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An analytic approach to converting POE parameters
into D-H parameters for serial-link robots

Liao Wu, Ross Crawford, and Jonathan Roberts

Abstract—The Denavit-Hartenberg (D-H) model and the prod-
uct of exponentials (POE) model have been two popular methods
for modeling the kinematics of a serial-link robot. While these
two models are equivalent in essence, no study has revealed
how to convert from the POE model to the D-H model. The
conversion enables direct utilization of established algorithms
formulated with D-H parameters or compensation of the D-
H model after calibration with the POE parameters. It also
provides a simpler method to determine the D-H parameters
of a robot. For these reasons, this paper proposes an analytic
approach to automatically convert a group of POE parameters
into the associated D-H parameters. Three lemmas are proved
for the derivation of the final algorithm. An implementation of
the algorithm in MATLAB is provided as well.

Index Terms—Denavit-Hartenberg (D-H) parameters, Product
of Exponentials (POE), kinematics, serial-link robots.

I. INTRODUCTION

K INEMATIC modeling of robots is a fundamental issue
in robotics. To date, two systems of methodologies

have been adopted in the robotics community. The most
well known and used system is the Denavit-Hartenberg (D-
H) notation, the invention of which can be dated to 1955
[1]. Generally, the D-H model uses a group of frames that
are rigidly attached to the links of a robot to represent the
geometric structure, and abstract the motion of the robot as
the dynamic coordinate transformations of these frames. Four
parameters, referred to as the D-H parameters, are used to
construct the homogeneous transformations between adjacent
link frames. By using these parameters, the kinematics of a
robot can be uniquely, concisely and accurately described, that
is, given a group of joint variables, we are able to determine
the resultant transformations between the link frames, and then
calculate the final position and orientation of the end-effector
by concatenating these transformations. In addition, based
on the D-H notation, a number of established algorithmic
techniques can be employed to solve the dynamics, motion
planning and control problems [2], [3].

An alternative system to model the kinematics of a robot is
the use of the product of exponentials (POE) formula, which
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was initially proposed in 1984 [4]. Rather than treating the
motion of the robot as a set of frame transformations, the
POE method regards the motion as a chain of integration
of joint twists over the joint variables with respect to an
initial state where all the joints are in their zero positions
[5]. By using this method, it is not necessary to set up link
frames or cope with the associated transformations. All that
is required is the relationship between the base frame and
the tool frame in the initial state, as well as the joint twists
evaluated with respect to the base frame. Then, the forward
kinematics of the robot can be represented by the product
of a cluster of exponential mappings of the joint twists and
the initial twist. The advantages of the POE method include
its simple and general framework of modeling a robot and its
close relationship with the Lie groups theory, which facilitates
the transplantation of modern theoretical developments in
differential geometry to robotics (some excellent examples can
be seen in [5]–[7]). Hence, there has been an emerging trend
of using the POE model in robotics research recently [8], [9].

In essence, the D-H model and the POE model are e-
quivalent in representing the kinematics of a robot. In fact,
there have been studies showing how to convert the D-H
model into the POE formula [5], [7]. However, to the best
of the authors’ knowledge, no study has revealed the reverse
conversion yet. The benefits of knowing how to convert the
POE model to the D-H model include: 1) since the D-H model
is earlier and more widely adopted in the community, there
are a lot of established algorithms formulated with the D-
H parameters that can be directly utilized, while derivation
of algorithms with the POE formulation may require much
more extra efforts; 2) many commercial industrial robots are
programmed with the D-H parameters, but the POE model is
important for some procedures like calibration [8], [9]. The
conversion enables the compensation of D-H parameters after
the calibration with POE parameters; and 3) as the process of
modeling a robot using the POE method is much easier than
the D-H method, it provides a simpler way for finding the D-H
parameters of a robot, that is, the robot can be first modeled
with the POE formula and then converted to the D-H notation.

Therefore, the contribution of this paper lies in its first
proposal of an analytic algorithm that can automatically and
accurately convert a set of POE parameters to a group of D-H
parameters that are more familiar to the community.

