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Abstract
Mathematically, it takes an infinite amount of time for the transient solution of a diffu-

sion equation to transition from initial to steady state. Calculating a finite transition time,
defined as the time required for the transient solution to transition to within a small pre-
scribed tolerance of the steady state solution, is much more useful in practice. In this paper,
we study estimates of finite transition times that avoid explicit calculation of the transient
solution by using the property that the transition to steady state defines a cumulative dis-
tribution function when time is treated as a random variable. In total, three approaches are
studied: (i) mean action time (ii) mean plus one standard deviation of action time and (iii)
a new approach derived by approximating the large time asymptotic behaviour of the cu-
mulative distribution function. The new approach leads to a simple formula for calculating
the finite transition time that depends on the prescribed tolerance δ and the (k − 1)th and
kth moments (k ≥ 1) of the distribution. Results comparing exact and approximate finite
transition times lead to two key findings. Firstly, while the first two approaches are useful
at characterising the time scale of the transition, they do not provide accurate estimates
for diffusion processes. Secondly, the new approach allows one to calculate finite transition
times accurate to effectively any number of significant digits, using only the moments, with
the accuracy increasing as the index k is increased.

1 Introduction

A common question of practical interest that arises when modelling transport phenomena is
how long does the process take? For example, how long does it take for a bar to heat up or
how long does it take for an initial concentration field to distribute evenly? Mathematically,
the correct answer is the highly impractical answer: it takes an infinite amount of time for the
transient solution to transition from initial to steady state.

Finite (and hence practically useful) answers to the above question have been studied and
proposed by many authors [6, 9–12, 16, 21, 22, 24]. In this paper, we consider a finite transition
time defined as the amount of time required for the transient solution to transition from its
initial state to within a prescribed tolerance of its steady state [24]. To illustrate this definition,
consider a transport process on an interval L := (l0, lm) and let u(x, t) be the transient solution
at position x ∈ L and time t > 0, u0(x) be the given initial solution and u∞(x) be the steady
state solution. We make the following assumptions:

(i) u0(x) 6= u∞(x) for all x ∈ L,

(ii) For a given x ∈ L, u(x, t) monotonically increases to u∞(x) (implying u(x, t) < u∞(x))
for all t > 0 if u0(x) < u∞(x) or u(x, t) monotonically decreases to u∞(x) (implying
u(x, t) > u∞(x)) for all t > 0 if u0(x) > u∞(x),
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(iii) u0(x) is piecewise continuous on L.

In this work, we distinguish between local and global transition times as follows. The local
transition time provides a finite measure of the time required to transition from initial to steady
state at position x. On the other hand, the global transition time is a finite measure of the time
required for the entire transport process to effectively reach steady state, and hence provides a
practical finite answer to the question of how long the process takes. Both of these quantities are
defined below, where we remark that the assumption (ii) listed above ensures that the left-hand
side of equation (1) is always positive.

Definition 1 (Local transition time)
The local transition time, denoted by ts(x), provides the transition time as a function of
position x ∈ R := {x ∈ L |u0(x) 6= u∞(x)}, and is defined as the value of t > 0 satisfying:

u(x, t)− u∞(x)

u0(x)− u∞(x)
= δ, (1)

where 0 < δ � 1 is a specified tolerance.

Definition 2 (Global transition time)
The global transition time is defined as the supremum of the local finite transition time:

t̂s := sup
x∈R

ts(x) (2)

where the supremum is taken over the domain of ts(x).

A common finite measure of the time required to reach steady state is the mean action time
[14, 24] introduced by McNabb and Wake [22]. The mean action time takes a probabilistic
approach to the problem by treating time t as continuous random variable with support [0,∞)
and computing its mean or expected value. This is achieved by utilising the observation that
the function

F (t;x) := 1− u(x, t)− u∞(x)

u0(x)− u∞(x)
, (3)

satisfies F (0;x) = 0 and limt→∞ F (t;x) = 1 and hence defines a cumulative distribution function
of t, parametrised in terms of the position x. Using the cumulative distribution function, the
local transition time (Definition 1) can now be reformulated as follows:

ts(x) is the value of t > 0 satisfying F (t;x) = 1− δ. (4)

Note that equation (4) is now equivalent to a classical inverse problem in probability theory:
find ts(x) such that P (t ≥ ts(x)) = δ.

Differentiating (3) with respect to t yields the probability density function [5, 23, 24]:

f(t;x) =
1

u∞(x)− u0(x)

∂

∂t
[u(x, t)− u∞(x)] , (5)

which allows the kth moment, at position x, to be defined as follows:

Mk(x) :=

∫ ∞

0
tkf(t;x) dt. (6)

The mean action time at position x, denoted henceforth by MAT(x), is then defined by the
mean or first moment M1(x).
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The attractiveness of the mean action time is that it is possible to obtain the explicit form of
MAT(x), and hence an estimate of the finite amount of time required for the transient solution to
effectively reach steady state at position x, without explicitly calculating the transient solution
u(x, t) [6, 23, 24]. For this reason, the mean action time is a popular transition time estimate that
has been used in several applications including freezing and thawing [16], morphogen formation
in the formation of tissues and organs [1, 23] and groundwater modelling [14, 15, 24]. Another
argument in favour of the mean action time is that it does not suffer from the subjectivity of
choosing a threshold tolerance [6], as in Definition 1. While this is true, the question of how
close the transient solution, evaluated at the supremum of the mean action time, is to the steady
state still remains and involves some discretion. The opinion of this author is that the tolerance
δ is useful and should be inferred by the physical problem under consideration. For example, in
many problems involving comparison to experimental data, a suitable choice for δ is the error
associated with the measurement device.

