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Resumo 

Durante o período neonatal, para produzir corretamente um diagnóstico patológico e permitir assim 

uma reposta adequada, é imperativo realizar uma rigorosa estimação acerca da idade gestacional do 

feto. Esta previsão é aplicada como ferramenta essencial para o aconselhamento parental de modo a 

providenciar um plano de cuidados perinatais apropriado. Durante uma autópsia fetal, a idade 

gestacional é uma variável a ter em consideração, particularmente utilizada aquando de situações de 

terminação de gravidez medicamente assistida e/ou infanticídios. No nosso caso, foram colecionadas 

observações representativas da população Portuguesa da região Centro-Sul de Portugal através do 

procedimento de várias autópsias fetais, provenientes do Hospital de Egas Moniz (CHLO – Centro 

Hospitalar de Lisboa Ocidental). Desde há vários anos que o sector de fetopatologia deste hospital tem 

vindo a analisar e avaliar os casos de mortalidade fetal pertencentes à região Centro-Sul de Portugal. 

Cada caso de autópsia fetal produz um relatório representativo das medidas e pesos associados ao 

indivíduo em causa, entre outras informações médicas relevantes; após a sua conclusão, cada relatório 

é arquivado num dossier (organizado cronologicamente). Este tipo de processamento e 

armazenamento de informação não proporciona um acesso direto nem estruturado aos valores 

antropométricos específicos previamente registados, derivados de relatórios médicos elaborados 

durante um ou mais procedimentos de autópsia fetal. Cada relatório arquivado é, então, tido em 

consideração como independente de todos os outros casos, tornando trabalhoso e demorado qualquer 

abordagem ao estudo do seu conteúdo. Para enfrentar este desafio primário, foi necessário desenvolver 

uma base de dados, assim como toda a metodologia relacionada com a inserção de dados na mesma. 

Neste presente estudo, um banco de dados nada mais é senão um depósito seguro para informação, 

servindo o propósito de acomodar estruturalmente dados. Foram registados 24 parâmetros fetais para 

cada caso individual, incluindo idade gestacional e medições de distâncias e pesos de características 

antropométricas e órgãos, respetivamente. Obtidas de acordo com o protocolo em vigor, segue a 

exaustiva lista de medições fetais registadas em cada autópsia: idade gestacional, comprimento total, 

comprimento craniocaudal, perímetro cefálico, perímetro torácico, perímetro abdominal, comprimento 

de pé, comprimento da mão, comprimento do dedo médio, distância intercomissural, comprimento do 

filtro, distância entre os cantos internos, distância entre os cantos externos, comprimento da fenda 

palpebral esquerda, comprimento da fenda palpebral direita, comprimento do pavilhão auricular 

esquerdo, comprimento do pavilhão auricular direito, peso corporal, peso dos rins, peso do timo, peso 

do baço, peso do fígado, peso dos pulmões, e peso doas glândulas suprarrenais. Órgãos emparelhados 

(pulmões, por exemplo) são representados pelo seu peso combinado. Como unidades, são utilizadas 

semanas (idade gestacional), centímetros (comprimentos e distâncias), e gramas (pesos). Foi gerado 

código base para produzir programas capazes de criar e interagir com o construto. Após estipular a 

estrutura da base de dados, todos os processos de inserção e consulta de informação são geridos por 

algoritmos especificamente engendrados de modo a prevenir a adulteração não propositada dos dados 

registados. A linguagem de programação adotada foi Python, versão 2.7 devido às suas bibliotecas 

(notavelmente: SQLite3, NumPy, e SciPy) e por ser uma linguagem multiparadigmática. 

A estrutura da base de dados é simples, apesar de relacional. É constituída por uma tabela em que 

linhas e colunas representam, respetivamente, os indivíduos e os valores dos seus parâmetros fetais 

registados durante a autópsia (incluindo uma chave primária). Assim, cada linha é representativa de 

um relatório de autópsia fetal, com a sua própria identidade, e medidas e pesos associados. Tal como a 

nossa base de dados, simples é também o mecanismo de inserção de dados. Todos os relatórios 

escritos tiveram de ter a sua informação transferida para o formato digital. Para esse efeito, foi 

desenvolvido um programa de apoio à inserção de dados. Aquando da sua execução, surge uma 

interface compreensível que solicita iterativamente ao utilizador os valores registados de cada variável 

de um relatório de autópsia fetal. Assim que todos os campos estejam preenchidos, a informação 

recolhida é automaticamente inserida na base de dados, simbolizando um indivíduo e os seus 
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respetivos atributos. Uma vez preenchida a base de dados com toda a informação necessária, é 

possível propor uma análise adequada. Na totalidade, recolhemos a informação referente a 450 fetos 

entre as 13 e as 42 semanas de idade (gestacional). Para o devido efeito, a manipulação de informação 

foi executada utilizando objetos abstratos baseados em tabelas de dispersão (Python) e SPSS. 

Este trabalho procurou abordar a precisão de diferentes parâmetros fetais em termos de estimação 

da idade gestacional, fazendo uso de técnicas de regressão e análise em componentes principais 

(ACP). Na computação dos 2 modelos de regressão linear múltipla, foram utilizados algoritmos 

específicos de retenção de variáveis baseados na análise de variância (estatística-F). Enquanto ACP e 

regressões múltiplas foram processadas em SPSS, regressões polinomiais foram executadas em 

Python. Para cada uma das 23 variáveis (referente a todos os parâmetros fetais selecionados com a 

exceção de idade gestacional), foram calculadas regressões polinomiais de grau k, k ∈ {1, 2, 3, 4, 5}, 

derivadas de cada conjunto de pares de pontos variável-idade. Para todas as regressões, múltiplas e 

polinomiais, os valores de R2 (coeficiente de determinação) foram registados com um valor-p 

significativo contra a hipótese nula de que os coeficientes estimados de cada parâmetro são iguais 

zero. Os modelos de regressão foram comparados entre si, com base na proporção de variância da 

variável dependente (idade gestacional) previsível pela(s) variável(eis) independente(s), isto é, o erro 

associado a cada modelo (soma do quadrado dos resíduos). Tendo sido estabelecido um nível de 

significância de α = 0.05, cada modelo de regressão linear múltipla foi comparado a cada um dos 

outros modelos de regressão (polinomial e linear múltipla); modelos polinomiais foram comparados a 

outros modelos derivados do mesmo tipo de regressão se e só se partilhassem o mesmo grau k. 

Relativamente à ACP (com um índice de KMO de 0.972 e um valor de significância próximo de 0 

para a homocedasticidade), a proporção de variância partilhada entre cada variável (comunalidade) 

apresentou maior valor para as variáveis comprimento total, comprimento craniocaudal, comprimento 

do pé. Associativamente, o único componente principal retido (com valor próprio maior ou igual a 1) 

apresenta valores de correlação maiores entre esses mesmos parâmetros originais (loadings) do que 

com qualquer outra variável. Podemos colocar a hipótese, então, de que essas variáveis sejam 

consideradas possíveis marcadores de desenvolvimento (preditores confiáveis de idade gestacional). 

De acordo com os algoritmos de seleção de variáveis (SPSS) utilizados para a computação de 

regressões lineares múltiplas, foram criados 2 modelos explicativos de idade gestacional. Estes 

modelos apresentaram valores de coeficiente de determinação semelhantes (R2 ≈ 0.953), assim como 

valores de teste Durbin-Watson adequados. As variáveis retidas apresentadas pelos 2 algoritmos foram 

semelhantes entre si, exceto para as variáveis representativas de comprimentos total e craniocaudal, 

que se verificaram como sendo mutualmente exclusivas. Em ambos os modelos, as variáveis 

selecionadas foram, em ordem decrescente de pesos-β: peso corporal (β ≈ 0.393), comprimento do pé 

(β ≈ 0.347), comprimento total (β ≈ 0.266), comprimento craniocaudal (β ≈ 0.199), pavilhão auricular 

esquerdo (β ≈ 0.16), peso dos pulmões, e peso das glândulas suprarrenais. Para as últimas duas 

variáveis mencionadas, o valor absoluto do peso-β foi menor ou igual a 0.1. Através de comparações 

entre modelos polinomiais foi possível estabelecer um sistema de classificação para variáveis ou 

grupos de variáveis, indicativa da qualidade de cada variável (associada a um grau de polinómio) em 

estimar, de acordo com os nossos dados, a idade gestacional. O grupo de variáveis com maior valor 

para o coeficiente de determinação, para cada grau polinomial, conteve sempre as variáveis 

comprimento total, comprimento craniocaudal, e comprimento do pé. De entre todas as regressões, 

comprimentos total, craniocaudal, e do pé estão constantemente presentes nos grupos de melhores 

previsores de idade gestacional. Mediante o tipo de regressão aplicada, o peso corporal e o 

comprimento da mão são também variáveis pertencentes à categoria preditiva anterior. 
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Abstract 

Large amounts of information are systematically generated throughout the course of scientific 

research and progress. In our case, observations representing the Portuguese population within the 

central-southern region of Portugal were collected throughout various foetal autopsy procedures. 

