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Summary 20 

Methicillin-resistant Staphylococcus aureus (MRSA) transmission in hospital wards is 21 

associated with adverse outcomes for patients and increased costs for hospitals. 22 

The transmission process is inherently stochastic and the randomness emphasised 23 

by the small population sizes involved. As such, a stochastic model was proposed to 24 

describe the MRSA transmission process, taking into account the related 25 

contribution and modelling of the associated microbiological environmental 26 

contamination. The model was used to evaluate the performance of five common 27 

interventions and their combinations on six potential outcome measures of interest 28 

under two hypothetical disease burden settings. The model showed that the optimal 29 

intervention combination varied depending on the outcome measure and burden 30 

setting. In particular, it was found that certain outcomes only required a small subset 31 

of targeted interventions to control the outcome measure, while other outcomes still 32 

reported reduction in the outcome distribution with up to all five interventions 33 

included. This study described a new stochastic model for MRSA transmission within 34 

a ward and highlighted the use of the generalised Mann-Whitney statistic to compare 35 

the distribution of the outcome measures under different intervention combinations to 36 

assist in planning future interventions in hospital wards under different potential 37 

outcome measures and disease burden. 38 

  39 
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INTRODUCTION 40 

Healthcare associated infections (HAIs) are adverse events that can arise during 41 

hospitalisation. Multidrug-resistant organisms (MDROs), for example 42 

methicillin-resistant Staphylococcus aureus (MRSA), are common causes of these 43 

HAIs with patients typically becoming colonized with the organism prior to developing 44 

an infection. Treatment options for MDROs are becoming increasingly limited due to 45 

the relative scarcity in development of new treatments compared with the rate of 46 

resistance acquisition [1]. As such, the role of routine infection control and prevention 47 

(ICP) practices are of great importance in reducing the occurrence of HAIs. 48 

Intervention studies which typically investigate the effects of one or a combination of 49 

interventions in reducing HAIs provide a good first line of evidence for particular 50 

interventions to be incorporated into routine ICP practices. These studies also assist 51 

in building mathematical model representations of the healthcare setting. Such 52 

models then allow for further probing of the effects of the interventions which may 53 

not have been feasible or potentially ethical to investigate in a clinical setting but 54 

could prove useful in assisting decision-making, particularly when hospital resources 55 

are severely limited. The model findings could also provide recommendations for 56 

future intervention studies.  57 

Susceptible patients are typically modelled to be colonized (a state which precedes 58 

an infection) through a forcing term (referred to as the force of infection) which is a 59 

function of the number of colonized patients currently present in the ward as well as 60 

the colonized hospital staff in the ward at the time and also contact frequency. As 61 

hospital staff are not routinely screened for pathogen colonization [2], obtaining high 62 

quality data on hospital staff has proven difficult. 63 
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That said, the vast majority of mathematical models consider vector based cross-64 

transmission between patients and transiently contaminated healthcare workers 65 

(HCWs) to be the dominant transmission mechanism for MDROs such as MRSA [3]. 66 

Only a small number of papers have considered alternative transmission routes 67 

typically by incorporating a constant source (such as in Forrester et al. [4]). Even 68 

fewer have explicitly modelled environmental contamination as an alternative 69 

transmission route [5, 6, 7, 8, 9, 10]. However, such models only calibrated the 70 

parameter estimates related to the environmental contamination to match observed 71 

patient incidence rather than using environmental contamination data. 72 

This paper presents a stochastic model for ward MDRO transmission based on 73 

patient dynamics, as patient data are typically more readily available compared with 74 

hospital staff, coupled with a time series model of environmental contamination 75 

which was parametrised by environmental contamination data. Due to the low 76 

reported prevalence of HCW carriage [11], the small proportion of nosocomial 77 

outbreaks attributable to HCWs [2] and the few adverse outcomes reported for 78 

HCWs [11], we assumed that transmission is implicitly facilitated by HCWs, who are 79 

temporarily contaminated with MRSA through contact with an MRSA-positive patient 80 

or environmental contamination, due to the limited mobility of patients, as is also 81 

common practice in similar modelling studies [4, 10, 12, 13]. Inclusion of HCWs 82 

typically involves substantial simplification of realistic HCW dynamics [8, 14] or 83 

substantial additional data collection to account for the heterogeneity between HCWs 84 

[15,16,17,18,19] beyond the scope of this study.  85 

The model was run under two settings; the first is based on MRSA dynamics in a 86 

developed country (UK and Switzerland study estimates were used here) where 87 

MRSA data and parameters are more easily readily sourced, and the second is for a 88 
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hypothetical scenario where the pathogen is more readily transmitted and not as 89 

easy to detect. The second setting could be representative of a novel pathogen in 90 

the healthcare setting, a new strain of MRSA that is more virulent than existing 91 

strains or perhaps reflective of a resource-poor setting such as in low-income 92 

countries [13] where such modelling studies could be a great benefit. The impact of 93 

five common healthcare interventions [3] and their various combinations were 94 

investigated for six potential outcome measures under both settings separately. 95 

Limitations and future directions in model development are provided in the 96 

Discussion. 97 

METHODS 98 

Model formulation 99 

The model proposed is for a single ward setting and comprises of: (i) a ward-level 100 

patient arrival process; (ii) an individual-based model for patient transitions in the 101 

ward; and (iii) a time series model for the level of environmental contamination. 102 

At any time 𝑡𝑡, patients in the ward are categorized based on their MRSA status 103 

where they can be in the susceptible group (𝑆𝑆(𝑡𝑡)), the undetected MRSA colonized 104 

group (𝐶𝐶𝑥𝑥𝑥𝑥(𝑡𝑡)), the detected with MRSA colonization and undergoing appropriate 105 

treatment group (𝐶𝐶𝑑𝑑(𝑡𝑡)), the undetected MRSA infected group (𝐼𝐼𝑥𝑥𝑥𝑥(𝑡𝑡)), or the 106 

detected with MRSA infection and undergoing appropriate treatment group (𝐼𝐼𝑑𝑑(𝑡𝑡)). A 107 

schematic illustration of the model is provided in Figure 1 with 𝐸𝐸(𝑡𝑡) representing the 108 

ward environmental contamination levels.  109 

The model is an example of Discrete Event Simulation (DES), a technique that is 110 

widely used in health care research [20, 21, 22]. While perhaps more commonly 111 
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used in scheduling problems, DES has also been applied to investigate pathogen 112 

transmission [21]. DES provides a flexible modelling approach to represent individual 113 

patient transitions during their hospitalisation episode, allowing for the inclusion of 114 

stochastic variability (important for small population studies such as in a hospital 115 

ward) and effects of individual patient information.  116 

Patient admissions into the ward are modelled as a right-censored (at ward capacity 117 

M) Poisson process (𝐴𝐴(𝑡𝑡)~ 𝑃𝑃𝑃𝑃(𝜆𝜆)) with a Binomial variable to separate arrivals to 118 

either susceptibles (𝐴𝐴𝐴𝐴(𝑡𝑡)) or colonized (but not detected, i.e.𝐶𝐶𝑥𝑥𝑥𝑥) (𝐴𝐴𝐴𝐴(𝑡𝑡)). It is 119 

assumed that patients cannot be infected on admission (as infected patients are 120 

typically isolated or cohorted to reduce transmission risk to other patients). Excess 121 

arrivals, beyond the ward capacity 𝑀𝑀, are assumed to be allocated to a separate 122 

ward thus creating the right censoring in the arrival process. 123 

The likelihood for the admissions at time 𝑡𝑡 can therefore be written as: 124 

𝑃𝑃(𝐴𝐴(𝑡𝑡) = 𝑖𝑖, 𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝑗𝑗, 𝐴𝐴𝐴𝐴(𝑡𝑡) = 𝑖𝑖 − 𝑗𝑗 |𝑌𝑌(𝑡𝑡 − 1))

