic, cellular and molecular approaches to decipher how this unconventional 

multi-cellular unit is controlled and how glial-derived factors set ILC3 function and 

intestinal homeostasis. 

In order to achieve this, we assessed ILC3-autonomous functions of neurotrophic factor 

receptors. ILC3-specific loss and gain of function mutant mice for neuroregulatory 

receptors were used to define the role of these molecules in ILC3 function, mucosal 

homeostasis, gut defence and microbial ecology. Sequentially we deciphered the 

anatomical and functional basis for the enteric epithelial-glial-ILC units. To this end we 

employed high-resolution imaging and glial-specific mutants for define target genes. 

In conclusion, we aimed at establishing a novel sensing program by which ILC3 integrate 

environmental cues, focusing our efforts in defining a key multi-cellular unit at the core of 

intestinal homeostasis and defence. Finally, we believe that these combined approaches 

may have revealed new target pathways in inflammatory diseases that are major Public 

Health concerns. 
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Abstract 

 

Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at 

mucosal barriers83. ILC3 development has been considered to be programmed83. 

Nevertheless, how ILC3 perceive, integrate and respond to local environmental signals 

remains unclear. Here we show that ILC3 sense their environment and control gut 

defence as part of a novel glial-ILC3-epithelial cell unit orchestrated by neurotrophic 

factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-

autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial 

reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. 

Neurotrophic factors directly controlled innate Il22, downstream of p38 MAPK/ERK-AKT 

cascade and STAT3 activation. Strikingly, ILC3 were adjacent to neurotrophic factor 

expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial 

cells sensed microenvironmental cues in a MYD88 dependent manner to control 

neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to 

impaired ILC3-derived IL-22 and pronounced propensity to gut inflammation and infection. 

Our work sheds light into a novel multi-tissue defence unit, revealing glial cells as central 

hubs of neuron and innate immune regulation via neurotrophic factor signals. 
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Methods 

 

Mice: C57BL/6J mice were purchased from Charles River. RetGFP341, Rag1-/-γc-/-342,343, 

RetMEN2B317, Rosa26YFP 344, Rosa26RFP345, Retfl/fl346, Rorgt-Cre347, Il1b-/- 348 and Myd88-/- 349 

were in a full C57BL/6J background. Gfap-Cre350 bred to Myd88fl/fl 351 were in F8-F9 to a 

C57Bl/6J background. All lines were bred and maintained at IMM Lisboa animal facility. 

Mice were systematically compared with co-housed littermate controls. Both males and 

females were used in this study. Randomization and blinding were not used unless stated 

otherwise. All animal experiments were approved by national and institutional ethical 

committees, respectively Direção Geral de Veterinária and iMM Lisboa ethical committee. 

Germ-free mice were housed at Instituto Gulbenkian de Ciência, Portugal, and Institut 

Pasteur, France, in accordance to institutional guidelines for animal care. Power analysis 

was performed to estimate the number of experimental mice. 

Generation of foetal liver chimeras: For reconstitution experiments, 5x106 foetal liver 

cells were isolated from E14.5 RetWT/GFP or RetGFP/GFP mice and injected intravenously into 

non-lethally irradiated (200rad) alymphoid Rag1-/-γc-/- hosts. Mice were analysed 8 weeks 

post-transplantation. 

Dextran Sodium Sulphate-induced colitis: Dextran Sodium Sulphate (DSS) (molecular 

mass 36,000-50,000 Da; MP Biomedicals) was added into drinking water 3% (w/v) for 5 

days followed by 2 days of regular water. Mice were analysed at day 7. Body weight, 

presence of blood and stool consistency was assessed daily. 

Citrobacter rodentium infection: Infection with Citrobacter rodentium ICC180 (derived 

from DBS100 strain)352 was performed by gavage inoculation of 109 colony forming 

units352,353. Acquisition and quantification of luciferase signal was performed in an IVIS 

system (Caliper Life Sciences). Throughout infection, weight loss, diarrhoea and bloody 

stools were monitored daily. 

Antibiotic treatment: Pregnant females or new born mice were treated with streptomycin 

5g/L, ampicillin 1g/L and colistin 1g/L (Sigma-Aldrich) into drinking water with 3% sucrose. 

Control mice were given 3% sucrose in drinking water as previously described22. 

Microscopy: Intestines from RetGFP and RetGFP chimeras were imaged in a Zeiss Lumar 

V12 fluorescence stereo microscope with a NeoLumar S 0.8x objective using the GFP 

filter. Whole-mount analysis was performed as previously described60,168. Briefly, adult 

intestines were flushed with cold PBS (Gibco) and opened longitudinally. Mucus and 
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epithelium was removed and intestines were fixed in 4% PFA (Sigma-Aldrich) at room 

temperature for 10 minutes and incubated in blocking/permeabilising buffer solution (PBS 

containing 2% BSA, 2% goat serum, 0.6% Triton X-100). To visualise three-dimensional 

structures of the small intestine, samples were cleared with benzyl alcohol-benzyl 

benzoate (Sigma-Aldrich) prior dehydration in methanol60,168. For analysis of thick gut 

sections intestines were fixed with 4% PFA at 4°C overnight and were then included in 4% 

low-melting temperature agarose (Invitrogen). Sections of 100μm were obtained with a 

Leica VT1200/VT1200 S vibratome and embedded in Mowiol (Calbiochem)168. Slides or 

whole-mount samples were incubated overnight or for 1–2 days respectively at 4°C using 

the following antibodies: rat monoclonal anti-B220 (RA3-6B2) (eBioscience), mouse 

monoclonal anti-RORγt (Q31-378) (BD Pharmigen), mouse monoclonal anti-GFAP (GA-5) 

(Sigma-Aldrich), mouse monoclonal anti-GFAP Cy3 (GA-5) (Abcam), anti-GDNF antibody 

(Abcam), DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) (Invitrogen). A647 goat 

anti-rat, A568 goat anti-rat, A647 goat anti-mouse, A488 rabbit anti-GFP, and A488 goat 

anti-rabbit secondary antibodies were purchased from Invitrogen. Neurospheres and 

cultured glial cells were fixed in PFA 4% 10 minutes at room temperature and 

permeabilised in PBS-Triton 0.1% during 30 seconds. After several washing steps with 

PBS cells were incubated with antibodies during 3h at room temperature and then 

mounted in Mowiol354. Samples were acquired on a Zeiss LSM710 confocal microscope 

using EC Plan-Neofluar 10x/0.30 M27, Plan Apochromat 20x/0.8 M27 and EC Plan-

Neofluar 40x/1.30 objectives. Three-dimensional reconstruction of images was achieved 

using Imaris software and snapshot pictures were obtained from the three-dimensional 

images. For analysis of confocal images, cells were counted using in-house software, 

written in MATLAB (Mathworks, Natick, MA). Briefly, single-cell ILC3 nuclei were identified 

via RORγt by thresholding and particle analysis. Regions of interest (ROIs) (Extended 

Data Fig.1i; Bottom panels) were defined from each nucleus for analysis in the GFP 

channel, where staining was considered positive if a minimum number of pixels (usually 

20) were above a given threshold. The software allows for batch processing of multiple 

images and generates individual report images for user verification of cell-counting results 

and co-expression analysis: (https://imm.medicina.ulisboa.pt/en/servicos-e-

recursos/technical-facilities/bioimaging). 

Histopathology analysis: Colon samples were fixed in 10% neutral buffered formalin. 

The colon was prepared in multiple cross-sections or ‘‘Swiss roll’’ technique355, routine-

processed for paraffin embedding and 3-4μm sections were stained with haematoxylin 

and eosin. Enteric lesions were scored by a pathologist blinded to experimental groups, 

according to previously published criteria356–358. Briefly, lesions were individually scored (0-

https://imm.medicina.ulisboa.pt/en/servicos-e-recursos/technical-facilities/bioimaging
https://imm.medicina.ulisboa.pt/en/servicos-e-recursos/technical-facilities/bioimaging
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4 increasing severity) for the following criteria: 1-mucosal loss; 2-mucosal epithelial 

hyperplasia, 3-degree of inflammation, 4-extent of the section affected in any manner and 

5-extent of the section affected in the most severe manner as previously described358. 

Final scores were derived by summing the individual lesion and the extent scores. The 

internal diameter of the crypts was measured in at least five fields (10x magnification), 

corresponding to the hotspots in which the most severe changes in crypt architecture 

were seen. Measurements were performed in an average of 35 crypts per sample/mouse, 

from proximal to distal colon. Intestinal villus height was measured in the jejunum. 

Measurements were performed in slides scanned using a Hamamatsu Nanozoomer SQ 

digital slide scanner running NDP Scan software. 

Enteric glial cell isolation: Enteric glial cells isolation was adapted from previously 

described protocols254,359. Briefly, the muscularis layer was separated from the submucosa 

with surgical forceps under a dissection microscope (SteREO Lumar.V12, Zeiss). The 

lamina propria was scraped mechanically from the underlying submucosa using 1.5mm 

cover-slips (Thermo Scientific). Isolated tissues were collected and digested with Liberase 

TM (7,5 µg/mL; Roche) and DNase I (0.1mg/ mL; Roche) in RPMI supplemented with 1% 

hepes, sodium pyruvate, glutamine, streptomycin and penicillin and 0.1% β-

mercaptoethanol (Gibco) for approximately 40min at 37°C. Single-cell suspensions were 

passed through a 100μm cell strainer (BD Biosciences) to eliminate clumps and debris. 

Flow cytometry and cell sorting: Lamina propria cells were isolated as previously 

described360. Briefly, intestines were digested with collagenase D (0.5mg/mL; Roche) and 

DNase I (0.1mg/ mL; Roche) in RPMI supplemented with 10% FBS, 1% hepes, sodium 

pyruvate, glutamine, streptomycin and penicillin and 0.1% β-mercaptoethanol (Gibco) for 

approximately 30min at 37°C under gentle agitation. For cytokine analysis, cell 

suspensions were incubated 4h in PMA/Ionomycin (Sigma-Aldrich) and Brefeldin A 

(eBioscience) at 37ºC. Intracellular staining was performed using IC 

fixation/permeabilisation kit (eBioscience). Cells were stained using PBS, 1% FBS, 1% 

hepes and 0.6% EDTA (Gibco). Flow cytometry analysis and cell sorting were performed 

using FORTESSA and FACSAria flow cytometers (BD Biosciences). Data analysis was 

done using FlowJo software (Tristar). Sorted populations were >95% pure. Cell 

suspensions were stained with anti-CD45 (30-F11), anti-TER119 (TER-119), TCRβ (H57-

597), anti-CD3ε (eBio500A2), anti-CD19 (eBio1D3), anti-NK1.1 (PK136), anti-CD11c 

(N418), anti-Gr1 (RB6-8C5), anti-CD11b (Mi/70), anti-CCR6 (29-2L17), anti-CD127 (IL-

7Rα; A7R34), anti-Thy1.2 (53-2.1), anti-CD49b (DX5), anti-TCRδ (GL3), anti-NKp46 

(29A1.4), anti-IL-17 (eBio17B7), anti-IL-22 (1H8PWSR), Rat IgG1 isotype control 
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(eBRG1) antibodies, 7AAD viability dye, anti-Mouse CD16/CD32 (Fc block), anti-RORγt 

(AFKJS-9); Rat IgG2aκ Isotype Control (eBR2a) and streptavidin fluorochrome conjugates 

all from eBioscience; anti-CD4 (GK1.5), anti-CD31 (390), anti-CD8α (53-6.7), anti-CD24 

(M1/69), anti-Epcam (G8.8) antibodies were purchased from Biolegend. Anti-RET 

(IC718A) antibody was purchased from R&D Systems. LIVE/DEAD Fixable Aqua Dead 

Cell Stain Kit was purchased from Invitrogen. Cell populations were defined as: ILC3 - 

CD45+Lin-Thy1.2hiIL7Rα+RORγt+; For ILC3 subsets additional markers were employed: 

LTi - CCR6+Nkp46-; ILC3 NCR- - CCR6-Nkp46-; ILC3 NCR+ - CCR6-Nkp46+; Lineage was 

composed by CD3ɛ, CD8α, TCRβ, TCRγδ, CD19, Gr1, CD11c and TER119; Glial cells - 

CD45-CD31-TER119-CD49b+ 47; T cells - CD45+CD3ɛ+; γδ T cells - CD45+CD3ɛ+γδTCR+; 

B cells - CD45+CD19+B220+; Macrophages - CD45+CD11b+F4/80+; Dendritic cells - 

CD45+CD19-CD3ɛ-MHCII+CD11c+; enteric neurons - CD45-RET/GFP+341, Epithelial cells - 

CD45-CD24+Epcam+. 

Quantitative RT-PCR: Total RNA was extracted using RNeasy micro kit (Qiagen) or 

Trizol (Invitrogen) according to the manufacturer’s protocol. RNA concentration was 

determined using Nanodrop Spectrophotometer (Nanodrop Technologies). Quantitative 

real-time RT–PCR was performed as previously described60,168,293. Hprt and Gapdh were 

used as housekeeping genes. For TaqMan assays (Applied Biosystems) RNA was retro-

transcribed using a High Capacity RNA-to-cDNA Kit (Applied Biosystems), followed by a 

pre-amplification PCR using TaqMan PreAmp Master Mix (Applied Biosystems). TaqMan 

Gene Expression Master Mix (Applied Biosystems) was used in real-time PCR. TaqMan 

Gene Expression Assays (Applied Biosystems) were the following: Gapdh 

Mm99999915_g1; Hprt Mm00446968_m1; Artn Mm00507845_m1; Nrtn 

Mm03024002_m1; Gdnf Mm00599849_m1; Gfra1 Mm00439086_m1; Gfra2 

Mm00433584_m1; Gfra3 Mm00494589_m1; Ret Mm00436304_m1; Il22 

Mm01226722_g1; Il17a Mm00439618_m1; Il23r Mm00519943_m1; Rorgt 

Mm01261022_m1; Il7ra Mm00434295_m1; Ahr Mm00478932_m1; Stat3 

Mm01219775_m1; Cxcr6 Mm02620517_s1; Nfkbiz Mm_00600522_m1; RegIIIa 

Mm01181787_m1; RegIIIb Mm00440616_g1; RegIIIg Mm00441127_m1; Defa1 

Mm02524428_g1; Defa-rs1 Mm00655850_m1; Defa5 Mm00651548_g1; Defa21 

Mm04206099_gH; Muc1 Mm00449599_m1; Muc3 Mm01207064_m1; Muc13 

Mm00495397_m1; Gfap Mm01253033_m1; Ascl2 Mm01268891_g; Tff3 

Mm00495590_m1; Relm-b Mm00445845_m1; Pla2g2a Mm00448160_m1; Pla2g5 

Mm00448162_m1; Wnt3 Mm00437336_m1; Ctnnb1 Mm00483039_ m1; Axin2 

Mm00443610_m1; Dll1b Mm01279269_m1; Il18  Mm00434225_m1; Tnfa 

Mm00443260_g1; Lyz1 Mm00657323_m1; Lrg5 Mm00438890_m1;  Tbx21 
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Mm00450960_m1; Id2 Mm00711781_m1; Runx1 Mm01213404_m1; Notch1 

Mm00435249_m1; Notch2 Mm00803077_m1; Gata3 Mm00484683_m1; Bcl2 

Mm00477631_m1; Bcl2l1 Mm00437783_m1; Arntl Mm00500226_m1; Glpr2 

Mm01329475_m1; Gja1 Mm01179639_s1; Ednrb Mm00432989; S100b 

Mm00485897_m1; Sox10 Mm00569909_m1. Real-time PCR analysis was performed 

using ABI Prism 7900HT Sequence Detection System or StepOne Real-Time PCR 

system (Applied Biosystems). 