Gestational age (GA) and measured distances and weights of numerous anthropometric features and 

organs, respectively, were recorded per singleton (24 variables in total). This work seeks to elaborate 

on the accuracy of different foetal parameters in terms of GA estimation, making use of principal 

component analysis (PCA) and regression techniques. We created a dataset of 450 foetuses, ranging 

from 13 to 42 weeks of age, to compute both PCA and regression models. Initial exploratory analysis 

shed light onto which variables are most explanatory in terms of foetal development, and are thus most 

likely suitable for predictive rolls. We produced clusters of models, based on coefficient of 

determination values (R2), by comparing the squared sum of residuals between models (significance 

level α = 0.05). Models comprised of linear combinations of different variables exhibited significantly 

higher values of R2 (p-value ≤ 0.05) when compared to single variable models. Multiple linear 

regression models, however, did not exhibit the same statistical significance when compared 

internally. Across all regression models (both polynomial and multiple linear), crown-heel length 

(CHL), crown-rump length (CRL), and foot length (FL) are constantly present within the cluster of 

best predictors of GA. Depending on the type of regression analysis applied, body weight (Body), 

hand length (HL) also fall onto the same category. Consistent with previously peer-reviewed work, 

variables such as CHL, CRL, and FL are found to be the most reliable sources of information for 

estimating developmental age. In cases where such measurements are impossible to obtain, other 

foetal features can be utilized (although less reliable) such as HL, HC, body weight, and ear length. 

 

Keywords 

Foetopathology; Foetus; Prediction; Gestational age; Clustering. 
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Chapter 1 

 

Introduction 

Performing rigorous estimations of GA is invaluable for correct diagnosis and optimum treatment 

of disease during the neonatal period. GA prediction is an essential tool for parental counselling and to 

plan for appropriate perinatal care. It is also a prime requisite for foetal autopsy, particularly in 

situations of criminal abortion, alleged infanticide, and medically-terminated pregnancies. Previous 

peer-reviewed studies have elaborated on the accuracy of different foetal parameters in GA 

prediction1, particularly head circumference (HC), HL, FL, CRL, and CHL2 – 5. Model analysis and 

hypothesis tests may help determine not only how different measurements and weights are linked to 

foetal developmental age, but also which variables might be classified and ordered in terms of their 

predictive capabilities. Regarding anthropometric data analytics, other published papers often 

approach the validity of different measured variables for conceptual age estimation6 – 10, and the 

quantitative standards of those measurements for foetal and neo-natal autopsy11. Regression analysis 

and model fitting are widely accepted and used in this field of work, hence being viewed as reliable 

tools for knowledge production12. Other relevant publications may also be found, discussing the 

relationship between different methods of analysis and discriminating regression properties, enabling 

model validation for subsequent selection13, 14. Currently, the application of analytical and statistical 

methods for the evaluation of information is accomplished with the use of data manipulative 

software15, 16. For these computer programs to be beneficial, however, all data must be made digitally 

available. Without a proper data frame, analysis of data becomes tedious and/or unfeasible. 

 

1.1 Motivation 

The underlying importance of having a well-established database is not only to be able to reliably 

keep information safely stored, but also to enable such data to be subjected to manipulation and 

analysis. The foetopathology and pathological anatomy departments of Hospital de Egas Moniz 

(HEM), part of Centro Hospitalar de Lisboa Ocidental (CHLO), have since long been creating, 

gathering, and evaluating singleton pre-natal and neo-natal clinical autopsy records derived from the 

population located in the central-southern region of Portugal. Medical professionals register organ 

weights, anthropometric distances, and other features for each individual episode so that a diagnosis 

may be conjectured to explain the most likely cause of death. To make any causality assessments, each 

measured variable must be associated with the value of the most probable gestation period for that 

measurement; to this effect, a reference table of expected anatomical details at various postmenstrual 

gestational periods is utilized. Having fully concluded an autopsy report, all information regarding it is 

archived. Thousands of files are stacked in dossiers, making it effortful to inquire such data. Without 

the aid of a more suitable storage-query system, it is not feasible to produce any kind of meaningful 

studies relating the contents of different autopsy reports. A database would have to be created. 

Moreover, an efficient way of inputting and manipulating information had to be devised. 

 

1.2 Objectives 

Our primary objective in this study is to devise a method for storing and manipulating information 

pertaining to the autopsy files collected by CHLO medical professionals. Additionally, we hope to 

apply different algorithmic approaches to our collected data to, not only test de adequacy of our 

database, but also produce meaningful knowledge by using different methodological approaches (such 

as PCA, polynomial regression, and multiple regression techniques) that may help establish which 

foetal parameters are most associated to foetal development (gestational age). Another goal is to make 

our scripts simple and user-friendly, specifically in terms of database creation, and data insertion and 

visualisation. Thus, data interaction can be easily applied without much background information. 
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1.3 Results and Contributions 

With the application of exploratory analysis and distinct regression techniques, by means of SPSS 

and Python scripts, it is possible to check which variables are either most explicative regarding foetal 

development variance or serve best as the basis for GA estimation models, respectively. High values 

for communality (≥ 0.946) and loading (≥ 0.972) can be witnessed for CRL, CHL, and FL variables, 

which account for the shared variance with every other variable and produced component, 

respectively. Another example for GA estimation predictor assessment, is the evaluation of models 

with highest coefficient of determination (CHL, FL, CRL, body weight, and HL) and highest variable 

β-weights associated with multiple linear regression (CHL, FL, CRL, body weight, and ear length). 

Moreover, by comparing different models in terms of their associated error, regarding statistical 

significance, it is possible to produce clusters of variables which present the same prediction accuracy, 

despite exhibiting different coefficient of determination values and thus create a variable-based 

ranking system for GA estimation; for example, CRL, CHL, FL, and body weight are clustered as the 

least error-prone models for a 2nd degree polynomial regression (0.936 ≤ R2 ≤ 0.942). 

Through the course of this work, software was developed to enable information gathering and 

manipulation, and derive the newly proposed statistically significant cluster and ranking system (to be 

applied to variable regression models). Our contributions in the field of database creation and handling 

are made available in a public repository17, as well as the actual database constructed and utilized in 

our work. Also, a research article related to our findings (concretely, GA estimation and variable 

adequacy) has also been accepted to the 11th International Conference on Practical Applications of 

Computational Biology & Bioinformatics18 (PACBB), serving as a perfect peer-review process by 

which the validity of our endeavours can be testified. 

 

1.4 Overview 

Based on foetal autopsy records, we created a dataset of 450 individuals, each comprised of 24 

foetal parameters. PCA produced results indicating CHL, CRL, and FL variables as the most 

explanatory in terms of total data variance. By comparing regressions models, Body and HL 

parameters were also found to be significantly viable measurements for GA estimation, depending on 

the polynomial degree applied within each regression. We hope to reinforce the many advantages of 

data manipulation by computation over manual activity. With an adequately ample data set, it could be 

possible to establish, for example, certain specific pre-natal characteristics associated with a distinct 

disease, enabling pathology detection. Background information regarding this work is discussed in 

Section 2, which serves as context for the appreciation for our attempts and achievements. The 

following section describes the methodological approaches used (programming language used, 

noteworthy package applications, statistical approaches, etc.). Section 4 presents the results of 

applying said methods, which are mostly visual reference tables and figures. Discussion of obtained 

results and final remarks pertain to the 5th Section of this dissertation, where the properties of each 

approach are taken into consideration during result evaluation. Section 6 relates to the conclusions 

derived from our work, while attempting to foresee possible new outcomes, making use of our data. 
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Chapter 2 

 

Case Study: Background and Related Work 

Fetal and perinatal pathology is mainly a posthumous specialty concerned with the causes and 

mechanisms behind the reproductive loss in humans19. In its majority, pregnancy loss occurs in the 

first half of the gestational period20 – 24. Causes of death in this stage vary depending on the gestational 

age of an individual. For instance, chromosomal and genetic defects have their highest frequencies in 

earlier weeks – accounting for approximately 60% of all non-viable, and thus naturally aborted 

embryos – while infections and premature rupture of the membranes are most associated with 

mortality during later embryonic stages25 – 28. 

