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Abstract 

Continuous manufacturing is an advantageous choice in many industries, including the 

pharmaceutical. Its main advantages are better controllability, and, for sufficiently large 

volumes, lower manufacturing costs by decreased footprint and labor. Since the 

inception of the process analytical technology initiative (PAT), and more recently, the 

quality-by-design (QbD) initiative, significant efforts in designing new manufacturing 

strategies for the pharma industry are underway.  

Continuous mixing is important in many processes in pharmaceutical 

manufacturing, including some obvious ones such as API and lubricant mixing, and 

some less apparent, such as wet granulation, coating, extrusion, and drying, where 

mixing often plays a critical role. 

 In this study, NIR spectroscopy is used to further understand a novel continuous 

mixing process. This new method is used to monitor the concentration of paracetamol 

blends that range from 30 to 70% (w/w). An experimental design was performed to define 

a set of runs in order to identify the critical process parameters and evaluate their impact 

on the critical quality attributes such as the homogeneity of the powder blend produced 

in the in-line mixer. The in-line mixer used was the Hosokawa Modulomix. The mixing 

process was monitored by an near infrared spectral camera aided by an integration 

sphere with an innovative design, attached to the mixer’s outlet port.  

 The process parameters evaluated and their respective range were: mixer speed 

(300-1500 rpm), total feed rate (5-15 kg/h), inlet port (A or B) and excipient type (dibasic 

calcium phosphate or paracetamol). All process variables were kept constant throughout 

the experiments, and whilst maintaining the total feed rate constant, step changes to the 

paracetamol concentration were introduced at different time points. These were meant 

to stimulate the system and allowed for monitoring of system mixing performance with 

alterning setpoints for a wide range of settings, and for determination of the mixer’s mean 

residence time. 

 The NIR spectral camera was able to operate, through the integration sphere’s 

innovative design, with multi-point signal acquisition for a good representative analysis 

of the flowing powder. The mixer speed was revealed to be the most important critical 

process parameter. Mixture performance was determined via the powder blend’s relative 

standard deviation (RSD), and results revealed that powder homogeneity was very good 

under all experimental conditions, having the RSD values always remained under 5% 

RSD. 
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Resumo 
 

A produção contínua tem sido frequentemente adotada em muitas indústrias, incluindo 

a química, alimentar, micro-electrónica, entre outras. As suas principais vantagens são 

um maior controlo, e para volumes suficientemente grandes, menores custos de fabrico 

através de menor necessidade em mão de obra e possibilidade de uso de equipamento 

de menores dimensões. A indústria farmacêutica contudo, devido à natureza rígida da 

sua estrutura regulamentar, tem permanecido focada em larga medida no método de 

produção por “lote”. 

 

Não obstante, desde a iniciativa de tecnologia analítica de processo lançada pela Food 

and Drug Administration, e mais recentemente, da iniciativa Quality-by-design, (que 

visam não só o desenvolvimento integrado do produto desde a sua conceção até a sua 

entrada no mercado mas também a otimização de recursos, matérias primas e 

instalações), que esforços significativos têm sido levados a cabo de forma a desenvolver 

novas estratégias de produção. 

 

A produção contínua de formas farmacêuticas sólidas de dose individual tem pois, como 

um dos seus objetivos, melhorar a qualidade do medicamento a partir da origem, 

reduzindo o seu custo de fabrico, e ao mesmo tempo permitir aos doentes o acesso a 

medicamentos mais seguros. Para isso, realizam-se delineamentos experimentais para 

perceber de que forma os parâmetros do processo influenciam as respostas do mesmo. 

As tecnologias analíticas de processo são ferramentas fundamentais de monitorização 

porque fornecem dados do produto e do processo em tempo real. Esses dados são 

utilizados em modelos de análise multivariada que por sua vez devolvem informação 

sobre o processo. Esses modelos são em grande medida, ferramentas que contribuem 

para a construção de mecanismos de controlo do próprio processo. Estes mecanismos 

de controlo garantem que perturbações no processo são corrigidas de forma a obter os 

atributos críticos de qualidade desejados conforme as especificações. 

 

A produção contínua aplicada à produção farmacêutica secundária é atrativa visto que 

processos como compressão, compactação por rolos, e enchimento de cápsulas já são 

efetuados de forma contínua, enquanto que a mistura, granulação por via húmida, 

secagem e revestimento são efetuados em “lote”. Esta combinação de operações “lote” 

com operações contínuas torna-se frequentemente uma fonte de ineficiência. Para além 

disso, os processos contínuos podem ser aumentados em escala simplesmente por 
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extensão do tempo de operação, ao contrário dos processos tipo “lote”, que 

invariavelmente requerem um aumento de escala físico que muitas vezes não é fácil de 

fazer nem eficaz. 

 

A produção contínua possui outras vantagens em relação à produção por “lote”, 

nomeadamente o tamanho de equipamento reduzido, menor inventário para o processo, 

menos manuseamento sólido como por exemplo o enchimento e esvaziamento de 

misturadores (reduzindo assim efeitos potencialmente indesejados como a 

segregação), um controlo mais preciso em torno de um estado estacionário bem 

definido, e uma maior uniformidade na aplicação de tensões de corte. Contudo, a 

produção contínua tem algumas limitações, como o custo inicial mais elevado, 

dificuldade de implementação para produtos com baixo volume de produção, e 

flexibilidade reduzida do processo. Apesar da produção contínua ter sido fortemente 

implementada na indústria química, o conhecimento relativamente à mistura de pós por 

via de processos contínuos ainda é limitado e relativamente poucos artigos têm sido 

publicados nesta área. 

 

A mistura é uma operação unitária extremamente importante em muitos processos de 

produção farmacêutica, incluindo alguns bastante óbvios como a mistura de substâncias 

ativas e lubrificantes, e alguns menos aparentes, tais como a granulação por via húmida, 

revestimento, extrusão, e secagem, onde a mistura tem um papel crucial. O 

desenvolvimento de operações de mistura contínua requer uma avaliação de um amplo 

espaço paramétrico, que inclui a seleção e conceção dos equipamentos de mistura e 

alimentação, avaliação dos parâmetros de operação tais como velocidade de rotação 

das pás do misturador e taxa de alimentação, caracterização dos efeitos de 

propriedades físicas como distribuição do tamanho de partícula e coesão dos pós, e o 

controlo de variáveis ambientais tais como a temperatura e humidade relativa. Este 

grande número de variáveis, e as suas interações entre si, torna extremamente difícil a 

implementação do processo para uma nova entidade sem estudos detalhados. Tendo 

tudo isto em conta, a identificação de parâmetros críticos de processo é um passo 

essencial em direção à implementação da produção contínua. 

 

O processo de mistura em contínuo inicia-se pelo enchimento e calibração dos 

alimentadores que irão debitar as matérias primas em pó a serem misturadas. Estes 

alimentadores estão assentes em balanças extremamente sensíveis que pesam 

continuamente a quantidade de massa de pó existente dentro da tremonha, tendo um 

modo gravimétrico como principio de funcionamento. O sensor gravimétrico das 
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balanças regula assim automaticamente o débito com que os pós são alimentados para 

o misturador. Com o misturador ligado as partículas de pó ao entrarem no misturador 

cilíndrico pela porta de alimentação sofrem agitação pelas pás fixas ao rotor que se 

encontra no eixo central do misturador. Estas pás podem ter várias configurações e 

orientações e portanto originam diversos tipos de fluxos de matéria dentro do 

misturador. Ao atingir a porta de descarga do misturador a mistura de pós homogénea 

é libertada para um recipiente ou para um transportador para a próxima operação 

unitária.  

 

Este trabalho experimental foi realizado utilizando a linha de produção contínua de 

comprimidos do PROMIS Centre, na University of Eastern Finland, School of Pharmacy, 

em Kuopio, na Finlândia. Neste trabalho, recorreu-se a alimentadores gravimétricos (K-

Tron K-ML-D5-KT20) de duplo parafuso e a um misturador contínuo (Hosokawa 

Modulomix). O processo de mistura consistia em homogeneizar uma mistura de pós 

composta pelo principio ativo (paracetamol) e um excipiente (fosfato de cálcio ou 

celulose microcristalina). A monitorização do processo foi seguida em tempo real por 

um sistema de infravermelhos próximos com uma câmara espectral SPECIM e um 

sensor ImSpector (SPECIM, Finland). Este sistema encontra-se associado a um 

acessório inovador que permitiu a aquisição de seis sinais simultâneos em locais 

diferentes da zona de amostragem de forma a melhor representar o fluxo de pó que saia 

do misturador. Este acessório denominado de “esfera de integração” utiliza seis fibras 

óticas para recolher informação do fluxo de pó e foi desenhado especialmente para este 

processo. 

 

A relação entre os possíveis parâmetros de processo e os atributos de qualidade da 

mistura de pós foi estabelecida através de ensaios definidos de acordo com um 

delineamento experimental fazendo variar: a velocidade do misturador de 300 rpm a 

1500 rpm; a taxa de alimentação total entre 5 kg/h e 15 kg/h; a porta de alimentação (A 

e B) e dois excipientes (fosfato de cálcio e celulose microcristalina). Considerou-se o 

desvio padrão relativo entre o teor de paracetamol nas amostras determinado com UV-

Vis e o teor de paracetamol calculado a partir dos dados de registo dos alimentadores, 

como atributo de qualidade. 

 

A análise de componentes principais foi usada como método de análise exploratória dos 

espetros obtidos assim como para identificar medições atípicas. 
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Todas variáveis do processo foram mantidas constantes ao longo das experiências. 

Apesar da taxa de alimentação total ter sido mantida constante ao longo das 

experiências, a taxa de alimentação do paracetamol e do excipiente foi variada sob 

forma de níveis de concentração (40%, 50%, 60% e 70%) . Estas variações tiveram 

como objetivo estimular o sistema, observar a sua resposta e monitorizar de que forma 

isso afetava a homogeneidade da mistura resultante nesses instantes. 

 

A câmara espectral de infravermelho próximo operou através da esfera de integração, 

com aquisição de sinal em múltiplos pontos de forma a obter uma análise representativa 

do fluxo de pós. Isto permitiu que os modelos de análise de componentes principais 

identificassem claramente as perturbações aos níveis de concentração das matérias 

primas causadas no sistema, e detetar o tempo necessário para que o processo 

atingisse o estado estacionário. Os modelos baseados nos espetros obtidos foram 

capazes de capturar as concentrações de paracetamol e excipiente ao longo do tempo. 

Estes resultados foram confirmados através de análise por resolução multivariada de 

curvas onde foi possível quantificar de forma precisa os teores de substância ativa e 

excipiente (no caso da celulose microcristalina) impondo os espetros dos compostos 

puros. Verificou-se também que após cerca de três minutos do inicio das experiências, 

o sistema atingia o estado estacionário. 

 

O sistema revelou óptimo desempenho de mistura, pois os valores do desvio padrão 

relativo revelaram ser inferiores a 5% em todas as experiências independentemente das 

definições do processo. Os modelos de regressão entre os parâmetros do processo e 

os atributos de qualidade indicaram que a velocidade do misturador era o parâmetro 

crítico de processo mais relevante. 