Since McNabb and Wake’s [22], notable contributions to the theory of mean action time,
almost exclusively focussed on one-dimensional linear homogeneous problems, have appeared
in several papers [5, 6, 13–16, 23, 24]. For discussion on higher-dimensional, nonlinear and/or
heterogeneous problems, which do not form the focus of this work, the reader is directed to
three papers: [6, 13, 16].

Research on mean action time was revived in the early 2010s by both Berezhkovskii et al. [1],
who proposed the definition of local accumulation time for a reaction-diffusion model related to
the study of morphogen formation and Ellery et al. [6], who demonstrated that this definition
was equivalent to McNabb’s mean action time. Over two papers, Ellery et al. [5, 6] derived the
mean action time for a linear advection-diffusion-reaction process and presented a framework
for computing the higher central moments (called moments of action by the authors), demon-
strating how in each case exact expressions can be found without explicit calculation of the
transient solution. The second moment of action, the variance of action time, was noted as be-
ing particularly insightful as a small value implies that the mean action time is a useful estimate
of the time required to effectively reach steady state [6, 24]. Simpson et al. [24] applied and
extended the theory to a linearised groundwater flow model, governed by a reaction-diffusion
equation with constant source term, to study the time required for a transient response (such as
an aquifer recharge/discharge process) to effectively reach steady state. Comparing the model
predictions to a laboratory scale experiment, it was found that while the mean action time
underestimates the time required to transition to steady state, significant improvement can be
obtained by adding one standard deviation of action time. Jazaei et al. [14] extended the deriva-
tions for groundwater flow to time-dependent boundary conditions, where it was again argued,
via visual observation of the experimental data, that the mean plus one standard deviation of
action time was a good approximation for the time required for the system to effectively reach
steady-state. Most recently, Simpson [23] and Jazaei et al. [15] have extended the theory to
estimate the time required for the gradient or flux of the transient solution to approach their
corresponding steady-state values.

In this paper, we study transition time estimates for a linear homogeneous diffusion equation
with general time-independent boundary conditions. Two key contributions to the literature
are presented, namely we:

(i) demonstrate that, while both the mean action time and the mean plus one standard
deviation of action time are useful at characterising the associated time-scale, they do not
provide accurate estimates of the transition time for diffusion processes.

(ii) propose a highly accurate alternative approach for estimating transition times based on us-
ing higher-order consecutive moments to approximate the large time asymptotic behaviour
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of the cumulative distribution function F (t;x).

The second item is the main contribution of the work, with the novel approach providing a
simple highly-accurate formula for calculating the local transition time (1) (and hence global
transition time (2)) using only two consecutive moments Mk−1(x) and Mk(x) (k ≥ 1). The
result links, for the first time, the higher-order moments to calculation of finite transition times.
This represents a significant breakthrough as previously it was believed that such calculation
required the transient solution u(x, t) [6, 24].

2 Diffusion model

The diffusion model considered in this paper is described below. Consider a diffusion process
on the interval L := [l0, lm] governed by the linear homogeneous diffusion equation:

∂u

∂t
= D

∂2u

∂x2
, (7a)

for x ∈ L and t > 0, subject to the initial condition:

u(x, 0) = u0(x), (7b)

for x ∈ L and boundary conditions:

aLu(l0, t)− bL
∂u

∂x
(l0, t) = cL, (7c)

aRu(lm, t) + bR
∂u

∂x
(lm, t) = cR, (7d)

for t > 0. In the equations listed above, u(x, t) is the solution (e.g. temperature/concentration)
at position x and time t, u0(x) is the specified initial condition and D > 0 is the constant
diffusion coefficient. In the boundary conditions, aL, bL, cL, aR, bR and cR are constants
satisfying: aL ≥ 0, bL ≥ 0, aR ≥ 0, bR ≥ 0, aL + bL > 0 and aR + bR > 0 [2, 4].

The corresponding steady-state solution of (7), denoted by u∞(x), is the linear function
satisfying the boundary value problem:

Du′′∞(x) = 0, x ∈ L, (8a)

aLu∞(l0)− bLu′∞(l0) = cL, (8b)

aRu∞(lm) + bRu
′
∞(lm) = cR. (8c)

For the Neumann problem (u′∞(l0) = u′∞(lm) = 0), it is well-known [3] that the solution of (8)
is unique only up to an additive constant and that including the additional constraint:

∫ lm

l0

u∞(x) dx =

∫ lm

l0

u0(x) dx, (9)

gives the correct steady state solution of (7).