For several years, the foetopathology department of Hospital de Egas Moniz, has been conducting 

the analysis and evaluation of foetal mortality cases pertaining to the central-southern region of 

Portugal. Each foetal autopsy produces a physical report file containing, amongst other relevant 

medical information, measurements and weights of the foetus. Whenever a foetopathology instance is 

concluded, the file is then archived within a dossier. This type of information processing and storage 

does not permit direct access to harboured values in more than a few cases at a time. Reports are 

regarded independently of each other, making any data study laborious and time-consuming. To 

address this challenge, we developed a database representing foetal autopsy records. Each report had 

to be manually inserted, due to discrepancies of cursive between files, excluding the use of optical 

character recognition (OCR) software. 

 

2.1 Foetal Viability 

Foetal viability is the ability or potential of the foetus to survive outside the uterus after birth while 

supported by modern medical techonolgy29; an individual’s viability is largely dependent upon its 

organ maturity and environmental conditions. There exists no well-defined set of developmental 

values – age, weight, or other measures – for which a human conceptus becomes automatically 

viable30. For instance, seldom does any infant weighing less than 500g persist outside the womb 

(although it has been reported). In accordance with the scientific community in this field, 20 to 35 

percent of babies born at 23 weeks of gestation survive, while 50 to 70 percent of babies born at 24 to 

25 weeks and over 90 percent born at 26 to 27 weeks survive31 – 33. Between weeks 23rd and 24th of 

gestation, an average individual’s chance for survival is augmented 3 to 4% per day. From 24 to 26 

weeks of development, the increment in viability per day is reduced to 2 to 3%. The following 

gestational periods exhibit a decrease in rate of viability augmentation, due to the already present high 

chance of survival. 

The GA at which the expectation that a foetus has as much chance of surviving as not surviving 

post-partum is a medical concept known as the limit of viability. With the development and support of 

neonatal intensive care units (NICU) – a special department of a hospital or health care facility 

catering to ill or premature new-born babies – the limit of viability has been declining since half a 

century ago, although stagnant for the past 12 years34. The 50 percent survivability threshold is 

currently around the GA of 24 weeks35. 

From all possible factors that affect an infant’s chance of survival, the most influential are age, 

weight, gender, and race. Foetal viability is also influenced by several types of health problems: 

breathing problems, congenital abnormalities or malformations, and infections threaten the survival of 

the neonate36. Other factors may influence the foetus’ ability to withstand birth by altering the rate of 

organ maturation or oxygen supply. Progeny whose maternal entity is conditioned by diabetes 

mellitus, as an example, have a higher mortality rate (comparatively to non-diabetic mothers). 
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Figure 2.1: Prenatal development. Stages in prenatal development, presenting viability and point of 50% chance of survival 

(limit of viability) at bottom. Weeks and months are numbered by gestation. Source: Häggström M. Medical gallery of 

Mikael Häggström 2014. WikiJournal of Medicine. 2014, 1 (2). 

 

2.2 Measurement Relevance 

To analyse diagnoses and evaluate the recurrence risk for disadvantageous pregnancy conclusions, 

medical and pathological professionals gather and disclose various anatomical details during neonatal 

autopsies. While questing for meaningful answers, numerous types of information play an important 

part; family and personal health history of the parents, obstetric events, biometrics, radiography, 

histological examination, and laboratory studies, for example, are some of the paramount details 

required to produce any knowledge – and consequently, wisdom – in this field of work. For roughly 

one third of cases, a precise cause of death may not be accurately determined despite all 

comprehensive attempts performed37. Consequently, and due to lack of adequate explanation to family 

members for their affliction, socially-impaired mourning behaviours may rise38. Specialists aim to 

unearth distinct syndromic diagnoses as families are best supplied by having unambiguous acumen 

into future liabilities. Without normative tables, presumptively important findings such as hypoplasia – 

the underdevelopment or incomplete development of a tissue or organ – and hypertrophy – the 

increase in the volume of an organ or tissue due to the enlargement of its component cells – for 

example, may not be accurately denoted while clinically assessing an individual during any biometric 

procedure. 

In 2006, the conjoint effort of John Archie, Julianne Collins, and Robert Lebel produced 

quantitative standards for foetal and neonatal autopsies. The data used to create such a construct was 

available at the time, sourcing from other information repositories which had been assembled by other 

researchers. Singleton foetal measurements and their associated gestational periods derived from 

specific circumstances: data was collected from different geographical origins39 – 53 with varying 

gathering conditions; for example, normal term infants, electively aborted foetuses, and stillborn data 

were utilized, acquired from contrasting regression analysis models – linear and polynomial. 

Portuguese professionals make use of this meta-analytical informational design daily to produce 

viable output from their gathered observations, providing overwhelming importance to the 

contribution of John Archie and his team. CHLO medical specialists select specific measurements and 

weights from the list of all variables studied throughout the foetal developmental process, while 

assessing any foetopathological event. Preceding any diagnosis, professionals must associate each 

measurement to a specific gestational period in weeks, following a unified table of lengths, distances, 

and weights. Discrepancies between age values from different variables within the same individual 

provide insight into determining a probable cause of death and/or factors most linked to fatality. 
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Chapter 3 

 

Methods 

For this study, a database is no more than a safe-deposit space for data. It serves the purpose of 

being able to structurally accommodate data, rendering it as information. Concretely, Python code is 

required to create and interact with said construct. In this fashion, once structure is defined, all 

processes of data insertion and query must fall onto the responsibility of specific code scripts; this 

provides a practical barrier against uncareful practices towards data. For example, while it possible to 

easily visualize data by means of a spreadsheet, the information itself is kept separate from the 

observation-enabling file, thus not being directly possible to alter or delete any given values or 

structure within the informational scheme itself. 

24 quantitative variables were selected to represent each foetal autopsy case. Retrieved according 

to autopsy protocol, the extensive list of recorded foetal parameters follows: GA, CHL, CRL, HC, 

chest circumference (CC), abdominal circumference (AC), FL, HL, middle finger length (MFL), 

intercommissural distance (ID), philtrum length (PL), inner canthal distance (ICD), outer canthal 

distance (OCD), left palpebral fissure width (LPFW), right palpebral fissure width (RPFW), left ear 

length (LEL), right ear length (REL), body, kidneys, thymus, spleen, liver, lungs, and adrenals. Paired 

organs are represented by their combined weight. Units comprise of week (GA), centimetre (distances 

and lengths), and gram (organ and body weights). 

Given the format of each autopsy report file in this work, a database was constructed and 

algorithms to store, retrieve, and manipulate information were devised. Python 2.7 was applied as the 

programming language for these tasks mainly due to its extensive libraries and packages, notably 

SQLite3 (providing SQL interface compliant with the DB-API 2.0 specification described in PEP – 

Python Enhancement Proposal – 249), NumPy, and SciPy modules54 – 56, while also prioritizing code 

readability. Another Python-promoting key factor is that it facilitates script development by being 

multi-paradigmatic, fully supporting aspect-oriented, object-oriented, structured, imperative, 

functional, contract, and logic styles of programming57 – 63. IBM’s SPSS software64 was also utilized 

due to its inbuilt statistical applications, concretely PCA and variable selection algorithms for multiple 

linear regression. 

 

3.1 Data Structure 

The actual database structure utilized to store and retrieve information is a simplistic one. Despite 

being modelled as a relational database, no more than a single table was created due to the underlying 

nature of selected data. Within this specified database there exists a table where the first column 

corresponds to an identifier for every individual (primary key), and each other column represents a 

certain variable of interest. Hence, each row denotes a singleton foetal autopsy report, with its own 

identity, and associated measures and weights. 