 
Palavras-chave: Espetroscopia de infravermelho próximo; Mistura contínua; 
Produção contínua; Quimiometria; Tecnologia analítica de processo. 
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Chapter 1 

Motivation 
 
The ongoing paradigm shift in the pharmaceutical industry with the introduction of new 

legislation and guidelines supporting continuous manufacturing, represents a huge 

opportunity for process optimization, lower manufacturing costs, and higher quality 

products. 

The push for continuous manufacturing	has focused on solid dosage forms. A 

continuous manufacturing line built to produce tablets with real time release has been 

one of the most sought after objectives. Mixing, being the first unit operation of a 

continuous tableting line, is involved in the production of several pharmaceutical dosage 

forms (e.g., tablets, granules, powders), and represents a critical operation to the 

process.  

The CM approach for the manufacturing of drug products lays on top of the 

quality-by-design (QbD) principles, which demand the implementation of process 

understanding methodologies and require full adoption of process analytical 

technologies (PAT). In this context, the widely adopted near-infrared spectroscopy 

method, as a PAT tool, enables real-time monitoring of the process, feeding process 

models with frequent and high quality data. 

Statistical models can be adjusted to deal with these data to monitor and to 

estimate in real-time drug product properties. Thus, this work aims at providing 

knowledge on powder blending as a continuous process, to support its future 

implementation in the pharmaceutical industry.   

The experimental work was performed in the research and development 

continuous tableting line (PROMIS-line), constructed at the School of Pharmacy of the 

University of Eastern Finland. 
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Chapter 2 

Objectives 
 

This written thesis is the result of the experimental work performed in the PROMIS-line 

(School of Pharmacy of the University of Eastern Finland). 

 

The	main	objectives	of	this	work	are to gain knowledge on how to operate the feeding 

and blending equipment part of the continuous production line, and to study and monitor 

the following mixing process parameters: 

 

- Total feed rate (ranging from 5 kg/h to 15 kg/h). 

- Composition/formulation ratio 

- Mixer speed 

- Mixing residence time  

 

Capture real-time near-infrared spectra of the output blend in order to: 

 

- implement	a	process	analytical	method	to	monitor	in	real-time	the	quality	of	the	

blend	after	the	continuous	in-line	mixer; 

- better understand the design and technical characteristics of a newly developed 

near infrared probe including an integration sphere and several monitoring ports: 

- assess blend homogeneity from a spectral time series. 
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Chapter 3 

Introduction 
 

Pharmaceutical companies, during their product development process, undergo long 

and expensive research efforts with the objective of optimizing and understanding the 

production of homogeneous powder blends. These solid mixtures, comprised of several 

substances including active pharmaceutical ingredients (API) and excipients (like 

lubricants and diluents), constitute the base material for several pharmaceutical unitary 

operations and pharmaceutical forms. Minimizing variability in solid mixtures is essencial 

to the pharmaceutical industry, because mixture uniformity has direct impact on the 

performance and quality of the product. Bearing that in mind, it becomes clear that when 

significant divergence from the desired mixing performance happens, it generally leads 

to batch rejection, triggers costly process investigations, and corrective actions are often 

required to maintain regulatory compliance (1). 

Although some strides and efforts have been made in the field recently, powder 

flow and powder mixing are processes that are far from being well understood. It is not 

uncommon for powder mixing processes to be designed ad-hoc, with little experimental 

data available to support them. The need to further understand blending processes has 

thus become a priority for regulatory bodies in the last 15 years, and rightfully remains 

the central focus point of quality-by-design (QbD) and process analytical technology 

(PAT) efforts. 

Over the last decade, the International Conference on Harmonization (ICH) and the Food 

and Drug Administration (FDA) have issued a series of guidelines for drug 

manufacturing. In the ICH Guidelines Q7, Q8, Q9, Q10 and Q11 and FDA Guidance for 

Industry — PAT in which the FDA has published their current thinking on using QbD 

methods to identify critical quality attributes (CQA), and state the need for a systematic 

approach to process development through the implementation of engineering modeling 

and optimization techniques.(2)(3)(4) This will allow the manufacturing of safe and 

effective products with their quality built into the process.(5) This philosophy of QbD has 

been applied in other industries to reliably create products with the desired quality 

attributes. Quality is assured through the development of reliable and robust processes, 

designed based on the knowledge of process principles.(4) The transition from batch to 

continuous pharmaceutical operations can facilitate the development of processes within 

the QbD framework. Continuous processing allows real-time control, lesser need for 

scale-up studies and can help to reduce product variability.(6) 
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The pharmaceutical regulatory environment has recognized that in CM processes 

the major challenges are the coordination of equipment input/output properties, and the 

formulation of predictive process control strategies. In order to achieve equipment 

coordination and predictive capabilities, the relationships between critical quality 

attributes (CQA), critical material properties (CMP) and critical process parameters 

(CPP) need to be correlated sequentially between the multiple unit operations in product 

manufacturing, through the use of mathematical models characterizing individual unit 

operation performance as a function of CPPs (e.g., screw speed, residence time) and 

CMPs (e.g., particle size distribution).(4) In addition, multi-unit processes can be 

characterized with respect to the temporal-space location of particles in the system.(7)  

These guidelines are intended to motivate manufacturers to enhance their 

processes for better quality, apply CM to drugs and to gain a deeper insight in 

pharmaceutical manufacturing processes, replacing empirical approaches by 

knowledge-based procedures. 

The objective of “building in quality” requires a very fine comprehension of the 

key parameters of a process, and in order to avoid having to “test into the final product” 

it is vital to understand their impact on the product quality. With this in mind, PAT needs 

to be understood in a much broader sense: in addition to the implementation of sensors 

for real-time measurement of CPP, understanding of the process based on mathematical 

models is essential to guarantee and control product quality.(3) PAT requires, based on 

mechanistic process understanding, the: 

 

(1) identification of the key parameters; 

 

(2) continuous and real-time measurement of the selected parameters and 

 

(3) development of a control strategy based on the relevant multivariate real-time 

measurements 

 

Before developing process control models, it is also important to consider environmental 

data and information regarding raw materials. For powder-blending processes the 

ultimate goal is to obtain a uniform blend with a blend quality close to optimal (in typical 

applications the relative standard deviation (RSD) should be below 5%). Today, powder 

homogeneity is obtained through predetermined and established processes, i.e., a 

constant fill level and a fixed mixing time. This approach, remains as the standard in 

current pharmaceutical manufacturing, and does not compensate for variability of the 

raw material's specifications such as particle size or crystallinity, which may significantly 
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affect segregation behavior and mixture quality, or the environmental conditions, such 

as temperature and moisture. Of even greater importance is the fact that since blender 

performance and mixing kinetics are unpredictable when switching between diferent 

mixer types, it becomes impossible to scale-up in a reliable way. This has led to a 

growing interest and study of this field by the scientific community in recent years, with 

the goal of exploring and comprehending the fine details of particle and powder mixing, 

using both experimental (8)(9) and computational approaches.(10–15)  

 

Interestingly, continuous processing has been utilized extensively by petrochemical, 

food, and chemical manufacturing but has yet to reach the pharmaceutical industry to a 

meaningful extent. Recent research efforts indicate that a well controlled continuous 

mixing process illustrates the capability of scale-up and ability to integrate on-line control 

ultimately enhancing productivity significantly.(16,17) 

The FDA's PAT initiative has encouraged the development of new technology to improve 

upon the current manufacturing paradigm.(3) As a result, substantial attention has 

recently focused on continuous processing due to the ability to control disturbances 

online, avoiding the loss of processing materials and enabling effective process scale-

up.  

 

 

3.1 Continuous manufacturing 
 

Continuous processing has numerous known advantages, over the past few years, CM 

of solid dose pharmaceutical products has been an area of high interest. CM can be 

defined as a process where starting materials are manufactured into the final product as 

a constant flow with an integrated set of equipment, and equipment is controlled to 

produce required product quality. The scale of continuous production is defined by time 

rather than dimension of equipment as in batch production.(18) Some pharmaceutical 

equipments operate inherently continuously, like tableting machines and roller 

compactors. Others, such as wet granulators and coaters, have to be modified for 

continuous production. A typical continuous process for pharmaceutical manufacturing 

consists of unit operations such as powder feeding, blending, granulation, compaction 

and capsule filling. Powder transfer between unit operations can be performed with the 

aid of gravity or conveyers. In vertical configuration, pieces of equipment are placed on 

top of each other and powder is transferred between unit operations by gravity. This 

configuration requires a footprint of only a few square meters, but the height of the room 

has to be two to three stories high. In horizontal configuration, continuous line can fit in 
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normal room height but conveyers (pneumatic or screw) are required to transfer powder 

between unit operations. Feeding and blending are among the most critical parts in the 

manufacturing process, affecting directly the homogeneity of the powder mixture and 

thus the uniformity of the end product. For this reason, feeding accuracy and monitoring 

as well as ensuring proper blender settings are essential.(17)(19–23)   

In a continuous process, monitoring and ensuring blend uniformity in real time at 

the blender discharge point is critical. Unlike batch manufacturing, it is difficult to rework 

a blend in a CM scenario. Nevertheless it has numerous known advantages, including 

reduced cost, increased capacity, facilitated scale up, mitigated segregation, and more 

easily applied and controlled shear.(24) To set up continuous line into operation, the 

primary task is to synchronize the yield of each piece of equipment in regard to mass 

balance. If the line is not balanced adequately, material can start accumulating at a point 

of operation, or a unit of operation can run out of material if it functions at a faster rate 

than the previous unit. Thus, reliable mass flowmeters are of great importance. Process 

monitoring and process controls are integral parts of CM.(25) Another important aspect 

is the understanding of process disturbances and how they are dampened or 

accumulated in subsequent unit operations. A key parameter for that is the residence 

time distribution (RTD) of each piece of equipment. 

The residence time is a critical equipment and process parameter that 

characterizes the period of time a particle stays in one or more unit operations in a 

continuous system. The RTD is defined as the probability of particles exiting the 

equipment at a given time period based on the flow patterns inside of the unit.(26) 

Mathematical models for the RTD have previously been developed for chemical 

engineering applications in order to characterize the influence of operating conditions, 

material properties and unit geometry on the degree of non-ideal behavior (i.e., back-

mixing). Pharmaceutical unit operations for which the RTD has been experimentally 

studied include feeding, blending, and granulation processes.(27) RTD can be used to 

characterize the propagation of transient disturbances across sequential unit operations 

in flowsheet simulations. The RTD can provide traceability along the continuous line and 

delineate continuous products based on the feed strategy. Manufactured products 

created using different batches of starting material can be traced in order to comply with 

process validation. This will facilitate the prediction and rejection of out-of-spec products 

by tracing disturbances along the process. Overall, RTD models can add significant 

value to the transition from batch to continuous operations by providing reliable predictive 

tool for behavior of unit operations based on their residence time.(27) 
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In manufacturing processes involving large capacities, continuous processing is 

considered a viable choice although the pharmaceutical industry has so far relied on 

batch manufacturing. CM offers several advantages over batch manufacturing as: 

smaller footprint of manufacturing sites, no or limited scale-up, better process 

understanding with PAT, higher quality of products with the aid of PAT and faster 

production to market time.(28) The biggest gain for the pharmaceutical industry is that 

while batch processes are dependent on time and do not scale-up well, continuous 

processes only need an extension of time to scale up, and the same equipment can be 

used for the production of phases I–III clinical products (short runs) and final production 

(continuous run) (29). This eliminates problems related to site and equipment change. A 

second advantage is the reduction of waste as optimized continuous processes can 

operate in a much more efficient way than batch and are easy to control. When looking 

at CM with an integral perspective we see that these advantages ultimately decrease 

production costs and increase the quality of pharmaceutical products.(30) The 

advantages of CM cannot be realized without overcoming several challenges prior to its 

adoption in the pharmaceutical industry.(29) And continuous mixing is one of the most 

important.  