ILC3 activation and cell signalling: Sorted intestinal ILC3 cells were starved for 3 hours 

in RPMI at 37°C in order to ensure ILC3 viability. Retfl or RetΔ were analysed directly ex 

vivo. To test ERK, AKT, p38-MAPK (Cell Signaling Technology) and STAT3 (BD 

Pharmigen) upon GFL stimulation WT ILC3 were activated with 500ng/mL (each GFL) 

and co-receptors (rrGFR-α1, rmGFR-α2, rrGFR-α3 and rrGNDF from R&D Systems; 

rhNRTN and rhARTN from PeproTech) for 10 and 30min. When referring to the use of 

‘GFL’, we have employed GDNF, NRTN, ARTN and their specific co-receptors in 

combination. For inhibition experiments cells were incubated 1h at 37°C before GFL 

stimulation, to test ERK, AKT, p38/MAPK and STAT3 phosphorylation, or during overnight 

stimulation with GFLs, to determine Il22 expression levels. Inhibitors were purchased from 

Sigma-Aldrich: p38 MAPK/ERK-AKT - LY294002 (LY); ERK - PD98059 (PD); AKT - AKT 

Inhibitor VIII (VIII); p38 MAPK - SB 202190 (SB); and pSTAT3 – S3I-201 (S3I). 

Chromatin immunoprecipitation (ChIP) assay: Enteric ILC3 from adult C57BL/6J mice 

were isolated by flow cytometry. Cells were starved for 3h with RPMI supplemented with 

1% hepes, sodium pyruvate, glutamine, streptomycin and penicillin and 0.1% β-

mercaptoethanol (Gibco) at 37°C. Cells were stimulated with GFLs (500ng/mL each)293, 

lysed, cross-linked and chromosomal DNA-protein complex sonicated to generate DNA 

fragments ranging from 100-300 base pairs. DNA/protein complexes were 

immunoprecipitated, using LowCell# ChIP kit (Diagenode)130, with 3µg of rabbit polyclonal 

antibody against anti-pSTAT3 (Cell Signalling Technology), rabbit control IgG (Abcam) or 

H3K36me3 (07-030; Millipore). Immunoprecipitates were uncross-linked and analysed by 

quantitative PCR using primer pairs (5’-3’) flanking putative sites on Il22. Vehicle (BSA) 

stimulated ILC3s were used as controls. Il22 primer sequences were previously 

described361–363, briefly: a, F-TGCAATCAATCCCAGTATTTTG and R-

CTTGTGCAAGCATAAGTCTCAA; b, F-GAAGTTGGTGGGAAAATGAGTCCGTGA and 

R-GCCATGGCTTTGCCGTAGTAGATTCTG; c, F-ACGGGAGATCAAAGGCTGCTCT and 

R-GCCAACAAGGTGCTTTTGC; d, F-CTCACCGTGACGTTTTAGGG and R-

GTGAATGATATGACATCAGAC; e, F-CGACGAACATGCTCCCCTGATGTTTTT and R-
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AAACTCATAGATTTCTGCAGGACAGCC; f, F-AGCTGCATCTCTTTCTCTCCA and R-

TATCCTGAAGGCCAAAATAGGA; g, F-ACGACCAGAACATCCAGAAGA and R-

GCAGAGAAAGAAATCCCCGC; h, F-AGGGGGACTTGCTTTGCCATTT and R-

AACACCCCTTCTTTCCTCCTCCAT; i, F-CTGCTCCTTCCTGCCTTCTA and R-

CTGAGCCAGGTTTCATGTGA. Primer positions are shown in Fig.3i relative to the 

transcription start codon of Il22. 

Colony forming units and paracellular permeability: Organs were harvested, weighed, 

and brought into suspension. Bacterial colony forming units (CFU) were determined per 

gram of tissue and total organ. CFU were determined via serial dilutions on Luria Broth 

(LB) agar and MacConkey agar (Sigma-Aldrich). Colonies were counted after 2 days of 

culture at 37ºC. To address intestinal paracellular permeability 16 mg per mouse of 

Dextran-Fitc (Sigma Aldrich) were administrated by gavage after overnight starvation. 

Plasma was analysed after 4 hours of Dextran-Fitc administration using a Microplate 

Reader TECAN Infinity F500. 

BrdU administration and Ki-67 labeling: BrdU was administrated by i.p. injection (1.25 

mg/mouse). For flow cytometric analysis of epithelial cell proliferation anti-BrdU (Staining 

Kit for flow Cytometry- eBioscience) and anti-mouse Ki-67 antibody (BioLegend) were 

employed. 

Quantitative PCR analysis of bacteria in stool at the Phylum level: DNA from faecal 

pellet samples was isolated with ZR Fecal DNA MicroPrepTM (Zymo Research). 

Quantification of bacteria were determined from standard curves established by qPCR. 

qPCR were performed with Power SYBR® Green PCR Master Mix (Applied Biosystems) 

and different primer sets using a StepOne Plus (Applied Biosystems) thermocycler. 

Samples were normalized to 16S rDNA and reported according to the 2-ΔΔCT method. 

Primer sequences were: 16S rDNA, F- ACTCCTACGGGAGGCAGCAGT and R- 

ATTACCGCGGCTGCTGGC; Firmicutes, F- ACTCCTACGGGAGGCAGC and R-

GCTTCTTAGTCAGGTACCGTCAT; Bacteroidetes, F- GGTTCTGAGAGGAGGTCCC and 

R-GCTGGCTCCCGTAGGAGT; Proteobacteria, F- GGTTCTGAGAGGAGGTCCC and R-

GCTGGCTCCCGTAGGAGT. 

16S rRNA quantification and gene sequencing: Faeces were isolated from co- 

housed Retfl or RetΔ littermates. Sequencing of the 16S rRNA gene was performed as 

previously described364. Briefly, barcoded primers were used to amplify the V4 region of 

the 16S rRNA gene, and the amplicons were sequenced on a MiSeq instrument (Illumina, 

San Diego, USA) using 150 bp, paired-end chemistry at the University of Pennsylvania 
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Next Generation Sequencing Core. The paired ends were assembled and quality filtered, 

selecting for reads with a quality score ≥30. Reads with >10 bp homopolymers and reads 

shorter than 248 bp or longer than 255 bp were removed from the analysis. 16S rRNA 

sequence data were processed using mothur v 1.25.0365 and QIIME v 1.8366. Chimeric 

sequences were removed with ChimeraSlayer367. Operational taxonomic units (OTUs) 

were defined with CD-HIT368 using 97% sequence similarity as a cut-off. Only OTUs 

containing ≥2 sequences were retained; OTUs assigned to Cyanobacteria or which were 

not assigned to any phylum were removed from the analysis. Taxonomy was assigned 

using the Ribosomal Database Project (RDP) classifier v 2.2369, multiple sequence 

assignment was performed with PyNAST (v 1.2.2)370, and FastTree371was used to build 

the phylogeny. Samples were rarified to 22,000 sequences per sample for alpha- and 

beta-diversity analyses. Taxonomic relative abundances are reported as the median with 

standard deviation. P values were calculated using the Wilcoxon rank-sum test. Statistical 

tests were conducted in R v. 3.2.0. To determine which factors were associated with 

microbial community composition, statistical tests were performed using the non-

parametric analysis of similarities (ANOSIM) with weighted UniFrac distance metrics372. 

Data accession: The sequencing data generated in this study have been submitted to the 

NCBI Sequence Read Archive under BioProject PRJNA314493 (SRA: 

http://www.ncbi.nlm.nih.gov/sra/?term=PRJNA314493). 

Intestinal organoids: IntestiCult™ Organoid Growth Medium and Gentle Cell 

Dissociation Reagent were purchased from StemCell. Intestinal crypts were isolated from 

C57BL/6J mice according to the manufacturer’s instructions and were added to previously 

thawed, ice-cold Matrigel at a 1:1 ratio and at a final concentration of 5,000-7,000 

crypts/mL. 15µL of this mix was plated per well of a 96 well round-bottom plate. After 

Matrigel solidification 100µL of growth medium (100U/mL penicillin/streptomycin) was 

added and replaced every 3 days. Organoids were grown at 37ºC with 5% CO2 and 

passaged according to the manufacturer’s instructions. Freshly sorted intestinal ILC3 were 

added to 5-8 days old epithelial organoids after plating for 24 hours with or without anti-

mouse IL-22 antibody (R&D Systems). 

IL-22 agonist administration in vivo: 150 μg of anti-IL-22 antibody (8E11; gift from 

Genentech, South San Francisco, CA) or mouse IgG1 isotype control (MOPC-21; Bio X 

Cell) was administered i.p. to RetMEN2B mice every 2 days. Animals were analysed 2 

weeks after the first administration. 
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Neurosphere-derived glial cells: Neurosphere-derived glial cells were obtained as 

previously described373. Briefly, total intestines from E14.5 C57BL/6J and Myd88-/- mice 

were digested with collagenase D (0.5mg/mL; Roche) and DNase I (0.1 mg/ mL; Roche) in 

DMEM/F-12, GlutaMAX, supplemented with 1% hepes, streptomycin/penicillin and 0.1% 

β-mercaptoethanol (Gibco) for approximately 30 minutes at 37°C under gentle agitation. 

Cells were cultured during 1 week in a CO2 incubator at 37 °C in DMEM/F-12, 

GlutaMAX™, streptomycin and penicillin and 0.1% β-mercaptoethanol (Gibco) 

supplemented with B27 (Gibco), EGF (Gibco) and FGF2 (Gibco) 20ng/mL. After 1 week of 

culture cells were treated with 0.05% trypsin (Gibco), transferred into PDL (Sigma-Aldrich) 

coated plates and culture in DMEM supplemented with 10% FBS, 1% hepes, glutamine, 

streptomycin and penicillin and 0.1% β-mercaptoethanol (Gibco) until confluence. Glial 

cells were activated with TLR2 (5μg/ml) (Pam3CSK4), TLR3 (100μg/ml) (PolyI:C), TLR4 

(50ng/ml) (LPS), TLR9 (50μg/ml) (DsDNA-EC) ligands from Invivogen and IL-1β 

(10ng/mL) (401ML005), IL-18 (50ng/mL) (B002-5), IL-33 (0.1 ng/mL) (3626ML) 

recombinant proteins from R&D Systems. Cells were also co-cultured with purified ILC3 

from WT and Il1b deficient mice. IL-22 expression in glial-ILC3 co-cultures upon TLR4 

activation was also performed using GDNF (2μg/mL) (AB-212–NA), NRTN (2μg/mL) (AF-

387sp) and ARTN (0.3μg/mL) (AF-1085-sp) blocking antibodies. Cells were analysed after 

24 hours of co-culture. 

Statistics: Results are shown as mean ± SEM. Statistical analysis used Microsoft Excel. 

Variance was analysed using F-test. Student’s t-test was performed on homocedastic 

populations, and Student’s t-test with Welch correction was applied on samples with 

different variances. Analysis of survival curves was performed using a MAntel-Cox test. 

Results were considered significant at *p ≤ 0.05; **p ≤ 0.01. Statistical treatment of 

metagenomics analysis is described in the methods section: 16S rRNA gene sequencing 

and analysis. 
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Results 

 

Group 3 innate lymphoid cells (ILC3) produce pro-inflammatory cytokines, regulate 

mucosal homeostasis and anti-microbial defence83. In addition to their well-established 

developmentally regulated program, ILC3 are also controlled by microbial and dietary 

signals83,142,168,171,173,174 raising the hypothesis that ILC3 possess other unexpected 

environmental sensing strategies. Neurotrophic factors are extra-cellular environmental 

cues to neurons and include the glial-derived neurotrophic factor (GDNF) family ligands 

(GFL) that activate the tyrosine kinase receptor RET in the nervous system, kidney and 

haematopoietic progenitors60,285,293,299,374. 