3 Computing the moments

In this section, we present an algorithm for calculating the first q moments (6), namely Mk(x)
(k = 1, . . . , q), for the diffusion problem (7). The derivation follows closely the procedure taken
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by several authors [5, 7, 23] with the exception that we are interested in the raw moments as
opposed to the central moments.

Combining equations (5) and (6) gives the following expression for the kth moment:

Mk(x) =
1

h(x)

∫ ∞

0
tk
∂

∂t
[u(x, t)− u∞(x)] dt, (10)

for k = 0, 1, . . ., where h(x) := u∞(x) − u0(x). Applying integration by parts and noting that
lim
t→∞

tk[u(x, t)− u∞(x)] = 0 [7] yields:

Mk(x) =
k

h(x)

∫ ∞

0
tk−1 [u∞(x)− u(x, t)] dt. (11)

For all integers k > 1, each of the above moments can be calculated without requiring the
transient solution u(x, t) by deriving a boundary value problem satisfied by Mk(x) as follows.
Define:

Mk(x) := Mk(x)h(x) = k

∫ ∞

0
tk−1 [u∞(x)− u(x, t)] dt, (12)

and consider the derivatives:

M
′
k(x) = k

∫ ∞

0
tk−1

[
u′∞(x)− ∂u

∂x
(x, t)

]
dt, (13)

M
′′
k(x) = k

∫ ∞

0
tk−1

[
u′′∞(x)− ∂2u

∂x2
(x, t)

]
dt. (14)

Using equations (7a) and (8a) in equation (14) yields

M
′′
k(x) =

k

D

∫ ∞

0
tk−1

∂

∂t
[u∞(x)− u(x, t)] dt. (15)

The above expressions lead to the following boundary-value problem for Mk(x):

M
′′
k(x) = − k

D
Mk−1(x), x ∈ L, (16a)

aLMk(l0)− bLM
′
k(l0) = 0, (16b)

aRMk(lm) + bRM
′
k(lm) = 0, (16c)

where the right-hand side of the differential equation (16a) is identified from (15) usingMk−1(x) =
Mk−1(x)h(x) and equation (10) and the boundary conditions (16b) and (16c) are derived by
utilising equations (12) and (13) and the boundary conditions for u(x, t) and u∞(x): (7c), (7d),
(8b) and (8c).

In this paper, we consider only relatively simple initial condition functions u0(x), where the
boundary value problem (16) can be solved analytically by integration. For more complicated
initial conditions, a numerical method could easily be applied to solve (16). Integrating (16a)
yields the general solution:

Mk(x) = Gk(x) + ck,1 + ck,2x, (17)

where

Gk(x) := − k
D

∫ ∫
Mk−1(x) dx dx. (18)
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The constants ck,1 and ck,2 are determined by substituting the form of (17) into the boundary
conditions (16b) and (16c) and solving the resulting linear system:

Ac = b, (19)

where c = [ck,1, ck,2]
T and

A =

[
aL aLl0 − bL
aR aRlm + bR

]
(20)

b =

[
bLG

′
k(l0)− aLGk(l0)

−bRG′k(lm)− aRGk(lm)

]
, (21)

with:

G′k(x) = − k
D

∫
Mk−1(x) dx.

We remark that the matrix A is the same as the one that appears when using a similar strategy
to solve the boundary value problem (8) for the steady-state solution. For the Neumann problem

(M
′
k(l0) = M

′
k(lm) = 0), where the solution of the linear system (19) (and hence the solution

of the boundary value problem (16)) is unique only up to an additive constant, we require an
additional constraint on Mk(x) similar to equation (9). Note that equation (9) together with
Neumann boundary conditions implies conservation, that is:

∫ lm

l0

u(x, t) dx =

∫ lm

l0

u∞(x) dx, (22)

for all t ≥ 0. Integrating (12) from x = l0 to x = lm, reversing the order of integration in the
resulting double integral and using (22) gives the required constraint on the solution of (16) for
the Neumann problem:

∫ lm

l0

Mk(x) dx = 0.

Incorporating this constraint into the linear system (19) yields the slightly modified form:

A =




0 −1
0 −1

lm − l0 1
2(l2m − l20)


 (23)

b =




G′k(l0)
G′k(lm)

Kk(l0)−Kk(lm)


 , (24)

where

Kk(x) =

∫
Gk(x) dx,

which has a unique solution provided that G′k(l0) = G′k(lm). Once ck,1 and ck,2 are identified
and Mk(x) is determined, the kth moment is computed as follows:

Mk(x) :=
1

h(x)
(Gk(x) + ck,1 + ck,2x) . (25)

Noting that M0(x) = 1 and hence M0(x) = h(x) = u∞(x)− u0(x), allows the Gk(x) functions
(18) and the moments to be calculated recursively, as outlined in Algorithm 1.
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Algorithm 1 (Moments)

M0(x) := u∞(x)− u0(x)
for k = 1, . . . , q

G′k(x) := − k
D

∫
Mk−1(x) dx

Gk(x) :=
∫
G′k(x) dx

Compute ck,1 and ck,2 by solving the linear
system defined by equations (19), (20) and
(21) or in the case of Neumann boundary con-
ditions the linear system defined by equations
(19), (23) and (24).