 

3.2 Continuous mixing 
 

Among emerging technologies for improving the performance of blending operations, 

continuous mixing (as continuous processing in general) currently commands enormous 

interest at pharmaceutical companies. However, development of a continuous powder 

blending process requires venturing into a process that has a large and unfamiliar 

parametric space. While continuous blending processes have been used in other 

industries, in general such applications operate at much larger flow rates and have less 

demanding homogeneity requirements than typical pharmaceutical applications.(31)  

Powder mixing is widely used in pharmaceutical, cosmetic, chemical, cement, food, 

agricultural, and other industries in which product mixtures need to satisfy typical 

performance criteria. It is a process in which two or more than two solid substances are 

intermingled in a mixer by continuous movement of the particles. Mainly, the object of 

mixing operation is to produce a bulk mixture which when divided into different doses, 

every unit of dose must contain the correct proportion of each ingredient. The degree of 

mixing will increase with the length of time for which mixing is done.(31)  The 

pharmaceutical industry, mainly produces tablets, capsules or packets that are usually 

mixtures of 5 to 15 ingredients, and which may contain several API. Standards have 
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been developed to estimate the quality of the mixtures with respect to each of the actives 

and thus authorise the release of the products on the market. 

The process is complex as it depends on many factors operating at various 

scales: single particle properties, bulk particle properties, general mixer design and 

operation, combination of operating conditions, mixture formulation, etc. In batch mixture 

operation, all ingredients are loaded into the mixer together or in a pre-defined sequence, 

and mixed until a homogenous material is produced and discharged from the mixer in a 

single lot. The output of a batch mixer is measured in kg/batch. The continuous mixer 

on the other hand is generally dedicated to a single high volume product. Ingredients are 

continuously charged into the mixer in accordance with the formulation. The mixing takes 

place as the material travels from the charging port to the discharge nozzle, from where 

it is continuously discharged. The output of a continuous mixer is measured in kg/h. 

Experimental work in continuous mixing published so far has focused on 

operating conditions such as rotation rate, mixer inclination angle, and flow rate.(21) 

While several types of continuous mixers have been built, and many more can easily be 

conceived, only a few geometric designs have been examined in the literature.(32) 

However, many more conditions remain to be examined, and for many interesting 

designs, performance has never been quantitatively examined in the literature. 

Studies have been mainly focused on the influence of operating conditions (feed 

rate, impeller speed, etc.) and geometric designs (mixer size, impeller types, etc.) on the 

efficiency and throughput of mixers.(19) The performance of several continuous mixers 

has been investigated for materials with different flow properties.(33) The effects of 

different types of stirrer on the hold-up and quality of mixtures have been examined.(34) 

The quality of a mixture, which may be the degree of homogeneity of loose material at 

the outlet of a mixer, is important for end-user properties as perceived by customers or 

for in-process properties used by manufacturers for normative procedures. In addition, 

mixing process optimisation is a matter of reducing mixing time and savingl energy, 

especially for low added-value products. 

Chemical and process engineers working with powders are currently faced with 

problems associated with mixture quality. There is a need to overcome such difficult 

barriers as sampling, use more or less advanced statistical analysis, cope with different 

standards and practices, but also understand a wide range of available technologies. 

Most of the time, when considering the insertion of a new mixer in an existing process, 

costly pilot or full scale tests need to be performed. As a consequence, the general 

tendency in the industry is to avoid any change, and to concentrate on the way to validate 

the actual process. This is illustrated by a certain elasticity in sampling recommendations 

and practices.(35,36) 
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In the pharmaceutical industry, the above general picture is magnified. This is 

especially due to traceability needs and quality insurance that requires step-by-step 

validation, unit operation by unit operation. It also means that a single change in a single 

operation requires resetting the validation of the following steps, and sometimes of the 

previous ones. Furthermore, since reprocessing is generally not allowed in such 

processes, if a mixture is found to be inhomogeneous, the whole related production must 

be destroyed. Even if there is clearly no problem of product contamination by an external 

source, it is not permitted to mix the powders again. That of course increases the prices 

of products and indirectly induces a social cost. 

Basic advantages of continuous mixers with respect to batch mixers are currently: 

Lower size of the mixing vessel for a same production level; less segregation risk due to 

the absence of handling operations, such as filling and emptying; lower running costs; 

better definition of mixture homogeneity, at the outlet of the apparatus. 

 

In the pharmaceutical context, it is even possible to add and emphasize: 

• The possibility to include an on-line analysis set-up at the outlet of the mixer to measure 

the quality of the mixtures, but also to implement process control. This point is exactly in 

the direct line of the PAT recommendations. 

• The fact that practically all the final steps, such as tabletting and conditioning, in a drug 

fabrication scheme are already continuous operations. 

• The elimination of scale-up problems during process development. 

 

This last point is undoubtedly a very serious advantage for continuous mixers enhanced 

by the PAT initiative from the FDA. The qualification of a full-scale pharmaceutical “batch” 

during process development is actually done at a scale of one-tenth of the industrial 

scale. This means that if one wants to produce 100 kg at industrial scale in a batch mixer, 

the validation can be done with a mixer containing 10 kg of mixture. This is a serious 

problem as there is no guarantee that what has been proved with a 100L mixer will still 

hold good for a 1m3 batch vessel. In contrast, continuous mixer qualification, will simply 

require a full-scale validation of, for example, 1h if the industrial production time of a 

certain product is 10h. The risk of error is undoubtedly much easier to estimate for a 

continuous process rather than for a batch process that has to “cross the scales”.  
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3.3 Monitoring of continuous mixing with near-
infrared spectroscopy 
 
Different spectroscopic methods, mostly NIR and Raman, are among the PAT [   

methods recently introduced by the FDA for process monitoring and building predictive 

understanding of pharmaceutical manufacturing processes.(3)(37–41) Examples of PAT 

applied to powder blending processes are abundant in literature. They typically include 

NIR spectroscopy, Raman spectroscopy and laser induced fluorescence 

(LIF).(39,40,42) Also laser diffraction, image analysis and machine vision are used.(43) 

Preferably all of these PAT tools run in-line. NIR spectroscopy is currently one of the 

principal analytical techniques for monitoring pharmaceutical processes.(44) 

The NIR spectral region extends from 780 to 2500nm, and NIR spectra consist 

of absorbance bands corresponding to overtone and combination of fundamental C–H, 

N–H, S–H and O–H molecular vibrations. NIR methods have been developed to monitor 

a number of pharmaceutical unit operations including granulation, drying and 

crystallization.(45–47) Both chemical and physical information are obtained from NIR 

spectra after properly processing following an adequate method of analysis. For process 

control, the first principle model-based controls are the most obvious choices, but also 

gray or black-box models are used due to the lack of first principle models. Continuous 

monitoring of blend uniformity is the first step towards implementing process control for 

continuous blending operations, or to facilitate rejection of out-of-specification powder 

from the manufacturing stream. 

NIR spectroscopy has been applied extensively to batch pharmaceutical blending 

processes to identify the time at which a mixture is homogeneous and stopping the 

process. Most of the PAT work for blend uniformity monitoring exists for batch blending, 

which includes commonly used blenders such as the V-blender, the bin blender, the Y-

mixer and the Nauta mixer.(41,48–50) Methods reported in the literature to monitor blend 

uniformity are mostly generic, and include quantitative methods such as a partial least 

squares (PLS) modeling, or qualitative methods such as principal component analysis 

(PCA) of the spectra acquired during the blending process, monitoring the pooled 

standard deviation between spectra, and monitoring the dissimilarity between the 

process spectra and spectrum of a uniform mixture or individual components. PAT for 

blending has been reported primarily as a tool for monitoring evolution of RSD during the 

blending process and for detecting blending end-point. The final blend uniformity 

measured using PAT methods and the blend uniformity measured using an off-line 

method are often not related, and the methods to link off-line and on-line blend uniformity 

measurements are not well established in literature. In order to directly relate the off-line 
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and on-line measurements, it is necessary to quantify the sample size being analyzed in 

the in-line measurements and relate that with the offline measurements. In the 

continuous blending process, powder is typically in a state of motion and, inherently, 

there is a certain degree of spectral averaging involved in the measurement. Blend 

uniformity, quantified by the relative standard deviation (RSD) between the in-line 

measurements, is dependent on the degree of averaging.  
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3.4 Continuous manufacturing line 
 
The work presented in this thesis was performed at the University of Eastern Finland, 

School of Pharmacy’s PROMIS-line. It used a continuous tableting line that is modular 

and can produce tablets via dry granulation or direct compression (Figure 1). 

 

	
Figure 1 - Full line configuration schematic (adapted from (25)) 

	
Being a standard continuous tableting line, the PROMIS-line comprises a set of unit 

operations and equipment (Table 1) such as loss-in-weight or loss-in-volume feeders 

that weight and feed the powder substances (API and excipients) into the mixer. These 

feeders run at specific feed rates that are determined by the formulation specifications, 

and provide real time data via a computer regarding both the feed rate and the total mass 

still held inside the hopper. A few difficulties are observed at this stage when working 

with low feed rates and with cohesive materials. These type of conditions may frequently 

generate “rat-holes” (Figure 2) that occur when, due to the cohesive nature of the 

material a “dome” of air is created inside the hopper above the feeding screws, stopping 

the flow of powder at the feeder exit, affecting the overall performance of the line and 

limiting its throughput. Inserting a metal rod into the powder in the hopper normally 

caused the colapse of the “rat-hole”. 
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Figure 2 - "Rat-hole" example 

	
 Next the formulation components are blended inside the mixer resulting in a 

homogenous powder blend. These mixers are typically tubular blenders, consisting of a 

horizontal cylinder with a bladed shaft which rotates around a central axis. Powder is fed 

throught the entrance port at one end of the mixer, and exits through another port on the 

other end. The impeler that rotates along the axis of the continuous mixer has the double 

purpose of both blending and transporting the material, thus an optimal amount of radial 

and axial movement of particles in the blender is required in order to achieve ideal 

mixing.  