Analysis of gut lamina propria revealed that ILC3 express high levels of Ret (Fig.1a)161,285, 

a finding confirmed at the protein level and by RetGFP knock-in mice (Fig.1b-d and 

Extended Data Fig.1a-d)341. ILC3 subsets expressed RetGFP and aggregated in 

Cryptopatches (CP) and Isolated Lymphoid Follicles (ILF), suggesting a role of 

neuroregulators in ILC3 (Fig.1b-d and Extended Data Fig.1b-j). To explore this 

hypothesis, we transplanted foetal liver cells from Ret competent (RetWT/GFP) or deficient 

(RetGFP/GFP)341 animals into alymphoid Rag1-/-γc-/- hosts. Ret deficient chimeras revealed 

unperturbed ILC3 and CP development (Fig.1e). Strikingly, IL-22 expressing ILC3 were 

largely reduced despite normal IL-22 producing T cells (Fig.1f,g). In contrast, innate IL-17 

was unaffected by Ret ablation (Fig.1f and Extended Data Fig.2a). In agreement, analysis 

of gain-of-function RetMEN2B mice317 revealed a selective increase of IL-22 producing ILC3 

while their IL-17 counterparts were unaffected (Fig.1h and Extended Data Fig.2b). To 

more specifically evaluate the effects of RET in ILC3, we deleted Ret in RORγt expressing 

cells by breeding Rorgt-Cre to Retfl/fl mice346,347 (Extended Data Fig.3a,b). Analysis of 

Rorgt-Cre.Retfl/fl (RetΔ) mice revealed selective and large reduction of ILC3-derived IL-22, 

but normal IL-22 producing T cells (Fig.2a and Extended Data Fig.3c,d). IL-22 acts on 

epithelial cells to induce reactivity and repair genese83. When compared to their wild-type 

(WT) littermate controls, the RetΔ epithelium revealed normal morphology, proliferation 

and paracellular permeability, but a profound reduction of epithelial reactivity and repair 

genes (Fig.2b and Extended Data Fig.3e-h). Accordantly, the RetMEN2B epithelium 

displayed increased levels of these molecules in an IL-22 dependent manner (Fig.2b and 

Extended data Fig.3i). These results indicate that RET signals selectively control innate 

IL-22 and shape intestinal epithelial reactivity. 
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Figure 1. The neurotrophic factor receptor RET drives enteric ILC3-derived IL-22.a, LTi, NCR
-
 and NCR

+
 

ILC3 subsets, T cells (T), B cells (B), Dendritic cells (Dc), Macrophages (Mø), enteric Neurons (N) and 

mucosal Glial cells (G). b, Ret
GFP

 ILC3. c, Left: Ret
GFP

 gut. White: GFP. Right: ILC3 aggregates. d, 

Cryptopatches (CP), immature (iILF) and mature (mILF) isolated lymphoid follicles. Green: RET/GFP; Blue: 

RORγt; Red: B220. e, Ret
GFP

 chimeras. n=15. f,g, Ret
GFP

 chimeras. Ret
WT/GFP

 n=25; Ret
GFP/GFP

 n=22. h, 

Ret
MEN2B

 mice. n=7. Scale bars: 1mm (c left, e); 50µm (c right); 30µm (d). Data are representative of 4 

independent experiments. Error bars show s.e.m. *P<0.05; **P<0.01; ns not significant. 
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Figure 2. ILC3-intrinsic RET signals regulate gut defence. a, ILC3-derived cytokines. n=11. b, Ret
Δ
 and 

Ret
MEN2B

 mice compared to their WT littermate controls. n=7. c-f, DSS treatment. Ret
fl 

n=8; Ret
Δ
 n=8. c, 

Histopathology. d, Inflammation score and colon length. e, Innate IL-22. f, Bacterial translocation. g-j, DSS 

treatment. Ret
WT 

n=8; Ret
MEN2B

 n=8. g, Histopathology. h, Inflammation score and colon length. i, Innate IL-22. 

j, Bacterial translocation. k-n, C. rodentium infection. Rag1
-/-

.Ret
fl
 n=15; Rag1

-/-
.Ret

Δ
 n=17. k, Histopathology. 

l, Inflammation score and colon length. m, Innate IL-22. n, Infection burden. Scale bars: 200µm. Data are 

representative of 4 independent experiments. Error bars show s.e.m. *P<0.05; **P<0.01; ns not significant. 
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To interrogate whether neurotrophic factors regulate intestinal defence we tested how 

varying degrees of RET signals control enteric aggressions. While RetΔ mice treated with 

Dextran Sodium Sulfate (DSS) had increased weight loss and inflammation, reduced IL-

22 producing ILC3, decreased epithelial reactivity/repair genes and pronounced bacterial 

translocation from the gut, RetMEN2B mutants were highly protected over their WT littermate 

controls (Fig.2c-j and Extended Data Fig.4). Since DSS mostly causes epithelial injury, we 

tested whether ILC3-autonomous RET signals are required to control infection. To this 

end, RetΔ mice were bred to Rag1-/- mice to formally exclude adaptive T cell effects. Rag1-

/-.RetΔ mice were infected with the attaching and effacing bacteria Citrobacter rodentium. 

When compared to their littermate controls, Rag1-/-.RetΔ mice had marked gut 

inflammation, reduced IL-22 producing ILC3, increased C. rodentium infection and 

translocation, reduced epithelial reactivity genes, increased weight loss and reduced 

survival (Fig.2k-n and Extended Data Fig.5). Altogether, these data indicate that ILC3-

intrinsic neurotrophic factor cues regulate gut defence and homeostasis. 

Formal definition that IL-22 is the molecular link between RET-dependent ILC3 activation 

and epithelial reactivity was provided by a multi-tissue organoid system. Addition of GFL 

to ILC3/epithelial organoids strongly induced epithelial reactivity genes in an IL-22 and 

RET dependent manner (Fig.3a,b and Extended Data Fig.6a). To further examine how 

RET signals control innate IL-22 we investigated a gene signature associated with ILC 

identity83. While most of those genes were unperturbed, notably the master ILC 

transcription factors Runx1, Id2, Gata3, Rora, Rorgt, Ahr and Stat3, Il22 was significantly 

reduced in RetΔ ILC3 (Fig.3c and Extended Data Fig.6b). In agreement, activation of ILC3 

with all or distinct GFL/GFRα pairs in trans efficiently increased Il22 despite normal 

expression of other ILC3-related genes (Fig.3d and Extended Data Fig.6c). Activation of 

RET by GFL leads to p38 MAPK/ERK-AKT cascade activation in neurons, while 

phosphorylation of STAT3 shapes Il22 expression285,375. Analysis of RetΔ ILC3 revealed 

hypo-phosphorylated ERK1/2, AKT, p38/MAP kinase and STAT3 (Fig.3e and Extended 

Data Fig.6d). Accordantly, GFL-induced RET activation in ILC3 led to rapid ERK1/2, AKT, 

p38/MAP kinase and STAT3 phosphorylation and increased Il22 transcription (Fig.3d,f 

and Extended Data Fig.6e,f). In agreement, inhibition of ERK, AKT or p38/MAP kinase 

upon GFL activation led to impaired STAT3 activation and Il22 expression (Fig.3g,h). 

Finally, inhibition of STAT3 upon GFL-induced RET activation led to decreased Il22 

(Fig.3h). To examine whether GFL directly regulate Il22 we performed chromatin 

immunoprecipitation (ChIP) (Fig.3i,j)130. Stimulation of ILC3 with GFL resulted in increased 

binding of pSTAT3 in the Il22 promoter and increased trimethyl-H3K36 at the 3’ end of 

Il22, indicating active Il22 transcribed regions (Fig.3d,j)376. Thus, cell-autonomous RET 



57 

 

signals control ILC3 function and gut defence via direct regulation of Il22 downstream of  

TAT3 activation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. ILC3-autonomous RET signals directly control Il22 downstream of pSTAT3. a,b, 

Epithelial/ILC3 organoids. n=9. c, Ret
Δ 

ILC3 compared to their WT controls. n=4. d, ILC3 activation by GFL. 

n=4. e, Ret
Δ
 ILC3. pERK n=8; pAKT n=12; phosphorylated p38/MAP kinase n=6; pSTAT3 n=14. f, ILC3 

activation by GFL. pERK n=10; pAKT n=16; phosphorylated p38/MAP kinase n=3; pSTAT3 n=15. g, pSTAT3 

in ILC3 cultured with medium (n=7), GFL (n=11) or GFL and inhibitors for: p38 MAPK/ERK-AKT (LY) (n=7); 

ERK (PD) (n=7); AKT (VIII) (n=8); and p38 MAPK (SB) (n=6). h, Il22 in ILC3 cultured with GFL (n=17) or GFL 

and the inhibitors LY (n=18); PD (n=16); VIII (n=15); SB (n=15); and the STAT3 inhibitor (S3I) (n=8). i, Il22 

locus. j. ChIP analysis of ILC3 stimulated with GFL. n=10. Data are representative of 3 independent 

experiments. Error bars show s.e.m. *P<0.05; **P<0.01; ns not significant. 
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Propensity to inflammation and dysregulation of intestinal homeostasis have been 

associated to dysbiosis377,378. When compared to their WT littermates, RetΔ mice have 

altered microbial communities as evidenced by quantitative analysis, weighted UniFrac 

analysis and significantly altered levels of Sutterella, unclassified Clostridiales and 

Bacteroides (Fig.4a and Extended Data Fig.7). Discrete microbial communities may have 

transmissible colitogenic potential377,378. Nevertheless, germ-free mice colonised with the 

microbiota of RetΔ or their control littermates revealed similar susceptibility to DSS-

induced colitis and identical innate IL-22 (Fig.4b-d). In agreement, co-housed RetΔ and 

WT littermates had differential propensity to intestinal inflammation (Fig.2c,d). Together, 

these data indicate that dysbiosis per se is insufficient to cause altered innate IL-22 and 

susceptibility to gut inflammation as observed in RetΔ mice (Fig.2c-f). Thus, we 

hypothesised that GFL producing cells integrate commensal and environmental signals to 

control innate IL-22. Accordingly, antibiotic treatment of RetΔ and their WT littermate 

controls resulted in similar ILC3-derived IL-22 (Fig.4e)379. 

Neurotrophic factors of the GDNF family were shown to be produced by enteric glial cells, 

which are neuron-satellites expressing the glial fibrillary acidic protein (GFAP)17,285. 

Strikingly, double reporter mice for ILC3 (RetGFP) and glial cells (Gfap-Cre.Rosa26RFP) 

revealed that stellate-shaped projections of glial cells are adjacent (4.35μm±1.42) to 

RORγt+ ILC3 within CP (Fig.4f and Extended Data Fig.8a). These data suggest a 

paracrine glial-ILC3 crosstalk orchestrated by neurotrophic factors. In agreement, lamina 

propria glial cells were main producers of GFL (Extended Data Fig.8b). Recent studies 

have shown that glial cells express pattern recognition receptors, notably Toll-like 

receptors (TLRs)101,263. Activation of neurosphere-derived glial cells revealed they 

specifically respond to TLR2, TLR4, and the alarmins IL-1β and IL-33, which efficiently 

controlled GFL expression and induced robust innate Il22 in a MYD88 dependent manner 

(Fig.4g-i and Extended Data Fig.8c-g). To formally demonstrate the physiological 

importance of MYD88-dependent glial cell sensing on innate IL-22, we deleted Myd88 in 

GFAP expressing glial cells by breeding Gfap-Cre to Myd88fl/fl mice350,351. Remarkably, 

glial-intrinsic deletion of Myd88 resulted in decreased intestinal GFL, increased gut 

inflammation, impaired ILC3-derived IL-22, and increased weight loss (Fig.4j-m; Extended 

Data Fig.9a-d). In agreement, Gfap-Cre.Myd88Δ mice had increased susceptible to 

C.rodentium infection (Extended Data Fig.9e-h). Thus, mucosal glial cells orchestrate 

innate IL-22 via neurotrophic factors, downstream of MYD88-dependent sensing of 

commensal products and alarmins. 
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Figure 4. Glial cells set GFL expression and innate IL-22, via MYD88-dependent sensing of the 

microenvironment. a, Weighted Unifrac PCoA analysis and genus-level comparisons from co-housed Ret
fl 

(white circles) and Ret
Δ
 (black circles) littermates. n=5. Purple: Unclassified S24-7; Red: Bacteroides; Green: 

Sutterella; Blue: Unclassified Clostridiales; Grey: Other. b-d, DSS treatment of colonised germ-free (GF) mice. 

n=5. b, Histopathology. c, Inflammation score. d, Innate IL-22. e, Innate IL-22 after antibiotic treatment. n=8. f, 

Ret
GFP

.Gfap-Cre.Rosa26
RFP 

mice. Green: RET/GFP; Red: GFAP/RFP. g,h, Glial cell activation with TLR2, 

TLR4, IL-1 receptor and IL-33 receptor ligands. n=6. i, TLR ligands, IL-1β and IL-33 activation of co-cultured 

ILC3 with WT (white bars) or Myd88
-/-

 glial cells (black bars). n=6. j-m, DSS treatment of Gfap-Cre.Myd88
Δ 

mice. n=12. j, Histopathology. k, Inflammation score and colon length. l, Innate IL-22. m, Body weight. Scale 

bars: 200µm (b, j); 10µm (f). Data are representative of 3-4 independent experiments. Error bars show s.e.m. 

*P<0.05; **P<0.01; ns not significant. 
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Discussion 

 

Defining the mechanisms by which ILC3 integrate environmental cues is critical to 

understand mucosal homeostasis. Our work sheds light on the relationships between 

ILC3 and their microenvironment, notably through decoding a novel glial-ILC3-epithelial 

cell unit orchestrated by neurotrophic factors (Extended Data Fig.10). Glial-derived 

neurotrophic factors operate in an ILC3-intrinsic manner by activating the tyrosine kinase 

RET, which directly regulates innate IL-22 downstream of p38 MAPK/ERK-AKT and 

STAT3 phosphorylation (Extended Data Fig.10). Future studies will elucidate further the 

mechanisms inducing RET expression in ILC3. 

Our data demonstrate that in addition to their well-established capacity to integrate 

dendritic cell-derived cytokines380, ILC3 perceive distinct multi-tissue regulatory signals 

leading to STAT3 activity and IL-22 expression, notably via integration of glial cell-derived 

neuroregulators. Thus, rather than providing hard-wired signals for ILC3-immunity, we 

propose that RET signals critically fine-tune innate IL-22 leading to efficient gut 

homeostasis and defence. 

Previous studies demonstrated that neurons can indirectly shape foetal lymphoid tissue 

inducer cells and that ablation of glial cells leads to gut inflammation267,381; here we reveal 

glial cells as central hubs of neuronal and innate immune regulation. Notably, neurotrophic 

factors are the molecular link between glial cell sensing, innate IL-22 and intestinal 

epithelial defence. Thus, it is tempting to speculate that glial/immune cell units might be 

also critical to the homeostasis of other barriers, notably in the skin, lung and brain6. From 

an evolutionary perspective, coordination of innate immunity and neuronal function may 

ensure efficient mucosal homeostasis and a co-regulated neuro-immune response to 

various environmental challenges, including xenobiotics, intestinal infection, dietary 

aggressions and cancer. 
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SUPPLEMENTARY FIGURES 

 

Extended Data Figure 1. ILC3 selectively express the neurotrophic factor receptor RET. a, Expression of 

RET protein in gut CD45
+
Lin

-
Thy1.2

hi
IL7Rα

+
RORγt

+ 
ILC3. b, Analysis of gut ILC3 from Ret

GFP 
mice. 