To create a .db extension file using Python (createDB.py), it is firstly necessary to create a 

Connection object (herein referred to as conn) representing the database. Once conn is established, it is 

imperative to conceive a Cursor object (derived from conn’s cursor() method) and make use of its 

execute() method to perform SQL commands. Therefore, a command variable must be initialized with 

a string attributed to it, representing the SQL-syntax statement for database creation. As a DB-API 

(database-application programming interface) requirement, after connecting to the database and thus 

ensuing a new transaction, it is necessary to confirm any alterations made: the commit() method, 

belonging to the conn object, applies such confirmations. During a database creation procedure, the 

referenced method is not strictly necessary, but rather demonstrates good coding practice as it is 

required when inserting, deleting, or updating values within the database. Lastly, to terminate the 

previously established connection, the close() method (belonging to conn) is evoked. 
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Figure 3.1: Excerpt from createDB.py script file. Snippet of Python code used to produce the database. All variables are 

declared as FLOAT, except for idd (type VARCHAR) which is the primary key. Exemplary, only 2 variables are depicted. 

When run, outputs a dbName.db file consisting of a database with the specified table properties. 

 

A simple database structure should be accompanied by a straightforward data insertion mechanism. 

All scribed reports had to be translated into the form of digital information. To achieve this, a Python 

script was formulated (insertValues.py) to aid the exhausting task of allocating all data heretofore 

gathered into the specified database. When run, a user-accessible interface emerges, iteratively 

requesting the recorded values of each variable within an autopsy log. While running the insertion 

script, the names displayed for each variable are derived from the variable names given when creating 

the database. After all fields are filled, the gathered information is automatically inserted into the 

database, symbolizing a unique individual and its corresponding features. A SQLite3 module approach 

is used, in resemblance to the previously mentioned database creation script, to execute SQL-syntax 

commands for data insertion. 

 

 
 

Figure 3.2: Example of insertValues.py script file instancing. Practical application of the devised algorithm for value 

insertion. All numerical values are considered as floating point numbers when inserted into the database. In this case, the 

199th autopsy report from the year 2005 is displayed. Variable names prompted by the script are shown to the left, while user 

input values are shown to the right. Noticeably, idd was selected as the primary key variable name instead of id; this decision 

was made because ID was already utilized as the variable for processing intercommissural distance. 

 

Once our database has been populated with all necessary information, it is possible to elaborate on 

that information so that proper analysis can ensue. For this purpose, a third Python script (analysis.py) 

was created not only to retrieve information from the database, but also produce meaningful output. 

This output comes in two different forms. One type of output is merely a data frame containing data 
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(for example, a .csv extension file). This output is then manually imported onto IBM’s SPSS software 

through the Import Data option, for the application of exploratory and multiple regression analyses. 

The second type of output consists of every other result enunciated within this thesis (polynomial 

regression and clustering, for example), described along this work, including SPSS output analysis. 

 

 
 

Figure 3.3: Information workflow. Practical illustration of all tasks and items required within this work. Arrows indicate the 

direction of information flow. P1 (createDB.py) creates the specified database (DB); P2 (insertValues.py) inserts all 

information retrieved from an AR (Autopsy Report) into DB; P3 (analysis.py), after retrieving data from the database, 

outputs a .csv file (O1) containing all DB information; O1 is manually passed onto IBM’s SPSS software (SP), which outputs 

its analysis results (O2); O2 is manually incorporated onto P3, which outputs the end results (O3) shown in this dissertation. 
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3.2 Data Exploration and Model Comparison 

SPSS was used to conduct the initial PCA, which would provide foresight onto possible outcomes 

of successive regression models. Computed extraction communalities, loadings, explained variance 

per component, and adequacy parameters were consequently inspected. Computation of multiple 

linear regression models was performed through the same IBM software. GA was selected as the 

dependent variable, while the remaining 23 features were used as predictors. All available regression 

algorithms for variable selection (Enter, Stepwise, Remove, Backward, and Forward) were utilized 

and their outputs taken into consideration. Models were selected based on statistically significant 

coefficient values (α = 0.05), as well as Durbin-Watson and R2 values. Standardized β-weights were 

also a point of interest for later model comparison. 

In total, 5 different kth degree polynomial regression functions were fit onto each of the 23 

variables, for k ∈ {1, 2, 3, 4, 5}. Each variable dataset consisted of pairs of variable-age points, where 

each pair represents the GA and recorded variable value of a singleton foetus. The NumPy module 

polyfit() function was used to output each single variable model. R2 and estimated parameter values 

were recorded for all regressions presenting a significant p-value for the null hypothesis that the 

estimated coefficients are equal to zero. 

Regression models were compared based on each model’s proportion of variance in the dependent 

variable predictable by the independent variable. The F-statistic was selected and computed using the 

squared sum of residuals (SSR) and degrees of freedom of the models being compared65. A 

significance level of α = 0.05 was established. Each multiple linear regression model was compared to 

all other multiple and polynomial models, while polynomial models were compared to other 

polynomial models if and only if both models pertained to the same polynomial degree. When 

comparing 2 models with the same degree of freedom, the F-statistic was computed as 

 

𝐹 =  
𝑆𝑆𝑅1

𝑆𝑆𝑅2
 

 

where SSR1 and SSR2 indicate the squared sum of residuals for each model being compared. The 

upper critical value of the F distribution was then deduced with both numerator and denominator 

values equal to the degrees of freedom of either model. In contrast, to compare models exhibiting 

different degrees of freedom (polynomial versus multiple regressions), the F-statistic was computed as 

 

𝐹 =  
(𝑆𝑆𝑅1 − 𝑆𝑆𝑅2) (𝑑𝑓1 − 𝑑𝑓2)⁄

(𝑆𝑆𝑅2 𝑑𝑓2⁄ )
 

 

where df1 and df2 represent the degrees of freedom of the first and second models, respectively. The 

first model must be the one with fewer parameters between the 2 models being compared. The upper 

critical value of the F distribution (which is directly related to the computed p-value) is deduced for a 

numerator value of the difference between df1 and df2, and a denominator value of df2. 

The SciPy module stats.f.cdf() function was used to compute all p-values associated with the 

previously computed F-statistics. For models with the same degrees of freedom between them, 

 

p-value =  1 −  stats.f.cdf(𝐹, 𝑑𝑓1, 𝑑𝑓2) 

 

while for models with different degrees of freedom between them, 

 

p-value =  1 −  stats.f.cdf(𝐹, 𝑑𝑓1 − 𝑑𝑓2, 𝑑𝑓2) 
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Chapter 4 

 

Results 

 

4.1 Principal Component Analysis 

For our dataset, the Kaiser-Meyer-Olkin (KMO) index for sampling adequacy had a value of 0.973 

while the p-value corresponding to the χ2-statistic associated with Bartlett’s test of homoscedasticity 

was below 5x10-4. PCA produced only one significant component (eigenvalue ≥ 1) explaining 

79.624% of total data variance. Communality and loading values for all variables are shown below, as 

well as total variance explained across components and scree plot (component versus eigenvalue). 

 

Table 4.1: PCA communalities and loadings. PCA-generated communality and loading values per variable within our 

dataset. Darker shades represent lower values. 

 

 

 

 

Communality Loading

CRL 0.963 0.981

CHL 0.956 0.978

FL 0.946 0.972

GA 0.937 0.968

HC 0.931 0.965

Body 0.925 0.962

REL 0.924 0.961

LEL 0.918 0.958

AC 0.908 0.953

OCD 0.897 0.947

MFL 0.872 0.934

Liver 0.847 0.921

Kidneys 0.804 0.897

Lungs 0.800 0.894

RPFW 0.800 0.894

LPFW 0.781 0.884

ICD 0.743 0.862

Spleen 0.695 0.834

Adrenals 0.694 0.833

Thymus 0.679 0.824

PL 0.651 0.807

CC 0.572 0.756

HL 0.460 0.678

ID 0.406 0.637
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Table 4.2: Total variance explained. PCA-generated eigenvalue per component produced and associated percentage of total 

explained variance. Darker shades represent non-retained components. 

 

 
 

 

 

 

Component Eigenvalue % Total Explained Variance

1 19.11 79.624

2 0.921 3.839

3 0.585 2.437

4 0.558 2.325

5 0.46 1.916

6 0.394 1.641

7 0.36 1.5

8 0.296 1.234

9 0.251 1.047

10 0.24 0.998

11 0.153 0.638

12 0.141 0.59

13 0.11 0.458

14 0.094 0.393

15 0.065 0.273

16 0.06 0.249

17 0.048 0.201

18 0.045 0.186

19 0.032 0.135

20 0.029 0.119

21 0.019 0.078

22 0.012 0.05

23 0.011 0.045

24 0.006 0.023
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Figure 4.1: Scree plot. Eigenvalues of associated components versus the number of the component. 