 If the desired manufacturing process for tableting is direct compression, then the 

powder blend is directly fed to the tableting machine. If granulation is necessary prior to 

the tableting it can be preformed via wet or dry granulation which can both be achieved 

continuously through modern equipment and roller compaction respectively. Of all the 

equipment in the line, the tableting machine holds the bottleneck being the equipment 

with the lowest throughput. 
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Table 1 - Complete continuous line equipment description 

Equipment	 Brand	and	manufacturer	 Specifications	(in	continuous	operation	
mode)	

3	Loss-In-Weight	powder	
feeders	 K-Tron,	K-ML-D5-KT20	 500	g/h	-	24	kg/h	

Loss-In-Weight	granule	
feeder	 K-Tron,	K-CL-24-KT24	 300	g/h	-	40	kg/h	

Loss-In-Weight	micro	
feeder	 K-Tron,	K-CL-SFS-MT12	 32	g/h	-	300	g/h	

Two	continuous	blenders	 Hosokawa,	Modulomix	 300	-	1450	rpm		

Roller	compactor		
Hosokawa,	Pharmapaktor	

L200/30P,	with	flake	
crusher	FC	200	

Screw	speed:	0	-	53	rpm;	Roll	speed:	
0	-	19	rpm;	Roll	pressure:	0	-	50	kN;	

Flake	crusher:	32	-	313	rpm	

Tableting	machine	 PTK,	PT-100	with	PISCon	 96	000	tablets/h	

Screw	conveyer	 Entecon	Spiral	Screw	 Constant	speed	
Vacuum	conveyer	 K-Tron,	P10-BV-100-VE	 Constant	speed	

Vacuum	conveyer	 Volkmann,	VS200	Eco	 Constant	speed	
 

Transfer of powder between unit operations is done either with the aid of gravity or with 

screw conveyers, depending on the configuration or setup of the equipment. Throughout 

the continuous process, feeding and mixing are the most important steps, because of 

their direct impact on homogeneity of the powder mixture and consequently on the final 

product’s uniformity. It is therefore essential to guarantee precise feeding and mixing, as 

well as real-time monitoring of the equipment. By integrating all the equipment used in 

the continuous line (except the tablet press) with a control software (built on top of 

Labview (National Instruments Corporation, Austin, TX)) (Figure 3), it is possible to not 

only monitor and control in real-time, but to collect and store information onto a data 

server. That data can also be graphically represented in real time. 

 

			 	
Figure 3 - Labview control software interface. On the left: monitoring of the powder mixture. On the right: 

monitoring of the compaction force 
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Figure 4 – Full production line 
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Chapter 4 

Materials and methods 
 

4.1 Raw-materials 
 

 

Dibasic calcium phosphate 

	
Figure 5 - Dibasic calcium phosphate molecular structure 

	
Dibasic calcium phosphate dihydrate (DCP) (Figure 5) is a white, odorless, tasteless, 

free-flowing powder or crystalline solid. It occurs as monoclinic crystals and is used in 

the production of tablets and capsules as an inorganic binder and also as a flowing agent 

in high speed tablet production.(51) Good material flow is crucial for the manufacturing 

process and helps ensure the final product will have a consistent composition. DCP is 

directly compressible and the pharmaceutical industry uses it in two main mesh sizes. 

The milled material is typically used in wet-granulation, roller-compaction or slugged 

formulations. The ‘unmilled’ or coarse-grade material is typically used in direct-

compression formulations. The coarser grades flow well and have excellent 

compressibility. 

It works synergistically with microcrystalline celulose (MCC) and other excipients 

that exhibit plastic deformation to improve powder flow and increase compaction, leading 

to more robust tablets and less loss in production and packaging. Additionally, because 

DCP is composed of calcium and phosphorous, it offers nutritional benefits to dietary 

supplements, being also used in breakfast cereals, flour and animal feed. It is one of the 

more widely used materials, particularly in the nutritional/health food sectors. 

Phosphorus or phosphate cannot be detected directly with near-infrared spectroscopy 

(NIRS) because of the low di-pole moment between P and O. However, P can be 

quantified via NIRS if it is bound organically or is tightly associated with other soil 

properties.(52)  Therefore, it is not surprising that only few NIRS models are available to 
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predict concentrations of phosphate or different phosphorus fractions in soil.(53–55) The 

selected DCP for the experimental work was EMCOMPRESSÒ produced by JRS 

Pharma, (Rosenberg, Germany). This DCP is a coarse-grade material suitable for direct 

compression and high speed tableting with an advertised average particle size of 190µm.  

A particle size D50 of 124µm was experimentally determined by laser diffraction, bulk 

density was measured at 0.74 g/mL, and the angle of repose was determined to be 44º 

with a Hosokawa Micron Powder Tester model PT-X. 

 

 

Figure 6 - Spectrum of EMCOMPRESS in the NIR region encompassing the region 1000–2500 nm 
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Microcrystalline celullose  

Cellulose is the most abundant natural polymer on earth with an annual biomass 

production of 50 billion tons. Microcrystalline cellulose (MCC) (Figure 7) is a purified, 

odorless, tasteless, partially depolymerized cellulose that occurs as a white, crystalline 

powder composed of porous particles.(51) The most common source of pharmaceutical 

MCC is wood, in which cellulose chains are packed in layers held together by a cross-

linking polymer (lignin) and strong hydrogen bonds. 

MCC was discovered in 1955 by Battista and Smith and was first commercialized 

under the brand name Avicel1 (FMC, 2013). In 1964 FMC Corporation introduced 

Avicel1 PH to the pharmaceutical industry as an ingredient for direct compression 

tableting. MCC was first registered in the supplement to the British National Formulary, 

twelfth edition, in 1966 and more than 60 years later, MCC is manufactured globally by 

more than 10 suppliers with several comercial brands (Avicel PH; Emcocel; Tabulose; 

Vivapur; etc). 

It is commercially available in different particle sizes and moisture grades that have 

diferent properties and applications. 

MCC is widely used in pharmaceuticals, primarily as a binder and diluent in oral 

tablet and capsule formulations where it is used between 20% and 90% of the final 

formulation in both wet-granulation and direct-compression processes.(51) It is 

physiologicaly inert, non toxic, flows relatively well and is produced virtually free of 

organic or inorganic contaminants. In addition to its use as a binder/diluent MCC also 

has some lubricant (8) and disintegrant properties when used between 5% and 15% of 

the final formulation, that make it useful in tableting, and offers other advantages 

including broad compatibility with APIs, ease of handling, and security of supply. MCC is 

also used in cosmetics and food products. 
	

	
Figure 7 - MCC molecular structure 

 

MCC is commonly manufactured by spray drying a neutralized aqueous slurry or pulp 
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that results from the hydrolysis of vegetable celulose with dilute mineral acid solutions. 

Most commercial grades are formed by varying and controlling the spray drying 

conditions in order to manipulate the degree of agglomeration (particle size distribution) 

and moisture content (loss on drying). MCC is generally considered as the diluent having 

the best binding properties and is recognized as one of the preferred DC binders. 

The selected MCC for the experimental work was EMCOCEL 90MÒ produced by 

JRS Pharma, (Rosenberg, Germany). This MCC is a medium size standard grade, suited 

for the majority of directly compressible actives, and combines good flow and high 

compactibility. According to the manufacturer’s specifications EMCOCEL 90M has a 

particle size distribution between 90 and 150 µm, a particle size D50 of 130µm, moisture 

content below 6%, bulk density between 0.25 and 0.37 g/cm3, and a Carr Index of 21. A 

particle size D50 of 124µm was experimentally determined by laser diffraction, bulk 

density was measured at 0.36 g/mL, and the angle of repose was determined to be 43º 

with a Hosokawa Micron Powder Tester model PT-X. 

 

	
Figure 8 - Spectrum of EMCOCEL 90M  in the NIR region encompassing the region 1000–2500 nm 
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Paracetamol 
 
Paracetamol (common international denomination) (Figure 9) also called 

acetaminophen, was synthesized by Morse in 1878, and appears as an odorless, slightly 

bitter white crystalline powder. Paracetamol is a nonprescription analgesic and 

antipyretic drug, but it is not an NSAID (Nonsteroidal Anti-inflammatory Drug) as it 

doesn't participate in the inflammatory response. The analgesic and antipyretic 

properties of paracetamol were first discovered in the late nineteenth century and 

clinically used by Von Mering in 1887. Two molecules were already in use for the 

treatment of mild to moderate pain, acetanilide and phenacetin, but studies later 

conducted by Brodie and Axelrod in 1948 established that paracetamol was the major 

metabolite of both these molecules and that resulted in the rediscovery of paracetamol 

as substitute analgesic for phenacetin due to its nephrotoxicity. Phenacetin disappeared 

from the market as paracetamol's popularity grew, and since then it has become one of 

the most popular and widely used drugs in the world for pain and fever treatment, and 

probably the most prescribed drug for children.(56) 

The paracetamol used for the experimental work was purchased from Xiamen Forever 

Green Source Biochem Tech. Co., Ltd (Xiamen, China). A particle size D50 of 87µm was 

experimentally determined by laser diffraction, bulk density was measured at 0,35 g/mL, 

and the angle of repose was determined to be 58º with a Hosokawa Micron Powder 

Tester model PT-X. For UV-Vis quantification paracetamol’s characteristic 242nm 

absorbance peak was considered. 

 

	
Figure 9 - Molecular structure of paracetamol 
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Figure 10 - Spectrum of Paracetamol in the NIR region encompassing the region or 1000–2500 nm 

 
The raw materials were characterized according to the physical properties described in 

the and. Paracetamol has the worst flowability (Carr Index 28). MCC is the material that 

flows better (Carr Index 16.7). 
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4.2 Equipment 
 
The system used consists of two loss-in-weight feeders (K-Tron), a continuous in-line 

mixer (Modulomix, Hosokawa Micron) with a NIR spectral camera (Specim, Finland) and 

integration sphere (VTT, Finland) attached to its outlet port and a conveyor belt under 

the sphere’s discharge (Figure 11). 

 

	
Figure 11 - Experimental configuration setup 

	
	

4.2.1 Powder blending 
 
 
 
a) Three LIW powder feeders K-Tron, K-ML-D5-KT20 (for excipients and API) 
b) One in-line continuous mixer, Hosokawa Modulomix 
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a) LIW Twin Screw Feeders 

 
All three of the K-Tron K-ML-D5-KT20 twin screw feeders (Figure 12) used in the 

experimental work were able to operate either in volumetric mode or gravimetric mode. 

It is important to know the operating differences between each mode in order to 

understand which was better for this experiment. 

 

	
Figure 12 - K-Tron LIW powder feeders 

	

Volumetric feeding principle 
 
Bulk material is discharged from a hopper with a constant volume per unit of time by 

regulating the speed of the feeding device. The actual volume of material fed is 

determined through calibration. The feeding accuracy is dependent on the uniformity of 

the material flow characteristics and the bulk density. 

Gain-in-weight (GIW) batches employ volumetric feeders to feed each ingredient 

sequentially, while loss-in-weight (LIW) feeders feed multiple ingredients simultaneously 

into a collection hopper (Figure 13). Instead of the layering of ingredients that you get 

with GIW feeding, in LIW feeding all the ingredients are metered at the same time, 

eliminating the layering effect and the time and cost for further processing downstream. 

It is relevant to state that in continuous mixing, due to time constraints and to the 

several simultaneous feeding flows, GIW operation is generally not possible and thus 
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LIW provides the more reliable feeding mechanism. 

 

	
Figure 13 - Gain-in-weight versus loss-in-weight batching schematic (adapted from (57)) 

 

LIW gravimetric feeding principle 
 
Bulk material is discharged from the hopper with a constant weight per unit of time by 

weighting the hopper/feeder assembly and regulating the speed of the feeding device 

depending on the rate of weight loss. The weighting control system compensates for 

non-uniform material flow characteristics and variations in bulk density, an advantage 

over volumetric feeding, therefore providing a high degree of feeding accuracy. 