Embryonic day 14.5 (E14.5). c,d Analysis of enteric ILC3 subsets from Ret
GFP

 mice. e, Analysis of cytokine 

producing ILC3 from Ret
GFP 

mice. f, Pregnant Ret
GFP

 mice were provided with antibiotic cocktails that were 

maintained after birth until analysis at 6 weeks of age. Left: RET/GFP (white). Right: flow cytometry analysis of 

RET/GFP expression in ILC3. Thin line: Ab treated; Bold line: SPF. g, Ret expression in enteric ILC3 from 

Germ-Free (GF) mice and Specific Pathogen Free (SPF) controls. n=4. h, Analysis of lamina propria 

populations from Ret
GFP 

mice. i, Enteric ILC3 clusters. Green: RET/GFP; Blue: RORγt; Red: B220. Bottom: 

quantification analysis for RET/GFP and RORγt co-expression (79,97 ±4,72%). j, Rare RET expressing ILC3 

in intestinal villi. Green: RET/GFP; Blue: RORγt; Red: CD3ɛ. Scale bars: 10µm. Data are representative of 4 

independent experiments. Error bars show s.e.m. ns not significant. 
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Extended Data Figure 2. T cell-derived IL-22 and IL-17 in Ret
GFP 

chimeras and Ret
MEN2B

 mice. a, T cell 

derived IL-17 in Ret
GFP

 chimeras. Ret
WT/GFP

 n=25; Ret
GFP/GFP

 n=22. b, T cell derived IL-22 and IL17 in the 

intestine of Ret
MEN2B

 mice and their WT littermate controls. Ret
WT 

n=7; Ret
MEN2B

 n=7. Data are representative 

of 4 independent experiments. Error bars show s.e.m. ns not significant. 
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Extended Data Figure 3. Enteric homeostasis in steady-state Ret
Δ
 mice. a, Rorgt-Cre mice were bread to 

Rosa26
YFP

. Analysis of Rosa26/YFP expression in gut ILC3 from Rorgt-Cre.Rosa26
YFP

 mice. b, Number of 

Peyer’s patches (PP). Ret
fl 

n=10; Ret
Δ
 n=10. c, T cell derived IL-22 in Ret

Δ
 mice and their WT littermate 

controls. Ret
fl 
n=11; Ret

Δ
 n=11. d, γδ T cell derived IL-22 in Ret

Δ
 mice and their WT littermate controls. Ret

fl 

n=4; Ret
Δ
 n=4. e, Intestinal villus and crypt morphology. Ret

fl 
n=6; Ret

Δ
 n=6. f, Epithelial cell proliferation. Ret

fl 

n=5; Ret
Δ
 n=5. g, Intestinal paracellular permeability measured by Dextran-Fitc in the plasma. Ret

fl 
n=5; Ret

Δ
 

n=5. h, Tissue repair genes in Ret
Δ
 intestinal epithelium in comparison to their WT littermate controls. n=8. i, 

Reactivity genes in Ret
MEN2B 

mice treated with anti-IL-22 blocking antibodies in comparison to Ret
MEN2B

 

intestinal epithelium. Ret
MEN2B

 n=4; Ret
MEN2B

 + anti-IL-22 n=4. Data are representative of 3 independent 

experiments. Error bars show s.e.m. ns not significant.  
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Extended Data Figure 4. Enteric inflammation in mice with altered RET signals. Mice were treated with 

DSS in the drinking water. a, Weight loss of DSS treated Ret
Δ 

mice and their littermate controls. Ret
fl 
n=8; Ret

Δ
 

n=8. b, T cell derived IL-22 in Ret
Δ
 mice and their WT littermate controls after DSS treatment. Ret

fl 
n=8; Ret

Δ
 

n=8. c, Weight loss of DSS treated Ret
MEN2B 

mice and their WT littermate controls. Ret
WT 

n=8; Ret
MEN2B

 n=8. 

d, T cell derived IL-22 in Ret
MEN2B 

mice and their WT littermate controls. Ret
WT 

n=8; Ret
MEN2B

 n=8. e, Intestinal 

villi and crypt morphology. Ret
fl 

n=6; Ret
Δ
 n=6. f, Epithelial reactivity gene expression in DSS treated Ret

Δ
 

mice in comparison to their WT littermate controls. n=8. g, Tissue repair gene expression in DSS treated Ret
Δ
 

mice in comparison to their WT littermate controls. n=4. Data are representative of 3-4 independent 

experiments. Error bars show s.e.m. ns not significant. Error bars show s.e.m. *P<0.05; **P<0.01; ns not 

significant. 
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Extended Data Figure 5. Citrobacter rodentium infection in Ret
Δ
 mice. a, C. rodentium translocation to 

the liver of Rag1
-/-

.Ret
Δ 

and their Rag1
-/-

.Ret
fl 
littermate controls at day 6 post-infection. n=15. b, MacConkey 

plates of liver cell suspensions from Rag1
-/-

.Ret
Δ 

and their Rag1
-/-

.Ret
fl 

littermate controls at day 6 after C. 

rodentium infection. c, Whole-body imaging of Rag1
-/-

.Ret
Δ 

and their Rag1
-/-

.Ret
fl 

littermate controls at day 6 

after luciferase-expressing C. rodentium infection. d, Epithelial reactivity gene expression in C. rodentium 

infected Rag1
-/-

.Ret
Δ 

mice and their Rag1
-/-

.Ret
fl 

littermate controls. Rag1
-/-

.Ret
fl
 n=15; Rag1

-/-
.Ret

Δ
 n=17. e, 

Weight loss in C. rodentium infected Rag1
-/-

.Ret
Δ 

mice and their Rag1
-/-

.Ret
fl 

littermate controls. Rag1
-/-

.Ret
fl
 

n=8; Rag1
-/-

.Ret
Δ
 n=8. f, Survival curves in C. rodentium infected Rag1

-/-
.Ret

Δ 
mice and their Rag1

-/-
.Ret

fl 

littermate controls. Rag1
-/-

.Ret
fl
 n=8; Rag1

-/-
.Ret

Δ
 n=8. g, C. rodentium translocation to the liver of Ret

Δ 
and 

their Ret
fl 
littermate controls at day 6 post-infection. n=6. h, MacConkey plates of liver cell suspensions from 

Ret
Δ 

and their Ret
fl 
littermate controls at day 6 after C. rodentium infection. i, Whole-body imaging of Ret

Δ 
and 

their Ret
fl 

littermate controls at day 6 after luciferase-expressing C. rodentium infection. j, C. rodentium 

infection burden. Ret
fl
 n=8; Ret

Δ
 n=8. k, Innate IL-22 in in C. rodentium infected Ret

Δ 
mice and their Ret

fl 

littermate controls. Ret
fl
 n=8; Ret

Δ
 n=8. Data are representative of 3-4 independent experiments. Error bars 

show s.e.m. ns not significant. Error bars show s.e.m. *P<0.05; **P<0.01; ns not significant. 
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Extended Data Figure 6. Glial-derived neurotrophic factor family ligand (GFL) signals in ILC3. a, Multi-

tissue intestinal organoid system. Scale bar: 20µm. Black arrows: ILC3. b, Expression of ILC-related genes in 

ILC3 from Ret
Δ 

mice in comparison to their littermate controls. n=4. c, ILC3 activation with all GFL/GFRα pairs 

(GFL); single GDNF family ligand (GDNF, ARTN or NRTN); or single GFL/GFRα pairs (GDNF/GFRα1, 

ARTN/GFRα3 or NRTN/GFRα2) compared to vehicle BSA. n=5. d, ILC3 from Ret
Δ 

mice (open black) and their 

littermate controls (open dash). Isotype (closed grey). e, 30 minutes activation of ILC3 by GFL (open black) 

compared to vehicle BSA (open dash). Isotype (closed grey). f, 10 minutes activation of ILC3 by GFL. pERK 

n=8; pAKT n=8; phosphorylated p38/MAP kinase n=8; pSTAT3 n=8. Similar results were obtained in at least 

3-4 independent experiments. Error bars show s.e.m. *P<0.05; **P<0.01; ns not significant. 
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Extended Data Figure 7. Alterations in the diversity of intestinal commensal bacteria of Ret
Δ 

mice. a, 

Quantitative PCR analysis at the Phylum level in stool bacterial from co-housed Ret
fl 

and Ret
Δ
 littermates in 

steady state. n=5. b, Metagenomic Phylum level comparisons in stool bacterial from co-housed Ret
fl 
and Ret

Δ
 

littermates in steady state (left) and after DSS treatment (right). n=5. c, Genus level comparisons in stool 

bacterial from co-housed Ret
fl 
and Ret

Δ
 littermates in steady state (left) and after DSS treatment (right). n=5. 

Error bars show s.e.m. *P<0.05; **P<0.01; ns not significant. 
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Extended Data Figure 8. GFL expressing glial cells anatomically co-localise with ILC3. a, Intestine of 

Ret
GFP 

mice. Green: RET/GFP; Red: GFAP; Blue: RORγt. Similar results were obtained in three independent 

experiments. b, Purified lamina propria LTi, NCR
-
 and NCR

+
 ILC3 subsets, T cells (T), B cells (B), Dendritic 

cells (Dc), Macrophages (Mø), enteric Neurons (N) and mucosal Glial cells (G). c, Neurosphere-derived glial 

cells. d, M: medium. Activation of neurosphere-derived glial cells with TLR2 (Pam3CSK4), TLR3 (Poli I:C), 

TLR4 (LPS) and TLR9 (DsDNA-EC) ligands, as well as IL-1β, IL-18 and IL-33. n=6. e, Il22 in co-cultures of 

glial and ILC3 using single or combined GFL antagonists. n=6. f, Il22 in co-cultures of ILC3 and glial cells from 

Il1b
-/- 

or their WT controls. n=3. g, Gdnf, Artn and Nrtn expression in glial cells and ILC3 upon TLR2 

stimulation. n=3. Scale bar: 30µm.Similar results were obtained in at least 4 independent experiments. 
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Extended Data Figure 9. Glial cell sensing via MYD88 signals. a-c, Intestinal glial cells were purified by 

flow cytometry. a, Germ-free (GF) and their respective Specific Pathogen Free (SPF) controls. n=3. b, Myd88
-

/-
 and their respective WT littermate controls. n=3. c, Gfap-Cre.Myd88

Δ 
and their littermate controls (Myd88

fl
). 

n=3. d, Total lamina propria cells of Gfap-Cre.Myd88
Δ 

and their littermate controls (Myd88
fl
). n=6. e-h, 

Citrobacter rodentium infection of Gfap-Cre.Myd88
Δ 

mice and their littermate controls (Myd88
fl
). n=6. e, Innate 

IL-22. f, Citrobacter rodentium translocation. g, Infection burden. h, Weight loss. Data are representative of 3 

independent experiments. Error bars show s.e.m. *P<0.05; **P<0.01; ns not significant. 
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Extended Data Figure 10. A novel glial-ILC3-epithelial cell unit orchestrated by neurotrophic factors. 

Lamina propria glial cells sense microenvironmental products, that control neurotrophic factor expression. 

Glial-derived neurotrophic factors operate in an ILC3-intrinsic manner by activating the tyrosine kinase RET, 

which directly regulates innate IL-22 downstream of a p38 MAPK/ERK-AKT cascade and STAT3 

phosphorylation. GFL induced innate IL-22 acts on epithelial cells to induce reactivity gene expression (CBP: 

Commensal bacterial products; AMP: antimicrobial peptides; Muc: mucins). Thus, neurotrophic factors are the 

molecular link between glial cell sensing, innate IL-22 production and intestinal epithelial barrier defence.  
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GENERAL DISCUSSION AND PERSPECTIVES 

 

Non-scientific articles are published every day in popular media such as health 

magazines, pseudo-medicine journals or internet “bio-guides”, among others. This 

information is usually based on people’s experiences and passed down through 

generations. Acupuncture, herbal or traditional Chinese medicine have been widely used 

for thousands of years as a way to cure inflammation bowel disorders and mental 

disorders such as depression or anxiety. Body-brain interactions are the basis of that 

pseudo-scientific knowledge in which scientists are often sceptic. This lack of credibility is 

due to the absence of scientific mechanistically studies and reproducibility. Nevertheless, 

an increase amount of data has recently emerged to support an important role of neuro-

immune interactions in physiology and organismic homeostasis. From an evolutionary 

perspective, we can consider that the immune and the nervous systems evolved as 

interfaces between the inner body and the external environment. This immune/nervous 

co-regulation is becoming nowadays one of the most popular fields of study in the 

biological sciences.  

Many studies have shown the relevance of immune cytokines and chemokines in the 

central nervous system and their relation with neuronal functions and behaviour382–385. On 

the other hand, immune cells can also respond to neurotransmitters from neurons386–388. 

Moreover, both systems are located in close proximity within different organs as it was 

recently shown with the muscularis macrophages in the gut254. Taking this together with 

the role of glial cells in the modulation of ILC3 function, we can hypothesise that ILC3s 

play a role in neural function. ILC3s release cytokines to their microenvironment that may 

modulate the central and the enteric nervous system. An interesting approach would be to 

identify the expression of different pro-inflammatory cytokine receptors such as the IL-22 

or IL-17 receptors in some of the cells that compose the enteric nervous system. In this 

scenario, regulation of the nervous system through innate cytokines would have a direct 

impact in neurological responses, possibly working as a relay station for dietary and 

microbial products.  

How neurons and immune cells cooperate to regulate physiological processes and to 

maintain tissue homeostasis is a fascinating issue. Neurological states can negatively 

impact in immunological activities389. As an example, prolonged periods of stress were 

related to viral infections in the respiratory tract390,391. Moreover, chronic stress or 

depression can activate the hypothalamic-pituitary-adrenal (HPA) axis and the 

sympathetic-adrenal-medullary (SAM) axis392. In this context, both axis can persistent 



72 

 

secrete glucocorticoids and noradrenaline respectively which would impact on the immune 

functions393. In addition, neurotransmitters such as acetylcholine (Ach), dopamine, 

serotonin and noradrenaline were shown to be implicated in neuro-immune 

interactions394395. Although is not fully characterized, adrenaline and noradrenaline can 

control different immune processes such as cell proliferation, cytokine and antibody 

production396 and acetylcholine (Ach) plays also an important role during inflammation 

binding to macrophage Ach receptors395.  

The blood brain barrier (BBB) separates the brain from the invasion of pathogens. The 

entrance of lymphocytes in steady state conditions is very low; however, in inflammatory 

diseases it was observed that lymphocytes and macrophages can cross the BBB. 