=  

⎩
⎪
⎨

⎪
⎧ 𝜆𝜆𝑖𝑖

𝑖𝑖!
exp {−𝜆𝜆} �𝑖𝑖𝑗𝑗� 𝜗𝜗

𝑗𝑗(1 − 𝜗𝜗)𝑖𝑖−𝑗𝑗 0 ≤ 𝑖𝑖 < 𝑌𝑌(𝑡𝑡 − 1)

�
𝜆𝜆𝑙𝑙

𝑙𝑙!
exp {−𝜆𝜆} �𝑙𝑙𝑗𝑗� 𝜗𝜗

𝑗𝑗(1 − 𝜗𝜗)𝑙𝑙−𝑗𝑗
∞

𝑙𝑙=𝑌𝑌(𝑡𝑡−1)

𝑖𝑖 = 𝑌𝑌(𝑡𝑡 − 1)
 

where 𝑌𝑌(𝑡𝑡) is the number of empty beds in the ward at time 𝑡𝑡 and 𝜗𝜗 is the 125 

proportion of admissions that arrive susceptible. 126 

The admissions at time 𝑡𝑡 will then be assigned to the empty beds in the ward but will 127 

not undergo the individual patient transitions until the next time point. 128 

The individual-based model, which is for patient transitions in the ward, processes 129 

each patient present in the ward at each time point based on the patient’s current 130 
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MRSA status. The following assumptions were used to formulate the individual-131 

based model patient transitions: 132 

1. each patient can only undergo one transition (discharge, colonization, 133 

infection, recovery, detection) per time period 134 

2. susceptible patients have to be colonized before developing an infection 135 

3. patient colonization will always be undetected when first colonized 136 

4. colonized patients will not return to the susceptible state 137 

5. undetected colonized patients cannot transition directly to the detected 138 

infected state as it counts as two transitions (detection and infection) 139 

6. detected colonized and infected patients cannot return to the undetected state 140 

7. detected colonized patients are placed under the decolonisation treatment 141 

and cannot develop an infection 142 

8. infected patients only recover to the colonized state, and not to the 143 

susceptible state 144 

9. detected infected patients are placed under an appropriate treatment which 145 

increases their probability of recovery over their infection duration 146 

10. undetected infected patients cannot recover as they have not received 147 

appropriate treatment yet 148 

At each time point 𝑡𝑡, each susceptible patient 𝑆𝑆 can either leave the ward as 149 

susceptible with probability 𝑝𝑝𝐿𝐿, become colonized (but not detected) with probability 150 

𝑝𝑝𝐶𝐶, or remain susceptible with probability 𝑝𝑝𝑠𝑠  such that 𝑝𝑝𝐿𝐿 + 𝑝𝑝𝐶𝐶  +  𝑝𝑝𝑠𝑠 =  1. 151 

The probability of being colonized is modelled as 𝑝𝑝𝐶𝐶 = 𝑓𝑓𝐸𝐸(1 − 𝑝𝑝𝐿𝐿) w here 𝑓𝑓𝐸𝐸  is an 152 

increasing function of 𝐸𝐸(𝑡𝑡), 𝐶𝐶𝑥𝑥𝑥𝑥(𝑡𝑡 − 1), 𝐶𝐶𝑑𝑑(𝑡𝑡 − 1), 𝐼𝐼𝑥𝑥𝑥𝑥(𝑡𝑡 − 1) and 𝐼𝐼𝑑𝑑(𝑡𝑡 − 1). Specifically, 153 

the following form for 𝑓𝑓𝐸𝐸  was used 154 
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𝑓𝑓𝐸𝐸(𝑡𝑡) = 1 − exp {−𝜈𝜈(𝑡𝑡)Δ𝑡𝑡}  

where 𝜈𝜈(𝑡𝑡) =  𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝑥𝑥𝑥𝑥(𝑡𝑡 − 1) +  𝛽𝛽2𝐶𝐶𝑑𝑑(𝑡𝑡 − 1) +  𝛽𝛽3𝐼𝐼𝑥𝑥𝑥𝑥(𝑡𝑡 − 1) +  𝛽𝛽4𝐼𝐼𝑑𝑑(𝑡𝑡 − 1) +  𝛽𝛽5𝐸𝐸(𝑡𝑡) 155 

is the instantaneous hazard of being colonized, or also known as the force of 156 

infection for this model, and 0 ≤ 𝑓𝑓𝐸𝐸(𝑡𝑡) < 1 ∀ 𝑡𝑡. Lastly, 𝑝𝑝𝑆𝑆 = (1 − 𝑓𝑓𝐸𝐸)(1 − 𝑝𝑝𝐿𝐿). 157 

Each undetected colonized patient 𝐶𝐶𝑥𝑥𝑥𝑥  is detected with probability 𝜌𝜌 (assumed to be 158 

the screening test sensitivity). Otherwise, the undetected colonized patient can either 159 

leave the ward with probability 𝑞𝑞𝐿𝐿, develop an infection with probability 𝑞𝑞𝐼𝐼 , or remain 160 

colonized in the ward with probability 𝑞𝑞𝐶𝐶  such that 𝑞𝑞𝐿𝐿 + 𝑞𝑞𝐼𝐼 + 𝑞𝑞𝐶𝐶 = 1. No additional 161 

structure is imposed on these probabilities values as it is assumed that each 162 

colonized patients will have the same probability values. 163 

Each detected colonized patient 𝐶𝐶𝑑𝑑  can either leave the ward with probability 𝑞𝑞𝐿𝐿 or 164 

remain colonized and detected with probability 1 − 𝑞𝑞𝐿𝐿. Due to a lack of information to 165 

differentiate the probability of leaving for undetected and detected colonized patients, 166 

these were assumed to be same. One of the interventions considered (DECOL) 167 

increases the probability of leaving for just the detected colonized patients. 168 

Each undetected infected patient 𝐼𝐼𝑥𝑥𝑥𝑥  can either be detected with probability 𝜌𝜌 or 169 

remain undetected with probability 1 −  𝜌𝜌. 170 

Each detected infected patient 𝐼𝐼𝑑𝑑  will have a probability 𝑟𝑟𝐶𝐶 of recovering (transitioning 171 

to 𝐶𝐶𝑑𝑑) where 172 

𝑟𝑟𝐶𝐶(𝑡𝑡|𝜓𝜓, 𝑡𝑡𝑖𝑖𝑘𝑘) =  1 − exp {−𝜓𝜓(𝑡𝑡 − 𝑡𝑡𝑖𝑖𝑘𝑘)} 

is an increasing function of the difference of the current time (𝑡𝑡) and the time the 173 

individual 𝑘𝑘 became infected (𝑡𝑡𝑖𝑖𝑘𝑘). In other words, it is assumed that the longer a 174 
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patient is infected, the more likely the patient will recover at the next time point. An 175 

infected patient remains infected with probability 1 − 𝑟𝑟𝐶𝐶. 176 

By definition, only the (approximate) date that a patient is detected to be colonized or 177 

infected is available from hospital surveillance databases. The transition times from 178 

susceptible to undetected with MRSA colonization (𝑡𝑡𝑐𝑐𝑘𝑘), and subsequently 179 

undetected infection (𝑡𝑡𝑖𝑖𝑘𝑘) are typically imputed from a range of plausible values 180 

between the patient’s admission date (𝑎𝑎𝑘𝑘) and first positive screening test date (𝑑𝑑𝑘𝑘) 181 

where the full conditional for (𝑡𝑡𝑐𝑐𝑘𝑘, 𝑡𝑡𝑖𝑖𝑘𝑘) can be written as 182 

(1 − 𝜌𝜌)𝑁𝑁𝐹𝐹(𝑡𝑡𝑖𝑖𝑘𝑘)𝑒𝑒𝑒𝑒𝑒𝑒 ��log 𝜈𝜈(𝑡𝑡𝑏𝑏) − �𝑆𝑆(𝑡𝑡𝑑𝑑)𝜈𝜈(𝑡𝑡𝑑𝑑)(𝑡𝑡𝑑𝑑+1 − 𝑡𝑡𝑑𝑑)
𝑑𝑑𝑏𝑏