When the hopper reaches a predetermined minimum weight level, the LIW 

control can be briefly interrupted and the hopper refilled. During the refill period the 

controller regulates the speed of the feeding device based upon the historic weight and 

speed information that was accumulated during the previous weight loss cycle, or 

switches to a default volumetric mode. The LIW feeding principle is most accurate when 

using a high resolution, fast responding, vibration immune weighing systems such as the 

D5 platform scale or load cells combined with self-tuning controls such as the compact 

Coperion K-Tron Control Module (KCM). 
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Figure 14 - Loss-in-weight powder feeder schematic (adapted from (58)) 

 

LIW feeders (Figure 14) are the best at providing fast and accurate measurement 

and control of individual ingredients fed into a batch or continuous process. When the 

wheighting accuracy of each ingredient in a process is crucial to maintain the formulation 

within specification, when a formulation includes micro ingredients that are usually 

expensive, when cycle times must be kept short, or there is a big gap in the ratio of a 

major ingredient to a minor ingredient, LIW feeders are the best solution. 

In very specific situations, if additional verification of delivered batch weight is 

required, a dual weighing scenario may be used, with the combination of a LIW feeding 

into a GIW system. 

Batch size and accuracy requirements will often determine whether GIW		or LIW 

feeders are the best for the process. In general, GIW feeding can be used in batch 

manufacturing when the response time and resolution of a platform scale is sufficient to 

guarantee batch accuracy requirements. Even though most floor scales do not have 

sufficient speed and resolution to measure small amounts of product into a large volume 

container.  

Achieving an accuracy of < ± 0,03 %, the K-Tron system employed uses a hopper 

with twin screw LIW feeders mounted on a D5 Platform Scale that provides 1 part in 4 

million resolution, controlled by a compact KCM. The LIW KCM controller monitors 
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material weight loss from the hopper and controls the start/stop functions of the feeder. 

With each feeder possessing its own dedicated weighing system, the K-Tron LIW Twin 

Screw Feeder system delivers each ingredient with great accuracy, in less time, and was 

the best solution for this experimental setup. 

 

b) In-line continuous mixer 
 

The in-line continuous mixer used was a Hosokawa Modulomix (Figure 15). It has a 

small footprint with good reactivity, holds a relatively small residue at the end of mixing 

and has rapid start-up and shutdown protocols. It produces a homogeneous mix in a 

blending chamber, with little change to PSD or temperature. It can operate at a range of 

300 to 1460 rpm, has a maximum capacity of 130 kg/h and can be used with different 

mixing conditions due to its in-process variable rotor speed as well as several designs 

of its agitator blades. 

 

	
Figure 15 - Modulomix in-line mixer with inlet ports A and B, and outlet port C 

 
Inlet ports A and B are connected to the feeding systems and can be used for separate 

feeding of API and excipients to the mixer. Inside the mixing chamber there is a rotating 

axis on which the agitator blades are placed at diferent angles (Figure 16). On the axis 

there is also a partitioning disc separating almost completely the mixing chamber 

between the inlet port zone and outlet port zone. This helps prevent powder from exiting 

the mixer through outlet port C without having been properly blended. 
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Figure 16 - Modulomix in-line mixer. On the left: With the side panel removed, exposing the mixing 

chamber. On the right: Before cleaning with the external casing removed 

	
If necessary, due to formulation requirements, multiple Modulomix mixers can be 

cascaded in series to allow for multiple stage mixing processes. As seen in Figure 17 up 

to three diferent formulation components (API, binder, diluent, etc) can be fed through 

the first inlet port at the same time and, If needed, aditional components may also be 

added through the second inlet port. 

All of these components are blended eficiently within the mixer under high shear 

conditions. If the formulation requires the addition of a lubricant this can be done through 

the third inlet port that directly connects to the second mixer where the blending occurs 

at low shear conditions (needed for the lubricant). 
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Figure 17 - Example of Modulomix cascade setup (adapted from (59)) 

The Hosokawa Modulomix was integrated in a PAT environment as the final mixture left 

the mixing system via a specially-designed PAT chute/integration sphere. Different PAT 

devices like Raman or NIR spectrometers can be used for continuous control of the 

quality of the mix. In this experimental work, NIR spectroscopy was the selected PAT 

device used. 

c) Belt conveyor 
 

To ensure that the collection of the powder mixture and its samples was done in the most 

coherent and regular way possible, a belt conveyor (Figure 18) was devised and placed 

under the in-line mixer / NIR sphere chute were it would collect the powder mixture during 

the experiments. The conveyor had an electric motor with a voltage control which could 

be regulated, resulting in higher or lower belt speed. All of the powder that fell onto the 

belt was divided into several rotating metallic trays that delivered the powder into 



Continuous feeding and mixing in continuous tablet manufacturing 
____________________________________________________________________________________	

	 29	

manually placed plastic bags at the end of the conveyor. This system was regulated for 

a sampling time of 10 seconds and allowed for timed and regular sampling to be assured 

through all the experiments. 

 

 
Figure 18 - Belt conveyor 

	

4.2.2 Monitoring of API content/homogeneity 
 

a) NIR Spectral Camera and Integration Sphere 

b) Shimadzu UV-1800 UV-Vis Spectrophotometer 

 

a) NIR spectral camera and integration sphere 

 
The NIR spectral camera used for the aquisition of spectra was a SPECIM Spectral 

Camera (Specim, Finland), an integrated combination of an ImSpector imaging 

spectrograph and an area monochrome camera. It works as a push-broom type line scan 

camera providing full, contiguous spectral information for each pixel in the line.  

This SPECIM NIR camera provides 320 pixel spatial resolution and image rate 

from 50 to 350 Hz. The NIR Spectral Camera model consists of an ImSpector N17E 

imaging spectrograph for the wavelength region 900 - 1700 nm and a temperature 

stabilized InGaAs detector. The transmission diffraction grating and lens optics included 

in the spectrograph provide high light throughput and distortionless image which is 

designed to meet the requirements of the associated detector.  

The cooling unit is maintenance free and keeps the detector temperature stable 

throughout a wide ambient temperature range. The camera is also equipped with an 
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electro-mechanical shutter for dark image acquisition integrated in its housing. 

For setting up the NIR instrument, spectra do not originate from only one image 

or source, but from six overlapping signals from six separate fiber optic probes. Therefore 

an acessory shown in Figure 19 is attached to the spectral camera in order to receive 

and merge all six fiber optic signals. 

 

 

Figure 19 - NIR spectral camera. On the left: fiber receiving and merging acessory. On the upper right: 
profile of the cased camera. On the lower right: profile of the camera with no casing. 

The purpose of using six fibers for signal acquisition relates to the challenge of in-line 

continuous monitoring of production material. In order for the signal that reaches the 

spectral camera to be representative of the flowing material exiting the chute, only one 

measuring point is insufficient, due to the small area iluminated and to the large quantity 

that is being processed at each moment. Thus a special acessory called an integration 

sphere was used as a setup that allows multi-point signal acquisition for a more 

representative analysis. 

The acessory designed by the VTT Technical Research Centre of Finland Ltd 

(VTT) in Finland (Figure 20), consists of a metal box with a glass tube that spans across 

a hollow white teflon sphere inside of it. The tube is open at both ends and serves as a 

chute where the material flows through as it exits the in-line continuous mixer at its outlet 

port. On the surface of the white teflon sphere are six fiber optic probes pointed at 

different angles at different points of the glass tube, these fiber optic probes are mounted 

and secured on the sphere’s metal casing. There is also a halogen lamp that can be 

replaced when needed that acts as a light source inside of the sphere. 
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Figure 20 - The integration sphere. 

As mentioned before, NIR spectra for all runs were obtained through the merging of the 

signal of the six fibers into one through the optical acessory attached to the spectral 

camera. This solution allows for a much better integration of PAT tools in general, and 

NIR specifically into continuous pharmaceutical processing. It avoids the need of taking 

several samples of the flowing material, avoiding potential contamination, allowing for 

continuous in-line multi-point monitoring of the blend quality.  

 

b) Shimadzu UV-1800 UV-Vis spectrophotometer 
 

A UV-VIS spectrophotometer was used to quantify the paracetamol present in the 

collected samples. The equipment was a Shimadzu UV-1800 (Figure 21) using a 

spectroscope with a Czerny-Turner mounting and a 1 nm resolution capability. 

 

 

Figure 21 - Shimadzu UV-1800 spectrophotometer.  
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4.3 Methods 
	
4.3.1 Experimental design 

In order to evaluate how mixing performance is affected by process parameters, a set of 

14 experiments was defined using Modde (MKS, Malmö, Sweden ) as seen in Table 2. 

The design of experiments (DoE) included three centre points spaced throughout the run 

order, allowing for the best characterization of the system whilst doing a small number 

of experiments. Process parameters varied were: mixer speed (300, 900 and 1500 rpm), 

feed rate (5, 10 and 15 kg/h), inlet port (A or B) and excipient type (MCC or DCP). 

Table 2 - Experimental design used to define the runs' conditions according to four process parameters. 

Experiment 
Name Run Order Total Feed 

Rate (kg/h) 
Mixer 
Speed 
(rpm) 

Port Excipient Run Time 
Aprox (min) 

N1 2 5 300 A MCC 15 
N2 4 5 1500 B DCP 15 
N3 9 15 300 B DCP 15 
N4 12 15 1500 A DCP 15 
N5 7 15 1500 B MCC 15 
N6 11 15 1500 A MCC 15 
N7 8 15 300 B MCC 15 
N8 13 15 300 A DCP 15 
N9 6 5 1500 B MCC 15 

N10 3 5 1500 A DCP 15 
N11 5 5 300 B DCP 15 
N12 1 10 900 A MCC 15 
N13 10 10 900 A MCC 15 
N14 14 10 900 A MCC 15 

 
 
4.3.2 Preparation of the mixtures 
	
Before conducting a run of an experiment, both LIW feeders (API + excipient) were filled 

with enough raw material so that the experiment could run without any interruption during 

the intended time (at least 15 min). When there was already enough raw material in the 

feeders left from a previous run it was necessary to check if no “rat-holing” had occured 

stirring the raw material inside the feeder with a metal rod. Although the LIW feeders 

could be operated through the attached KCM, they were mainly software controled 

through the desktop computer running Labview. 

When the mixing process was ready to start, the rotating hopper mounted onto 

the inlet port of the mixer was turned on (to ensure better flow of raw material into the 
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mixer), and then the LIW feeders and the continuous mixer. At the start of each run, the 

settings for the feeders and mixer were constant for that experiment’s specific values 

(mixing speed, total feed rate, inlet port and excipient type).  

Even though there was a fixed total feed rate for each experiment, specific API 

and excipient feed rate step changes were introduced at different times in each run by 

varying the relative feed rate of each LIW feeder (API and excipient) as seen in Table 

3. This way it was possible, while maintaining the total feed rate constant, to achieve the 

desired step changes. 
	