Lymphocytes can lead to an inflammatory response, releasing cytokines and chemokines 

that can modulate the central nervous system in ways still very poorly understood. Thus, it 

is fundamental to understand the presence of neuro-immune units in steady state and 

inflammatory conditions. As an example, the identification of CNS lymphatics that drain 

the brain parenchyma into the deep cervical lymph nodes397 provides an anatomical link 

between behavioural traits and the immune system. Furthermore, single-cell 

transcriptomic analysis and injury models have suggested that interferon- (IFN-) 

signalling is likely to control the homeostasis of neural stem cells in the adult brain398 and 

appears to serve as a mediator of the effects of meningeal immunity on brain function399. 

The immune system can respond to a wide range of signals. In particular, innate lymphoid 

cells can be activated by diet products, cytokines, hormones and other factors modulating 

their IL-22 production56,400. Microbiota can induce not only IL-23 by dendritic cells, thus 

indirectly inducing IL-22, but microbial products can also induce IL-25 expression by 

enterocytes. Interestingly, it was shown that IL-25 represses ILC3 derived-IL-22159. 

Therefore, this pathway is critical to establish a microbiota-immune-epithelial balance in 

the gastrointestinal tract. Thus it would be interesting to study this balance in the 

susceptibility to inflammation and colon cancer. 

Our data confirm that Ret is expressed in ILC3s while RET ligands and its co-receptors 

are expressed in enteric glial cells located in their close proximity. This allows ILC3s to 

crosstalk in a paracrine manner with enteric glial cells. Furthermore, our findings reveal 

that in addition to their capacity to sense dendritic cell-derived cytokines, ILC3 can be also 

activated by neurotrophic factors.  Specific ablation of Ret in ILC3s resulted in cytokine 

malfunction, translated by decreased IL-22 cytokine. In agreement, constitutive activation 

of Ret produce increase ILC3-derived IL-22, indicating that RET has a critical role in ILC3 

function. Interestingly, enteric glial cells were main producers of ligands and co-receptors 



73 

 

of RET, and their close proximity to ILC3s made them perfect candidates for ILC3 

regulators. In agreement, we demonstrated that glial cells sense environmental products 

through TLR2 and TLR4, thus increasing RET ligand production. Specific ablation of 

Myd88 -adaptor molecule for TLR sensing- in glial cells produced a decrease in IL-22 

producing and infection with C. Rodentium of mice lacking Myd88 in glial cells resulted in 

pronounced pathology. 

Mucosal surfaces are protected with epithelial cells that constitute the first line of defence 

against invading pathogens380. Noteworthy, ILCs are also found abundantly at mucosal 

sites83. Thus, it is likely that epithelial-glia-ILC units may also exist beyond the gut. 

Preliminary data in our laboratory revealed that the expression of the neurotrophic factor 

receptor Ret is found not only in ILC3s, but also in ILC2s. Since RET+ILC2s were found to 

be present in the gut and in the lungs these may be important for the resolution of 

respiratory and intestinal disorders such as asthma or allergy. The mucosal epithelia of 

the lungs act as barrier which has to block the passage of invasive pathogens. Thus, we 

can hypothesise that a glial-ILC2 unit may regulate important aspects of innate type 2 

cytokine programmes. 

The fact that the enteric nervous system senses environmental signals through pattern 

recognition receptors, while neurotrophic factors regulate the function of haematopoietic 

cells, strongly indicates that microbe-neuro-immune interaction may control intestine 

physiology. An increasing number of studies are currently emerging showing that the 

intestinal microbiota can influence metabolic, immune and nervous pathways in the host. 

In our study, we have analysed bacterial populations present in faeces. We showed that in 

steady state RetΔ mice had increase the Proteobacteria (increased in IBD patients401) and 

upon DSS-induced colitis the phylum Firmicutes (present in healthy individuals402) was 

preferentially reduced in RetΔ mice. As such, we speculated that a reduction of this 

beneficial microbiota, although not colitogenic, may enhance enteric inflammation in RetΔ 

mice. In line with this idea, treatments with pre- and pro-biotics have been developed in 

order to ameliorate the symptoms of inflammation bowel disease patients and to treat 

mental disorders. However, is still unknown what defines a beneficial microbiota that could 

act as a possible treatment. A better knowledge of the population pool of microbes 

existing in each pathology will be extremely important to understand their particular role in 

health and disease.  

In this thesis we described an alternative pathway in which ILC3s can perform their 

function crosstalking with the enteric nervous system and enteric epithelial cells. We found 

a new mechanism by which ILC3 can be activated by glial derived neurotrophic factors in 
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order to control inflammation. This new discovery further supports a neuroregulatiory axis 

of immunity, suggesting that inflammation bowel pathologies might be affected by the 

nervous system acting as one of the main players involved in their onset and progression. 

It is still unclear in which physiological conditions the organism predominantly use the IL-

23 or the glial-ILC3 pathway. Are all of those pathways acting simultaneously? Further 

studies will be required to better understand the exact mechanisms that regulate innate IL-

22 production.  

The fact that ILC3s are necessary in human health and disease is being discussed in 

recently studies showing some redundancy of T cells and ILC3s. Here, we showed the 

effect of ILC3s in T cell sufficient and deficient mice, showing the critical importance of 

ILC3s in the progression of inflammatory conditions, notably as critical regulators in DSS 

and C. Rodentium colitis.  

Finally, from my point of view and as future directions, I consider that we need to better 

characterize the different enteric glial cell populations and how they may regulate mucosal 

immunity and physiology. Notably, which glial-derived factors may modulate and resolve 

mucosal pathologies and how these factors relate with specific microbiota entities. In a 

developmental point of view, another issue would be to understand the role of glial cells in 

the formation of innate lymphoid structures throughout embryonic life. These neuro-

immune interactions could be also regulating the formation of lymphoid follicles such as 

cryptopatches and Peyer´s patches already known to contain RET+ cells.  

Currently there is no cure for IBD patients and nowadays medical doctors are focused on 

the improvement of patient’s quality of life reducing their symptoms. Innate lymphoid cells 

changes were observed in human inflamed tissues within different diseases, thus, a 

precisely study of the role of the different subsets of ILCs will allow us to target them and 

eventually prevent disease. In this way, ILCs could be the missing pieces that are still 

lacking in the inflammation bowel pathology puzzle. 

Our finding that neurotrophic factors control innate IL-22 may pave the way for novel 

therapeutic approaches in IBD. It is crucial to identify and understand the role of RET in 

human ILC3s and its influence in inflammatory pathologies.  Can we modulate the 

production of neurotrophic factors by faecal transplantation treatments? Additionally, the 

interaction of glial cells with other types of RET+ cells in the gut, such as T cells, ILC2s or 

enteroendocrine cells could modulate the onset, progression and resolution of different 

pathologies. If so, we might be able to ameliorate bowel inflammation conditions that are 

major Public Health concerns.   
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Glial-cell-derived neuroregulators control type 3 
innate lymphoid cells and gut defence
Sales Ibiza1*, Bethania García-Cassani1*, Hélder Ribeiro1, Tânia Carvalho1, Luís Almeida1, Rute Marques2†,  
Ana M. Misic3†, Casey Bartow-McKenney3, Denise M. Larson4, William J. Pavan4, Gérard Eberl2,  
Elizabeth A. Grice3 & Henrique Veiga-Fernandes1,5

Group 3 innate lymphoid cells (ILC3) are major regulators of 
inflammation and infection at mucosal barriers1. ILC3 development 
is thought to be programmed1, but how ILC3 perceive, integrate 
and respond to local environmental signals remains unclear. 
Here we show that ILC3 in mice sense their environment and 
control gut defence as part of a glial–ILC3–epithelial cell unit 
orchestrated by neurotrophic factors. We found that enteric ILC3 
express the neuroregulatory receptor RET. ILC3-autonomous Ret 
ablation led to decreased innate interleukin-22 (IL-22), impaired 
epithelial reactivity, dysbiosis and increased susceptibility to 
bowel inflammation and infection. Neurotrophic factors directly 
controlled innate Il22 downstream of the p38 MAPK/ERK-AKT 
cascade and STAT3 activation. Notably, ILC3 were adjacent to 
neurotrophic-factor-expressing glial cells that exhibited stellate-
shaped projections into ILC3 aggregates. Glial cells sensed 
microenvironmental cues in a MYD88-dependent manner to control 
neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic 
Myd88 deletion led to impaired production of ILC3-derived IL-22 
and a pronounced propensity towards gut inflammation and 
infection. Our work sheds light on a novel multi-tissue defence 
unit, revealing that glial cells are central hubs of neuron and innate 
immune regulation by neurotrophic factor signals.

ILC3 produce proinflammatory cytokines, and regulate mucosal 
homeostasis and anti-microbial defence1. In addition to their well-
established developmentally regulated program, ILC3 are also 
controlled by microbial and dietary signals1–6, suggesting that 
ILC3 possess other unexpected environment-sensing strategies. 
Neurotrophic factors are extracellular environmental cues to neurons 
and include the glial-derived neurotrophic factor (GDNF) family 
ligands (GFL) that activate the tyrosine kinase receptor RET in the 
nervous system, kidney and haematopoietic progenitors7–11.

Analysis of gut lamina propria revealed that ILC3 express high 
levels of Ret7,12 (Fig.1a), a finding confirmed at the protein level and 
by reporter RetGFP knock-in mice13 (Fig. 1b–d and Extended Data  
Fig. 1a–d). ILC3 subsets expressed RetGFP and aggregated in cryp-
topatches and isolated lymphoid follicles (ILF), suggesting a role of 
neuroregulators in ILC3 (Fig.1b–d and Extended Data Fig. 1b–j). 
To explore this hypothesis, we transplanted fetal liver cells from 
Ret competent (RetWT/GFP) or deficient (RetGFP/GFP)13 animals into 
alymphoid Rag1−/−γ​c−/− hosts. Ret-deficient chimaeras revealed 
unperturbed ILC3 and cryptopatch development (Fig. 1e). Notably, 
IL-22-expressing ILC3 were largely reduced despite normal IL-22 pro-
duction by T cells (Fig.1f, g). In contrast, innate IL-17 was unaffected 
by Ret ablation (Fig.1f and Extended Data Fig. 2a). In agreement with 
this, analysis of gain-of-function RetMEN2B mice14 revealed a selective 
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Figure 1 | The neurotrophic factor receptor RET drives enteric ILC3-
derived IL-22. a, Relative expression of Ret in lymphoid tissue initiator 
cells (LTi), natural cytotoxicity receptor (NCR)− and NCR+ ILC3 subsets, 
T cells (T), B cells (B), dendritic cells (Dc), macrophages (Mø), enteric 
neurons (N) and mucosal glial cells (G). b, RetGFP ILC3 subsets in the 
gut. c, Left, RetGFP gut. Right, ILC3 aggregates. White, GFP. d, Enteric 
cryptopatches (CP), immature (iILF) and mature (mILF) isolated 
lymphoid follicles. Green, RET/GFP; blue, RORγ​t; red, B220. e, Small 
intestine of RetGFP chimaeras (n =​ 15). f, g, Enteric ILC3 and T cells from 
RetGFP chimaeras. RetWT/GFP, n =​ 25; RetGFP/GFP, n =​ 22. h, Enteric ILC3 
from RetMEN2B mice (n =​ 7). Scale bars, 1 mm (c left, e); 50 μ​m (c right); 
30 μ​m (d). Data are representative of 4 independent experiments. Error 
bars show s.e.m. *​P <​ 0.05, *​*​P <​ 0.01; NS, not significant.
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increase of IL-22-producing ILC3, whereas their IL-17-producing 
counterparts were unaffected (Fig.1h and Extended Data Fig. 2b). To 
more specifically evaluate the effects of RET in ILC3, we deleted Ret 
in RORγ​t-expressing cells by breeding Rorgt-Cre with Retfl/fl mice15,16 
(Extended Data Fig. 3a, b). Analysis of Rorgt-CreRetfl/fl (RetΔ) mice 
revealed selective and extensive reduction of ILC3-derived IL-22, but 
normal IL-22-producing T cells (Fig. 2a and Extended Data Fig. 3c, d).  
IL-22 acts on epithelial cells to induce reactivity and repair genes1. 
When compared to their wild-type littermate controls, the RetΔ 
epithelium revealed normal morphology, proliferation and paracel-
lular permeability, but a marked reduction of epithelial reactivity and 
repair genes (Fig. 2b and Extended Data Fig. 3e–h). Accordingly, the 
RetMEN2B epithelium displayed increased levels of these molecules in 
an IL-22-dependent manner (Fig. 2b and Extended Data Fig. 3i). These 
results indicate that RET signals selectively control innate IL-22 and 
shape intestinal epithelial reactivity.

To determine whether neurotrophic factors regulate intestinal 
defence, we tested how varying degrees of RET signals control enteric 
aggressions. Whereas RetΔ mice treated with dextran sodium sulfate 
(DSS) had increased weight loss and inflammation, reduced IL-22-
producing ILC3, decreased epithelial reactivity/repair genes and 
pronounced bacterial translocation from the gut, RetMEN2B mutants 
were highly protected compared to their wild-type littermate controls  

(Fig. 2c–j and Extended Data Fig. 4). As DSS largely causes epithelial 
injury, we tested whether ILC3-autonomous RET signals are required to 
control infection. To this end, RetΔ mice were bred with Rag1−/− mice 
to formally exclude adaptive T-cell effects. The resulting Rag1−/−RetΔ 
mice were infected with the attaching and effacing bacteria Citrobacter 
rodentium. When compared to their littermate controls, Rag1−/−RetΔ 
mice had marked gut inflammation, reduced IL-22-producing 
ILC3, increased C. rodentium infection and translocation, reduced 
epithelial reactivity genes, increased weight loss and reduced survival  
(Fig. 2k–n and Extended Data Fig. 5). Altogether, these data indicate that  
ILC3-intrinsic neurotrophic factor cues regulate gut defence and 
homeostasis.