� 𝑞𝑞𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒{− 𝑞𝑞𝐼𝐼(𝑡𝑡𝑖𝑖𝑘𝑘 − 𝑡𝑡𝑐𝑐𝑘𝑘)} 

where 𝑡𝑡𝑐𝑐𝑘𝑘 < 𝑡𝑡𝑖𝑖𝑘𝑘, 𝑁𝑁𝐹𝐹(𝑡𝑡𝑖𝑖𝑘𝑘) is the number of false negative screening test results for 183 

patient 𝑘𝑘 given 𝑡𝑡𝑖𝑖𝑘𝑘, the 𝑏𝑏 subscript indexes time points where a susceptible patient 184 

becomes colonised between 𝑡𝑡𝑐𝑐𝑘𝑘 to patient 𝑘𝑘’s discharge and the 𝑑𝑑 subscript indexes 185 

the time points where 𝑣𝑣(𝑡𝑡) changes between 𝑎𝑎𝑘𝑘 and 𝑡𝑡𝑡𝑡𝑘𝑘. The expression can be 186 

evaluated for all potential (𝑡𝑡𝑐𝑐𝑘𝑘, 𝑡𝑡𝑖𝑖𝑘𝑘) values to obtain a discrete distribution to be used 187 

in a Metropolis-Hastings step within a Markov chain Monte Carlo algorithm to impute 188 

these unobserved quantities and estimate the remaining model parameters  [4, 14, 189 

23]. 190 

An autoregressive-moving average time series model with exogenous covariates 191 

(ARMAX) [24] is used to describe the environmental contamination levels 𝐸𝐸(𝑡𝑡). The 192 

exogenous covariates assumed to be contributing to the levels of environmental 193 

contamination at time 𝑡𝑡 are the 𝐶𝐶𝑥𝑥𝑥𝑥  and 𝐼𝐼𝑥𝑥𝑥𝑥 patients in the ward at time 𝑡𝑡 −  1. It is 194 

assumed that detected (colonized and infected) MRSA patients undergo the 195 

decolonization treatment which halts shedding from the patient to the environment. 196 
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The orders of the ARMAX model are determined using the auto.arima() function 197 

in the R package forecast [25]. 198 

Parameter values 199 

The model parameter values used for the normal burden setting simulations are 200 

summarized in Table 1. Additional details of the parametrisation are provided in the 201 

supplementary material. The normal burden setting is reflective of MRSA burden in a 202 

typical hospital ward in a developed country. These parameters values are also used 203 

in the high burden setting simulations with the following modifications: 204 

1. there is an additional factor of two multiplying 𝜈𝜈(𝑡𝑡) 205 

2. the probability of a colonized patient developing an infection 𝑞𝑞𝐼𝐼 is doubled and 206 

𝑞𝑞𝐶𝐶 is reduced accordingly to ensure  𝑞𝑞𝐿𝐿 + 𝑞𝑞𝐼𝐼 + 𝑞𝑞𝑐𝑐 = 1 207 

3. there is decreased sensitivity in the screening test, 𝜌𝜌 = 0.6 208 

i.e. we assumed that in this setting, the hypothetical pathogen is more likely to 209 

colonize susceptible patients, colonized patients more readily develop an infection 210 

and it is harder to detect the presence of the pathogen. The high burden setting 211 

attempts to mimic either the MRSA dynamics in a developing country [26] or a novel 212 

strain of pathogen that is more virulent and less readily detected by routine 213 

surveillance.  214 

There was no available source to estimate the parameter 𝜔𝜔 which represents the 215 

difference between colonized and infected patients on the force of infection. The 𝜔𝜔 216 

value in the Results section was 1 as a reflection of the lack of information on the 217 

parameter. Alternative values of 0.1 and 1.9 were also investigated in the parameter 218 

sensitivity analysis (provided in the supplementary material). We found that the AR, 219 



11 

𝐶𝐶𝑥𝑥𝑥𝑥  and 𝐶𝐶𝑑𝑑  outcomes (defined below) were particularly sensitive to a low value of 𝜔𝜔 220 

(giving a stronger influence to colonized patients) in both normal and high burden 221 

settings. Distributions of AR outcome for the different values of 𝜔𝜔 are provided in 222 

Figure 2. Similar plots for the other outcomes and parameters are provided in the 223 

supplementary material. 224 

Interventions 225 

Five common intervention strategies were considered in the model investigation 226 

below: 227 

1. no colonized on admission (COA) (. 𝜗𝜗 = 1) where all patients who are 228 

colonized on admission are assumed to be detected on admission and 229 

isolated elsewhere, i.e. universal screening [27] 230 

2. improved environmental cleaning (ENV) which halved the intercept term in the 231 

environmental time series model (𝛼𝛼1) [28].  232 

3. improved contact precaution practices (CP) which decreases 𝜈𝜈 by a factor of 𝜉𝜉 233 

where 𝜉𝜉 was set to 0.75 [29]. 234 

4. perfect screening test sensitivity (SENS) where test sensitivity 𝜌𝜌 was set to 235 

1[14]. 236 

5. improved decolonization treatment for colonized patients (DECOL) where the 237 

probability for a 𝐶𝐶𝑑𝑑 patient leaving the ward is now 𝑞𝑞𝐿𝐿 + Δ (with the probability 238 

of staying adjusted accordingly) [14]. 239 

We considered six outcome measures for the investigations. They are the attack rate 240 

(AR) defined as the average of the force of infection 𝜈𝜈(𝑡𝑡) [14] as well as the 241 

cumulative numbers of 242 
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• patients who were colonized on admission (AC), 243 

• patients who were colonized but not detected (𝐶𝐶𝑥𝑥𝑥𝑥) 244 

• detected, colonized patients (𝐶𝐶𝑑𝑑) 245 

• patients who were infected but not detected (𝐼𝐼𝑥𝑥𝑥𝑥), and 246 

• detected, infected patients (𝐼𝐼𝑑𝑑). 247 

Note that there is a slight abuse of notation where 𝐶𝐶𝑥𝑥𝑥𝑥, 𝐶𝐶𝑑𝑑, 𝐼𝐼𝑥𝑥𝑥𝑥 and 𝐼𝐼𝑑𝑑  refer to the 248 

cumulative number of patients in each group for the outcome measures, but the 249 

time-varying prevalence of the groups in the model. 250 

Due to the stochastic model formulation, each intervention setting was simulated 251 

1000 times and we compared the distributional differences of the outcomes rather 252 

than just point estimates of the outcomes.  253 

Pairs of distributions (denoted generally by 𝑋𝑋 and 𝑌𝑌 here) were assessed using the 254 

generalized Mann-Whitney statistic which estimates the parameter 𝜃𝜃 = 𝑃𝑃(𝑌𝑌 > 𝑋𝑋) +255 

 1
2

 𝑃𝑃(𝑌𝑌 = 𝑋𝑋) using 𝜃𝜃� =  𝑈𝑈
𝑚𝑚𝑚𝑚

 where 𝑈𝑈 =  ∑ ∑ 𝟙𝟙𝑛𝑛
𝑗𝑗=1 �𝑌𝑌𝑗𝑗 > 𝑋𝑋𝑖𝑖� + 1

2
𝑚𝑚
𝑖𝑖=1  𝟙𝟙(𝑌𝑌𝑗𝑗 = 𝑋𝑋𝑖𝑖) with 256 

{𝑌𝑌𝑗𝑗;  𝑗𝑗 =  1, . . . , 𝑛𝑛}  and {𝑋𝑋𝑖𝑖;  𝑖𝑖 =  1, . . . , 𝑚𝑚} being samples from the 𝑌𝑌 and 𝑋𝑋 distributions 257 

respectively. Confidence intervals for 𝜃𝜃� were computed based on Method 5 of 258 