Table 3 - LIW feeders step changes 

Step % Total Feed Rate 5 kg/h Total Feed Rate 10 kg/h Total Feed Rate 15 kg/h 
API Excipient API feed Excip feed API feed Excip feed API feed Excip feed 

50 50 2,5 2,5 5 5 7,5 7,5 
40 60 2 3 4 6 6 9 
60 40 3 2 6 4 9 6 
70 30 3,5 1,5 7 3 10,5 4,5 

 

These step changes have been introduced throughout the run in order to better 

understand system responses to changing API feed rates, mixing performance with 

different formulation ratios, mean residence time and particle RTD. In the latter, the 

method utilized was the step input, and the region selected for the calculations was the 

first step change from 50% API to 60% API (%w/w) around the 3 minute mark. These 

step change settings were done for every experiment with the step changes having the 

same duration and time points as seen in Figure 22. 
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Figure 22 - Paracetamol step changes along the duration of each experimental run 

	

The only parameter that varies throughout the run is the relative feed rate of each feeder 

(API and excipient) in order to achieve the desired step changes while maintaining the 

total feed rate constant. The initial 50% step lasts 3 minutes and is the only step that 

lasts more than the others, since it is necessary to guarantee that when we reach the 

first step change to 60% the mixing process, as well as the powder accumulation that 

occurs inside the clean mixer, have stabilized and that the resulting blend is as 

homogenous as it can be. Without this guarantee it would not be feasible to calculate the 

RTD from the step change data. For this reason one extra minute was added to this step. 

The resulting blend that poured from the mixer outlet was collected into several plastic 

bags in 10 second intervals with the help of the belt conveyor. 

 

4.3.3 Powder blend monitoring with NIR spectroscopy 

Powder blend API content and mixture homogeneity were monitored with a NIR 

spectrometer connected to an in-line integration sphere that was attached to the 

continuous mixer outlet. The NIR data collected from the start until the end of each run 

was processed and stored by the acquisition software. That data was further analysed 

in Matlab using PLS Toolbox. 
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4.3.4 Mass hold 

 

Mass hold at 180 seconds 
By subtracting the cumulative collected powder mass in the sample bags from the known 

fed powder mass in the first 180 seconds, it was possible to determine the mass hold at 

the end of the first steady state step of 3 minutes. 

 

Mass hold at the end of the run 
After stopping the feeders and the mixer at the end of each experimental run, the powder 

still left inside of the mixer was collected onto a tray placed under the exit port. In order 

to force the powder out, the mixer’s rotating axis was turned on to 1500 rpm and the 

powder collected until no more was flowing. The powder mass was weighted in an 

analytical scale and registered. 

 

4.3.5 Paracetamol quantification with UV-VIS 

Upon running all fourteen experiments it was necessary to determine the real amount of 

paracetamol in the binary mixture samples, and cross-check that against the feeder data 

in order to verify blend homogeneity. Therefore an analytical method had to be chosen 

that adequately detected the desired substance. Appart from the reference high 

performance liquid chromatography (HPLC) which is a fairly expensive, time consuming 

and laboratory “busy” equipment, one other method was available that allowed for the 

quantification of paracetamol in the collected samples in an easier and less expensive 

way. That method was UV-Vis spectroscopy using the Shimadzu UV-1800 

spectrophotometer to measure paracetamol’s characteristic 242 nm absorbance peak. 

In order to achieve this, diluted solutions were made from each powder sample. Since 

producing diluted solutions for every sample would be nearly impossible in the time 

available, key samples taken right before each step change (where mixture homogeneity 

is theoreticaly higher) were selected and analysed. The procedure to obtain these 

solutions from the respective powder samples was the same for every run of 

experiments. A calibration curve was built with several paracetamol standard solutions 

in order to verify measurement linearity in the desired absorbance range. Paracetamol 

standard solutions were made with both milli-Q water and tap water to test for potential 

solvent interference. It was determined that using tap water had no interference in the 

UV-Vis measurements and so, due to the high savings in laboratory costs, that was the 

selected solvent. 
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 Each sample was weighted in an analytical scale inside the plastic bag. The 

plastic bag weight was taken into account as tare weight and 20% of the real powder 

sample weight was used to make a “mother” solution in a 0.5 L volumetric flask with tap 

water at room temperature. From that “mother” solution, a dilution to a 50 mL volumetric 

flask was made in order to achieve a theoretical target concentration of 15 µg/mL. 

This theoretical target concentration was chosen because it represents the center 

point in the range of measured concentrations for the calibration curve which presented 

good linearity, it is the final solution concentration of a 50/50 sample, and it has an 

adequate absorbance signal value. 

 The decision of using 20% of the total powder sample to produce the mother 

solution and then to dilute that same solution was based on the concern of accurately 

representating the sample. If not, in the case of a non idealy mixed sample or if 

segregation of the powder had occured inside the bag, it would be possible that the 

smaller amount of powder taken to make the solution would have had much higher 

proportions of one substance than the other, biasing the results. The only exception to 

this rule was experiment N9 in which, due to the smaller amount of powder collected in 

each bag (about 11g), 50% of the total powder sample was used. All solutions were 

filtered with 45 μm Porvair syringe filters before UV-Vis measurement. 

 All the UV-Vis measurements of each sample were acquired in triplicate, 

averaged and registered on the Shimadzu proprietary software. Later, they were 

exported to Microsoft Excel for further data analysis. 

 

4.3.6 Particle size measurement 
	
The size distribution of powder particles was measured off-line by light scattering in the 

Scirocco unit of the Malvern Mastersizer 2000 equipment.  

 

4.3.7 Exploratory data analysis 

All data obtained with the NIR spectrometer were extracted from the acquisition software 

and ported to Matlab (The Mathworks Inc. Natick, MA). Principal component analysis 

(PCA) was applied to data of each experiment (before PCA the dataset encompassing 

the spectra was scaled by mean-centring). Multivariate curve resolution (MCR) was 

additionally tested to analyse the experiments where the excipient was MCC.  PCA and 

MCR were performed on the PLS Toolbox (Eigenvector Research, Inc., Manson, WA) 

for Matlab. Spectra were preprocessed with Savitzky-Golay (first derivative, second 
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order polynomial and 15 points) for PCA and multiplicative scatter correction (MSC) for 

MCR using the PLS Toolbox. 

 

4.3.8 Residence time calculation 
	
	
Residence time is a very important parameter since it can be used to characterize the 

propagation of transient disturbances across sequential unit operations in a system, and 

therefore an effort was made to try and determine it in this experimental work. 

 There are two ways to stimulate the system in order to calculate the particles 

residence time. Through a very short pulse input and through a continuous step change. 

Naturally due to the configuration of our experimental setup the chosen method was the 

step change, and the best time to perform such a change is during steady-state when 

we can guarantee that there are no disturbances affecting the system. We need to 

guarantee that the only disturbance or stimulation to the system is done by us, by 

performing the step change. 

Having this in mind, the selected step change for this part of the study was the 

very first from 50% to 60%, 3 minutes after the start of the run. The dataset used for this 

calculation started after 150 seconds (30 seconds before the step change) until 300 

seconds (2 minutes after the step change), since the point is to focus on the sigmoid 

portion of the dataset. 

The method for obtaining the RTD and residence time for each experimental run, 

starts with fitting a curve to the sigmoid dataset in the SigmaPlot software (Systat 

Software Inc. San Jose, CA). The type of equation selected was a sigmoidal Weibull 5 

parameter equation because it presented the best overall fit and shape for our process 

step change. Then the Weibull equation had to be normalized so that when plotted, the 

bottom and top section values would be 0 and 1 respectively. After that, the differential 

equation had to be calculated, and from it can be obtained the probability distribution 

function E(t), which in this case is the RTD.For the residence time value it is necessary 

to calc ulate the integral for t*E(t), and thus obtain the mean residence time τ. The 

Variance σ2 can be calculated through the integration of (t-τ)2*E(t) consequently also 

obtaining the standard deviation σ. 
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4.3.9 Bulk residence time 
	

The bulk residence times were obtained dividing the mass hold at the end of the run by 

the corresponding feed rate of those experiments. 

Bulk	Residence	Time	(h-1) =
Mass	hold	(kg)
Feed	rate	(kg/h)

 

 

4.3.10 System variables influence over response parameters 
	
	
Linear models between process variables and system responses were developed in 

Modde. The selected variables were: feed rate, mixer speed, inlet port and excipient. 

The selected responses were: bulk residence time, mass hold and UV-Vis versus 

feeders RSD. The value of each response was determined by the aforementioned 

methods. The variables' setpoints and their corresponding responses were introduced in 

Modde and a PLS model was built, in order to analyse the resulting coefficients. 
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Chapter 5 

Results and discussion 
	
	

5.1 Exploratory data analysis 
After having collected all the NIR data from the acquisition software we were left with 14 

.bin files of 275 Mb each with 100 spectra per second. In order for the obtained NIR data 

to be introduced into Matlab there was the need to use a custom script written by the 

VTT, that extracted the data from the original .bin file into Matlab and at the same time 

reduced the file size into a more manageable one by averaging those 100 spectra per 

second into 1 spectrum per second. After that, the resulting spectra were plotted against 

the wavelengths and the spectral region that contained the poorest information, namely 

from 865 to 1300 nm was removed, leaving the 1300 to 1689 nm region to be analysed 

(Figure 23). For practical purposes the experimental run of the DoE that will be used as 

an example will be the N6 which uses MCC as the excipient. 

 

 

Figure 23 - Raw NIR spectra obtained for run N6 

	

The spectra were then pre-processed with a first derivative Savitzky-Golay algorithm in 

order to emphasize and maximize the physical and chemical information contained 

(Figure 24). This pre-processing method also tends to accentuate the noise because of 
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the derivative calculation implied, and because of that a smoothing effect is also applied 

to remove high frequency noise on each row of the matrix. The smoothing effect is 

applied to a variable subset number of points and fits a “n” order polynomial on those 

points, therefore it is up to the user to select the best settings. In this experimental work 

each subset “window” contained 15 points and a second order polynomial smoothing 

effect was applied.  

 

 

Figure 24 - Pre-processed NIR spectra for run N6 

 

5.1.1 Principal component analysis 

After the spectra were mean-centred, the PCA model was built. This was repeated for 

all runs. In Figure 25 we can observe the score plot where the first principal component 

(PC1) captured 82.1% variance, against the second principal component (PC2) that 

captured 11.2% variance. The first principal component describes the direction of the 

major variation in the data set, which is the greatest axis of the ellipse. The scores were 

coloured according their PC1 information in order to evidentiate how, through the score 

plot, it is easily identifiable that there are four main score clusters. These four main 

clusters are undoubtedly correlated to the four different mixture proportion steps 

(40%w/w, 50%w/w, 60%w/w and 70%w/w) that are achieved throughout each 

experiment. 
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Figure 25 - Score plot for the PCA model obtained from run N6 spectra. 

The light green and light blue scores found outside of the 95% confidence ellipse make 

up for the first few seconds of the mixing process. In those instants, the system has not 

yet stabilized and that explains why those particular scores don’t belong to any of the 

four identifiable clusters. That can be corroborated by looking at the model squared 

residuals versus the Hotelling’s T2 statistic plot in Figure 26 in which each point has been 

time labeled. 