The rest of this paper is organized as follows. Section II
gives an brief introduction of the D-H model and the POE
model. Section III reviews the conversion from the D-H model
to the POE model, and elaborates an algorithm for converting
the POE model to the D-H model with three lemmas proven
as the basis. Finally, the paper is concluded in Section IV.
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Fig. 1. The difference between standard D-H parameters and modified D-H
parameters.

II. D-H PARAMETERS AND POE PARAMETERS

A. D-H Parameters

In 1955, Denavit and Hartenberg [1] introduced a set of
rules for modeling the geometric structure of a serial-link
robot, which has been referred to as the D-H convention and
widely adopted as a standard modeling method by the robotics
community. As a fundamental issue in robotics, the D-H
model is well introduced in almost every textbook of robotics
nowadays [10]–[13]. Therefore, this paper will not elaborate
the D-H rules in detail. Instead, the focus is on important
aspects that are most relevant to the problem addressed in this
paper.

Generally, the D-H convention uses two parameters, the
joint angle θ and the joint offset d, to describe a joint and
two other parameters, the link twist α and the link length
a, to represent a link. For a revolute joint, θ is a variable

and the other three parameters are constant; for a prismatic
joint, d is a variable while the other three parameters are
fixed. Frames are attached to the links and transformations
between these frames form the forward kinematics. However,
variations can be involved in the assignment of frames and the
selection of parameters. Two dominant versions that are both
widely adopted in the textbooks are the standard D-H model
[10], [11] and the modified D-H model [12], [13], as shown
in Fig. 1. Both models use the common normal between two
adjacent joint axes as an abstract of the geometry of a link, and
have the same definitions for the four D-H parameters. The
main difference between the two models is their assignment
of link frames. The standard model places the frame of link
i−1 at joint i which connects link i−1 and link i, while the
modified model locates the frame of link i−1 along joint i−1.
A consequence of this difference is the different homogeneous
transformation between two consecutive link frames. In the
standard model (Fig. 1(a)), the homogeneous transformation
from frame {i−1} to frame {i} is formed by

i−1HHH i = RZ(θi)TZ(di)RX (αi)TX (ai), (1)

where R(·) and T (·) stand for 4 by 4 rotation and translation
transformations, respectively, and the subscript indicates the
axis to rotate about or translate along. In contrast, in the
modified model (Fig. 1(b)), the transformation from frame
{i−1} to frame {i} is given by

i−1HHH i = RX (αi−1)TX (ai−1)RZ(θi)TZ(di). (2)

Therefore, the two models have different sets of four param-
eters to construct the transformations between adjacent link
frames.

Due to the rules introduced above, both versions have
restrictions on the placement of the base frame and the tool
frame. However, in the POE formula as will be introduced
in the next section, the base frame and the tool frame are
arbitrarily located. In order to make the D-H model and
the POE model equivalent for the bidirectional conversion,
a uniform representation of the D-H model is proposed,
in which the base frame and the tool frame are arbitrarily
placed and encoded with the D-H notations, as illustrated in
Fig. 2. Under this treatment, the forward kinematics can be
formulated as (3) using the standard version, or as (4) using the
modified version. Once a uniform representation is obtained,
it is straightforward to extract the standard D-H parameters
according to (3) or the modified D-H parameters according to
(4).

It is worth noting that the joint variables may have zero-
offsets. Taking this into account, for a revolute joint, θ should
be replaced with q+ θ̄ , where q is the reading from the angle
sensor and θ̄ is the zero-offset. Likewise, for a prismatic joint,
d should be replaced with q+ d̄, where q is the reading from
the displacement sensor and d̄ is the zero-offset. If we define
Q(·) as a function that means RZ(·) for a revolute joint and
TZ(·) for a prismatic joint, we can rewrite (3) as

BHHHT = BHHH0Q(q1)
0HHH1Q(q2) · · ·n−2HHHn−1Q(qn)

n−1HHHn
nHHHT (5)

based on the facts that RZ(q + θ̄) = Q(q)RZ(θ̄) and
RZ(θ)TZ(q + d̄) = Q(q)RZ(θ)TZ(d̄). Note that the homoge-
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BHHHT = RZ(
B a

θB b)TZ(
B adB b)RX (

B b
α1 a)TX (
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αn a)TX (
n−1 ban a)RZ(

n a
θn b)TZ(

n adn b)RX (
n b

αT a)TX (
n baT a)︸ ︷︷ ︸

n−1HHHn
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. (3)