Newcombe [30]. 259 

Following the definition above, values of 𝜃𝜃 larger than 0.5 indicate that the 𝑌𝑌 is 260 

stochastically larger than 𝑋𝑋 and, conversely, values of 𝜃𝜃 less than 0.5 indicate 𝑋𝑋 is 261 

stochastically larger than 𝑌𝑌. For the results below, 𝜃𝜃 values between 0 and 0.2 (and 262 

similarly between 0.8 and 1) are considered strong evidence that the two 263 

distributions are substantially different. Intermediate 𝜃𝜃 values between 0.2 to 0.4 (or 264 

0.6 to 0.8) are assumed to provide weak evidence of a difference between the 265 
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distributions. Values of 𝜃𝜃 close to 0.5 (between 0.4 and 0.6) indicate that there is no 266 

evidence that the two distributions being compared are dissimilar. 267 

RESULTS 268 

The results for the normal burden setting and high burden setting are summarized 269 

below. More detailed comparisons of the interventions combinations for all outcome 270 

measures using the generalized Mann-Whitney statistic are provided in the 271 

supplementary material. 272 

The results for the AC, 𝐼𝐼𝑥𝑥𝑥𝑥 and 𝐼𝐼𝑑𝑑  outcomes were similar for both the normal and high 273 

burden settings, and discussed together here. Results for the AR, 𝐶𝐶𝑥𝑥𝑥𝑥  and 𝐶𝐶𝑑𝑑  274 

outcomes are discussed separately for the normal burden setting and high burden 275 

setting. 276 

The most important intervention for the AC outcome was the COA intervention which 277 

eliminates the possibility of colonized patients being admitted. As such, the COA 278 

intervention (and any other intervention combinations which include COA) greatly 279 

outperforms interventions of any size which do not include the COA intervention in 280 

both settings. Any intervention combination which includes the COA intervention 281 

achieved 0 AC, whereas intervention combinations without the COA intervention 282 

produced AC distributions with 95% intervals that do not include 0. 283 

The performance of the interventions on the 𝐼𝐼𝑑𝑑outcome was very similar to that for 284 

the 𝐼𝐼𝑥𝑥𝑥𝑥  since the only transition to Id  is through 𝐼𝐼𝑥𝑥𝑥𝑥, i.e. eliminating the 𝐼𝐼𝑥𝑥𝑥𝑥  would also 285 

eliminate the 𝐼𝐼𝑑𝑑 population. As such, only the results for the 𝐼𝐼𝑥𝑥𝑥𝑥  results are discussed 286 

for brevity as identical inferences apply to the 𝐼𝐼𝑥𝑥𝑥𝑥  outcome. The SENS intervention 287 

was the most important intervention for the 𝐼𝐼𝑥𝑥𝑥𝑥 outcome as having perfect sensitivity 288 
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would allow detection of all colonized patients prior to infection developing. As such, 289 

the best performing intervention of any size will include the SENS intervention. 290 

However, it should also be noted that the 𝐼𝐼𝑥𝑥𝑥𝑥  outcome is generally small for the 291 

normal burden setting with even the baseline 𝐼𝐼𝑥𝑥𝑥𝑥having a 95% interval of [0, 2] 292 

(Table 2). 293 

In contrast with the normal burden setting, the SENS intervention (or any 294 

combination which includes the SENS intervention) was substantially more 295 

favourable in the high burden setting (Table 5). The SENS intervention substantially 296 

outperformed all intervention combinations which excluded the SENS intervention 297 

here. 298 

Normal burden setting 299 

Table 2 provides the numerical summary of the six outcome measures under the 300 

baseline and the various combinations of the five interventions investigated. The 301 

baseline scenario refers to the case without any interventions. 302 

There were great improvements in reducing the AR outcome when increasing the 303 

number of interventions by up to three with the optimal triplet being {COA, ENV, CP} 304 

(2.66 (2.20, 3.31)  × 10−3). This triplet outperformed the best single intervention (CP 305 

with AR of 4.32 (3.69, 5.05)  × 10−3) and intervention pair ({COA, CP} with AR of 306 

3.35 (2.88, 4.01)  × 10−3). The addition of one extra intervention (either DECOL or 307 

SENS) did not seem to have a drastic effect on the AR distribution 308 

(2.50 (2.13, 3.02)  × 10−3 and 2.53 (2.19, 2.92) × 10−3 respectively). However, there is 309 

a benefit in implementing all five interventions (AR =  2.39 (2.11, 2.71)  × 10−3) 310 

compared with just the best three interventions. 311 
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For the 𝐶𝐶𝑥𝑥𝑥𝑥  outcome, the two best performing pairs ({ENV, CP} and {COA, CP} with 312 

𝐶𝐶𝑥𝑥𝑥𝑥 of 17.59 (10, 27) and 17.60 (9, 28), respectively) performed slightly better 313 

compared with the best single intervention (CP with 𝐶𝐶𝑥𝑥𝑥𝑥of 20.78 (12, 31)). A similar 314 

performance gain was noted when comparing the best intervention triplet ({COA, 315 

ENV, CP} with 𝐶𝐶𝑥𝑥𝑥𝑥  =14.29 (6, 24)) to both the best performing pairs. There does not 316 

appear to be substantial changes in the 𝐶𝐶𝑥𝑥𝑥𝑥 difference when comparing across the 317 

best performing triplet, quartets ({COA, ENV, CP, SENS} and {COA, ENV, CP, 318 

DECOL} with 𝐶𝐶𝑥𝑥𝑥𝑥of 13.65 (6, 23) and 13.94 (6, 23) respectively) and the combination 319 

of all interventions (13.44 (6, 22)), indicating that there is little gain from considering 320 

anything beyond the best performing triplet in reducing the distributional outcome of 321 

𝐶𝐶𝑥𝑥𝑥𝑥  for this scenario.  322 

Comparing across different intervention sizes for the 𝐶𝐶𝑑𝑑  outcome, there are notable 323 

reductions in support for considering additional numbers of interventions up to the 324 

best performing intervention triplet ({COA, ENV, CP} with 𝐶𝐶𝑑𝑑  of 13.96 (6, 24)). The 325 

best performing single intervention for the 𝐶𝐶𝑑𝑑  outcome was COA (24.22 (14, 36)) and 326 

the best performing intervention pair was {COA, CP} (17.21 (9.5, 27)). There are no 327 

discernible difference in the 𝐶𝐶𝑑𝑑  outcome distributions in implementing all five 328 

interventions (𝐶𝐶𝑑𝑑= 13.43 (6, 22)) or either of the two best performing quartets 329 

identified ({COA, ENV, CP, DECOL} and {COA, ENV, CP, SENS} with 𝐶𝐶𝑑𝑑  of 13.32 330 

(6, 22) and 13.95 (6, 23) respectively) compared with having just the best performing 331 

intervention triplet (with 𝜃𝜃 estimates ranging from 0.46 to 0.50). 332 



16 

High burden setting 333 

The mean and 95% intervals for the six outcome measures across the different 334 

intervention combinations considered are listed in Table 4. Compared with the 335 

baseline scenario in the normal burden setting (Table 2), we see notable increases 336 

in the average AR, 𝐶𝐶𝑥𝑥𝑥𝑥, 𝐶𝐶𝑑𝑑, 𝐼𝐼𝑥𝑥𝑥𝑥  and 𝐼𝐼𝑑𝑑outcomes but a slight reduction in the AC 337 

outcome likely due to the decreased number of admissions overall as colonized and 338 

infected patients stay in the ward longer.  339 

For the AR outcome in the high burden setting, there is evidence to consider 340 

implementing the maximum number of interventions possible (subject to resource 341 

constraint) beginning with the CP intervention (12.44 (10.14, 14.83)  × 10−3), followed 342 

by the SENS intervention ({CP, SENS} with AR of 9.50 (8.35, 10.79)  × 10−3), either 343 

the COA or ENV intervention ({COA, CP, SENS} with AR of 7.88 (6.77, 9.14) × 10−3 344 

or {ENV, CP, SENS} with AR 7.97 (6.71, 9.24)  × 10−3) or both ({COA, ENV, CP, 345 

