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Abstract— Indisputably Normalized Cuts is one of the most of [6]. The algorithm in [6] for optimizing objective funains
popular segmentation algorithms in pattern recognition and com-  that are submodular has the advantage of solving many thscre
puter vision. It has been applied to a wide range of segmentation problems exactly. However, not all segmentation problearste

tasks with great success. A number of extensions to this approac ¢,y ated with submodular objective functions, nor isaspible
have also been proposed, including ones that can deal Wltht . te i i lit traint

multiple classes or that can incorporate a priori information in 0 INCorporate linear (or affine) equality constraints.

the form of grouping constraints. However, what is common for The work described here concerns the former approach, Nor-

all these methods is that they are noticeably limited in the type malized Cuts, the relevance of linear grouping constraamtd

of constraints that can be incorporated and can only address how they can be included in this framework. A similar extensi
segmentation problems on a very specific form. In this paper, we tg include linear constraints for submodular objectivections

present a reformulation of Normalized Cut segmentation that was recently presented in [23].

in a unified way can handle linear equality constraints for an | i i traints into the Noraeadicut
arbitrary number of classes. This is done by restating the problem ncorporating general finéar constraints into the Noraeticu

and showing how linear constraints can be enforced exactly in the formulation was also attempted by [24]. In this work it waswh
optimization scheme through duality. This allows us to add group that by making additional assumptions about the segmentati
priors, for example, that certain pixels should belong to a given the porblem can be further relaxed to a simpler, globallyatae
class. In addition, it provides a principled way to perform multi-  minimization problem. This will however not solve the pretl
class segmentation for tasks like interactiv_e segmentation. The exactly and only return a lower bound solution to the Norzeali
meth_od has been tested on real data showing gqod performancecut relaxation.
and improvements compared to standard normalized cuts. . . . .
It is not the aim of this paper to argue the merits of one
segmentation method, or one cut metric, over another, navedo
|. IMAGE SEGMENTATION here concern ourselves with how the actual grouping cansira
Image segmentation can be defined as the task of partiti@amingare obtained. Instead we will focus on the optimization feob
image into disjoint sets. This visual grouping process Baglly and show through Lagrangian relaxation and duality how @me ¢
based on low-level cues such as intensity, homogeneity agém in a unified manner, handle such linear equality constraixastly
contours. Existing approaches include thresholding teci®s, and also in what way these constraints influence the regultin
edge based methods and region-based methods, see [5], [§6mentation.
[12], [18], [20], [22]. Extensions to this process includtse In addition to the extension of normalized cuts, a key contri
incorporation of grouping constraints into the segmeatafro- tion of this paper is the development of an efficient algonittor
cess. For instance the class labels for certain pixels nfight minimizing objective functions consisting of a ratio of giatic
supplied beforehand, through user interaction or some taielp  functions subject to linear equality constraints. Simiaijective
automated process [8], [18]. functions have appeared in many other computer vision appli
Currently the most successful and popular approaches fgitions, for example, [3], [19]. Our framework has the ptig#n
segmenting images are based on graph cuts. Here the imageignprove computational efficiency, in particular, fordarscale
are converted into undirected graphs with edge weights deriw problems.
the pixels corresponding to some measure of similarity. The
ambition is that partitioning such a graph will preserve soof )
the spatial structure of the image itself. These graph nusthg® Problem Formulation
were made popular first through the Normalized Cut formatati  Consider an undirected graph with nodesV” and edge#” and
of [20] and more recently by the energy minimization methodhere the non-negative weights of each such edge is repegsen



by an affinity matrixi?’, with only non-negative entries and of full W, and D the diagonaln x n-matrix with d on the diagonal. A
rank. A min-cut is the non-trivial subset A of V such that thers 1 is used to denote vectors of all ones. We can write (3) as

of edges betv_ve_er] nodes in A and its complement is minimized, N s wi(zi—z)? | S wi(zimzy)?
that is, the minimizer of cut = TS~ (1+z)d; + 2>, (1—2:)d;
_ ZT(D-W)z 2P(D-W)z _
cut(A, V) = Z Wy (1) = e T odra-n T
i€A 2d"1(zT(D-W)z)  2dT1(zT(D-W)z)
JeVAA = ITqaii—2TdTdTz — ZT((ATd)D—dd )z’ 4)