BHHHT = RZ(
B a

θB b)TZ(
B adB b)︸ ︷︷ ︸

BHHH0

RX (
B b

α1 a)TX (
B ba1 a)RZ(

1 a
θ1 b)TZ(

1 ad1 b)︸ ︷︷ ︸
0HHH1

RX (
1 b

α2 a)TX (
1 ba2 a) · · ·

RX (
n−1 b

αn a)TX (
n−1 ban a)RZ(

n a
θn b)TZ(

n adn b)︸ ︷︷ ︸
n−1HHHn

RX (
n b

αT a)TX (
n baT a)RZ(

T a
θT b)TZ(

T adT b)︸ ︷︷ ︸
nHHHT

. (4)

neous transformations in (5) are formulated with the constant
zero-offsets rather than the total joint variables as in (3).

B. POE Model
In 1984, Brockett [4] introduced an alternative approach, the

POE formula, to depict the kinematics of a robot. Different
from the D-H convention, the POE method only retains the
base frame and the tool frame, which can be arbitrarily placed
as long as they are rigidly attached to the base link and the
tool link, respectively. Instead of using link frames and D-H
parameters to describe the links and joints, the POE method
employs twists to represent the joints, as shown in Fig. 3.
When the robot is in its initial configuration (each joint is in
the zero position), we record the unit 3-D vector of a revolute
joint axis as ωωω and the 3-D position of an arbitrary point along
the joint axis as ppp, and then calculate another 3-D vector using
cross product, vvv = ppp×ωωω (note that all the data are measured
with respect to the base frame). Then, the joint twist is a 4×4
matrix that belongs to the Lie algebra se(3) and is constructed
by

ξ̂ξξ =

[
ω̂ωω vvv
000T 0

]
(6)

where ω̂ωω =

[
0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0

]
is the skew-symmetric matrix of

ωωω . The joint twist can also be represented in a 6-D vector
form, which is named the twist coordinates and given by ξξξ =[
ωωωT vvvT ]T ∈ R6.

If the joint is prismatic, there is no revolute joint axis. In
this case, ωωω is assigned to be a zero vector and vvv is defined
as the unit 3-D vector of the translation direction of this joint.

In addition, when the robot is in its initial configuration,
the homogeneous transformation from the base frame to the
tool frame, HHHT , is also captured and can be converted into a
general twist, ξ̂ξξ T or the coordinate form, ξξξ T =

[
ωωωT

T vvvT
T
]T .

Note that, however, in this twist, ωωωT does not have to be a
unit vector and vvvT is not necessary to be a cross product of
the two vectors pppT and ωωωT .

The forward kinematics then can be expressed as
BHHHT = exp(ξ̂ξξ 1q1)exp(ξ̂ξξ 2q2) · · ·exp(ξ̂ξξ nqn)exp(ξ̂ξξ T ) (7)

where exp(·) stands for the exponential mapping from a twist
to a homogeneous transformation, ξ̂ξξ i (i = 1,2, ...,n) stands for

the joint twist, and ξ̂ξξ T stands for the initial twist of the tool
frame. The variable qi (i = 1,2, ...,n) is the joint variable; for
a revolute joint, qi is the rotation angle, and for a prismatic
joint, qi is the translation distance.

III. CONVERSION BETWEEN D-H PARAMETERS AND POE
PARAMETERS

A. Conversion from D-H parameters to POE parameters

The procedure to convert from a set of given D-H parameter-
s to the corresponding POE parameters have been described in
[5], [7]. This section provides a brief review of this conversion.