Mk(x) := Gk(x) + ck,1 + ck,2x

Mk(x) := Mk(x)/M0(x)
end

4 Transition time estimation

Using the moments, derived in the previous section, we now present three estimates of the

local transition time (Definition 1), labelled t
(n)
s (x) for n = 1, 2, 3. For each estimate, the

corresponding estimate of the global transition time is defined according to Definition 2 as:

t̂(n)s := sup
x∈R

t(n)s (x). (26)

4.1 Low accuracy estimates using the first and second moments

4.1.1 Mean action time

The mean action time MAT(x), which is often used as an estimate of the time required to reach
steady state [16, 22, 24], defines the following estimate of the local transition time (Definition
1):

t(1)s (x) := MAT(x) = M1(x). (27)

Although t
(1)
s (x) and the corresponding estimate of the global transition time t̂

(1)
s do not depend

on the tolerance δ, it will be interesting to investigate how closely the transient solution u(x, t),

evaluated at t = t̂
(1)
s , is to the steady state solution.

4.1.2 Mean plus one standard deviation of action time

For most problems, it is probably unreasonable to expect that t̂
(1)
s is an accurate estimate of the

time required to reach steady state since its unlikely that the cumulative distribution function

F (t;x) evaluated at t = t̂
(1)
s (x) is close to one1 for all x ∈ R since t

(1)
s (x) is the mean of the

distribution. Simpson et al. [24] suggest the mean action time plus one standard deviation of
action time (square root of the variance of action time) as a way to improve estimation. Hence,
we will also investigate the following estimate of the local transition time (Definition 1):

t(2)s (x) := MAT(x) +
√

VAT(x) = M1(x) +
√
M2(x)−M1(x)2, (28)

1Or equivalently that P (t ≥ t̂
(1)
s (x)) is small.
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which has been equivalently expressed in terms of the first and second moments. Analogously

to t
(1)
s , equation (28) also does not depend on the tolerance δ. We remark that the choice

of one standard deviation is subjective and there is no reason why any number of standard
deviations could not be used. However, we will not pursue this further as, unlike for the normal
distribution, in general one cannot determine the probability that a random variable is greater
than the sum of its mean and a given number of standard deviations.

4.2 High accuracy estimates using higher order moments

To estimate transition times, an accurate approximation of the cumulative distribution function
F (t;x) is required only for large t (relative to the problem) where u(x, t) ≈ u∞(x). The exact
solution of the diffusion problem (7) has the following functional form [25, 26]:

u(x, t) = u∞(x) +
∞∑

n=1

γn(x)e−tξn , (29)

where γn and ξn > 0 depend on the eigenvalues and eigenfunctions of the transient solution.
Inserting (29) into (3) it follows that the cumulative distribution function F (t;x) has the func-
tional form:

F (t;x) = 1−
∞∑

n=1

ζn(x)e−tξn , (30)

where ζn(x) = γn(x)/(u0(x)− u∞(x)). Assuming the ξ’s are arranged in ascending order (i.e.,
ξ1 < ξ2 < . . .) and ζ1(x) 6= 0, then the cumulative distribution function satisfies the following
asymptotic relation:

F (t;x) ∼ 1− ζ1(x)e−tξ1 for large t. (31)

The above analysis suggests an approximation to the large time behaviour of F (t;x) should be
sought in the form given below:

F (t;x) ' 1− α(x)e−tβ(x) for large t, (32)

where α(x) and β(x) are as yet unspecified functions.
If we can devise a method for accurately computing values of α and β that are close to

ζ1 and ξ1 then highly accurate transition time estimates can be calculated. The aim being, of
course, to achieve this without explicit calculation of the transient solution u(x, t) (i.e. without
explicit computation of any eigenvalues or eigenfunctions) and using only the moments: Mk(x)
for k = 1, . . . , q. The probability density function corresponding to the cumulative distribution
function (30) is given via differentiation:

f(t;x) =
∞∑

n=1

ζn(x)ξne
−tξn .

Using this form of f(t;x) in equation (6), the kth moment is found to be:

Mk(x) = k!

∞∑

n=1

ζn
ξkn
.
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Since ξ1 < ξn for all n = 2, 3, . . . it follows that Mk(x) satisfies the asymptotic relation:

Mk(x) ∼ ζ1k!

ξk1
for large k. (33)

This latter observation motivates the following pair of coupled equations satisfied by α(x) and
β(x), formulated by matching the (k − 1)th and kth moments:

α(x)

β(x)k−1
=
Mk−1(x)

(k − 1)!
,

α(x)

β(x)k
=
Mk(x)

k!
.

Provided both Mk−1(x) 6= 0 and Mk(x) 6= 0, the above system of equations can be solved
exactly to obtain the following explicit formulae:

αk(x) =
Mk(x)

k!