SENS} with AR 6.25 (5.10, 7.53)  × 10−3), up to all five interventions 346 

(5.55 (4.73, 6.46) × 10−3). The reduction in the AR distribution when moving from the 347 

best performing quartet to all intervention was not as drastic as the other increases 348 

in intervention sizes. 349 

Only small gains were obtained from increasing the size of the intervention 350 

combinations sequentially for the 𝐶𝐶𝑥𝑥𝑥𝑥 outcome. More notable reductions were 351 

obtained by moving from the best performing single intervention (CP with 𝐶𝐶𝑥𝑥𝑥𝑥 of 352 

45.46 (30, 61)) to at least one of the best performing triplets ({ENV, CP, SENS}, 353 

{COA, ENV, CP} or {COA, CP, SENS} with 𝐶𝐶𝑥𝑥𝑥𝑥’s of 36.57 (23, 50), 37.24 (22, 53) 354 

and 39.21 (26, 55) respectively), and similarly from one of the best performing 355 

intervention pairs ({ENV, CP}, {CP, SENS} or {COA, CP} with 𝐶𝐶𝑥𝑥𝑥𝑥’s of 40.95 (28, 356 
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55.5), 42.70 (29.5, 58) and 43.56 (28, 60) respectively) to either the {COA, ENV, CP, 357 

SENS} quartet (32.02 (19, 46)) or all five interventions (29.95 (17, 45)). 358 

For the 𝐶𝐶𝑑𝑑  outcome measure, the results obtained suggest it would be beneficial to 359 

consider up to the best performing triplet of interventions ({COA, ENV, CP} with 𝐶𝐶𝑑𝑑  360 

33.85 (20, 49)) subject to resource constraints. The best performing single 361 

interventions were COA (53.96 (39, 72.5)) and CP (55.58 (39, 74)), and the best 362 

performing intervention pair was {COA, CP} (39.72 (26, 55)). There was only a slight 363 

gain in moving from the best performing triplet to the combination of all interventions 364 

(29.95 (17, 45)). The two best performing intervention quartets ({COA, ENV, CP, 365 

SENS} and {COA, ENV, CP, DECOL}) (with 𝐶𝐶𝑑𝑑’s of 32.02 (19, 46) and 32.80 (19, 366 

49) respectively) did not yield 𝐶𝐶𝑑𝑑distributions substantially different from the best 367 

performing triplet. 368 

DISCUSSION 369 

The results obtained from the proposed stochastic model showed that there are 370 

differences in the optimal set of interventions depending on the outcome measure of 371 

interest as well as the burden setting of the pathogen (as summarized in Table 6). 372 

For the AC outcome, 𝐼𝐼𝑥𝑥𝑥𝑥 and 𝐼𝐼𝑑𝑑  outcome measures where one of the interventions 373 

considered eradicated the respective outcome measure (COA for the AC outcome 374 

and SENS for both 𝐼𝐼𝑥𝑥𝑥𝑥 and 𝐼𝐼𝑑𝑑), only that particular intervention was required. This 375 

finding, particular for the 𝐼𝐼𝑥𝑥𝑥𝑥  and 𝐼𝐼𝑑𝑑  outcome measures, may not be terribly realistic 376 

given that there is always some amount of delay between sample collection and the 377 

corresponding action based on the screening results. However, the 𝜃𝜃 performance 378 

measure still showed that in the normal burden setting, eradication of 𝐼𝐼𝑥𝑥𝑥𝑥 and 𝐼𝐼𝑑𝑑  was 379 
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only a slight improvement compared with the other intervention combinations and the 380 

baseline on the account of the already low baseline 𝐼𝐼𝑥𝑥𝑥𝑥  and 𝐼𝐼𝑑𝑑 prevalence. This is not 381 

the case in the high burden setting where eradication of the 𝐼𝐼𝑥𝑥𝑥𝑥  and 𝐼𝐼𝑑𝑑  outcomes with 382 

the SENS intervention was drastically different from the other intervention 383 

combinations which exclude SENS and the baseline scenario. The addition of the 384 

aforementioned small delay would have affected all scenarios considered equally 385 

and would unlikely have changed the finding in the normal burden setting. It is also 386 

unlikely to change the findings in the high burden setting unless the delay was 387 

substantive (of the order of days). 388 

The model presented used parameter estimates combined from multiple sources. 389 

While it would be ideal if the model parameters were all obtained from one source, 390 

this is frequently not the case in such modelling studies where the hypothetical 391 

investigations considered typically require some form of data collation from multiple 392 

sources in order to fully parametrize the model [5, 6, 7, 8, 9, 10]. It could also be 393 

argued that this provides such modelling studies with a level of flexibility that could 394 

not be obtained from clinical intervention studies. The lack of additional individual 395 

patient data for this study also precluded demonstration of the full utility of the 396 

individual-based patient transition component in the model. For this application, only 397 

the patient transition from 𝐼𝐼𝑑𝑑  to 𝐶𝐶𝑑𝑑  was based on their individual infection times (see 398 

expression for 𝑟𝑟𝐶𝐶). However, the model can readily include individual-specific 399 

covariates into other transition probabilities in the model as well. 400 

There are a number of extensions to the stochastic model proposed here that were 401 

not considered. Most of these extensions also involve additional data structures that 402 

are not readily available. 403 
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One such extension is to generalize the force of infection term such that the 404 

colonization threshold is no longer constant [1]. Under the current model formulation, 405 

the probability of a patient being colonized is only a function of the current force of 406 

infection. However, the generalization proposed in Streftaris and Gibson [1] allows 407 

for this transition to also depend on the accumulation of the force of infection terms 408 

from a patient’s admission date to their colonization date. This quantity is known as 409 

the colonization threshold and requires prior knowledge or imputation of the 410 

colonization date in order to compute it. This extension is another approach to 411 

incorporate patient heterogeneity into the model, specifically related to patient 412 

susceptibility.  413 

Another potential extension is to extend the one ward model to a multi-ward model 414 

using one of the meta-population models [31, 32] such as the multi-patch models 415 

(where each patch represents a ward) or more generally, temporal network models 416 

taking into account the fact that the edges between nodes change quite frequently 417 

with staff shift changes, and patient admissions and discharges, making the temporal 418 

element of the network more important [33, 34]. The high-frequency contact data 419 

required for such models have only recently started to be collected [35] and could 420 

prove to be a promising research avenue in providing a realistic, detailed 421 

representation of hospital pathogen transmission in a ward. 422 

The inclusion of explicit representations of HCWs’ roles in the pathogen transmission 423 

could be considered in extensions of the model presented here. While having explicit 424 

representation of HCWs allows for more realistic investigation of HCW-related 425 

interventions, this extension requires either incorporation of additional model 426 

assumptions on the HCWs’ behaviours, or substantial additional data collection as 427 

HCWs are known to be highly heterogeneous population with different HCW 428 
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categories (e.g., nurses, physicians, technicians) having differing patient contact 429 

rates, compliance levels to infection control and prevention practices, and work 430 

schedules [15,16,17,18,19]. Also, due to the low carriage rates among HCW 431 

reported [11], frequent screening of HCWs would be required in order to accurately 432 

quantify the temporary contamination status of HCWs, which is associated with high 433 

cost and staff time. It is also likely that this extension would require the 434 

aforementioned multi-ward extension to realistically capture the impact of HCWs in 435 

MRSA transmission as HCWs tend to work across multiple wards.  436 
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SUPPLEMENTARY MATERIAL 437 

Supplementary material is available on the Cambridge Journals online website. 438 
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Table 1: Parameter values for the stochastic model describing MDRO transmission in a hospital ward 547 