 

4.2 Regression Models 

Across all variable selection methods for multiple regression, outputs presenting models with non-

significant variable coefficients were excluded (Enter and Remove). The Backward selection 

algorithm was discarded for presenting the same output as the Forward approach, while yielding a 

Durbin-Watson statistic further away from 2. Stepwise and Forward algorithms produced models with 

Durbin-Watson values of 1.961 and 1.958, respectively, and similar coefficients of determination 

values (R2 ≈ 0.953). Both regressions share 5 retained variables, one exclusive variable each. Only 

statistically significant variable coefficients are present in either model (p-value ≤ 0.05).  

 

Table 4.3: Multiple linear regression models. Standardized β-weights for each variable selected associated with each 

variable selection algorithm method for regression. Darker shades represent lower values. 

 

 

 

In terms of polynomial regression, a collection of 115 single variable-based models for GA 

estimation were generated, comprised of 5 different degree polynomial regressions for each of the 23 

independent variables. Models were retained after checking the statistical significance of each model’s 

estimated parameters (p-value ≤ 0.05). Every kth degree polynomial regression model follows the form  

 

𝑓(𝑥) = 𝛽𝑘 ∙ 𝑥𝑘 + 𝛽𝑘−1 ∙ 𝑥𝑘−1 + ⋯ + 𝛽0 ∙ 𝑥0 

 

where βk, k–1, …, 0 are the computed weights associated with variable x, for any polynomial degree k. 

Body FL CHL CRL REL Lungs Adrenals

Stepwise 0.402 0.310 0.266 - 0.157 -0.070 -0.087

Forward 0.384 0.384 - 0.199 0.163 -0.069 -0.083
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Table 4.4: Polynomial regression models. R2 values computed for all polynomial regressions. Polynomial degrees are 

represented by numbers 1 through 5, for each variable-derived model. Darker shades represent lower values. 

 

 

 

4.3 Comparison and Clustering 

In terms of multiple linear regression, both previously selected models exhibited no statistically 

significant difference between them. In contrast, when either model was compared to any of the 115 

polynomial regression models, a recurring p-value ≤ 0.05 was systematically observed. By clustering 

models presenting no significant difference between other variable models, and creating different 

variable clusters based on statistical evidence for divergence, a goodness of fit hierarchy was 

established. CHL, CRL, and FL were the only single parameter-based regressions to be present in the 

top tier throughout all polynomial degrees. The hierarchical dissimilarities were most evident between 

1st degree polynomial regressions and the remaining polynomial degree models. Notably, body weight 

was placed alongside the best GA estimators for any polynomial degree ≥ 2, as HL for any degree ≥ 3. 

 

1 2 3 4 5

CHL 0.931 0.942 0.943 0.943 0.944

FL 0.927 0.940 0.942 0.945 0.945

Body 0.868 0.937 0.942 0.942 0.942

CRL 0.931 0.936 0.938 0.940 0.940

HL 0.410 0.917 0.930 0.934 0.936

HC 0.896 0.911 0.914 0.916 0.917

REL 0.893 0.902 0.904 0.907 0.907

LEL 0.885 0.891 0.895 0.896 0.896

Kidneys 0.734 0.876 0.877 0.881 0.881

CC 0.503 0.871 0.883 0.898 0.899

MFL 0.849 0.864 0.917 0.917 0.920

AC 0.840 0.840 0.852 0.853 0.857

Liver 0.759 0.840 0.842 0.843 0.843

OCD 0.834 0.835 0.854 0.857 0.860

Lungs 0.720 0.808 0.813 0.814 0.816

Spleen 0.623 0.791 0.833 0.847 0.849

RPFW 0.730 0.759 0.800 0.803 0.809

Thymus 0.608 0.756 0.816 0.820 0.820

LPFW 0.711 0.738 0.777 0.779 0.784

ICD 0.710 0.726 0.742 0.750 0.751

ID 0.363 0.715 0.722 0.777 0.787

Adrenals 0.589 0.681 0.689 0.691 0.692

PL 0.595 0.598 0.606 0.606 0.608



 

 
13 

 

 
 

Figure 4.2: 1st degree polynomial regression goodness of fit clusters. Numerical values represent the coefficients of 

determination of each aligned variable. Darker shades represent lower R2 values. Clusters are represented by boxes. 

Parameters in bold indicate cluster centre(s): variable models used as subject for model comparison across other higher R2 

valued variable models. For example, while AC and OCD models (as a cluster centre) are statistically indistinguishable from 

MFL and one another, both have a significantly worse fit when compared to any other given model with a higher R2 value; 

MFL (as a cluster centre) is statistically identical to Body, and both AC and OCD models, and significantly different from 

every other model. 

0.931 CRL

0.931 CHL

0.927 FL

0.896 HC HC

0.893 REL REL

0.885 LEL LEL LEL

0.868 Body Body Body

0.849 MFL MFL MFL

0.840 AC AC

0.834 OCD OCD

0.759 Liver Liver

0.734 Kidneys Kidneys Kidneys

0.730 RPWF RPWF RPWF

0.720 Lungs Lungs Lungs

0.711 LPFW LPFW

0.710 ICD ICD

0.623 Spleen

0.608 Thymus

0.595 PL

0.589 Adrenals

0.503 CC

0.410 HL

0.363 ID



 

 
14 

 

 
 

Figure 4.3: 2nd degree polynomial regression goodness of fit clusters. Numerical values represent the coefficients of 

determination of each aligned variable. Darker shades represent lower R2 values. Clusters are represented by boxes. 

Parameters in bold indicate cluster centre(s). Comparatively to the previous table, Body is now indistinguishable from any of 

the top 4 predictors. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

0.942 CHL

0.940 FL

0.937 Body

0.936 CRL

0.917 HL HL

0.911 HC HC HC

0.902 REL REL REL

0.891 LEL LEL LEL

0.876 Kidneys Kidneys Kidneys

0.871 CC CC

0.864 MFL MFL

0.840 AC AC

0.840 Liver Liver

0.835 OCD OCD OCD

0.808 Lungs Lungs Lungs

0.791 Spleen Spleen Spleen Spleen

0.759 RPCL RPCL RPCL RPCL RPCL

0.756 Thymus Thymus Thymus Thymus Thymus Thymus

0.738 LPCL LPCL LPCL LPCL LPCL

0.726 ICD ICD ICD ICD ICD ICD

0.715 ID ID ID ID ID

0.681 Adrenals Adrenals Adrenals

0.598 PL
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Figure 4.4: 3rd degree polynomial regression goodness of fit clusters. Numerical values represent the coefficients of 

determination of each aligned variable. Darker shades represent lower R2 values. Clusters are represented by boxes. 

Parameters in bold indicate cluster centre(s). 

 

 

 

 

 

 

0.943 CHL CHL

0.942 FL FL

0.942 Body Body

0.938 CRL CRL CRL

0.930 HL HL

0.917 MFL MFL

0.914 HC HC

0.904 REL REL REL

0.895 LEL LEL LEL

0.883 CC CC CC

0.877 Kidneys Kidneys

0.854 OCD OCD OCD

0.852 AC AC AC

0.842 Liver Liver Liver Liver

0.833 Spleen Spleen Spleen Spleen Spleen

0.816 Thymus Thymus Thymus Thymus

0.813 Lungs Lungs Lungs Lungs

0.800 RPFW RPFW RPFW

0.777 LPFW LPFW LPFW

0.742 ICD ICD ICD

0.722 ID ID ID

0.689 Adrenals Adrenals

0.606 PL
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Figure 4.5: 4th degree polynomial regression goodness of fit clusters. Numerical values represent the coefficients of 

determination of each aligned variable. Darker shades represent lower R2 values. Clusters are represented by boxes. 

Parameters in bold indicate cluster centre(s). 