It is easy to verify that RZ(q) can be written as an expo-
nential exp(ξ̂ξξ

′
q) where the coordinate of ξ̂ξξ

′
is

ξξξ
′
= [0 0 1 0 0 0]T . (8)

Similarly, TZ(q) can be written as exp(ξ̂ξξ
′
q) where the coordi-

nate of ξ̂ξξ
′

is

ξξξ
′
= [0 0 0 0 0 1]T . (9)

Therefore, we can uniformly rewrite Q(q) as exp(ξ̂ξξ
′
q), and

change (5) into

BHHHT = BHHH0 exp(ξ̂ξξ
′
1q1)

0HHH1 exp(ξ̂ξξ
′
2q2) · · ·

n−2HHHn−1 exp(ξ̂ξξ
′
nqn)

n−1HHHn
nHHHT . (10)

Then, to complete the conversion, this property can be
used where MMM exp(ξ̂ξξ )MMM−1 = exp(MMMξ̂ξξ MMM−1) for any nonsin-
gular square matrix MMM and any twist ξ̂ξξ . Since homogeneous
transformations are nonsingular square matrices, we have

BHHHT = exp(BHHH0ξ̂ξξ
′
1

BHHH−1
0 q1)

BHHH0
0HHH1 exp(ξ̂ξξ

′
2q2) · · ·

n−2HHHn−1 exp(ξ̂ξξ
′
nqn)

n−1HHHn
nHHHT

= exp(BHHH0ξ̂ξξ
′
1

BHHH−1
0 q1)exp(BHHH0

0HHH1ξ̂ξξ
′
2(

BHHH0
0HHH1)

−1q2)

BHHH0
0HHH1 · · ·n−2HHHn−1 exp(ξ̂ξξ

′
nqn)

n−1HHHn
nHHHT

...

= exp(ξ̂ξξ 1q1)exp(ξ̂ξξ 2q2) · · ·exp(ξ̂ξξ nqn)exp(ξ̂ξξ T )
(11)
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where, for i = 1,2, ...,n,

ξ̂ξξ i = (BHHH0
0HHH1 · · · i−2HHH i−1)ξ̂ξξ

′
i(

BHHH0
0HHH1 · · · i−2HHH i−1)

−1 (12)

and

exp(ξ̂ξξ T ) =
BHHH0

0HHH1 · · ·n−2HHHn−1
n−1HHHn

nHHHT . (13)

Hence, the D-H model is converted into the POE formula.

B. Conversion from POE Parameters to D-H Parameters

Conversion from the POE parameters to the D-H parame-
ters is more complicated. Before deriving the algorithm, the
following lemmas should be proved first.

Lemma 1. For a revolute joint, the exponential exp(ξ̂ξξ q)
can be converted into the form of HHHRZ(q)HHH−1, where HHH =
RZ(θ)TZ(d)RX (α)TX (a).

Proof. As previously introduced, RZ(q) can be written as
exp(ξ̂ξξ

′
q) where ξξξ

′ is as in (8). Hence, we have

HHHRZ(q)HHH−1 = HHH exp(ξ̂ξξ
′
q)HHH−1 = exp(HHHξ̂ξξ

′
HHH−1q). (14)

It is then clear that proving exp(ξ̂ξξ q) = HHHRZ(q)HHH−1 is
equivalent to proving ξ̂ξξ = HHHξ̂ξξ

′
HHH−1, or the twist coordinates

form,

ξξξ = Ad(HHH)ξξξ
′ (15)

where Ad(·) is the adjoint transformation and has the form

Ad(HHH) = Ad(
[

RRR ttt
000T 1

]
) =

[
RRR 000
t̂ttRRR RRR

]
(16)

in which RRR and ttt are the rotation matrix and translation vector
in HHH, respectively.
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Let us assume HHH can be represented by
RZ(θ)TZ(d)RX (α)TX (a). Expanding HHH and substituting
(8) and (16) into (15), we obtain

ωωω :=

ω1
ω2
ω3

=

 sin(θ)sin(α)
−cos(θ)sin(α)

cos(α)

 (17)

vvv :=

v1
v2
v3

=

 ω3 sin(θ) −ω2
−ω3 cos(θ) ω1

ω2 cos(θ)−ω1 sin(θ) 0

[a
d

]
(18)

where ωωω and vvv are the components of ξξξ .
Therefore, all that is left is to find solutions to (17) and (18).