Symbol  Definition  Value Source* 
𝑀𝑀 maximum ward capacity (𝑀𝑀 =  𝑆𝑆(𝑡𝑡)  +  𝐶𝐶(𝑡𝑡)  +  𝐼𝐼(𝑡𝑡)  +  𝐴𝐴(𝑡𝑡))  20 data  
𝜆𝜆 daily admission rate to ward  5 data  
𝜗𝜗 probability of being susceptible on admission  0.95 [17] 
𝑝𝑝𝐿𝐿 probability of leaving the ward as a susceptible patient  0.1155 [1] 
𝑞𝑞𝐿𝐿 probability of leaving the ward as a colonized patient  0.053 [1]  
𝑞𝑞𝐼𝐼 probability of a colonized patient developing an infection  0.047 [17] 
𝑞𝑞𝐶𝐶 probability of a colonized patient remaining colonized  1 − 𝑞𝑞𝐿𝐿 − 𝑞𝑞𝐼𝐼 ≈  0.900  
𝜓𝜓 parameter in functional form for probability of recovering from infection to 

colonized state 𝑟𝑟𝐶𝐶  
0.020 [1] 

𝜌𝜌 screening test sensitivity  0.8 assumption 
𝛽𝛽0 intercept term associated with 𝑓𝑓𝐸𝐸 (× 105) 190 unpublished observations 
𝛽𝛽1 undetected colonized patients related parameter in expression for 𝑓𝑓𝐸𝐸 

(× 105) 
660 ×

2
𝜔𝜔 + 1

 unpublished observations 

𝛽𝛽2 detected colonized patients related parameter in expression for 𝑓𝑓𝐸𝐸 
(× 105) 

48 ×
2

𝜔𝜔 + 1
 unpublished observations 

𝛽𝛽3 undetected infected patients related parameter in expression for 𝑓𝑓𝐸𝐸  𝜔𝜔 𝛽𝛽1 unpublished observations 
𝛽𝛽4 detected infected patients related parameter in expression for 𝑓𝑓𝐸𝐸  𝜔𝜔 𝛽𝛽2 unpublished observations 
𝛽𝛽5 environmental contamination related parameter inexpression for 𝑓𝑓𝐸𝐸 (×

105) 
2.7 unpublished observations 

𝜔𝜔 ratio difference between effects of colonized and infected patients in 𝑓𝑓𝐸𝐸  1 assumption 
𝑎𝑎1 AR(1) coefficient  1.40 (0.08) data 
𝑎𝑎2 AR(2) coefficient  -0.48 (0.08) data  
𝑏𝑏1 MA(1) coefficient  0.34 (0.09) data  
𝑏𝑏0 MA(2) coefficient  0.30 (0.06) data  
𝛼𝛼1 time series time-constant mean parameter  60 (5) data  
𝛼𝛼2 time series coefficient for 𝐶𝐶𝑥𝑥𝑥𝑥 at previous time period  -0.07 (0.4) data 
𝛼𝛼3 time series coefficient for 𝐼𝐼𝑥𝑥𝑥𝑥 at previous time period  0.06(0.3) data 
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𝛼𝛼4 time series coefficient for intervention -0.10 (3.7) data  
𝜎𝜎2 white noise variance  24.5 data 

* Unpublished observations are estimates obtained from fitting a non-homogeneous Poisson process to the data. More details 548 
provided in the supplementary material. 549 

AR, autoregressive; MA, moving average. 550 

  551 
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Table 2: Numerical summaries of output measures for normal burden setting. 552 

  AR ×  103   AC   𝐶𝐶𝑥𝑥𝑥𝑥  𝐶𝐶𝑑𝑑  𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑑𝑑 

baseline  6.14 (5.15, 7.17) 20.91 (12.50, 30) 28.53 (17, 41.5) 48.24 (34, 63) 0.56 (0, 2) 0.56 (0, 2) 

COA  4.82 (4.04, 5.71) 0 24.79 (14, 37) 24.22 (14, 36) 0.27 (0, 2) 0.27 (0, 2) 

ENV  5.14 (4.30, 6.22) 21.22 (13, 30) 24.10 (13, 35) 44.26 (31, 58) 0.51 (0, 2) 0.50 (0, 2) 

CP  4.32 (3.69, 5.05) 21.52 (13, 30) 20.78 (12, 31) 41.29 (30, 55) 0.47 (0, 2) 0.47 (0, 2) 

SENS  5.69 (4.98, 6.43) 22.07 (14, 31) 27.13 (17, 40) 49.20 (36, 64) 0 0 

DECOL  5.57 (4.79, 6.61) 23.57 (15, 34) 27.57 (16, 41) 49.91 (36, 66) 0.59 (0, 2) 0.58 (0, 2) 

COA, ENV  3.84 (3.13, 4.76) 0 19.94 (10, 32) 19.44 (10, 30) 0.23 (0, 1) 0.23 (0, 1) 

COA, CP  3.35 (2.88, 4.01) 0 17.59 (10, 27) 17.21 (9.5, 27) 0.18 (0, 1) 0.18 (0, 1) 

COA, SENS  4.58 (3.95, 5.35) 0 23.98 (13, 37) 23.98 (13, 37) 0 0 

COA, DECOL  4.50 (3.88, 5.32) 0 24.26 (13.5, 36) 23.70 (13, 35) 0.27 (0, 2) 0.27 (0, 2) 

ENV, CP  3.64 (3.00, 4.37) 21.76 (13.5, 31) 17.60 (9, 28) 38.37 (26, 51) 0.47 (0, 2) 0.46 (0, 2) 

ENV, SENS  4.77 (4.08, 5.52) 22.43 (14, 31) 23.33 (13, 35) 45.76 (32, 61) 0 0 

ENV, DECOL  4.65 (3.84, 5.55) 23.74 (15, 33) 23.37 (13, 35) 45.98 (32, 61) 0.55 (0, 2) 0.55 (0, 2) 

CP, SENS  4.05 (3.56, 4.57) 22.80 (14, 32) 19.83 (11, 30) 42.63 (30, 57) 0 0 

CP, DECOL  3.98 (3.42, 4.67) 23.97 (14.5, 33.5) 20.37 (11, 31) 43.25 (30, 58) 0.58 (0, 2) 0.58 (0, 2) 



29 

SENS, DECOL  5.12 (4.55, 5.72) 24.77 (16, 35) 26.34 (16, 38) 51.11 (36, 66) 0 0 

COA, ENV, CP  2.66 (2.20, 3.31) 0 14.29 (6, 24) 13.96 (6, 24) 0.15 (0, 1) 0.16 (0, 1) 

COA, ENV, 

SENS  

3.59 (3.04, 4.25) 0 18.91 (10, 30) 18.91 (10, 30) 0 0 

COA, ENV, 

DECOL  

3.54 (2.98, 4.35) 0 19.02 (10, 29) 18.57 (10, 28) 0.20 (0, 1) 0.20 (0, 1) 

COA, CP, SENS  3.22 (2.82, 3.67) 0 17.47 (9, 28) 17.48 (9, 28) 0 0 

COA, CP, 

DECOL  

3.18 (2.77, 3.79) 0 17.33 (8, 28) 16.90 (8, 27) 0.19 (0, 1) 0.19 (0, 1) 

COA, SENS, 

DECOL  

4.24 (3.81, 4.71) 0 23.12 (13, 34) 23.14 (13, 34) 0 0 

ENV, CP, SENS  3.38 (2.88, 3.92) 22.62 (14, 31.50) 16.82 (8, 27) 39.45 (26.50, 53) 0 0 

ENV, CP, 

DECOL  

3.30 (2.80, 3.95) 23.76 (15, 33) 16.96 (8, 27) 39.72 (27, 54) 0.48 (0, 2) 0.48 (0, 2) 