 

Figure 26 - Q residuals vs Hotelling T2 from a PCA model from run N6 spectra 
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The Hotelling’s T2 statistic is the sum of normalized squared scores and a measure of 

the variation in each sample inside the PCA model. Q residuals is the sum of squares of 

each row in the error matrix E that is obtained by calculating the difference between the 

original data and the model predictions (e.g., the residuals). The Q statistic points out 

how well each sample conforms to the modelled part of the PCA model. The blue dotted 

lines represent their respective 95% confidence limits and therefore also exclude the 

scores representing the first few instants of the run. 

 

 

Figure 27 - Evolution of the first PC over time for run N6. 

Finally, by plotting the scores versus the run time in Figure 27, we obtain an almost 

identical profile as in Figure 22 and are able to indentify the already mentioned instability 

in the early moments of the experiment. Furthermore it is possible to verify that the four 

main score clusters identified in Figure 25 fit quite perfectly with the defined steps of the 

experiment. It is possible to affirm that the yellow cluster corresponds to the 40% step, 

the green cluster to the 50%, the blue cluster to the 60% and the red cluster to the 70%. 

Looking at these results it is possible to infer that the PC1 of the PCA is very directly 

related to the mixture content of one of the substances (paracetamol). 

In order to confirm if the PC1 loadings do indeed represent paracetamol, and if 

the PCA is indeed measuring the API content of the blend and not MCC content (in 

binary mixtures this is plausible to happen), we must compare the PC1 loadings with the 

preprocessed pure spectra of the desired substance and check if there is a match. 
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Figure 28 - Raw and preprocessed (first derivative) NIR spectra of paracetamol. 

	

		
Figure 29 - Preprocessed (first derivative) and PCA PC1 loadings NIR spectra of paracetamol 
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Figure 30 - Raw and preprocessed (first derivative) NIR spectra of MCC. 

	

	
Figure 31 - Preprocessed (first derivative) and PCA PC2 loadings NIR spectra of MCC. 
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The reason why the pure substance spectrum has to be pre-processed too (Figure 28 

and Figure 30) is because we are comparing the profiles of two sets of spectral data, 

and since one set of data was pre-processed for PCA, if the other is not processed in 

the same way the profiles will be extremely different and non-comparable. 

As we can see from Figure 29, the PC1 loadings fit the preprocessed pure 

paracetamol spectrum quite nicely from 1500 nm to 1689 nm. This strongly suggests 

that the substance being monitored by that principal component is paracetamol. In a 

similar way we can observe in Figure 31 that the same happens between the PC2 

loadings and the preprocessed MCC spectrum from 1300 nm to 1500 nm. This also 

points to the fact that the substance being monitored by the PC2 is MCC. 

Finally, the reason why the loadings on both components don’t always fit together 

throughout the range of wavelengths is because, as can be seen in Figure 32, MCC 

absorbance is stronger and only detectable from the 1300 nm to 1500 nm region, and 

from 1500 nm onwards paracetamol’s absorbance is higher ocluding MCC’s signal. This 

causes the PCA to not always be able to generate chemically interpretable loadings for 

those regions causing them to diverge and split away from the preprocessed pure 

substance spectrum. These properties and characteristics are extremely important to 

take into acount when doing a thorough analysis or when choosing which substances to 

include in the mix, if a continuous monitoring and control strategy is to be implemented. 

 

	
Figure 32 – Preprocessed (first derivative) paracetamol and MCC NIR spectra.  
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5.1.2 Multivariate curve resolution 
 

In order to further explore the data obtained in the experiments another technique was 

implemented to determine API content in the powder mixture. This was done through 

MCR, which is defined as a group of techniques that help resolve mixtures by 

determining their number of constituents, their response profile (pure spectra) and their 

estimated concentrations, when no prior information is available about the nature and 

composition of the mixture. MCR decomposes the experimental data matrix D, using a 

constrained alternating least squares (ALS) algorithm, into the product of two smaller 

matrices C and ST, with C being a matrix of concentration profiles for the modeled 

component in the system and S being the matrix of the corresponding pure spectra. 

 This method was done also in Matlab using the same initial NIR data matrices as 

those used for the PCA models, as well as a pure paracetamol absorbance spectra in 

the 1300–1689 nm region. All matrices containing paracetamol/MCC NIR data (N1, N5, 

N6, N7, N9, N12, N13 and N14) were concatenated into one big matrix and then applied 

a MSC preprocessing, in order to eliminate artificial baseline and scaling between runs. 

That together with the  pure paracetamol NIR spectrum (forcing some S matrix rows) in 

the same spectral region was used. 

In this case, and since the system was a binary mixture, the result was a clear 

separation between what was perceived as paracetamol and the other component 

(MCC) as seen in Figure 33.  

	

	
Figure 33 - Scores (first and second component) obtained from the MCR model for the eight runs 

containing MCC. 
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Each vertical line along the horizontal axis represents the end of a run and the beginning 

of another, or in other terms, the place were the matrices were concatenated, about 

every 912 seconds apart. The run order displayed in the graph is the same as listed 

above: N1, N5, N6, N7, N9, N12, N13 and N14. 

 The MCR values for the scores (the concentrations in an arbitrary scale) need to 

be normalized with a correction factor that should be additive but can also be 

multiplicative in order to reflect the real mass fractions (or concentrations) of the 

components of the biinary mixture. A simple scale conversion equation correction was 

applied to both series of data (paracetamol and MCC). This will adjust the scores of the 

two components (related to the two substances in the binary mixture), in order for the 

sum of both at any given time to be constant and close to 1 or 100%. 

Since the line equation is represented by: 

 

𝑦 = 𝑚𝑥 + 𝑏 

 

The multiplicative factor will be the slope m which will vertically stretch or shrink the data 

series profile, and the additive factor will be the y axis intercept b which will move the 

data series up or down the y axis. The line equations used as correction factors were the 

following. 

Paracetamol			𝑦 = 83.3𝑥 − 13 

MCC																		𝑦 = 76.9𝑥 + 31 

 

By applying the correction factors to the raw MCR scores, and plotting the paracetamol 

and MCC series on a 0 to 100% scale we obtain the following graph in Figure 34. 
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Figure 34 - Corrected scores (first and second component) obtained from the MCR model for the eight 

runs containing MCC 

	
Since MCR allows us to determine the amount of paracetamol in a mixture in real 

time, it is useful and interesting to compare the profiles of each run obtained with 

the MCR technique to the ones obtained with PCA. Besides experiment N6 that 

has been used as an example, a few others will also be presented for the sake 

of diversity and accuracy. 

	
Figure 35 - Overlay of the first component profiles obtained for the PCA (blue) and MCR (orange) models 

for experiment N6.  
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Figure 36 - Overlay of the first component profiles obtained for the PCA (blue) and MCR (orange) models 
for experiment N12. 

 

Figure 37 - Overlay of the first component profiles obtained for the PCA (blue) and MCR (orange) models 
for experiment N13. 
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Figure 38 - Overlay of the first component profiles obtained for the PCA (blue) and MCR (orange) models 
for experiment N14. 

 

As can be seen in Figure 35 to Figure 38 the profiles obtained with MCR resemble quite 

closely the ones obtained with PCA. It is interesting to verify that PCA manages to 

represent almost the same paracetamol step change profile in each experiment, even 

without being given the pure substance spectra. It can also be observed that the regions 

were PCA seems to deviate more noticeably from MCR are the extremes, namely the 

40% and 70% step changes. The reasons for this are intrinsic to the techniques, since 

both used the same set of raw NIR data acquired in the same equipment. 

 Overall it is possible to say that the MCR results confirm and reinforce the PCA 

results most importantly in the first step change from the initial 50% to 60%, which is the 

step change used to calculate the RTD. In this region three out of the four experiments 

presented, had an almost perfect fit between the MCR and PCA profile, suggesting that 

the first step change data is the best choice for RTD calculation. 

  

All results presented in the exploratory analysis correspond to experiments in which 

MCC was used. Unfortunately DCP NIR data did not allow for PCA or MCR 

implementation. This was due to the fact that DCP has a much lower absorbance across 

the whole NIR spectrum as can be observed in Figure 39. Because of this, the only signal 

detected by the spectral camera was that of paracetamol, making it impossible for the 

techniques used to distinguish one from the other.  
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Figure 39 - DCP and paracetamol raw NIR spectra encompassing the region 1000–2500 nm 
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5.2 Residence time distribution calculation 
 

For the curve fitting and function integration process, experiment N6 will be used as an 

example. As can be seen in Figure 40, the Weibull sigmoidal 5 parameter function fits 

the dataset of the 50% to 60% step change quite well.  

 

 
Figure 40 - Weibull Sigmoid function fitting for the 50% to 60% step change for experiment N6. 

• Time (s) vs NIR PCA data; ¾ Time (s) vs Fitted prediction 

	

After fitting the Weibull function and determining and plotting its differential we obtain the 

residence time distribution in Figure 41. Then integrating t*E(t) we obtain the mean 

residence time of τ = 12,86s. 
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Figure 41 – Function E(t) representing the residence time distribution for experiment N6 

Table 4 presents a summary of all the values calculated for this portion of the 

experimental work as well as the mass hold, and the bulk residence time for all 

experiments. 

Table 4 - Mass hold and residence time for the produced experiments. 

Exp. Run 
Order 

Total 
Feed 
rate 

(kg/h) 

Mixer 
rpm Port Excipient 

Mass 
hold 

after the 
run (g) 

Bulk 
residence 
time (s) 

Residence 
time from 
NIR data 

(s) 

Variance 
σ2 

Standard 
Deviation 

σ 

N12 1 10 900 A MCC 42 15.12 19.63 165.30 12.86 
N1 2 5 300 A MCC 149 107.28 Poor resolution 

N10 3 5 1500 A DCP 24 17.28 No NIR data 
N2 4 5 1500 B DCP 25 18.00 No NIR data 

N11 5 5 300 B DCP 219 157.68 No NIR data 
N9 6 5 1500 B MCC 5 3.60 Poor resolution 
N5 7 15 1500 B MCC 41 9.84 8.78 17.89 4.23 
N7 8 15 300 B MCC 142 34.08 10.80 68.08 8.25 
N3 9 15 300 B DCP 253 60.72 No NIR data 

N13 10 10 900 A MCC 48 17.28 31.63 206.26 14.36 
N6 11 15 1500 A MCC 37 8,88 12.86 72.18 8.50 
N4 12 15 1500 A DCP 31 7.44 No NIR data 
N8 13 15 300 A DCP 206 49.44 No NIR data 

N14 14 10 900 A MCC 57 20.52 17.89 96.19 9.80 
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The experiments made with DCP had no usable NIR data, and some made with MCC 

(N1 and N9) had insufficient resolution on the sigmoid step change area to be able to 

determine the residence time from the NIR data. 

 

The possible explanation for the poor resolution in N1 and N9 experiments is the slower 

5 kg/h total feed rate which both share as a common setting. With that in mind both, N1 

and N9 experiments were later repeated after this thesis experimental campaign was 

over, but with total feed rates of 7.5 kg/h and 10 kg/h. Those produced better results in 

relation to the NIR data with the 7.5 kg/h allowing to see the step changes albeit with 

some noise, and the 10 kg/h produced even better usable results. These results indicate 

that the total feed rate is indeed an important process parameter in regard to the NIR 

integration sphere performance, and that its minimum ideal set point for this process 

might be around 10 kg/h. 