(
kMk−1(x)

Mk(x)

)k
,

βk(x) =
kMk−1(x)

Mk(x)
,

where we have included the subscript k on α and β to denote dependence on the (k− 1)th and
kth moments. We remark that Mk(x) > 0 and hence αk(x) > 0 and βk(x) > 0. The analysis
above leads to the following approximation of the large time behaviour of the exact cumulative
distribution function (30):

F (t;x) ' 1− αk(x)e−tβk(x) for large t, (34)

which involves only the moments Mk−1(x) and Mk(x). Following definition (4), equating the
right-hand side of (34) with 1 − δ and solving for t yields the following local transition time
estimate:

t(3)s (x) :=
1

βk(x)
log

(
αk(x)

δ

)
, (35)

where log is the natural (base e) logarithm. Note that t
(3)
s (x) increases with decreasing tolerance

δ, which is consistent with the fact that it takes a longer amount of time for the transient solution
to transition to within a smaller tolerance of its steady state. Moreover, we require δ ≥ αk(x)

for all x ∈ R to ensure the obvious physical constraint t
(3)
s (x) ≥ 0 is satisfied. Inserting the

expressions for αk(x) and βk(x) into (35), we obtain the following simple formula for estimating
the local transition time depending on the (k − 1)th and kth moments:

t(3)s (x) :=
Mk(x)

kMk−1(x)
log

[
Mk(x)

k! δ

(
kMk−1(x)

Mk(x)

)k]
. (36)

As a result of the asymptotic relation (33), we expect the accuracy of t
(3)
s (x) to increase as k

increases, and this hypothesis is tested in the Section 5.
Assuming δ = 10−p, where p > 0, gives the following alternative form:

t(3)s (x) :=
log(αk(x)) + p log(10)

βk(x)
, (37)
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which leads to the conclusion that for fixed k and increasing p, the local transition time estimate

t
(3)
s (x) increases linearly with slope log(10)/βk(x), e.g., the additional transition time required

when decreasing δ from 10−(p−1) to 10−p is equal to the additional time when decreasing δ from
10−p to 10−(p+1).

Interestingly, k = 1 gives α1(x) = 1 and β1(x) = 1/M1(x) since M0(x) = 1. In this case,
the approximation (34) simplifies to F (t;x) ' 1 − e−t/M1(x) for large t, which is nothing more
than the cumulative distribution function of the exponential distribution with mean M1(x). For
this simplest of cases, the estimate of the local transition time (36) reduces to the mean action

time multiplied by a correction factor depending on the tolerance: t
(3)
s (x) := M1(x) log(δ−1) ≡

MAT(x) log(δ−1).

5 Results and Discussion

To investigate the accuracy of the transition time estimates presented and developed in sections
4.1 and 4.2, we consider the following three test cases:

Case A:

D = 1.0, u0(x) = 0,

u(0, t) = 1,
∂u

∂x
(1, t) = 0.

Case B:

D = 0.01, u0(x) = 1,

u(0, t)− 0.1
∂u

∂x
(0, t) = 0, u(1, t) = 0.5.

Case C:

D = 0.1, u0(x) =

{
1 if 0.25 < x < 0.75,

0 else,

∂u

∂x
(0, t) = 0,

∂u

∂x
(1, t) = 0.

where in each case [l0, lm] = [0, 1]. Together, the above problems test each of the three types of
boundary conditions (Dirichlet, Neumann, Robin). Cases A and B resemble classical problems
in heat conduction. For example, in Case A, a bar initially at temperature zero is suddenly
heated at its left-boundary, how long does it take for the whole bar to heat up? On the other
hand, Case C is a typical problem in mathematical biology [8], where a region initially fully
occupied by cells (u(x, 0) = 1 for 0.25 < x < 0.75) is left to diffuse.

Each of the test cases satisfy the requirement that F (t;x) (3) defines a cumulative distribu-
tion function since, at each position x, the solution u(x, t) is either non-decreasing for all t > 0
if u∞(x) > u0(x) (as in Case A for all 0 < x < 1 and Case C for 0 < x < 0.25 and 0.75 < x < 1)
or non-increasing for all t > 0 if u∞(x) < u0(x) (as in Case B for all 0 < x < 1 and Case C
for 0.25 < x < 0.75). For Case C, if the region centered around x = 0 that is fully occupied by
cells, namely 0.25 < x < 0.75, is shortened, however, the monotonicity property is violated.

Recall the three global transition time estimates presented in this paper, namely t̂
(n)
s (n =

1, 2, 3), the definitions of which are reiterated below:

10



• t̂(1)s [Equations 27 and 26]
Based on using the mean or first moment of the probability distribution f(t;x) (5) (or
equivalently the mean action time) as an estimate of the local transition time, as described
in section 4.1.1.

• t̂(2)s [Equations 28 and 26]
Based on using the sum of the mean and standard deviation of the probability distribution
f(t;x) (5) (or equivalently the mean plus one standard deviation of action time) as an
estimate of the local transition time, as described in section 4.1.2 and previously by
Simpson et al. [24] and Jazaei et al. [14].

• t̂(3)s [Equations 36 and 26]
Based on using the higher order moments of the probability distribution f(t;x) (5) to
approximate the large time asymptotic behaviour of the cumulative distribution function
F (t;x) (3) as described in section 4.2

For each global transition time estimate, the maximisation problem implied by equation (26)

is solved by first noting that equation (26) is equivalent to t̂
(n)
s = −minx∈R[−t(n)s (x)] and then

using MATLAB’s fminbnd function with option TolX = 1e-14 [18]. To calculate the moments
we have implemented Algorithm 1 in MATLAB using the Symbolic Math Toolbox [20].