ENV, SENS, 

DECOL  

4.21 (3.65, 4.79) 24.70 (15, 35) 21.71 (12, 33) 46.38 (31, 63.5) 0 0 

CP, SENS, 3.67 (3.26, 4.08) 24.58 (16, 34) 19.12 (10, 29) 43.70 (31, 59) 0 0 
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DECOL  

COA, ENV, CP, 

SENS  

2.53 (2.19, 2.92) 0 13.94 (6, 23) 13.95 (6, 23) 0 0 

COA, ENV, CP, 

DECOL  

2.50 (2.13, 3.02) 0 13.65 (6, 23) 13.32 (6, 22) 0.15 (0, 1) 0.14 (0, 1) 

COA, ENV, 

SENS, DECOL  

3.34 (2.91, 3.81) 0 18.57 (9, 29.5) 18.57 (9, 29.5) 0 0 

COA, CP, SENS, 

DECOL  

3.04 (2.73, 3.38) 0 16.88 (9, 27) 16.87 (9, 27) 0 0 

ENV, CP, SENS, 

DECOL  

3.02 (2.66, 3.41) 24.96 (16, 35.5) 15.88 (9, 25) 40.84 (28, 56) 0 0 

all  2.39 (2.11, 2.71) 0 13.44 (6, 22) 13.43 (6, 22) 0 0 
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Table 3: Summary of intervention combination comparisons for the normal burden 553 

setting. 554 

outcome  comparison   𝜃𝜃� (95\% CI)  

AR  CP v baseline  0.00 (0.00, 0.00) 

  {COA, CP} v CP  0.02 (0.01, 0.03) 

  {COA, ENV, CP} v {COA, CP}  0.04 (0.04, 0.06) 

  {COA, ENV, CP, DECOL} v {COA, ENV, 

CP}  

0.33 (0.30, 0.35) 

  {COA, ENV, CP, SENS} v {COA, ENV, 

CP}  

0.38 (0.35, 0.40) 

  all v {COA, ENV, CP}  0.20 (0.18, 0.22) 

  all v {COA, ENV, CP, DECOL}  0.35 (0.33, 0.38) 

  all v {COA, ENV, CP, SENS}  0.28 (0.26, 0.30) 

𝐶𝐶𝑥𝑥𝑥𝑥  CP v baseline  0.17 (0.15, 0.19) 

  {COA, CP} v CP  0.32 (0.30, 0.35) 

  {ENV, CP} v CP  0.33 (0.30, 0.35) 

  {COA, ENV, CP} v {COA, CP}  0.30 (0.28, 0.33) 

  {COA, ENV, CP} v {ENV, CP}  0.31 (0.29, 0.33) 

  {COA, ENV, CP, DECOL} v {COA, ENV, 

CP}  

0.46 (0.44, 0.49) 

  {COA, ENV, CP, SENS} v {COA, ENV, 

CP}  

0.48 (0.46, 0.51) 

  all v {COA, ENV, CP}  0.45 (0.42, 0.47) 

  all v {COA, ENV, CP, DECOL}  0.49 (0.46, 0.51) 

  all v {COA, ENV, CP, SENS}  0.47 (0.44, 0.49) 

𝐶𝐶𝑑𝑑  COA v baseline  0.01 (0.00, 0.01) 
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  {COA, CP} v COA  0.17 (0.15, 0.19) 

  {COA, ENV, CP} v {COA, CP}  0.31 (0.28, 0.33) 

  {COA, ENV, CP, DECOL} v {COA, ENV, 

CP}  

0.46 (0.44, 0.49) 

  {COA, ENV, CP, SENS} v {COA, ENV, 

CP}  

0.50 (0.48, 0.53) 

  all v {COA, ENV, CP}  0.47 (0.44, 0.49) 

  all v {COA, ENV, CP, DECOL}  0.51 (0.48, 0.53) 

  all v {COA, ENV, CP, SENS}  0.47 (0.44, 0.49) 

 555 
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Table 4: Numerical summaries of output measures for high burden setting. 556 

  AR ×  103  AC  𝐶𝐶𝑥𝑥𝑥𝑥 𝐶𝐶𝑑𝑑 𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑑𝑑 

baseline  18.63 (15.63, 21.56) 13.83 (6, 23) 60.73 (45, 78) 68.07 (49, 88) 4.20 (1, 8) 4.20 (1, 8) 

COA  16.22 (12.55, 19.76) 0 59.22 (43.5, 78) 53.96 (39, 72.5) 3.41 (0, 8) 3.41 (0, 8) 

ENV  16.42 (13.16, 19.59) 14.32 (6, 24) 55.39 (39.5, 72) 63.52 (47, 82) 3.97 (1, 8) 3.97 (1, 8) 

CP  12.44 (10.14, 14.83) 15.57 (7, 25) 45.46 (30, 61) 55.58 (39, 74) 3.52 (0, 7) 3.52 (0, 7) 

SENS  14.00 (12.17, 15.92) 20.20 (13, 29) 58.57 (42, 75) 78.79 (61, 98) 0 0 

DECOL  17.61 (14.26, 20.91) 16.44 (7, 27) 63.51 (45, 82) 72.99 (52, 96) 4.52 (1, 9) 4.51 (1, 9) 

COA, ENV  13.70 (9.91, 17.42) 0 52.63 (34, 70.5) 47.98 (31.5, 65) 3.04 (0, 7) 3.05 (0, 7) 

COA, CP  10.33 (7.94, 13.11) 0 43.56 (28, 60) 39.72 (26, 55) 2.45 (0, 6) 2.44 (0, 6) 

COA, SENS  11.85 (10.13, 13.83) 0 54.80 (37, 73.5) 54.81 (37, 73) 0 0 

COA, DECOL  14.85 (11.32, 18.85) 0 61.01 (43, 80.5) 55.65 (38, 74) 3.33 (0, 7.5) 3.33 (0, 8) 

ENV, CP  10.82 (8.63, 13.19) 16.12 (8, 25) 40.95 (28, 55.5) 52.04 (37, 68) 3.26 (0, 7) 3.26 (0, 7) 

ENV, SENS  11.90 (10.05, 13.81) 20.70 (12, 30) 51.55 (36, 69) 72.25 (54, 93) 0 0 

ENV, DECOL  15.33 (11.98, 18.64) 17.20 (8, 27) 57.71 (41, 77) 68.36 (49.5, 88) 4.22 (1, 8) 4.23 (1, 8) 

CP, SENS  9.50 (8.35, 10.79) 21.33 (13, 30) 42.70 (29.5, 58) 64.05 (48, 81) 0 0 

CP, DECOL  11.66 (9.34, 14.13) 18.35 (9, 28) 46.70 (32.5, 63) 59.37 (43, 79) 3.65 (1, 8) 3.66 (1, 8) 
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SENS, DECOL  12.22 (10.71, 13.81) 24.48 (16, 34) 58.48 (41.5, 79) 82.98 (63, 105) 0 0 

COA, ENV, CP  8.51 (6.09, 11.46) 0 37.24 (22, 53) 33.85 (20, 49) 2.23 (0, 6) 2.23 (0, 6) 

COA, ENV, 

SENS  

9.56 (7.72, 11.62) 0 45.56 (27.5, 63) 45.53 (27.5, 63) 0 0 

COA, ENV, 

DECOL  

12.44 (8.80, 16.63) 0 52.54 (35, 72) 47.73 (32, 66.5) 3.10 (0, 7) 3.08 (0, 7) 

COA, CP, 

SENS  

7.88 (6.77, 9.14) 0 39.21 (26, 55) 39.22 (26, 55) 0 0 

COA, CP, 

DECOL  

9.55 (7.30, 12.11) 0 43.19 (28, 59) 39.34 (26, 54.5) 2.47 (0, 6) 2.48 (0, 6) 