This is perh_aps the most commonly used _metho_d_for splittiqg the last inequality we used the fact thdtd = -7 Dz. When we
graphs and is a well known problem for which efficient SOIVeri%cIude general linear constraints eron the formCz = b, C €

e>§|st fpr 'f"“ge scale problems. It has however been obsehatd R™*™ the optimization problem associated with this partitimni
this criterion has a tendency to produce unbalanced cuigliemm cost becomes

partitions are preferred to larger ones. .
In an attempt to remedy this shortcoming, Normalized Cuts inf %
was introduced in [20]. It is basically an altered criterifor st ze{-1,1}"
partitioning graphs, applied to the problem of perceptuauging
in computer vision. By introducing a normalizing term infeet Cz=b. ®)
cut metric the bias towards undersized cuts is avoided. TiiBe above problem is a non-convex, NP-hard optimizatiot-pro

Normalized Cut of a graph is defined as: lem. Therefore we are led to replace the discrete {—1,1}"
cut(A, V) cut(B,V) ) constraint with the norm constraint = = n. This gives us the
Neut = assoc(A,V) = assoc(B,V) @ relaxed problem
where AUB = V, An B = () and the normalizing term is inf %
defined amissoc(A, V) = 3¢ 4 jey wij- Itis then shown in [20] ;t T
§ L zZTzZ=n

that by relaxing (2) a continuous underestimator of the {iméh)
Normalized Cut can be efficiently computed. These techmique Cz=hb. (6)
are then extended in [25] beyond graph bipartitioning tdude
multiple segments, and even further in [26] to handle ceripes section lll, we are able to solve this problem exactly. Negtwill

of linear equality constraints. write problem (6) in homogenized form. The reason for dolrig t

One can argue that the drawbacks of the original formulatiopy, become clear later on. Let and M be the(n + 1) x (n + 1)
for computing the Normalized Cut are that firstly, Obtai”ingnatrices

a discrete solution from the relaxed one can be problematic.
Especially in multiclass segmentation where the relaxédtisn L= [(DBW) 8] , M= [((1Td)€—ddT> 8] , (™)
is not unique but consists of an entire subspace. Then, the se
of grouping constraints is restricted. Only homogeneonsali and .
equality constraints can be directly included in the emgstheory, ¢=[C -} ®)

which is of limited practical use. We will show that this exdes the homogenized constraint matrix. The relaxed prob|en’c@)
many visually relevant constraints. In [7] an attempt is matl now be written

This is also a non-convex problem. However, as we shall see in

solving a similar problem with general linear constraintkis ' (.7 1]L[%]
approach does however involve dropping any discrete cainstr lgf T 1M[7]
all together, leaving one to question the quality or tigbtef st T.—n
the obtained underestimator. .
Cli]=0. )
I[I. NORMALIZED CUTS WITH GROUPING CONSTRAINTS Finally we add the artificial variable, ;. Let zZ be the extended

T
In this section we propose a reformulation of the relaxatibn vector [ZT Zn+1] . Throughout the paper we will write when
Normalized Cuts that in a unified way can handle all types &fe consider the extended variables and justhen we consider
linear equality constraints for any number of partitionssfFwe the original variables. The relaxed problem (6) in its hoeiged
show how we through duality theory reach the suggested reldgrm is

ation. The following two sections then show why this fornida i 3T
is well suited for dealing with general linear constraintsl daow % 2TMz
this proposed approach can be applied to multiclass segtimmnt s.t. 2,%+1 —-1=0
Starting off with the definition of Normalized Cuts in (2),eth Ts—pi1
cost of partitioning an image with affinity matrii into two AL
Cz=0. (10)

disjoint sets,A and B, can be written as
Note that the first constraint is equivalentio,; = 1. If 2,41 =
—1 then we may change the sign sto obtain a solution to our
original problem.
The homogenized constraint§z = 0 now form a linear
Let z € {—1,1}" be the class label vector, W thex n-matrix subspace and can be eliminated in the following way.]k}gtbe
with entriesw;;, d the n x 1-vector containing the row sums ofa matrix where its columns form a base of the nullspac€.dfet

D icA Wij E:ieg Wij
j€B Jje
Ncut = ]i + . (3)
€A ) Wi
. w. i€B Wij
XSy Zier




k+ 1 be the dimension of the nullspace. Aayulfiling C2 =0 for any e > 0. Therefore we must have that the optimal values
can be writtenz = Ny, whereg € RF1. As in the case with fulfill 74 < 44 < 4i. To complete the proof we show that =

the z-variables,j is the vector containing all variables whereas;. We note that for anyy < 47 we have that

y IS a vector containing all but the last variable. Assumingt th
the linear constraints are feasible we may always choosesia ba
such thatj, 1 = 2,41 = 1. We set

yTAgy + 2b3Ty +c3<0=
y" (A1 — yA2)y + 2(by — yb2) "y + 1 — ye2 > 0.