We used a multi-tissue organoid system to show that IL-22 is the 
molecular link between RET-dependent ILC3 activation and epithe-
lial reactivity. Addition of GFL to ILC3–epithelial organoids strongly 
induced epithelial reactivity genes in an IL-22- and RET-dependent 
manner (Fig. 3a, b and Extended Data Fig. 6a). To further examine 
how RET signals control innate IL-22, we investigated a gene signature 
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associated with ILC identity1. Whereas the master ILC transcription 
factors Runx1, Id2, Gata3, Rora, Rorgt, Ahr and Stat3 were unperturbed, 
Il22 was significantly reduced in RetΔ ILC3 (Fig. 3c and Extended Data 
Fig. 6b). Accordingly, activation of ILC3 with all or distinct GFL– 
GFRα​ pairs in trans efficiently increased Il22 despite normal expres-
sion of other ILC3-related genes (Fig. 3d and Extended Data Fig. 6c). 
Activation of RET by GFL leads to p38 MAPK/ERK-AKT cascade 
activation in neurons, whereas phosphorylation of STAT3 shapes Il22 
expression7,17. Analysis of RetΔ ILC3 revealed hypo-phosphorylated 
ERK1/2, AKT, p38/MAP kinase and STAT3 (Fig. 3e and Extended 
Data Fig. 6d). Accordingly, GFL-induced RET activation in ILC3 led 
to rapid ERK1/2, AKT, p38/MAP kinase and STAT3 phosphoryla-
tion and increased Il22 transcription (Fig. 3d, f and Extended Data  
Fig. 6e, f). Accordingly, inhibition of ERK, AKT or p38/MAP kinase upon 
GFL activation led to impaired STAT3 activation and Il22 expression  
(Fig. 3g, h). Finally, inhibition of STAT3 upon GFL-induced RET 
activation led to decreased Il22 (Fig. 3h). To examine whether GFL 
directly regulate Il22, we performed chromatin immunoprecipita-
tion (ChIP)18 (Fig. 3i, j). Stimulation of ILC3 with GFL resulted in 
increased binding of pSTAT3 in the Il22 promoter and increased 
trimethyl-H3K36 at the 3' end of Il22, indicating active Il22-transcribed 
regions19 (Fig. 3d, j). Thus, cell-autonomous RET signals control ILC3 
function and gut defence by direct regulation of Il22 downstream of 
STAT3 activation.

Propensity towards inflammation and dysregulation of intestinal 
homeostasis have been associated with dysbiosis20,21. When compared 
to their wild-type littermates, RetΔ mice have altered microbial 
communities as evidenced by quantitative analysis, weighted UniFrac 
analysis and significantly altered levels of Sutterella, unclassified 
Clostridiales and Bacteroides (Fig. 4a and Extended Data Fig. 7). 
Discrete microbial communities may have transmissible colitogenic 
potential20,21. Nevertheless, germ-free mice colonized with the microbi-
ota of RetΔ or their control littermates revealed similar susceptibility to 
DSS-induced colitis and identical innate IL-22 production (Fig. 4b–d). 
In agreement, co-housed RetΔ and wild-type littermates had differ-
ent propensity towards intestinal inflammation (Fig. 2c, d). Together, 
these data indicate that dysbiosis per se is insufficient to cause altered 
innate IL-22 and susceptibility to gut inflammation as observed in RetΔ 
mice (Fig. 2c–f). Thus, we hypothesised that GFL-producing cells inte-
grate commensal and environmental signals to control innate IL-22. 
Accordingly, antibiotic treatment of RetΔ and their wild-type littermate 
controls resulted in similar ILC3-derived IL-22 (ref. 22) (Fig. 4e).

Neurotrophic factors of the GDNF family were shown to be 
produced by enteric glial cells, which are neuron-satellites expressing 
the glial fibrillary acidic protein (GFAP)7,23. Notably, double reporter 
mice for ILC3 (RetGFP) and glial cells (Gfap-CreRosa26RFP) revealed that 
stellate-shaped projections of glial cells are adjacent (4.35 ±​ 1.42 μ​m)  
to RORγ​t+ ILC3 within cryptopatches (Fig. 4f and Extended Data  
Fig. 8a). These data suggest the existence of paracrine glial–ILC3 cross-
talk orchestrated by neurotrophic factors. Accordingly, lamina propria 
glial cells were the main producers of GFL (Extended Data Fig. 8b). 
Recent studies have shown that glial cells express pattern recognition 
receptors, notably Toll-like receptors (TLRs)24,25. Activation of 
neurosphere-derived glial cells revealed they specifically respond 
to TLR2, TLR4, and the alarmins IL-1β​ and IL-33, which efficiently 
controlled GFL expression and induced robust innate Il22 in a MYD88-
dependent manner (Fig. 4g–i and Extended Data Fig. 8c–g). To formally 
demonstrate the physiological importance of MYD88-dependent glial 
cell sensing on innate IL-22 production, we deleted Myd88 in GFAP-
expressing glial cells by breeding Gfap-Cre with Myd88fl/fl mice26,27. 
Remarkably, glial-intrinsic deletion of Myd88 resulted in decreased 
intestinal GFL, increased gut inflammation, impaired ILC3-derived 
IL-22, and increased weight loss (Fig. 4j–m; Extended Data Fig. 9a–d). 
In agreement, Gfap-CreMyd88Δ mice had increased susceptible to  
C. rodentium infection (Extended Data Fig. 9e–h). Thus, mucosal  
glial cells orchestrate innate IL-22 via neurotrophic factors, 

downstream of MYD88-dependent sensing of commensal products and  
alarmins.

Defining the mechanisms by which ILC3 integrate environmental 
cues is critical to understanding mucosal homeostasis. Our work sheds 
light on the relationships between ILC3 and their microenvironment, 
notably through decoding a novel glial–ILC3–epithelial cell unit 
orchestrated by neurotrophic factors (Extended Data Fig. 10). 
Glial-derived neurotrophic factors operate in an ILC3-intrinsic manner 
by activating the tyrosine kinase RET, which directly regulates innate 
IL-22 downstream of p38 MAPK/ERK-AKT and STAT3 phosphoryl-
ation (Extended Data Fig. 10). Future studies will further elucidate the 
mechanisms inducing RET expression in ILC3.

Our data demonstrate that, in addition to their well-established 
capacity to integrate dendritic-cell-derived cytokines1, ILC3 perceive 
distinct multi-tissue regulatory signals leading to STAT3 activity 
and IL-22 expression, notably by integration of glial-cell-derived 
neuroregulators. Thus, rather than providing hard-wired signals for 
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ILC3-immunity, we propose that RET signalling induces fine-tuned 
innate IL-22 production that leads to efficient gut homeostasis and 
defence.

Previous studies demonstrated that neurons may indirectly shape 
fetal lymphoid tissue inducer cell aggregation via regulation of mes-
enchymal cells and that ablation of glial cells leads to gut inflamma-
tion28,29; here we reveal that glial cells are central hubs of neuronal 
and innate immune regulation. Notably, neurotrophic factors are the 
molecular link between glial cell sensing, innate IL-22 and intestinal 
epithelial defence. Thus, it is tempting to speculate that glial–immune 
cell units might be also critical to the homeostasis of other barriers, 
notably in the skin, lung and brain30. From an evolutionary perspective, 
coordination of innate immunity and neuronal function may ensure 
efficient mucosal homeostasis and a co-regulated neuro-immune 
response to various environmental challenges, including xenobiotics, 
intestinal infection, dietary aggressions and cancer.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Data reporting. The experiments were not randomized. The investigators were not 
blinded to allocation during experiments and outcome assessment, unless stated 
otherwise. Power analysis was used to estimate sample size.
Mice. C57BL/6J mice were purchased from Charles River. RetGFP (ref. 13), 
Rag1−/−γc−/− (refs 31, 32), RetMEN2B (ref. 14), Rosa26YFP (ref. 33), Rosa26RFP  
(ref. 34), Retfl/fl (ref. 16), Rorgt-Cre15, Il1b−/− (ref. 35) and Myd88−/− (ref. 36) were 
in a full C57BL/6J background. Gfap-Cre26 bred to Myd88fl/fl (ref. 27) were in 
F8–F9 to a C57Bl/6J background. All lines were bred and maintained at IMM 
Lisboa animal facility. Mice were systematically compared with co-housed litter-
mate controls. Both males and females were used in this study. Randomization 
and blinding were not used unless stated otherwise. All animal experiments were 
approved by national and institutional ethical committees, respectively, Direção 
Geral de Veterinária and iMM Lisboa ethical committee. Germ-free mice were 
housed at Instituto Gulbenkian de Ciência, Portugal, and Institut Pasteur, France, 
in accordance to institutional guidelines for animal care. Power analysis was  
performed to estimate the number of experimental mice.
Generation of fetal liver chimeras. For reconstitution experiments, 5 ×​ 106 fetal 
liver cells were isolated from E14.5 RetWT/GFP or RetGFP/GFP mice and injected intra-
venously into non-lethally irradiated (200 rad) alymphoid Rag1−/−γ​c−/− hosts. 
Mice were analysed 8 weeks after transplantation.
DSS-induced colitis. Dextran sodium sulfate (DSS) (molecular mass 36,000–
50,000 Da; MP Biomedicals) was added into drinking water 3% (w/v) for 5 days 
followed by 2 days of regular water. Mice were analysed at day 7. Body weight, 
presence of blood and stool consistency was assessed daily.
Citrobacter rodentium infection. Infection with Citrobacter rodentium ICC180 
(derived from DBS100 strain)37 was performed by gavage inoculation of 109 
colony-forming units37,38. Acquisition and quantification of luciferase signal was 
performed in an IVIS system (Caliper Life Sciences). Throughout infection, weight 
loss, diarrhoea and bloody stools were monitored daily.
Antibiotic treatment. Pregnant females or newborn mice were treated with strep-
tomycin 5 g l−1, ampicillin 1 g l−1 and colistin 1 g l−1 (Sigma-Aldrich) into drinking 
water with 3% sucrose. Control mice were given 3% sucrose in drinking water as 
previously described22.
Microscopy. Intestines from RetGFP and RetGFP chimaeras were imaged in a Zeiss  
Lumar V12 fluorescence stereo microscope with a NeoLumar S 0.8×​ objective 
using the GFP filter. Whole-mount analysis was performed as previously 
described2,9. Briefly, adult intestines were flushed with cold PBS (Gibco) and 
opened longitudinally. Mucus and epithelium was removed and intestines were 
fixed in 4% PFA (Sigma-Aldrich) at room temperature for 10 mins and incubated in 
blocking/permeabilizing buffer solution (PBS containing 2% BSA, 2% goat serum, 
0.6% Triton X-100). To visualise three-dimensional structures of the small intestine, 
samples were cleared with benzyl alcohol-benzyl benzoate (Sigma-Aldrich) before 
dehydration in methanol2,9. For analysis of thick gut sections, intestines were 
fixed with 4% PFA at 4 °C overnight and were then included in 4% low-melting 
temperature agarose (Invitrogen). Sections of 100 μ​m were obtained with a Leica 
VT1200/VT1200 S vibratome and embedded in Mowiol (Calbiochem)2. Slides or 
whole-mount samples were incubated overnight or for 1–2 days respectively at 4 °C 
using the following antibodies: rat monoclonal anti-B220 (RA3-6B2) (eBioscience), 
mouse monoclonal anti-RORγt (Q31-378) (BD Pharmigen), mouse monoclonal 
anti-GFAP (GA-5) (Sigma-Aldrich), mouse monoclonal anti-GFAP Cy3 (GA-5) 
(Abcam), anti-GDNF antibody (Abcam), DAPI (4',6-Diamidino-2-Phenylindole, 
Dihydrochloride) (Invitrogen). A647 goat anti-rat, A568 goat anti-rat, A647 goat 
anti-mouse, A488 rabbit anti-GFP, and A488 goat anti-rabbit secondary antibodies 
were purchased from Invitrogen. Neurospheres and cultured glial cells were fixed in 
PFA 4% for 10 minutes at room temperature and permeabilized in PBS-Triton 0.1%  
within 30 seconds. After several washing steps with PBS, cells were incubated with 
antibodies for 3 h at room temperature and then mounted in Mowiol39. Samples 
were acquired on a Zeiss LSM710 confocal microscope using EC Plan-Neofluar 
10×​/0.30 M27, Plan Apochromat 20×​/0.8 M27 and EC Plan-Neofluar 40×​/1.30 
objectives. Three-dimensional reconstruction of images was achieved using 
Imaris software and snapshot pictures were obtained from the three-dimensional 
images. For analysis of confocal images, cells were counted using in-house software, 
written in MATLAB (Mathworks, Natick, MA). Briefly, single-cell ILC3 nuclei 
were identified by RORγ​t by thresholding and particle analysis. Regions of interest 
(ROIs) (Extended Data Fig.1i; bottom panels) were defined from each nucleus for 
analysis in the GFP channel, where staining was considered positive if a minimum 
number of pixels (usually 20) were above a given threshold. The software allows 
for batch processing of multiple images and generates individual report images 
for user verification of cell-counting results and co-expression analysis (https://
imm.medicina.ulisboa.pt/en/servicos-e-recursos/technical-facilities/bioimaging).
Histopathology analysis. Colon samples were fixed in 10% neutral buffered for-
malin. The colon was prepared in multiple cross-sections or ‘swiss roll’ technique40, 