For this purpose, three possible cases of ω3 are examined:
1) ω3 = 1 This means ω1 = ω2 = v3 = 0 since ωωω and vvv

conform to the two constraints

||ωωω||= 1 (19)
ωωωT vvv = 0. (20)

It can be verified that (α = 0, a =
√

v2
1 + v2

2, θ =

atan2(v1,−v2), d = 0) is one of the solutions to (17) and (18);
2) ω3 =−1 Similarly to case 1, it can be verified that (α =

π , a =
√

v2
1 + v2

2, θ = atan2(−v1,v2), d = 0) is one of the
solutions to (17) and (18);

3) OTHERWISE According to (17), we have

α =±arccos(ω3) (21)
θ = atan2(ω1/sin(α),−ω2/sin(α)). (22)

Substituting (22) into the last row of (18), we have

asin(α) =−v3. (23)

As the link length a is usually assumed to be nonnegative, the
polarity of the right side of (23) can be used to disambiguate
the sign of α in (21).

Then, a and d can be solved from (18) by using any
technique of solving a system of equations.

Alternatively, a can be obtained from (23) as

a =− v3

sin(α)
. (24)

Substituting (19), (20), (21), (22), and (24) into (18), we can
verify that

d =
ω1v2−ω2v1

ω2
1 +ω2

2
(25)

is a solution to (18).
In summary, solutions to (17) and (18) can always be found

and thus the lemma is proved.

Lemma 2. For a prismatic joint, the exponential exp(ξ̂ξξ q)
can be converted into the form of HHHTZ(q)HHH−1, where HHH =
RZ(θ)TZ(d)RX (α)TX (a).

Proof. Similarly to the proof of Lemma 1, all that is required
is to prove that ξξξ = Ad(HHH)ξξξ

′ where ξξξ
′ is as in (9).

By expanding HHH, the problem is equivalent to proving that

vvv :=

v1
v2
v3

=

 sin(θ)sin(α)
−cos(θ)sin(α)

cos(α)

 (26)

always has a solution. Note that vvv conforms to the constraint
||vvv||= 1. Again, three possible cases of v3 can be examined:

1) v3 = 1 This means v1 = v2 = 0. It can be verified that
(α = 0,θ = 0) is a solution to (26);

2) v3 =−1 Similarly to case 1, (α = π,θ = 0) can be
verified to be a solution to (26);

3) OTHERWISE The equation will have a solution as (α =
arccos(v3), θ = atan2(v1/sin(α),−v2/sin(α)).

In all the three cases of v3, the values of a and d do not
affect the result. Thus, they can be set to zeros for simplicity.

Hence, since (26) always has a solution, the lemma is
proved.

Lemma 3. For an arbitrary twist ξ̂ξξ , the exponential exp(ξ̂ξξ )
can be decomposed into a product exp(ξ̂ξξ ) = HHH1HHH2, where
HHH1 = RZ(θ1)TZ(d1)RX (α1)TX (a1) and HHH2 = RZ(θ2)TZ(d2).

Proof. The exponential mapping is written in the matrix form,

exp(ξ̂ξξ ) =
[

RRR ttt
000T 1

]
. (27)

Thus, the problem is equivalent to finding a group of (θ1, d1,
α1, a1, θ2, d2) that satisfies[

RRR ttt
000T 1

]
= RZ(θ1)TZ(d1)RX (α1)TX (a1)RZ(θ2)TZ(d2). (28)

Expanding (28), we have

RRR = RZ(θ1)RX (α1)RZ(θ2) (29)

ttt =

0 cos(θ1) sin(θ1)sin(α1)
0 sin(θ1) −cos(θ1)sin(α1)
1 0 cos(α1)

d1
a1
d2

 := AAAxxx. (30)

It can be seen that (29) is the Euler angles decomposition of RRR
in the ZXZ order. It is known that this decomposition always
has at least one solution. According to the value of α1, three
cases are discussed as follows:

1) α1 = 0 This causes the Euler angles decomposition to be
singular as infinite solutions to (29) exist. At the same time,
(30) becomes

ttt =

a1 cos(θ1)
a1 sin(θ1)

d1 +d2

 . (31)

Therefore, we have (a1 =
√

t2
1 + t2

2 , θ1 = atan2(t2, t1)). By
substituting θ1 and α1 into (29), θ2 can be solved. Since d1
and d2 are redundant, (d1 = t3, d2 = 0) can be adopted for
simplicity.