 

 

 

 

 

 

 

0.945 FL FL

0.943 CHL CHL CHL

0.942 Body Body Body

0.940 CRL CRL CRL

0.934 HL HL

0.917 MFL MFL

0.916 HC HC

0.907 REL REL REL

0.898 CC CC CC

0.896 LEL LEL LEL

0.881 Kidneys Kidneys

0.857 OCD OCD

0.853 AC AC

0.847 Spleen Spleen

0.843 Liver Liver Liver

0.820 Thymus Thymus Thymus Thymus

0.814 Lungs Lungs Lungs

0.803 RPCL RPCL RPCL RPCL

0.779 LPCL LPCL LPCL

0.777 ID ID ID

0.750 ICD ICD

0.691 Adrenals

0.606 PL
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Figure 4.6: 5th degree polynomial regression goodness of fit clusters. Numerical values represent the coefficients of 

determination of each aligned variable. Darker shades represent lower R2 values. Clusters are represented by boxes. 

Parameters in bold indicate cluster centre(s). Comparatively to the previous table, HL is now indistinguishable from any of 

the top 5 predictors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.945 FL

0.944 CHL

0.942 Body

0.940 CRL

0.936 HL

0.920 MFL MFL

0.917 HC HC

0.907 REL REL REL REL

0.899 CC CC CC

0.896 LEL LEL LEL LEL

0.881 Kidneys Kidneys

0.860 OCD OCD

0.857 AC AC

0.849 Spleen Spleen

0.843 Liver Liver Liver

0.820 Thymus Thymus Thymus Thymus

0.816 Lungs Lungs Lungs Lungs

0.809 RPCL RPCL RPCL RPCL RPCL

0.787 ID ID ID ID ID

0.784 LPCL LPCL LPCL LPCL

0.751 ICD ICD ICD

0.692 Adrenals

0.608 PL
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Chapter 5 

 

Discussion 

The adequacy of exploratory analysis by PCA, applied to our dataset, can be determined by 

inspecting the results from Bartlett’s test of sphericity – statistical test for the overall significance of 

all correlations within the correlation matrix – and the Kaiser-Meyer-Olkin test for sampling adequacy 

(KMO index). Without statistical significance of correlations, the remaining outputs of PCA 

(components, communalities, and loadings, for instance) would be statistically invalid. The KMO 

index (values ranging from 0 to 1), once correlation significance has been inferred, indicates how 

efficiently our original variables can be factorized, given that the correlation between any 2 variables 

can be influenced by any other given variable present within the dataset. A sphericity test significance 

value lower than 5x10-4, and a KMO index of 0.973 indicate that our dataset is viable for a PCA 

approach. Having a total of 24 variables and a dataset comprised of 450 individuals helped stipulate 

which component retention criterion to be used66. For this reason, a single component was selected 

with a corresponding eigenvalue of 19.1. This component exhibited a percentage of total variance 

explained of 79.62, which is adequate67. The total amount of variance shared between each variable 

and every other parameter within our analysis (communality) presented higher values for variables 

such as CRL, CHL, and FL (order from highest to lowest). On a similar note, for our retained principal 

component (which can be described as a developmental marker), loading values have the same 

variable-value order (as in the communalities table), which translates into the correlation between the 

original variables and that component. For variables yielding high loading values (CRL, CHL, FL, for 

example), one can assume those variables might be considered as potentially good developmental 

markers (or rather, reliable GA predictors). Such claims, however, can only be induced by different 

methods, such as regression analysis. 

An important step in regression model validation is testing the hypothesis that the squared sum of 

residuals in a model is significantly different than the SSR of a constant-valued model. Every 

regression model (both multiple and polynomial) presented, in accordance with the associated test 

statistic, statistically significant R2 values (p-value ≤ 0.05). Given the high correlation values between 

several variables (as foetal development acts positively on all measurements and weights), and to filter 

possible GA estimation candidates, variable selection algorithms were used to produce multiple linear 

regressions. For a significance level α = 0.05, the least possible number of features presenting 

significantly distinguishable effects were selected by each of the 2 algorithms (Stepwise and Forward). 

Because these algorithms are based on variable iteration, autocorrelation is factor to be taken into 

consideration. Durbin-Watson (DW) test values (where the null hypothesis assumes that model errors 

are serially uncorrelated against the alternative that they follow a first order autoregressive process) 

were inspected for model validation. With an optimal value of 2, both output models presented reliable 

Durbin-Watson values (2 – abs(DW) ≤ 0.042). In SPSS, the Stepwise algorithm incorporates both F-in 

and F-out (F-statistic critical values for considering variables as having significantly distinguishable 

effects or not) parameters used in Backward (starting from a full set of variables and iteratively 

removing each variable) and Forward (beginning from a single variable and iteratively inserting each 

variable) variable selection methods, respectively. Hence, Stepwise and Backward algorithms 

produced multiple linear regression models with identical retained variables and their associated β-

weights, and coefficient of determination values (R2 ≈ 0.953), varying only in DW values. Because 

Backward/Stepwise and Forward approaches have different computational starting points and 

direction (empty versus full set of variables), variables CHL and CRL (which have statistically 

indistinguishable effects) were retained, respectively. This is understandable when taking into 

consideration the correlation value between the 2 variables (0.992) and the nature of the measured 

parameters. 
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When comparing both models in terms of R2, there was no statistical evidence supporting the 

hypothesis that the squared sum of residuals of models varied significantly. Excluding that variable 

pair, both models retained the same remaining significant variables: Body, FL, CHL/CRL, REL, 

Lungs, and Adrenals (in descending standardized β-weight order for both models, albeit having 

different β values for the same variable). Standardized β-weight values indicate which previously 

validated variables (presenting statistical significance) contribute the most within a multiple linear 

regression model. Lungs and Adrenals, although selected by each algorithm, have small contribution 

values (abs(β) ≤ 0.1), for example. A ranking system based on weights can be interpreted, denoting 

body weight (β ≈ 0.393), FL (β ≈ 0.347), and CHL (β ≈ 0.266), CRL (β ≈ 0.199), and REL (β ≈ 0.16) 

as major contributors for GA estimation, following a linear combination approach. This mustn’t mean, 

however, that a certain variable is better than another variable, individually, at GA estimation. To 

compare variables individually, single variable-GA pairs are used to compute polynomial regression 

models. 

R2 values increased, for each of the 23 variable-derived models, along all ordered kth degree 

polynomial regression models, for k ∈ {1, 2, 3, 4, 5}. Polynomial models with higher values of k are 

more likely to be subjected to overfitting; should k tend to an infinitely large value, then the training 

error would approach 0 (R2 would approach 1). Due to the nature of our dataset, cross validation 

(which would account for cases of overfitting) could not be executed, as the division of data would 

produce datasets with missing representative GA values. For this reason, variable models were only 

compared to other variable models for the same polynomial degree k. The concept of overfitting was 

also taken into consideration while assessing our results. Inspecting the results of residual comparison 

testing for a significance level α = 0.05, several clusters and meta-clusters (groups of clusters 

branching outward in figures 4.2 through 4.6) are distinguishable. Cluster hierarchy for models where 

k = 1, simple linear regression, presented a significantly different variable order when compared to all 

other kth degree models. The cluster of variables with the highest coefficient of determination values – 

CRL, CHL, and FL with 0.927 ≤ R2 ≤ 0.931 – exhibits significantly fewer error comparatively to the 

meta-cluster comprised of variables OCD, AC, MFL, Body, LEL, REL, and HC, for example. This top 

tier cluster does not, however, discern which of the 3 foetal parameters is statistically superior (p-value 

≥ 0.05) to serve as the best possible GA estimator. Clusters, thus, indicate the hierarchy by which 

foetal parameters are selected as developmental predictors. For k ≥ 2, body weight is incorporated into 

the cluster or meta-cluster of variables with highest R2. 

Other significant changes between k equal to 1 and k ≥ 2 can be witnessed with variables models 

based on HL and CC. When k = 2, both models are placed within the meta-cluster of 2nd hierarchical 

position. The latter model, for any k ≥ 2, always stands within the meta-cluster of 2nd hierarchical 

position; however, the model derived from HL measurements, throughout 3 ≤ k ≤ 5, is positioned 

within the meta-cluster (for k = 3, and k = 4) or cluster (k = 5) of variables with higher estimation 

capabilities. Absolute R2 values for every variable regression model, excluding Body, HL, CC, and ID 

kept their relative position across different polynomial degrees. The regression model based on ID, 

despite rising in hierarchy throughout ordered values of k, was never witnessed within any cluster or 

meta-cluster of rank 2 or superior. The changes in hierarchy configuration are understandable when 

comparing linear (k = 1) to non-linear (k ≥ 2) regression models. Body weight, as a predictive variable 

for GA estimation, fits a quadratic function better than a linear one, for example. Such is the nature of 

that variable, and overfitting can be excluded. However, the same might not be said regarding HL and 

its hierarchical position variations across k. It is only when k = 5 that this model is present within the 

unique cluster of most appropriate GA estimator variables (highest R2 values). The process of 

overfitting by k increment may be at play, for this variable. 