 

5.3 UV-Vis measurements 
 

The results of the measurements taken to build the calibration curve are presented in 

Table 5 and Figure 42. The results indicate a good linear response in the range of 

concentrations measured. That is an assurance that the UV-Vis equipment is able to 

reliably measure the sample solutions allowing for an accurate determination of the 

amount of paracetamol in the sample, and thus determine sample homogeneity. 

Table 5 - UV-Vis calibration curve measurement results 

Paracetamol	solution	
concentration	(μg/mL)	

Absorbance	at	λ=242	nm	

Sample	A	 Sample	B	 Sample	C	 Abs	average	
1	 0.066	 0.071	 0.069	 0.069	
5	 0.314	 0.322	 0.324	 0.320	
10	 0.653	 0.658	 0.656	 0.656	
15	 0.911	 0.964	 0.966	 0.947	
20	 1.296	 1.295	 1.311	 1.301	
25	 1.548	 1.615	 1.617	 1.593	
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Figure 42 - UV-Vis Calibration Curve 

 

After collecting all the UV-Vis data from the selected powder samples we proceeded by 

comparing the real UV-Vis measured values from the samples with the theoretical feeder 

data registry from the computer. The results were plotted in the following graphs from 

Figure 43 to Figure 56. 
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Figure 43 – Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N1  

 
Figure 44 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N2  

 
Figure 45 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N3  
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Figure 46 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N4  
	

	
Figure 47 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N5		

	

	
Figure 48 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N6	 
	

C
on

ce
nt

ra
tio

n 
%

w
/w

 
C

on
ce

nt
ra

tio
n 

%
w

/w
 

C
on

ce
nt

ra
tio

n 
%

w
/w

 



Continuous feeding and mixing in continuous tablet manufacturing 
____________________________________________________________________________________	

	 58	

	
Figure 49 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N7  

	
Figure 50 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N8 

	
Figure 51 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N9 
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Figure 52 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N10 

	

	
Figure 53 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N11 

	

	
Figure 54 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N12 
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Figure 55 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N13 

	
Figure 56 - Overlay of paracetamol feeder setpoint, real fed paracetamol concentration and UV-Vis 

measured results for experiment N14 

 

Examining the profiles from Figure 43 to Figure 56 it is possible to say that overall the 

mixing performance of the experimental setup is quite good since the UV-Vis 

measurements are very close to the feeder data in terms of mixture homogeneity. 

Moreover it was also possible to calculate the relative standard deviation (RSD) between 

the UV-Vis measurements and the feeder registry data. These results, presented in 

Table 6 and Figure 57, allow for a much more detailed and methodical approach to 

homogeneity and mixing performance evaluation. All the experiments are well bellow the 

5% limit according to industry guidelines, with only three experiments (N2, N3 and N10) 

having a RSD between 3% and 4%. This indicates that the mixing setup utilized in the 
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experimental work provided excellent mixing performance across a wide range of 

settings. 

 
Table 6 - Relative standard deviation between UV-Vis results and feeder registry data. 

Target	%	
	 	 	 	 	 	 RSD%	 	 	 	 	 	 	 	

N1	 N2	 N3	 N4	 N5	 N6	 N7	 N8	 N9	 N10	 N11	 N12	 N13	 N14	

50	 1.10	 3.39	 2.56	 1.25	 0.99	 1.28	 0.71	 0.78	 2.62	 3.05	 1.10	 0.30	 1.85	 0.21	

40	 1.39	 4.60	 3.90	 0.14	 0.75	 2.06	 2.34	 1.37	 1.46	 4.12	 0.72	 0.90	 1.14	 0.83	

60	 0.74	 1.10	 5.32	 0.11	 2.30	 1.99	 1.52	 1.20	 2.97	 5.38	 3.33	 0.64	 0.91	 0.09	

70	 2.55	 3.38	 1.26	 0.65	 2.26	 1.59	 0.88	 1.70	 0.31	 1.05	 1.52	 1.03	 0.46	 0.30	

Average	
RSD	 1.24	 3.39	 3.23	 0.39	 1.63	 1.79	 1.20	 1.28	 2.04	 3.59	 1.31	 0.77	 1.02	 0.26	

 

 

	
Figure 57 - RSD acording to experiment number and concentration step 
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5.4 System variables influence over response 
parameters 
 

Process data was introduced into the Modde software worksheet and used to build PLS 

models for the four reponse parameters presented in Table 7. Linear models without 

interactions were calibrated for the four parameters. 

Table 7 – Data introduced into the Modde worksheet to build the PLS models. The imput variables were: 
feed rate, mixer speed, port and excipient; and the responses were: bulk residence time, mass hold at the 
end of run, mass hold at 180s and RSD. 

	
	

	
 We can look at the results of the linear models made by Modde regarding the bulk 

residence time (BRT) results (Figure 58). Not much can be said except that the mixer 

speed negatively affects the BRT, or in other words, a higher mixer speed causes a lower 

BRT due to the fact that particles are pushed faster and move more rapidly when a higher 

mixer speed is in place.	
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Figure 58 - Regression coefficients for the bulk residence time model developed including error bars for 

assessing coefficients significance. 

 

	
Figure 59 - Regression coefficients for the mass hold at the end of the run model developed including error 

bars for assessing coefficients significance. 

 
Regarding the model for mass hold at the end of the run (Figure 59), it is possible to 

verify that both mixer speed and the use of MCC as an excipient contribute negatively to 

the mass hold. Once again this can be explained, because when the mixer speed is 

higher, less mass remains inside the mixer at the end of the experiment. MCC also 
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contributes negatively because of its inferior density compared to DCP. When occupying 

the same volume inside the mixer at the end of a run, DCP weights more than MCC and 

thus has more mass. 

	
Figure 60 - Regression coefficients for the mass hold at 180s model developed including error bars for 

assessing coefficients significance. 

	
The mass hold at 180 seconds coefficients (Figure 60) corroborate those at the end of 

the run, although with a higher uncertainty. 

Finally, looking at the  coefficients for the RSD model (Figure 61) it is difficult to 

extract any conclusions due to the high uncertainty, even though the UV-Vis 

measurements were quite accurate and the feeder registry data as well. 

These results indicate that for the selected setpoint ranges, the RSD values 

between the feeder registry data and the UV-Vis measurements, are not significantly 

influenced by any of the system variables. This might also indicate that for almost every 

feeder and mixer setting the powder mixture is allways very homogenous, thus instead 

of being related to process variables, the RSD values are more tightly related to the 

detection error of both techniques. 
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Figure 61 - Regression coefficients for the relative standard deviation developed model including error 

bars for assessing coefficients significance. 

	
In order to see if the model results could be improved, another set of models were made 

without the inclusion of the inlet port qualitative variable, since this was the one that had 

the smallest statistical significance. The resulting models did not have a significant 

difference from the original ones and therefore were discarded. 

 Overall, the mixer speed variable seems to be the most important CPP. 
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Chapter 6 

Conclusions 
 
This work resourced on the definition of a set of experiments based on an experimental 

design to evaluate the performance of a continous mixing process. The designed 

process variables' conditions involved varying the total feed rate (5 to 15 kg/h), mixer 

speed (300 to 1500 rpm), excipient (MCC and DCP), and inlet port of the mixer (A or B). 

The measured process responses were: bulk residence time, mass hold, and mixture 

relative standard deviation. NIR spectroscopy was used to evaluate in real-time the 

performance of the mixing process. 

 

One of the biggest limitations of this experimental work derived from using DCP as one 

of the excipients especially when making the measurements with NIR spectroscopy as 

DCP is not active in the NIR range. This made it impossible to obtain good NIR data for 

all experiments including DCP and thus no PCA or MCR analysis was possible for almost 

half of the produced experiments. 

 

The NIR spectral camera was able to operate, through the integration sphere’s 

innovative design, with multi-point signal acquisition for a good representative analysis 

of the flowing powder. This allowed for the PCA models to clearly identify the imposed 

disturbances or steps in raw-materials concentrations, and to detect the time needed for 

the process to achive steady state operating conditions. 

 

PCA based on acquired NIR spectra proved to be able to capture paracetamol and MCC 

concentrations over time. With these results we can clearly state that PCA can 

distinguish and quantify binary mixtures, provided that both substances have 

characteristic and unique absorption peaks within the measured spectral region. These 

results were confirmed through MCR analysis of spectral data, imposing the pure 

component spectral profiles. Results confirmed that after roughtly 3 minutes, the system 

achieved steady state conditions, therefore the first step change from 50% to 60% was 

the best region of the experiment to determine the residence time distribution and mean 

residence time. 

 

The mean residence time calculated from the NIR data had significant deviations from 

the bulk residence time calculated from the feeder registry and powder sample data. The 
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interpretation of these results is quite limited since it was only possible to calculate the 

mean residence time from the NIR data for six out of fourteen experiments. 

 

Monitoring the paracetamol blend content by UV/Vis spectroscopy (off-line method) 

revealed a close match against the feeder registry data. Experimental data for all runs 

showed that the produced blends were within the industry’s guideline 5% RSD limit. 

Since the RSD serves as a benchmark for mixture homogeneity, this shows us that the 

CM setup utilized in the experimental work provided excellent mixing performance 

across a wide range of settings. 

 

Regression models between process parameters and quality attributes indicated that the 

mixer speed was the major CPP, having a negative contribution to both bulk residence 

time and mass hold. MCC content also revealed to have a negative contribution to mass 

hold due to its lower density. 

 

According to the Modde regression model for the RSD, the RSD is not significantly 

influenced by any of the system variables. This indicates that the mixture is allways very 

homogenous regardless of the feeder and mixer settings used, therefore the RSD values 

are more tightly related to the detection error of the UV-Vis and LIW feeding techniques. 
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Future Perspectives 
 

One of the biggest limitations of this experimental work derived from using DCP as one 

of the excipients. Other excipients that present a more adequate absorbtion spectrum in 

the NIR region should be used in order to obtain a full DoE data set. That will undoubtedly 

contribute to a better understanding of the continuous feeder and mixer setup and also 

to better results. 

 

The mean residence time study for this feeder and mixer configuration remains 

significantly unexplored. Further data obtained with a full set of experiments of a new 

DoE should allow for the correlation between process variable settings and residence 

time values. 

 

Regarding the NIR spectral camera, it would be extremely beneficial for future studies if 

the imaging spectrograph could be upgraded to support a wider detection range, ideally 

up to 2500 nm. This would greatly improve the quality of the NIR data in respect to 

substances' chemical and physical properties analysis, and allow for a better 

implementation of multivariate process control. 

 

Throughout the experiments, low total feed rates of 5 kg/h produced consistently bad 

NIR data. It would be pertinent to further analyse the adopted NIR sampling strategy and 

to verify flow limits that guarantee adequate NIRS performance.  

 

When the feeder / mixer system has been properly characterized with new DoE data, 

the next logical step would be to build prediction models for CQA’s such as the powder 

mixture RSD. That along with the integration of another unit process, like dry granulation 

or direct compression via a screw conveyor transport system, would represent the long 

term approach in this field of study. 
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