COA, SENS, 

DECOL  

10.33 (8.89, 11.77) 0 52.55 (34, 71) 52.52 (34, 71.5) 0 0 

ENV, CP, 

SENS  

7.97 (6.71, 9.24) 21.55 (14, 30) 36.57 (23, 50) 58.10 (42, 74) 0 0 

ENV, CP, 

DECOL  

10.11 (7.72, 12.68) 18.54 (9, 29) 41.32 (27, 57) 54.60 (39, 72.5) 3.43 (0, 7) 3.42 (0, 7) 

ENV, SENS, 10.14 (8.65, 11.60) 24.76 (15, 35) 49.23 (33, 66.5) 73.98 (53, 94) 0 0 
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DECOL  

CP, SENS, 

DECOL  

8.38 (7.40, 9.38) 24.59 (15, 34) 41.43 (28, 56) 65.97 (49, 84) 0 0 

COA, ENV, CP, 

SENS  

6.26 (5.10, 7.53) 0 32.02 (19, 46) 32.02 (19, 46) 0 0 

COA, ENV, CP, 

DECOL  

7.71 (5.51, 10.51) 0 36.02 (20, 53) 32.80 (19, 49) 2.08 (0, 5.5) 2.08 (0, 5.5) 

COA, ENV, 

SENS, DECOL  

8.18 (6.90, 9.61) 0 42.35 (25.5, 60.5) 42.37 (26, 60.5) 0 0 

COA, CP, 

SENS, DECOL  

7.03 (6.26, 7.93) 0 37.21 (24, 53) 37.22 (24, 53) 0 0 

ENV, CP, 

SENS, DECOL  

6.92 (5.96, 7.96) 24.59 (15, 35) 34.80 (22, 50) 59.40 (41, 78.5) 0 0 

all  5.55 (4.73, 6.46) 0 29.95 (17, 45) 29.95 (17, 45) 0 0 
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Table 5: Summary of intervention combination comparisons for the normal burden 557 

setting. 558 

outcome  comparison  𝜃𝜃� (95\% CI) 

AR  CP v baseline  0.00 (0.00, 0.00) 

  {CP, SENS} v CP  0.01 (0.01, 0.02) 

  {COA, CP, SENS} v {CP, SENS}  0.03 (0.02, 0.04) 

  {ENV, CP, SENS} v {CP, SENS}  0.04 (0.04, 0.05) 

  {COA, ENV, CP, SENS} v {COA, CP, 

SENS}  

0.03 (0.02, 0.04) 

  {COA, ENV, CP, SENS} v {ENV, CP, 

SENS}  

0.03 (0.02, 0.04) 

  all v {COA, ENV, CP, SENS}  0.16 (0.15, 0.18) 

𝐶𝐶𝑥𝑥𝑥𝑥  CP v baseline  0.09 (0.08, 0.10) 

  {ENV, CP} v CP  0.33 (0.31, 0.36) 

  {CP, SENS} v CP  0.39 (0.37, 0.42) 

  {COA, CP} v CP  0.43 (0.40, 0.45) 

  {ENV, CP, SENS} v CP  0.19 (0.18, 0.21) 

  {COA, ENV, CP} v CP  0.22 (0.20, 0.24) 

  {COA, CP, SENS} v CP  0.27 (0.25, 0.30) 

  {ENV, CP, SENS} v {ENV, CP}  0.33 (0.31, 0.36) 

  {COA, ENV, CP} v {ENV, CP}  0.36 (0.34, 0.38) 

  {COA, CP, SENS} v {ENV, CP}  0.43 (0.40, 0.45) 

  {ENV, CP, SENS} v {CP, SENS}  0.27 (0.25, 0.30) 

  {COA, ENV, CP} v {CP, SENS}  0.30 (0.28, 0.33) 

  {COA, CP, SENS} v {CP, SENS}  0.37 (0.34, 0.39) 

  {ENV, CP, SENS} v {COA, CP}  0.25 (0.23, 0.27) 
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  {COA, ENV, CP} v {COA, CP}  0.28 (0.26, 0.30) 

  {COA, CP, SENS} v {COA, CP}  0.34 (0.32, 0.36) 

  {COA, ENV, CP, SENS} v {ENV, CP}  0.19 (0.17, 0.21) 

  {COA, ENV, CP, SENS} v {CP, SENS}  0.15 (0.13, 0.17) 

  {COA, ENV, CP, SENS} v {COA, CP}  0.14 (0.12, 0.16) 

  {COA, ENV, CP, SENS} v {ENV, CP, 

SENS}  

0.33 (0.30, 0.35) 

  {COA, ENV, CP, SENS} v {COA, ENV, 

CP}  

0.32 (0.29, 0.34) 

  {COA, ENV, CP, SENS} v {COA, CP, 

SENS}  

0.25 (0.23, 0.27) 

  all v {ENV, CP}  0.13 (0.12, 0.15) 

  all v {CP, SENS}  0.10 (0.09, 0.12) 

  all v {COA, CP}  0.10 (0.08, 0.11) 

  all v {ENV, CP, SENS}  0.25 (0.23, 0.27) 

  all v {COA, ENV, CP}  0.24 (0.22, 0.26) 

  all v {COA, CP, SENS}  0.18 (0.16, 0.20) 

  all v {COA, ENV, CP, SENS}  0.42 (0.39, 0.44) 

𝐶𝐶𝑑𝑑  COA v baseline  0.14 (0.12, 0.15) 

  {COA, CP} v COA  0.10 (0.09, 0.11) 

  {COA, ENV, CP} v COA  0.03 (0.03, 0.04) 

  {COA, ENV, CP} v {COA, CP}  0.28 (0.26, 0.30) 

  {COA, ENV, CP, SENS} v {COA, CP}  0.23 (0.21, 0.25) 

  {COA, ENV, CP, DECOL} v {COA, CP}  0.25 (0.23, 0.27) 

  {COA, ENV, CP, SENS} v {COA, ENV, 

CP}  

0.43 (0.41, 0.46) 

  {COA, ENV, CP, DECOL} v {COA, ENV, 0.46 (0.43, 0.48) 
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CP}  

  all v {COA, CP}  0.16 (0.15, 0.18) 

  all v {COA, ENV, CP}  0.35 (0.32, 0.37) 

  all v {COA, ENV, CP, SENS}  0.42 (0.39, 0.44) 

  all v {COA, ENV, CP, DECOL}  0.39 (0.37, 0.41) 

  559 
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Table 6: Overall order of importance for the five interventions considered under the 560 

normal and high burden setting. // denotes exchangeability in the order of the 561 

interventions and || denotes the optimal sized interventions i.e. addition of 562 

interventions to the right of the || symbol would not affect the associated outcome 563 

measure. 564 

Outcome 

measure  

 normal burden setting   high burden setting  

AR  CP, COA, ENV, DECOL // SENS CP, SENS, COA // ENV, DECOL 

AC  COA || . COA || . 

C_{xd}  CP, COA//ENV || DECOL // SENS CP, ENV // COA // SENS || DECOL 

C_d  COA, CP, ENV || DECOL // SENS COA // CP, ENV || SENS // DECOL 

I_{xd}  SENS || . SENS || . 

I_d  SENS || . SENS || . 

 565 
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Legends for figures 566 

Figure 1: Compartmental diagram for the MRSA transmission model incorporating 567 

environmental contamination. The solid black lines represent patient transitions 568 

between the different states as well as admissions and discharges (only for the 569 

𝑆𝑆(𝑡𝑡) and 𝐶𝐶𝑥𝑥𝑥𝑥(𝑡𝑡) compartments). The red dashed lines denote the contribution from 570 

the various compartments to the colonization process while the black dashed lines 571 

show the compartments contributing to the evolution of the 𝐸𝐸(𝑡𝑡) compartment. 572 

 573 

Figure 2: AR outcome for normal burden (left plot) and high burden (right plot) 574 

settings. The x-axis denotes the baseline, low 𝜔𝜔 value and high 𝜔𝜔 value (moving 575 

from left to right). 576 
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