 

 



 

 
20 

 

5.1 Final Remarks 

In our case of 450 foetal autopsy cases, findings suggest that across all variables, CHL, CRL, and 

FL are the most appropriate candidate foetal parameters for GA estimation. Within all approaches 

(PCA and regression techniques), certain specific variables showed a tendency to present values 

indicative of superior estimation capabilities (either by correlation or by SSR, for instance). CRL, 

CHL, and FL are the only variables possessing this property. Other variables can also be considered as 

proper developmental markers, depending on the technique utilized. For any degree of polynomial 

regression, these variables were always displayed within the significantly highest R2 cluster. The same 

variables were also selected by multiple linear regression, exhibiting positive standardized β-weights ≥ 

0.199 (ascendingly ordered CRL, CHL, and FL), and presented the highest PCA communality and 

loading values. Body weight, HC, HL, and ear length are also noteworthy candidate variables for 

either presenting high PCA communality and loading values, or having significantly meaningful β 

and/or R2 values.  
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Chapter 6 

 

Conclusion 

Accurately estimating foetal GA is essential for pregnancy management. As a further matter, GA 

estimation during autopsy procedures is key in assessing legal and criminal abortion cases. During 

these events, the estimation of GA depends on the foetal parameters used. Measurements of various 

foetal anthropometric features are frequently used for this purpose. 

The primary goal for this thesis of devising a simple method for storing and manipulating 

information (regarding the foetal autopsy report files pertaining to Hospital de Egas Moniz) was 

achieved. This was made possible by developing a Python application which enabled the creation of 

an information system, integrating a computer-assisted data insertion tool (createDB.py and 

insertValues.py files, respectively). Moreover, by applying different algorithmic approaches to our 

collection of structured data (such as the previously discussed PCA and polynomial/multiple 

regression techniques), we produced statistically meaningful results directly enabling a better 

understanding of the real-world problem of GA assessment or estimation. We also established a novel 

approach to determine measurement adequacy, through the course of this work, by associating our 

computed regression models to statistical hypothesis test for divergence in variance (F-statistic on 

squared sum of residuals, conclusively). This new solid and well-founded variable clustering approach 

is one of our many contributions formulated during this thesis, which we hope will assist 

foetopathologists everywhere during their medical procedures. 

Consistent with previously published work, CHL, CRL, and FL are found to be the most reliable 

sources of information for estimating foetal developmental age. Particularly in cases of 1st degree 

polynomial regression models, clustering algorithms based on R2 values placed exactly those 3 

variables in the top tier cluster of best GA estimators. These same variables were also witnessed 

within the cluster of best development predictors for any other kth degree polynomial regression 

model, albeit being accompanied by other variables (such as body weight for k ≥ 2 and HL for k ≥ 3); 

CHL, CRL, and FL were also retained in multiple linear regression models (with high β-weight 

values, second only to Body and closely followed by REL), derived from variable selection algorithms 

based on the statistical distinguishability of variable effects. In cases where these 3 preferable 

measurements are impossible to obtain, other foetal features can be utilized (albeit less reliable, as our 

findings suggest) such as HL, HC, body weight, and ear length. 

 

6.1 Future Work 

After having validated the usability and adequacy of our methodology, it is feasible to assume that 

progressive endeavours related to our data and methods can ensue; specifically, in the field of 

biomedical and health sciences. By making use of open linked data – a previously validated method68 

of publishing structured data so that it can be interlinked and become more useful through semantic 

queries –, it is possible to cross validate, counter-examine, and derive additional knowledge (to name a 

few practical applications) from our own findings deduced from this work. In this manner, it is 

possible to provide continuity to our studies not only in temporal terms but also in knowledge-

gathering and, consequently, wisdom acquirement. 

As our database evolves, and different foetal parameters are recorded, different studies can emerge. 

By analysing features such as cause of death and family background, in association with 

measurements and weights, machine learning algorithms (such as neural networks, for instance) can 

be executed to create a pathological prediction tool. Having a chronological set of the same parameters 

along a pregnancy events may also help determine certain developmental particularities associated to 

illness and pregnancy abnormalities. These approaches would be useful for early diagnosis of disease, 

aiding professionals and family members in taking the appropriate set of actions accordingly. 



 

 
22 

 

References 

1. Hern WM. Correlation of fetal age and measurements between 10 and 26 weeks of gestation. 

Obstet Gynecol. 1984, 63 (1): 26 – 32. 

2. Gandhi D, Masand R, Purohit A. A simple method for assessment of gestational age in 

neonates using head circumference. Pediatrics. 2014, 3 (5): 211 – 213. 

3. Kumar GP, Kumar UK. Estimation of gestational age from hand and foot length. Med Sci 

Law. 1994, 34 (1): 48 – 50. 

4. Mercer BM, Sklar S, Shariatmadar A, Gillieson MS, D’Alton ME. Fetal foot length as a 

predictor of gestational age. Am J Obstet Gynecol. 1987, 156 (2): 350 – 355. 

5. Patil SS, Wasnik RN, Deokar RB. Estimation of gestational age using crown heel length and 

crown rump length in India. International J. of Healthcare & Biomedical Research. 2013, 2 

(1): 12 – 20.  

6. Selbing A, Fjällbrant B. Accuracy of conceptual age estimation from fetal crown-rump length. 

J Clin Ultrasound. 1984, 12 (6): 343 – 346. 

7. Scheuer JL, MacLaughlin-Black S. Age estimation from the pars basilaris of the fetal juvenile 

occipital bone. Int J Osteoarchaeol. 1994, 4 (4): 377 – 380. 

8. Scheuer JL, Musgrave JH, Evans SP. The estimation of late fetal and perinatal age from limb 

bone length by linear and logarithmic regression. 1980, 7 (3): 257 – 265. 

9. Chikkannaiah P, Gosavi M. Accuracy of fetal measurements in estimation of gestational age. 

In J Pathol Oncol. 2016, 3 (1): 11 – 13. 

10. Gupta DP, Saxena DK, Gupta HP, Zeeshan Zaidi, Gupta RP. Fetal femur length in assessment 

of gestational age in thirds trimester in women of northern India (Lucknow, UP) and a 

comparative study with Western and other Asian countries. In J Clin Prac. 2013, 24 (4): 372 – 

375. 

11. Archie JG, Collins JS, Lebel RR. Quantitative standards for fetal and neonatal autopsy. Am J 

Clin Pathol. 2006, 126 (2): 256 – 265. 

12. Sherwood RJ, Meindl RS, Robinson HB, May RL. Fetal age: methods of estimation and 

effects of pathology. Am J Phys Anthropo. 2000, 113 (3): 305 – 315. 

13. Andrews DT, Chen L, Wentzell PD, Hamilton DC. Comments on the relationship between 

principal components analysis and weighted linear regression for bivariate data sets. 

Chemometrics and Intelligent Laboratory Systems. 1996, 34 (2): 231 – 244. 

14. Nadaraya EA. On estimating regression. Theory of Probability & Its Applications. 1964, 9 (1): 

141 – 142. 

15. R Core Team. R: a language and environment for statistical computing, version 3.3.2. Vienna, 

Austria: R Foundation for Statistical Computing. 2016. 

16. Eaton JW, Bateman D, Hauberg S.  GNU Octave version 3.0.1 manual: a high-level 

interactive language for numerical computations. CreateSpace Independent Publishing 

Platform. 2009. 

17. Barata AP. Anthropometric data analytics: a portuguese case study. 2017. 

https://github.com/BarataAP/Anthropometric-Data-Analytics-Portugal.git/. 

18. Barata AP, Couto FM, Carvalho LC. Anthropometric data analytics: a portuguese case study. 

11th International Conference on Practical Applications of Computational Biology & 

Informatics. 2017. http://www.pacbb.net/. 

19. Wigglesworth JS, Singer DB. Textbook of fetal and perinatal pathology. Blackwell Scientific 

Publications. 1991. 