2) α1 = π Similarly to case 1, the Euler angles decomposi-
tion has infinite solutions. In addition, (30) becomes

ttt =

a1 cos(θ1)
a1 sin(θ1)

d1−d2

 . (32)

Again, we have (a1 =
√

t2
1 + t2

2 , θ1 = atan2(t2, t1)) and can
substitute θ1 and α1 into (29) to solve θ2. Moreover, (d1 = t3,
d2 = 0) can be taken as the solution.

3) OTHERWISE The Euler angles decomposition has ex-
actly one solution in this case. For (30), it can be verified that
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BHHHT = exp(ξ̂ξξ 1q1)exp(ξ̂ξξ 2q2) · · ·exp(ξ̂ξξ nqn)exp(ξ̂ξξ T )
Lemma 1 & 2

= BHHH0Q(q1)
BHHH−1

0 exp(ξ̂ξξ 2q2) · · ·exp(ξ̂ξξ nqn)exp(ξ̂ξξ T )

= BHHH0Q(q1)exp(BHHH−1
0 ξ̂ξξ 2

BHHH0q2)
BHHH−1

0 · · ·exp(ξ̂ξξ nqn)exp(ξ̂ξξ T )

ξξξ
′
2:=Ad(BHHH−1

0 )ξξξ 2
= BHHH0Q(q1)exp(ξ̂ξξ

′
2q2)

BHHH−1
0 · · ·exp(ξ̂ξξ nqn)exp(ξ̂ξξ T )

Lemma 1 & 2
= BHHH0Q(q1)

0HHH1Q(q2)
0HHH−1

1
BHHH−1

0 · · ·exp(ξ̂ξξ nqn)exp(ξ̂ξξ T )

...
= BHHH0Q(q1)

0HHH1Q(q2) · · ·n−2HHHn−1Q(qn)
n−2HHH−1

n−1 · · ·
0HHH−1

1
BHHH−1

0 exp(ξ̂ξξ T )

exp(ξ̂ξξ
′
T ):=

n−2HHH−1
n−1···

0HHH−1
1

BHHH−1
0 exp(ξ̂ξξ T )

= BHHH0Q(q1)
0HHH1Q(q2) · · ·n−2HHHn−1Q(qn)exp(ξ̂ξξ

′
T )

Lemma 3
= BHHH0Q(q1)

0HHH1Q(q2) · · ·n−2HHHn−1Q(qn)
n−1HHHn

nHHHT (33)

the determinant |AAA|=−sin(α1) 6= 0. Thus, AAA is invertible and
(30) has exactly one solution xxx = AAA−1ttt.

Hence, a group of (θ1, d1, α1, a1, θ2, d2) can always be
found to satisfy (28), and thus the lemma is proved.

Now we look back into the original problem of converting
the POE parameters to the D-H parameters. Since Lemma 1
and Lemma 2 have the same form regardless of the type of the
joint, a uniform function, Q(q), is used to represent the rotation
or translation. When the joint is revolute, Q(q) = RZ(q), and
when the joint is prismatic, Q(q) = TZ(q). Given the forward
kinematics of the robot in the POE formula (7), we have (33)
where BHHH0, 0HHH1, ..., nHHHT are in the same form as in (3).

Comparing (33) to (5), we can see the POE formula is
successfully converted into the standard D-H model. If the
modified D-H version is to be used, we just need to regroup
the parameters according to (4).

It is worth noting that we have encoded the base frame
and the tool frame with D-H notations in the uniform D-
H representation to allow the two frames to be arbitrarily
placed. If there are restrictions on the desired location of the
base frame or the tool frame after the conversion, the frame
transformation for the base frame or the tool frame can be
performed first in the POE setting, and then converted into
the D-H model.

An implementation of the proposed algorithm in MATLAB
is provided to facilitate the practical use. In the codes, an
example of using the developed algorithm can be found.

IV. CONCLUSION

This paper has presented an analytic approach to converting
the POE parameters of a robot to the D-H parameters. By for-
mulating the base transformation and the tool transformation
with the D-H notation, the proposed method applies to the
POE model with an arbitrarily assigned base frame as well
as an arbitrarily located tool frame. In addition, the converted
D-H parameters are consistent with both the standard notation
and the modified notation.

With this conversion, it is now possible to directly leverage
established algorithms formulated with D-H parameters or
compensate the D-H model after calibration with the POE

parameters. It also provides a simpler method of determining
the kinematic parameters of a robot.
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