Recall that t̂
(3)
s depends on two parameters that are free-to-choose: the prescribed tolerance

δ and the index k which specifies which two consecutive moments (i.e., Mk−1(x) and Mk(x))
are utilised. Initially, we present results for δ = 0.02 and k = 2, with the tolerance value
chosen to ensure that the solution at the global transition time is visibly distinguishable, if only

slightly, from the steady state u∞(x). With k = 2, the local transition time estimate t
(3)
s (x)

(36) simplifies to:

t(3)s (x) =
M2(x)

2M1(x)
log

(
2M1(x)2

M2(x)δ

)
,

which is comparable to t
(2)
s (x) (28) in its simplicity and dependence on the first and second

moments only.
Figure 1 plots the solution u(x, t) of the diffusion problem (7) for each of the three test cases,

depicting the transition from initial to steady state. In these plots, u(x, t) is also given at each

of the global transition times estimates, with the calculated values of t = t̂
(n)
s for n = 1, 2, 3

(rounded to four decimal places) tabulated in Figure 1. In addition to the visual comparison
provided by Figure 1, in Table 1 we include errors:

ε(n)s = max
x∈R

[
u(x, t̂

(n)
s )− u∞(x)

u0(x)− u∞(x)

]
, n = 1, 2, 3, (38)

as a quantitive measure of how close the transient solution at each estimate is to the steady-

state solution. The transient solution u(x, t̂
(n)
s ) is evaluated by taking the first 50 terms in

the classical eigenfunction expansion solution [25, 26], which is more than sufficient since the

values of t̂
(n)
s are relatively large. For t̂

(3)
s , we compute errors corresponding to three different

tolerances δ = 0.02, 10−3, 10−5. Noting the definition of the local transition time (Definition 1),

ε
(n)
s ideally should be close to the prescribed tolerance δ.

The following observations can be drawn from Figure 1 and Table 1:

1. t̂
(1)
s underestimates the time required to effectively reach steady state for all three test

cases. The transition from initial to steady state is far from complete and this is confirmed

by the large values of ε
(1)
s in Table 1.
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Case t̂
(1)
s t̂

(2)
s t̂

(3)
s

A 0.5000 0.9082 1.7060
B 15.0251 27.3597 51.4401
C 0.3125 0.5677 1.0662

Figure 1: Plot of the transient solution u(x, t) of the diffusion problem (7) for (a) Case A,
(b) Case B and (c) Case C, depicting the transition from initial to steady state as well as the
solution at each of the global transition time estimates (defined in equations 26, 27, 28 and

36). The value of t̂
(3)
s is calculated using δ = 0.02 and k = 2. Arrows indicate the direction of

increasing time.

Case ε
(1)
s ε

(2)
s

ε
(3)
s ε

(3)
s ε

(3)
s ε

(3)
s

[k = 2, δ = 0.02] [k = 2, δ = 10−3] [k = 2, δ = 10−5] [k = 5, δ = 0.02]

A 0.3708 0.1354 0.0189 8.69e-04 7.64e-06 0.0200
B 0.3721 0.1356 0.0188 8.58e-04 7.43e-06 0.0200
C 0.3708 0.1354 0.0189 8.69e-04 7.64e-06 0.0200

Table 1: Errors (38), corresponding to the three different global transition time estimates

(defined in equations 26, 27, 28 and 36), for each of the three test cases. The value of ε
(3)
s is

calculated using different combinations of tolerance δ and moment index k.
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2. t̂
(2)
s significantly improves on t̂

(1)
s (as has been reported previously by Simpson et al. [24]

and Jazaei et al. [14] for a groundwater modelling problem), however, in all three test cases
it is clearly visible that the transition from initial to steady state is still not complete.

3. t̂
(3)
s uses the the same moments as t̂

(2)
s but produces a far superior estimate of the global

transition time with the transient solutions at t = t̂
(3)
s (see Figure 1) very close to steady

state. For all three test cases, the accuracy of t̂
(3)
s is quite remarkable. Using only the

first and second moments, t̂
(3)
s leads to errors ε

(3)
s that are less than, and very close to,

the prescribed tolerances of δ = 0.02, 10−3, 10−5 (Table 1). Taking higher consecutive
moments, that is increasing k, further improves accuracy since the asymptotic relation
(33) is more accurate for larger k. This is demonstrated by choosing k = 5, which gives

ε
(3)
s = 0.0200 = δ (to the four decimal places displayed) for all three test cases.

ts(x) t = t
(1)
s (x) t = t

(2)
s (x) t = t
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s (x) [k = 2] t = t
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Figure 2: Comparison of the exact transition time ts(x) (defined in equation 1) and local

transition time estimates, t
(n)
s (x) for n = 1, 2, 3 (defined in equations 26, 27, 28 and 36) for

(a) Case A, (b) Case B and (c) Case C. The function t
(3)
s (x) is shown for each combination of

tolerance δ = 10−1, 10−2, 10−3, 10−4 and moment index k = 2, 10.