routine-processed for paraffin embedding and 3–4μ​m sections were stained with 
haematoxylin and eosin. Enteric lesions were scored by a pathologist blinded 
to experimental groups, according to previously published criteria41–43. Briefly, 
lesions were individually scored (0–4 increasing severity) for the following criteria: 
1, mucosal loss; 2, mucosal epithelial hyperplasia; 3, degree of inflammation;  
4, extent of the section affected in any manner; and 5, extent of the section affected 
in the most severe manner as previously described43. Final scores were derived by 
summing the individual lesion and the extent scores. The internal diameter of the 
crypts was measured in at least five fields (10×​ magnification), corresponding 
to the hotspots in which the most severe changes in crypt architecture were 
seen. Measurements were performed in an average of 35 crypts per mouse, from 
proximal to distal colon. Intestinal villus height was measured in the jejunum. 
Measurements were performed in slides scanned using a Hamamatsu Nanozoomer 
SQ digital slide scanner running NDP Scan software.
Enteric glial cell isolation. Enteric glial cells isolation was adapted from previously 
described protocols44,45. Briefly, the muscularis layer was separated from the 
submucosa with surgical forceps under a dissection microscope (SteREO Lumar.
V12, Zeiss). The lamina propria was scraped mechanically from the underlying 
submucosa using 1.5-mm cover-slips (Thermo Scientific). Isolated tissues were 
collected and digested with Liberase TM (7,5 μ​g ml−1; Roche) and DNase I 
(0.1 mg ml−1; Roche) in RPMI supplemented with 1% HEPES, sodium pyruvate, 
glutamine, streptomycin and penicillin and 0.1% β​-mercaptoethanol (Gibco)  
for approximately 40 min at 37 °C. Single-cell suspensions were passed through a 
100-μ​m cell strainer (BD Biosciences) to eliminate clumps and debris.
Flow cytometry and cell sorting. Lamina propria cells were isolated as previously 
described46. Briefly, intestines were digested with collagenase D (0.5 mg ml−1; 
Roche) and DNase I (0.1 mg ml−1; Roche) in RPMI supplemented with 10% FBS, 
1% HEPES, sodium pyruvate, glutamine, streptomycin and penicillin and 0.1%  
β​-mercaptoethanol (Gibco) for approximately 30 min at 37 °C under gentle 
agitation. For cytokine analysis, cell suspensions were incubated 4 h in PMA/
ionomycin (Sigma-Aldrich) and brefeldin A (eBioscience) at 37 °C. Intracellular 
staining was performed using IC fixation/permeabilization kit (eBioscience). Cells  
were stained using PBS, 1% FBS, 1% HEPES and 0.6% EDTA (Gibco). Flow cytom-
etry analysis and cell sorting was performed using FORTESSA and FACSAria flow  
cytometers (BD Biosciences). Data analysis was performed using FlowJo software 
(Tristar). Sorted populations were >​95% pure. Cell suspensions were stained 
with anti-CD45 (30-F11), anti-TER119 (TER-119), TCRβ​ (H57-597), anti-CD3ε​ 
(eBio500A2), anti-CD19 (eBio1D3), anti-NK1.1 (PK136), anti-CD11c (N418), 
anti-Gr1 (RB6-8C5), anti-CD11b (Mi/70), anti-CCR6 (29-2L17), anti-CD127 
(IL-7Rα​; A7R34), anti-Thy1.2 (53-2.1), anti-CD49b (DX5), anti-TCRδ​ (GL3), 
anti-NKp46 (29A1.4), anti-IL-17 (eBio17B7), anti-IL-22 (1H8PWSR), rat IgG1 
isotype control (eBRG1) antibodies, 7AAD viability dye, anti-mouse CD16/
CD32 (Fc block), anti-RORγ​t (AFKJS-9); rat IgG2aκ isotype control (eBR2a) and 
streptavidin fluorochrome conjugates all from eBioscience; anti-CD4 (GK1.5), 
anti-CD31 (390), anti-CD8α​ (53-6.7), anti-CD24 (M1/69), anti-Epcam (G8.8) 
antibodies were purchased from Biolegend. Anti-RET (IC718A) antibody was 
purchased from R&D Systems. LIVE/DEAD Fixable Aqua Dead Cell Stain 
Kit was purchased from Invitrogen. Cell populations were defined as: ILC3 - 
CD45+Lin−Thy1.2hiIL7Rα​+RORγ​t+. For ILC3 subsets, additional markers were 
employed: LTi - CCR6+Nkp46−; ILC3 NCR− - CCR6−Nkp46−; ILC3 NCR+ - 
CCR6−Nkp46+. Lineage was composed from CD3ε, CD8α​, TCRβ​, TCRγ​δ​, 
CD19, Gr1, CD11c and TER119. Glial cells - CD45−CD31−TER119−CD49b+ 
(ref. 47); T cells - CD45+CD3ε+; γ​δ​ T cells - CD45+CD3ε+γ​δ​TCR+; B cells - 
CD45+CD19+B220+; macrophages - CD45+CD11b+F4/80+; dendritic cells -  
CD45+CD19−CD3ε−MHCII+CD11c+; enteric neurons - CD45−RET/GFP+  
(ref. 13); epithelial cells - CD45−CD24+Epcam+.
Quantitative RT–PCR. Total RNA was extracted using RNeasy micro kit 
(Qiagen) or Trizol (Invitrogen) according to the manufacturer’s protocol. RNA 
concentration was determined using Nanodrop Spectrophotometer (Nanodrop 
Technologies). Quantitative real-time reverse transcription (RT)–PCR was  
performed as previously described2,8,9. Hprt and Gapdh were used as housekeep-
ing genes. For TaqMan assays (Applied Biosystems), RNA was retro-transcribed 
using a High Capacity RNA-to-cDNA Kit (Applied Biosystems), followed by a 
pre-amplification PCR using TaqMan PreAmp Master Mix (Applied Biosystems). 
TaqMan Gene Expression Master Mix (Applied Biosystems) was used in real-time 
PCR. TaqMan Gene Expression Assays (Applied Biosystems) were the following: 
Gapdh Mm99999915_g1; Hprt Mm00446968_m1; Artn Mm00507845_m1; 
Nrtn Mm03024002_m1; Gdnf Mm00599849_m1; Gfra1 Mm00439086_m1; 
Gfra2 Mm00433584_m1; Gfra3 Mm00494589_m1; Ret Mm00436304_m1; 
Il22 Mm01226722_g1; Il17a Mm00439618_m1; Il23r Mm00519943_m1; 
Rorgt Mm01261022_m1; Il7ra Mm00434295_m1; Ahr Mm00478932_m1; 
Stat3 Mm01219775_m1; Cxcr6 Mm02620517_s1; Nfkbiz Mm_00600522_m1; 
Reg3a Mm01181787_m1; Reg3b Mm00440616_g1; Reg3g Mm00441127_m1; 
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Defa1 Mm02524428_g1; Defa29 Mm00655850_m1; Defa5 Mm00651548_g1; 
Defa21 Mm04206099_gH; Muc1 Mm00449599_m1; Muc3 Mm01207064_m1; 
Muc13 Mm00495397_m1; Gfap Mm01253033_m1; Ascl2 Mm01268891_g; 
Tff3 Mm00495590_m1; Relm-b Mm00445845_m1; Pla2g2a Mm00448160_m1; 
Pla2g5 Mm00448162_m1; Wnt3 Mm00437336_m1; Ctnnb1 Mm00483039_ m1;  
Axin2 Mm00443610_m1; Dll1b Mm01279269_m1; Il18 Mm00434225_m1; 
Tnfa Mm00443260_g1; Lyz1 Mm00657323_m1; Lrg5 Mm00438890_m1; Tbx21 
Mm00450960_m1; Id2 Mm00711781_m1; Runx1 Mm01213404_m1; Notch1 
Mm00435249_m1; Notch2 Mm00803077_m1; Gata3 Mm00484683_m1; 
Bcl2 Mm00477631_m1; Bcl2l1 Mm00437783_m1; Arntl Mm00500226_m1; 
Glpr2 Mm01329475_m1; Gja1 Mm01179639_s1; Ednrb Mm00432989; S100b 
Mm00485897_m1; Sox10 Mm00569909_m1. Real-time PCR analysis was  
performed using ABI Prism 7900HT Sequence Detection System or StepOne Real-
Time PCR system (Applied Biosystems).
ILC3 activation and cell signalling. Sorted intestinal ILC3 cells were starved 
for 3 hours in RPMI at 37 °C in order to ensure ILC3 viability. Retfl or RetΔ 
were analysed directly ex vivo. To test ERK, AKT, p38-MAPK (Cell Signaling 
Technology) and STAT3 (BD Pharmigen) upon GFL stimulation wild-type ILC3 
were activated with 500 ng ml−1 (each GFL) and co-receptors (recombinant rat (rr) 
GFR-α​1, recombinant mouse (rm) GFR-α​2, rrGFR-α​3 and rrGNDF from R&D 
Systems; recombinant human (rh) NRTN and rhARTN from PeproTech) for 10 
and 30 min. When referring to the use of ‘GFL’, we have employed GDNF, NRTN, 
ARTN and their specific co-receptors in combination. For inhibition experiments 
cells were incubated 1 h at 37 °C before GFL stimulation, to test ERK, AKT, p38/
MAPK and STAT3 phosphorylation, or during overnight stimulation with GFLs, 
to determine Il22 expression levels. Inhibitors were purchased from Sigma-Aldrich; 
p38 MAPK/ERK-AKT, LY294002 (LY); ERK, PD98059 (PD); AKT, AKT Inhibitor 
VIII (VIII); p38 MAPK, SB 202190 (SB); and pSTAT3, S3I-201 (S3I).
Chromatin immunoprecipitation (ChIP) assay. Enteric ILC3 from adult 
C57BL/6J mice were isolated by flow cytometry. Cells were starved for 3 h 
with RPMI supplemented with 1% HEPES, sodium pyruvate, glutamine, 
streptomycin and penicillin and 0.1% β​-mercaptoethanol (Gibco) at 37 °C. 
Cells were stimulated with GFLs (500 ng ml−1 each)8, lysed, cross-linked and 
chromosomal DNA–protein complex sonicated to generate DNA fragments 
ranging from 100–300 base pairs. DNA–protein complexes were immu-
noprecipitated, using LowCell ChIP kit (Diagenode)18, with 3 μ​g of rabbit 
polyclonal antibody against anti-pSTAT3 (Cell Signalling Technology), rabbit 
control IgG (Abcam) or H3K36me3 (07-030; Millipore). Immunoprecipitates 
were uncross-linked and analysed by quantitative PCR using primer pairs 
(5’–3’) flanking putative sites on Il22. Vehicle (BSA)-stimulated ILC3s were 
used as controls. Il22 primer sequences were previously described48–50, 
briefly: (a) forward: 5′-TGCAATCAATCCCAGTATTTTG-3′ and reverse: 
5′-CTTGTGCAAGCATAAGTCTCAA-3′; (b) forward: 5′-GAAGTTGGTGG 
GAAAATGAGTCCGTGA-3′ and reverse: 5′-GCCATGGCTTTGCCGTAG 
TAGATTCTG-3′; (c) forward: 5′-ACGGGAGATCAAAGGCTGCTCT-3′ and  
reverse: 5′-GCCAACAAGGTGCTTTTGC-3′; (d) forward: 5′-CTCACC 
GTGACGTTTTAGGG-3′ and reverse: 5′-GTGAATGATATGACATCAGAC-3′; 
(e) forward 5′-CGACGAACATGCTCCCCTGATGTTTTT-3′ and reverse:  
5′-AAACTCATAGATTTCTGCAGGACAGCC-3′; (f ) forward: 5′-AGCTG 
CATCTCTTTCTCTCCA-3′ and reverse: 5′-TATCCTGAAGGCCAA 
AATAGGA-3′; (g) forward: 5′-ACGACCAGAACATCCAGAAGA-3′ and  
reverse: 5′-GCAGAGAAAGAAATCCCCGC-3′; (h) forward: 5′-AGGGGGAC 
TTGCTTTGCCATTT-3′  and reverse: 5′-AACACCCCTTCTTTCC 
TCCTCCAT-3′; (i) forward: 5′-CTGCTCCTTCCTGCCTTCTA-3′ and reverse: 
5′-CTGAGCCAGGTTTCATGTGA-3′. Primer positions are shown in Fig. 3i  
relative to the transcription start codon of Il22.
Colony-forming units and paracellular permeability. Organs were collected, 
weighed, and brought into suspension. Bacterial colony-forming units were 
determined per gram of tissue and total organ. Colony-forming units were 
determined by serial dilutions on Luria Broth (LB) agar and MacConkey agar 
(Sigma-Aldrich). Colonies were counted after 2 days of culture at 37 °C. To address 
intestinal paracellular permeability 16 mg per mouse of Dextran-Fitc (Sigma 
Aldrich) were administrated by gavage after overnight starvation. Plasma was 
analysed after 4 hours of Dextran-Fitc administration using a Microplate Reader 
TECAN Infinity F500.
BrdU administration and Ki-67 labeling. BrdU was administrated by intraperi-
toneal injection (1.25 mg per mouse). For flow cytometric analysis of epithelial 
cell proliferation anti-BrdU (Staining Kit for flow Cytometry, eBioscience) and 
anti-mouse Ki-67 antibody (BioLegend) were used.
Quantitative PCR analysis of bacteria in stool at the phylum level. DNA 
from faecal pellet samples was isolated with ZR Fecal DNA MicroPrep (Zymo 
Research). Quantification of bacteria was determined from standard curves 