20. Edmonds DK, Lindsay KS, Miller JF, Williamson E, Wood PJ. Early embryonic mortality in 

women. Fertil Steril. 1982, 38 (4): 447 – 453. 

https://github.com/BarataAP/Anthropometric-Data-Analytics-Portugal.git/


 

 
23 

 

21. Opitz JM. The Farber lecture. Prenatal and perinatal death: the future of developmental 

pathology. Pediatr Pathol. 1987, 7 (4): 363 – 394. 

22. Stein Z. Early fetal loss. Birth Defects Orig Artic Ser. 1981, 17 (1): 95 – 111. 

23. Warburton D, Fraser FC. Spontaneous abortion risk in man: data from reproductive histories 

collected in a medical genetics unit. Am J Hum Genet. 1964, 16: 1 – 25. 

24. Wilcox AJ, Weinberg CR, Wehmann RE, Armstrong EG, Canfield RE, Nisula BC. Measuring 

early pregnancy loss: laboratory and field methods. Fertil Steril. 1985, 44 (3): 366 – 374. 

25. Bauld R, Sutherland GR, Bain AD. Chromosomal studies in investigations of stillbirths and 

neonatal deaths. Arch Dis Child. 1974, 49 (10): 782 – 788. 

26. Boué A, Boué J, Gropp A. Cytogenetics of pregnancy wastage. Adv Hum Genet. 1985, 14: 1 – 

57. 

27. Boué J, Boué A, Lazar P. Retrospective and prospective epidemiological studies of 1500 

karyotyped spontaneous human abortions. 1975. Birth Defects Res A Clin Mol Teratol. 2013, 

97 (7): 471 – 486. 

28. Gilbert EF, Opitz JM. Developmental and other pathologic changes in syndromes caused by 

chromosome abnormalities. Perspect Pediatr Pathol. 1982, 7: 1 – 63. 

29. Moore KL, Persaud TVN, Torchia MG. The developing human: clinically oriented 

embryology. Elsevier Health Sciences. 2015. 

30. Breborowicz GH. Limits of fetal viability and its enhancement. Early Pregnancy. 2001, 5 (1): 

49 – 50. 

31. Tyson JE, Parikh NA, Langer J, Green C, Higgins RD. Intensive care for extreme prematurity 

– moving beyond gestational age. N Engl J Med. 2008, 358 (16): 1672 – 1681. 

32. Luke B, Brown MB. The changing risk of infant mortality by gestation, plurality, and race: 

1989-1991 versus 1990-2001. Pediatrics. 2006, 118 (6): 2488 – 2497. 

33. American College of Obstetricians and Gynecologists. ACOG practice bulletin: clinical 

management guidelines for obstetrician-gynecologists: number 38, September 2002. Perinatal 

care at the threshold viability. Obstet Gynecol. 2002, 100 (3): 617 – 624. 

34. Walsh F. Prem baby survival rates revealed. BBC News. 11 April 2008. 

35. Kaempf JW, Tomlinson M, Arduza C, Anderson S, Campbell B, Ferguson LA, Zabari M, 

Stewart VT. Medical staff guidelines for periviability pregnancy counseling and medical 

treatment of extremely premature infants. Pediatrics. 2006, 117 (1): 22 – 29. 

36. Morgan MA, Goldenberg RL, Schulkin J. Obstetrician-gynecologists’ practices regarding 

preterm birth at the limit of viability. J Matern Fetal Neonatal Med. 2008, 21 (2): 115 – 121. 

37. Incerpi MH, Miller DA, Samadi R, Settlage RH, Goodwin TM. Stillbirth evaluation: what 

tests are needed? Am J Obstet Gynecol. 1998, 178 (6): 1121 – 1125. 

38. Pine VR. Unrecognized and unsanctioned grief: the nature and counseling of unacknowledged 

loss. Charles C Thomas Pub Limited. 1990. 

39. Cussen L, Scurry J, Mitropoulos G, McTique C, Gross J. Mean organ weights of an australian 

population of fetuses and infants. J Paediatr Child Health. 1990, 26 (2): 101 – 103. 

40. Chambers HM, Knowles S, Staples A, Tamblyn M, Hann EA. Anthropometric measurements 

in the second trimester fetus. Early Hum Dev. 1993, 33 (1): 45 – 59. 

41. Larroche JC. Developmental pathology of the neonate. Excerpta Medica. 1977. 

42. Guihard-Costa AM, Menez F, Delezoide AL. Standards for dysmorphological diagnosis in 

human fetuses. Pediatr Dev Pathol. 2003, 6 (5): 427 – 434. 

43. Kulkarni ML, Rajendran NK, Sangam DK. Inner canthal, outer canthal and inter pupillary 

distance in newborns. Indian Pediatr. 1992, 29 (6): 759 – 763. 

44. Kulkarni ML, Rajendran NK. Internipple distance in the newborns. Indian Pediatr. 1992, 29 

(5): 619 – 620. 



 

 
24 

 

45. Madhulika, Kabra SK, Barar V, Purohit A, Saxena S, Sharma U, Bansal RK. Upper and lower 

limb standards in newborn. Indian Pediatr. 1989, 26 (7): 667 – 670. 

46. Merlob P, Sivan Y, Reisner SH. Lower limb standards in newborns. Am J Dis Child. 1984, 

138 (2): 140 – 142. 

47. Gruenwald P, Minh HN. Evaluation of body and organ weights in perinatal pathology. I. 

Normal standards derived from autopsies. Am J Clin Pathol. 1969, 34: 247 – 253. 

48. Hansen K, Sung CJ, Huang C, Pinar H, Singer DB, Oyer CE. Reference values for second 

trimester fetal and neonatal organ weights and measurements. Pediatr Dev Pathol. 2003, 6 (2): 

160 – 167. 

49. FitzSimmons J, Chinn A, Shepard TH. Normal length of the human fetal Gastrointestinal tract. 

Pediatr Pathol. 1988, 8 (6): 633 – 641. 

50. Gruenwald P, Minh HN. Evaluation of body and organ weights in perinatal pathology. II. 

Weight of body and placenta of surviving and of autopsied infants. Am J Obstet Gynecol. 

1961, 82: 312 – 319. 

51. Munsick RA. Similarities of negro and caucasian fetal extremity lengths in the interval from 9 

to 20 weeks of pregnancy. Am J Obstet Gynecol. 1987, 156 (1): 183 – 185. 

52. Potter EL, Craig JM. Pathology of the fetus and the infant. Year Book. 1975. 

53. Bhat GJ, Mukelabai K, Shastri GN, Tamina C. Anthropometric parameters of zambian infants 

at birth. J Trop Pediatr. 1989, 35 (3): 100 – 104. 

54. Oliphant TE. Python for scientific computing. Computing in Science & Engineering. 2007, 9 

(3): 10 – 20. 

55. Millman KJ, Aivazis M. Python for scientists and engineers. Computing in Science & 

Engineering. 2011, 13 (2): 9 – 12. 

56. Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical 

computation. Computing in Science & Engineering. 2011, 13 (2): 22 – 30. 

57. Abadia M, Cardelli L. A theory of objects. Springer Science & Business Media. 1998. 

58. Dahl RO, Dijkstra E, Hoare CAR. Structured programming. CreateSpace Independent 

Publishinig Platform. 2012. 

59. Pratt TW. Programming languages: design and implementation. Prentice-Hall. 1975. 

60. Turner DA. Total functional programming. J Univers Comput Sci. 2004, 10 (7): 751 – 768. 

61. Steimann F. The paradoxical success of aspect-oriented programming. Proceedings of the 21st 

Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languaes, 

and Applications. 2006, 41 (10): 481 – 497. 

62. Mithcell R, McKim J. Design by contract, by example. Addison Wesley. 2002. 

63. Baral C, Gelfond M. Logic programming and knowledge representation. The Journal of Logic 

Programming. 1994, 19 – 20: 73 – 148. 

64. IBM Corp. IBM SPSS Statistics for Windows, version 24.0. Armonk, NY: IBM Corp. 2016. 

65. Judd CM, McClelland GH, Ryan CS. Data analysis: a model comparison approach. Routledge. 

2011. 

66. Jambu M. Exploratory and multivariate data analysis. Elsevier. 1991 

67. Tabachnick BG, Fidell LS. Using multivariate statistics. Allyn & Bacon. 2001. 

68. Barros M, Couto FM. Knowledge representation and Management: a linked data perspective. 

IMIA Yearbook. 2016, 178 – 183. 

 