In Figure 2, we plot the exact local transition time ts(x) (Definition 1) and local transition

time estimate t
(3)
s (x) (36) for all three test cases and four different choices of the tolerance

δ. To calculate ts(x) we solve equation (1) (with the first 50 terms used in the eigenfunction
solution expansion for u(x, t)) using MATLAB’s fzero function with the default tolerance [19].
Recall that ts(x) provides the finite time required for the solution at position x to transition to
within a specified tolerance δ of the steady state solution at position x (as defined in equation

1) and t
(3)
s (x) is an estimate of that value. The local transition time profiles are therefore useful

for determining the position(s) that take the shortest/longest time to reach steady state. For
example, for Case C, the steady state is reached in the longest time at x = 0, 0.5, 1 and the
shortest time near x = 0.25 and x = 0.75, where the solution u(x, t) = 0.5 = u∞(x) for all t > 0.

Both t
(1)
s (x) and t

(2)
s (x) are also useful in this regard as their shape follows closely that of ts(x):

for both Case A and Case C, the value of x that maximises/minimises t
(1)
s (x) and t

(2)
s (x) also

maximises/minimises the exact local transition time ts(x). As observed previously, increasing k
leads to a better match with the exact transition time, with the curves almost indistinguishable

for k = 10. Finally, one must take care when using t
(3)
s (x) for moderately large values of the

tolerance δ. As previously remarked in section 4.2, t
(3)
s (x) is non-physical if αk(x) < δ and this

behaviour is observed in Figure 2 for δ = 10−1 near x = 0 in Case A and near x = 1 in Case B.
This anomaly is tied to the inaccuracy of taking only the leading term in the transient solution
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u(x, t) (which is effectively being approximated in equation (32)) for moderately small values
of time t.

δ = 10−1 δ = 10−2 δ = 10−3 δ = 10−4 δ = 10−5 δ = 10−6

t̂s 1.0311 1.9643 2.8975 3.8307 4.7639 5.6971

t̂
(3)
s [k = 1] 1.1513 2.3026 3.4539 4.6052 5.7565 6.9078

t̂
(3)
s [k = 2] 1.0354 1.9948 2.9542 3.9136 4.8730 5.8324

t̂
(3)
s [k = 5] 1.0311 1.9643 2.8975 3.8308 4.7640 5.6973

Case A t̂
(3)
s [k = 10] 1.0311 1.9643 2.8975 3.8307 4.7639 5.6971∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 1] 1.17e-01 1.72e-01 1.92e-01 2.02e-01 2.08e-01 2.12e-01∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 2] 4.14e-03 1.55e-02 1.96e-02 2.16e-02 2.29e-02 2.38e-02∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 5] 4.54e-05 2.63e-06 1.23e-05 2.05e-05 2.52e-05 2.84e-05∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 10] 2.28e-09 5.79e-08 3.98e-07 5.45e-11 1.06e-10 2.39e-08

t̂s 31.0746 59.1707 87.2666 115.3624 143.4582 171.5541

t̂
(3)
s [k = 1] 34.5967 69.1934 103.7901 138.3867 172.9834 207.5801

t̂
(3)
s [k = 2] 31.1946 60.1603 89.1312 118.1046 147.0794 176.0552

t̂
(3)
s [k = 5] 31.0689 59.1697 87.2706 115.3715 143.4724 171.5733

Case B t̂
(3)
s [k = 10] 31.0749 59.1707 87.2665 115.3624 143.4582 171.5541∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 1] 1.13e-01 1.69e-01 1.89e-01 2.00e-01 2.06e-01 2.10e-01∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 2] 3.86e-03 1.67e-02 2.14e-02 2.38e-02 2.52e-02 2.62e-02∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 5] 1.83e-04 1.63e-05 4.64e-05 7.87e-05 9.86e-05 1.12e-04∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 10] 8.09e-06 1.55e-07 6.07e-08 1.26e-08 1.66e-08 3.63e-08

t̂s 0.6444 1.2277 1.8109 2.3942 2.9774 3.5607

t̂
(3)
s [k = 1] 0.7196 1.4391 2.1587 2.8782 3.5978 4.3173

t̂
(3)
s [k = 2] 0.6471 1.2467 1.8464 2.4460 3.0456 3.6453

t̂
(3)
s [k = 5] 0.6444 1.2277 1.8110 2.3942 2.9775 3.5608

Case C t̂
(3)
s [k = 10] 0.6444 1.2277 1.8109 2.3942 2.9774 3.5607∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 1] 1.17e-01 1.72e-01 1.92e-01 2.02e-01 2.08e-01 2.12e-01∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 2] 4.14e-03 1.55e-02 1.96e-02 2.16e-02 2.29e-02 2.38e-02∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 5] 4.56e-05 2.78e-06 1.26e-05 2.08e-05 2.51e-05 2.83e-05∣∣t̂s − t̂(3)s

∣∣/
∣∣t̂s
∣∣ [k = 10] 2.76e-07 2.02e-07 9.79e-08 3.20e-07 5.92e-08 7.36e-08

Table 2: Comparison of the exact global transition time t̂s (defined in equation 2) and the

global transition time estimate t̂
(3)
s (defined by equations 36 and 26) for each combinations of

tolerance δ = 10−1, 10−2, 10−3, 10−4, 10−5, 10−6 and moment index k = 1, 2, 5, 10.