established by qPCR. qPCR were performed with Power SYBR Green PCR 
Master Mix (Applied Biosystems) and different primer sets using a StepOne 
Plus (Applied Biosystems) thermocycler. Samples were normalized to 16S 
rDNA and reported according to the 2ΔΔCt method. Primer sequences were: 
16S rDNA, forward: 5′-ACTCCTACGGGAGGCAGCAGT-3′ and reverse:  
5′-ATTACCGCGGCTGCTGGC-3′; Firmicutes, forward: 5′-ACTCCT 
ACGGGAGGCAGC-3′ and reverse: 5′-GCTTCTTAGTCAGGTACCGTCAT-3′; 
Bacteroidetes, forward: 5′-GGTTCTGAGAGGAGGTCCC-3′ and reverse:  
5′-GCTGGCTCCCGTAGGAGT-3′; Proteobacteria, forward: 5′-GGTTC 
TGAGAGGAGGTCCC-3′ and reverse 5′-GCTGGCTCCCGTAGGAGT-3′.
16S rRNA quantification and gene sequencing. Faeces were isolated from 
co-housed Retfl or RetΔ littermates. Sequencing of the 16S rRNA gene was 
performed as previously described51. Briefly, barcoded primers were used to 
amplify the V4 region of the 16S rRNA gene, and the amplicons were sequenced 
on a MiSeq instrument (Illumina, San Diego, USA) using 150 bp, paired-end 
chemistry at the University of Pennsylvania Next Generation Sequencing Core. 
The paired ends were assembled and quality filtered, selecting for reads with a 
quality score ≥​30. Reads with >​10 bp homopolymers and reads shorter than 
248 bp or longer than 255 bp were removed from the analysis. 16S rRNA sequence 
data were processed using mothur version 1.25.0 (ref. 52) and QIIME version 1.8  
(ref. 53). Chimaeric sequences were removed with ChimeraSlayer54. Operational 
taxonomic units (OTUs) were defined with CD-HIT55 using 97% sequence 
similarity as a cut-off. Only OTUs containing ≥​2 sequences were retained; 
OTUs assigned to cyanobacteria or those which were not assigned to any phylum 
were removed from the analysis. Taxonomy was assigned using the Ribosomal 
Database Project (RDP) classifier v 2.2 (ref. 56), multiple sequence assignment 
was performed with PyNAST (v 1.2.2)57, and FastTree58 was used to build the 
phylogeny. Samples were rarified to 22,000 sequences per sample for alpha- and 
beta-diversity analyses. Taxonomic relative abundances are reported as the median 
with standard deviation. P values were calculated using the Wilcoxon rank-sum 
test. Statistical tests were conducted in R version 3.2.0. To determine which factors 
were associated with microbial community composition, statistical tests were 
performed using the non-parametric analysis of similarities (ANOSIM) with 
weighted UniFrac distance metrics59.
Data accession. The sequencing data generated in this study have been submitted 
to the NCBI Sequence Read Archive under BioProject PRJNA314493 (SRA:  
http://www.ncbi.nlm.nih.gov/sra/?term=​PRJNA314493).
Intestinal organoids. IntestiCult Organoid Growth Medium and Gentle Cell 
Dissociation Reagent were purchased from StemCell. Intestinal crypts were 
isolated from C57BL/6J mice according to the manufacturer’s instructions and 
were added to previously thawed, ice-cold Matrigel at a 1:1 ratio and at a final 
concentration of 5,000–7,000 crypts per ml. 15 μ​l of this mix was plated per well 
of a 96-well round-bottom plate. After Matrigel solidification 100 μ​l of growth 
medium (100 U ml−1 penicillin/streptomycin) was added and replaced every 
3 days. Organoids were grown at 37 °C with 5% CO2 and passaged according to the 
manufacturer’s instructions. Freshly sorted intestinal ILC3 were added to 5–8 days 
old epithelial organoids after plating for 24 hours with or without anti-mouse IL-22 
antibody (R&D Systems).
IL-22 agonist administration in vivo. 150 μ​g of anti-IL-22 antibody (8E11; gift 
from Genentech) or mouse IgG1 isotype control (MOPC-21; Bio X Cell) was 
administered by intraperitoneal injection to RetMEN2B mice every 2 days. Animals 
were analysed 2 weeks after the first administration.
Neurosphere-derived glial cells. Neurosphere-derived glial cells were obtained as 
previously described60. Briefly, total intestines from E14.5 C57BL/6J and Myd88−/− 
mice were digested with collagenase D (0.5 mg ml−1; Roche) and DNase I  
(0.1 mg ml−1; Roche) in DMEM/F-12, GlutaMAX, supplemented with 1% HEPES, 
streptomycin/penicillin and 0.1% β​-mercaptoethanol (Gibco) for approximately 
30 min at 37 °C under gentle agitation. Cells were cultured for 1 week in a CO2 
incubator at 37 °C in DMEM/F-12, GlutaMAX, streptomycin and penicillin and 
0.1% β​-mercaptoethanol (Gibco) supplemented with B27 (Gibco), EGF (Gibco) 
and FGF2 (Gibco) 20 ng ml−1. After 1 week of culture cells were treated with 0.05% 
trypsin (Gibco), transferred into PDL (Sigma-Aldrich) coated plates and culture 
in DMEM supplemented with 10% FBS, 1% HEPES, glutamine, streptomycin and 
penicillin and 0.1% β​-mercaptoethanol (Gibco) until confluence. Glial cells were 
activated with TLR2 (5 μ​g ml−1) (Pam3CSK4), TLR3 (100 μ​g ml−1) (PolyI:C), TLR4 
(50 μ​g ml−1) (LPS), TLR9 (50 μ​g ml−1) (DsDNA-EC) ligands from Invivogen and 
IL-1β​ (10 μ​g ml−1) (401ML005), IL-18 (50 μ​g ml−1) (B002-5), IL-33 (0.1 μ​g ml−1) 
(3626ML) recombinant proteins from R&D Systems. Cells were also co-cultured 
with purified ILC3 from wild-type and Il1b-deficient mice. IL-22 expression in 
glial-ILC3 co-cultures upon TLR4 activation was also performed using GDNF 
(2 μ​g ml−1) (AB-212–NA), NRTN (2 μ​g ml−1) (AF-387sp) and ARTN (0.3 μ​g ml−1) 
(AF-1085-sp) blocking antibodies. Cells were analysed after 24 hours of co-culture.
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Extended Data Figure 1 | ILC3 selectively express the neurotrophic 
factor receptor RET. a, Expression of RET protein in gut 
CD45+Lin−Thy1.2hiIL7Rα​+RORγ​t+ ILC3. b, Analysis of gut ILC3 from 
RetGFP mice. Embryonic day 14.5 (E14.5). c, d, Analysis of enteric ILC3 
subsets from RetGFP mice. e, Analysis of cytokine-producing ILC3 from 
RetGFP mice. f, Pregnant RetGFP mice were provided with antibiotic 
cocktails that were maintained after birth until analysis at 6 weeks of 
age. Left, RET/GFP (white); right, flow cytometry analysis of RET/GFP 

expression in ILC3. Thin line, Ab-treated; bold line, specific pathogen free 
(SPF). g, Ret expression in enteric ILC3 from germ-free (GF) mice and  
SPF controls (n =​ 4). h, Analysis of lamina propria populations from 
RetGFP mice. i, Enteric ILC3 clusters. Green, RET/GFP; blue, RORγ​t; red,  
B220. Bottom, quantification analysis for RET/GFP and RORγ​t  
co-expression (79.97 ±​ 4.72%). j, Rare RET-expressing ILC3 in intestinal 
villi. Green, RET/GFP; blue, RORγ​t; red, CD3ε. Scale bars, 10μ​m. Data are 
representative of 4 independent experiments. Error bars show s.e.m.
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Extended Data Figure 2 | T cell-derived IL-22 and IL-17 in RetGFP 
chimaeras and RetMEN2B mice. a, T-cell-derived IL-17 in RetGFP 
chimaeras. RetWT/GFP, n =​ 25; RetGFP/GFP, n =​ 22. b, T-cell-derived IL-22 
and IL-17 in the intestine of RetMEN2B mice and their wild-type littermate 
controls (n =​ 7). Data are representative of 4 independent experiments. 
Error bars show s.e.m.
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Extended Data Figure 3 | Enteric homeostasis in steady-state RetΔ mice. 
a, Rorgt-Cre mice were bread to Rosa26YFP mice. Analysis of Rosa26/YFP  
expression in gut ILC3 from Rorgt-CreRosa26YFP mice. b, Number of 
Peyer’s patches (PP) (n =​ 10). c, T-cell-derived IL-22 in RetΔ mice and 
their wild-type littermate controls. (n =​ 11). d, γ​δ​ T-cell-derived IL-22 
in RetΔ mice and their wild-type littermate controls (n =​ 4). e, Intestinal 
villus and crypt morphology (n =​ 6). f, Epithelial cell proliferation (n =​ 5). 

g, Intestinal paracellular permeability measured by Dextran-Fitc in the 
plasma (n =​ 5). h, Tissue repair genes in RetΔ intestinal epithelium in 
comparison to their wild-type littermate controls (n =​ 8). i, Reactivity 
genes in RetMEN2B mice treated with anti-IL-22 blocking antibodies 
compared to RetMEN2B intestinal epithelium. RetMEN2B, n =​ 4; RetMEN2B + 
anti-IL-22, n =​ 4. Data are representative of 3 independent experiments. 
Error bars show s.e.m.
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Extended Data Figure 4 | Enteric inflammation in mice with altered 
RET signals. Mice were treated with DSS in the drinking water. a, Weight 
loss of DSS-treated RetΔ mice and their littermate controls (n =​ 8).  
b, T-cell-derived IL-22 in RetΔ mice and their wild-type littermate controls 
after DSS treatment (n =​ 8). c, Weight loss of DSS treated RetMEN2B mice 
and their wild-type littermate controls (n =​ 8). d, T-cell-derived IL-22 in 
RetMEN2B mice and their wild-type littermate controls (n =​ 8). e, Intestinal 

villi and crypt morphology (n =​ 6). f, Epithelial reactivity gene expression 
in DSS treated RetΔ mice in comparison to their wild-type littermate 
controls (n =​ 8). g, Tissue repair gene expression in DSS treated RetΔ 
mice in comparison to their wild-type littermate controls (n =​ 4). Data are 
representative of 3–4 independent experiments. Error bars show s.e.m.  
*​P <​ 0.05; *​*​P <​ 0.01.
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Extended Data Figure 5 | Citrobacter rodentium infection in RetΔ 
mice. a, C. rodentium translocation to the liver of Rag1−/−RetΔ and their 
Rag1−/−Retfl littermate controls at day 6 after infection (n =​ 15).  
b, MacConkey plates of liver cell suspensions from Rag1−/−RetΔ and their 
Rag1−/−Retfl littermate controls at day 6 after C. rodentium infection.  
c, Whole-body imaging of Rag1−/−RetΔ and their Rag1−/−Retfl littermate 
controls at day 6 after luciferase-expressing C. rodentium infection.  
d, Epithelial reactivity gene expression in C. rodentium infected 
Rag1−/−RetΔ mice (n =​ 17) and their Rag1−/−Retfl littermate controls 
(n =​ 15). e, Weight loss in C. rodentium-infected Rag1−/−RetΔ mice and 
their Rag1−/−Retfl littermate controls (n =​ 8). f, Survival curves in  

C. rodentium infected Rag1−/−RetΔ mice and their Rag1−/−Retfl littermate 
controls (n =​ 8). g, C. rodentium translocation to the liver of RetΔ and their 
Retfl littermate controls at day 6 after infection (n =​ 6). h, MacConkey 
plates of liver cell suspensions from RetΔ and their Retfl littermate controls 
at day 6 after C. rodentium infection. i, Whole-body imaging of RetΔ  
and their Retfl littermate controls at day 6 after luciferase-expressing  
C. rodentium infection. j, C. rodentium infection burden (n =​ 8). k, Innate 
IL-22 in in C. rodentium infected RetΔ mice and their Retfl littermate 
controls (n =​ 8). Data are representative of 3–4 independent experiments. 
Error bars show s.e.m. ns, not significant. *​P <​ 0.05; *​*​P <​ 0.01.
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Extended Data Figure 6 | Glial-derived neurotrophic factor family 
ligand (GFL) signals in ILC3. a, Multi-tissue intestinal organoid system. 
Scale bar, 20μ​m. Black arrows, ILC3. b, Expression of ILC-related genes 
in ILC3 from RetΔ mice in comparison to their littermate controls (n =​ 4). 
c, ILC3 activation with all GFL/GFRα​ pairs (GFL); single GDNF family 
ligand (GDNF, ARTN or NRTN); or single GFL/GFRα​ pairs (GDNF/
GFRα​1, ARTN/GFRα​3 or NRTN/GFRα​2) compared to vehicle BSA 

(n =​ 5). d, ILC3 from RetΔ mice (open black) and their littermate controls 
(open dash). Isotype (closed grey). e, 30-min activation of ILC3 by GFL 
(open black) compared to vehicle BSA (open dash). Isotype (closed 
grey). f, 10-min activation of ILC3 by GFL. pERK, n =​ 8; pAKT, n =​ 8; 
phosphorylated p38/MAP kinase, n =​ 8; pSTAT3, n =​ 8. Similar results 
were obtained in at least 3–4 independent experiments. Error bars show 
s.e.m. *​P <​ 0.05; *​*​P <​ 0.01.
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Extended Data Figure 7 | Alterations in the diversity of intestinal 
commensal bacteria of RetΔ mice. a, Quantitative PCR analysis at the 
phylum level in stool bacteria from co-housed Retfl and RetΔ littermates 
in steady state (n =​ 5). b, Metagenomic phylum level comparisons in stool 
bacterial from co-housed Retfl and RetΔ littermates in steady state (left) 

and after DSS treatment (right) (n =​ 5). c, Genus-level comparisons in 
stool bacteria from co-housed Retfl and RetΔ littermates in steady state 
(left) and after DSS treatment (right) (n =​ 5). Error bars show s.e.m.  
*​P <​ 0.05; *​*​P <​ 0.01.
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Extended Data Figure 8 | GFL-expressing glial cells anatomically 
co-localize with ILC3. a, Intestine of RetGFP mice. Green, RET/GFP; 
red, GFAP; blue, RORγ​t. Similar results were obtained in 3 independent 
experiments. b, Purified lamina propria LTi, NCR− and NCR+ ILC3 
subsets, T cells (T), B cells (B), dendritic cells (Dc), macrophages (Mø), 
enteric neurons (N) and mucosal glial cells (G). c, Neurosphere-derived 
glial cells. d, Activation of neurosphere-derived glial cells with TLR2 

(Pam3CSK4), TLR3 (Poli I:C), TLR4 (LPS) and TLR9 (DsDNA-EC) 
ligands, as well as IL-1β​, IL-18 and IL-33 (n =​ 6). M, medium. e, Il22 in 
co-cultures of glial and ILC3 using single or combined GFL antagonists 
(n =​ 6). f, Il22 in co-cultures of ILC3 and glial cells from Il1b−/− or their 
wild-type controls (n =​ 3). g, Gdnf, Artn and Nrtn expression in glial cells 
and ILC3 upon TLR2 stimulation (n =​ 3). Scale bar, 30 μ​m. Similar results 
were obtained in at least 4 independent experiments.
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Extended Data Figure 9 | Glial cell sensing via MYD88 signals.  
a–c, Intestinal glial cells were purified by flow cytometry. a, Germ-
free and their respective SPF controls (n =​ 3). b, Myd88−/− and their 
respective wild-type littermate controls (n =​ 3). c, Gfap-CreMyd88Δ 
and their littermate controls (Myd88fl) (n =​ 3). d, Total lamina propria 
cells of Gfap-CreMyd88Δ and their littermate controls (Myd88fl) (n =​ 6). 

e–h, Citrobacter rodentium infection of Gfap-CreMyd88Δ mice and 
their littermate controls (Myd88fl) (n =​ 6). e, Innate IL-22. f, Citrobacter 
rodentium translocation. g, Infection burden. h, Weight loss. Data are 
representative of 3 independent experiments. Error bars show s.e.m.  
*​P <​ 0.05; *​*​P <​ 0.01.
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Extended Data Figure 10 | A novel glial-ILC3-epithelial cell unit 
orchestrated by neurotrophic factors. Lamina propria glial cells sense 
microenvironmental products that control neurotrophic factor expression. 
Glial-derived neurotrophic factors operate in an ILC3-intrinsic manner 
by activating the tyrosine kinase RET, which directly regulates innate 
IL-22 downstream of a p38 MAPK/ERK-AKT cascade and STAT3 

phosphorylation. GFL induced innate IL-22 acts on epithelial cells to 
induce reactivity gene expression (CBP, commensal bacterial products; 
AMP, antimicrobial peptides; Muc, mucins). Thus, neurotrophic factors 
are the molecular link between glial cell sensing, innate IL-22 production 
and intestinal epithelial barrier defence.
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