In Table 2, the new global transition time estimate t̂
(3)
s is compared to the exact global

transition time t̂s for several values of the tolerance δ and index k. Using only the moments

and without explicit calculation of the transient solution u(x, t), it is evident that t̂
(3)
s is able to

very accurately estimate t̂s. Rough rule-of-thumb values are obtained for k = 1, while for k = 2,
the relative errors are all between 10−1 and 10−3 indicating an accuracy of at least one and at
most three significant digits. Increasing k increases the accuracy (due to the accuracy of the
asymptotic relation (33) improving) with at least 3 and and at most 6 significant digits obtained
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for k = 5, which is probably sufficient for most applications. For k = 10, one obtains the exact
value to all four decimal places displayed with the relative errors indicating an accuracy of
between 6 and 11 significant digits (inclusive).

To conclude this section, we provide some observations regarding the following generalised
version of Case A, where the constant diffusivity D is arbitrary and the boundary conditions
are specified as:

u(0, t) = cL,
∂u

∂x
(L, t) = 0.

For this problem, computing the three local transition time estimates and evaluating them at
x = L, where the maximum occurs, yields the following global transition time estimates:

t̂(1)s =
L2

2D
, (39)

t̂(2)s =
L2

2D

(
1 +

√
6

3

)
, (40)

t̂(3)s = γk
L2

D
log

(
θk
δ

)
, (41)

where γk and θk are constants that depend on the chosen moment index k.
Note that all three estimates are proportional to the diffusive timescale L2/D, differing only

by a multiplicative factor, which for t̂
(3)
s depends on the tolerance δ. As a result, for two different

diffusion processes, the question of which takes longer can be answered by choosing any of the
global transition time estimates (39)–(41) and comparing its value for both processes.

k γk θk |γk − 4/π2| |θk − 4/π|
2 0.4167 1.2000 1.14e-02 7.32e-02
4 0.4054 1.2712 1.60e-04 2.08e-03
6 0.4053 1.2732 2.03e-06 3.90e-05
8 0.4053 1.2732 2.51e-08 6.41e-07
10 0.4053 1.2732 3.10e-10 9.86e-09
12 0.4053 1.2732 3.83e-12 1.46e-10
14 0.4053 1.2732 4.72e-14 2.10e-12
16 0.4053 1.2732 5.83e-16 2.95e-14
18 0.4053 1.2732 7.20e-18 4.10e-16
20 0.4053 1.2732 8.89e-20 5.62e-18

Table 3: Computed values of the constants γk and θk that appear in the global transition time
estimate (41) for the generalised version of Case A.

Each of the global transition time estimates (39)–(41) were calculated in Maple2, where
exact fractional expressions for the constants γk and θk appearing in equation (41) can be
obtained. In Table 3, we give the corresponding values in decimal form and rounded to four
decimal places to improve readability. For increasing values of k, observe in Table 3 that γk and
θk are approaching the values 4/π2 (≈ 0.4053) and 4/π (≈ 1.2732). Hence, t̂(3) is approaching:

4

π2
L2

D
log

(
4

πδ

)
,

2with the environment variable Digits set to 50 [17].
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which is precisely the global transition time derived by using the leading term of the transient
solution, namely

u(x, t) ∼ cL
[
1− 4

π
exp

(
−D π2

4L2
t

)
sin
( π

2L
x
)]
,

in the definition of the local transition time (Definition 1), solving equation (1) for t and
evaluating the result at x = L, where the maximum occurs.

6 Conclusions

In summary, we have derived a simple formula, denoted by t
(3)
s (x) and given in equation (36),

for calculating a finite measure of the time required for a diffusion process to reach steady
state. This formula estimates the local transition time defined as the time required for the
transient solution to transition to within a prescribed tolerance 0 < δ � 1 of its steady state,
at position x. A finite measure of the time required for the entire diffusion process to reach

steady state is then obtained by evaluating t
(3)
s (x) at the value of x that produces a maximum.

This novel formula is attractive as it (i) avoids explicit calculation of the transient solution (ii)
depends only on the prescribed tolerance δ and the (k − 1)th and kth moments and (iii) can
be used to calculate the exact transition time to effectively any number of significant digits by

increasing k. Our results confirm that even for k = 2, for which t
(3)
s (x) utilises only the first and

second moments (or, equivalently, the mean and variance of action time), the accuracy is quite
remarkable. In all cases, the new approach comprehensively outperforms existing strategies
based on the mean action time and variance of action time, which while useful at characterising
the associated time-scale, significantly underestimate transition times for diffusion processes.

This paper has presented a proof-of-concept for the simple problem of homogeneous diffusion.
Future work will focus on extending the new method to heterogeneous and higher-dimensional
problems as well as other transport processes (e.g. advection-diffusion).
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