However, according to the S-procedure [4], this is true d anly

(20)

T T

Le=NgLNg and Mg = NoMNe. A1) if there exists > 0 such thatM (), ~) = 0. Therefore(y, A) is

In the new variables, the following formulation is obtained feasible for problem (18) and thug = ~7. [ |
T We note that for a fixed, the problem

inf M

g T Mev inf, " (A1 — yA2)y +2(b1 — vb2) Ty + e1 — e 21)

s.t. gi—1= st yTAsy+2b3y+e3<0

JTNENeG = 119ll%, = n+1. (12)  only has an interior solution ifl; —~A, is positive semidefinite.

. e . . . T
We will use f(3) to denote the objective function of this problem!! As iS positive semidefinite then we may subtracy” Asy +

A common approach for solving this kind of problem is to siynpl 2b3Ty +c3) for any (k > 0) from the objective function to obtain

drop one of the two constraints. This may however result -"yveboundary squtions.TThis giveg us the following corollary.
poor solutions. We shall see that we can in fact solve thislpro ~ Corollary 1: Lety " Asy+2b; y + ¢, be a positive semidefinite
exactly without excluding any constraints guadratic form, andis be positive semidefinite. If there exists a

y with 37 Asy + 2b3Ty + ¢3 < 0, then the primal problem
I1l. L AGRANGIAN RELAXATION AND STRONG DUALITY T Ay 2Ty + e

In this section we will show how to solve (6) using Lagrangian 'y yT Agy + 208y + 2

duqllty. We start by generalizing a lemma from [17] for trustand the dual problem
region problems.

Lemma 1:Let yT Ay + 262y + ¢» be a positive semidefinite

styl Asy+265y+c5=0 (22)

¢ yT (A1 + AA3)y + (b1 + Ab3) Ty + c1 + Aes

quadratic fo.rm. If there exists awith y© Azy + 26y + 3 < 0, Slip " yT Agy + 26Ty + ¢ (23)
then, the primal problem .
. . has no duality gap.
A 2b i

nf LAY+ ;y + 01, styTAgy+ 2Ty +e3 <0 (13) Next we will show how to solve a problem on a form related

v yT Aoy + 205y + c2 to (12). Let
and the dual problem i [Aib i [A2b2 i [Asbs

P A= o] A= o) A= 0]

T(Al + A3y + (b1 + Abg)Ty +c1 + Acs

sup inf 7 T (14)  Theorem 1:If A, and A3 are positive semidefinite, then the
220 ¥ vy  Agy + 263y + 2 primal problem
has no duality gap. T T
Proof: Sincey” Ayy + 262y + ¢ > 0, the primal problem inf y Ayt Qb;y Ta _
can be written as yT Asy+20F y+cs=n+1 yT Agy + 2b5y + c2
—_— — e DA gy
st yl (Ay — 71 A2)y +2(b1 —y1b2) Ty +e1 —y1e2 <0 9" Agg=nt1 g7 Azg
yTA3y+ 2bgy+ e3 < 0. Yntp1=1
) (15)  and its dual
Let M(X,~) be the matrix -
gl Ay +tyr g —t
_ A1+)\A37’YA2 b1+Abs—~b2 sup inf = n (25)
M) = | ] (16) ) "
Y (b1+)\b3—’yb2)T (11+)\(33—"YCQ : t QTA3?;:“+1 Yy A2y
The dual problem can be written has no duality gap.
SUprspinfrsy 2 Proof: Let v* be the optimal value of problem (12). Then
2,
= T ~T A A
17 * . 9" A1g
sit. [ 7{ ] M\, 72) [ 31’ ] <o. (7 SRR PLY WNIRE - v
yi+1:1
Since (17) is dual to (15) we have that for their optimal valjue _ . 9T Avgttyn
. . =supginf r; . Z_n
~v5 < ~i must hold. To prove that there is no duality gap we Y gy—f;rl 7T Azg
must show that; = ~7. We do this by considering the following Ynt1= o
problem, >supginf.p ;2 o M
sup V: E T Agg=nt1 97 A2g
S M) 20 (18) > supy  inf,, PATHIL AT s (1)
t. ,v3) = 0. > ainfy iy
Here M(\,~3) > 0 means thatM (), v3) is positive semidefinite. = sup, , infy
We note that ifM(X,~3) > 0 then there is ng fulfilling 97 A gtsy? 1 —s4AAyT Agy+yni126T y+es—(n+1))
T 3T Az -
Yy Yy 0T A6 T T oyt —
[ 1 ] M(X,73) [ 1 ] +e<0 (19) =sup, infyygl -1 g A1g+A(y A;g‘gjl; ytcz—(n+1))



T T T T
= sup,, inf, LALWF2 yert Ay Asy+2b; ytes—(nt 1)) and letd(7,¢) denote the Lagrangian function. The dual problem

T Ayy+2bty+ .
TTeTe is then
=7, (26) .
. )T (L +tEA))
where we lets = ¢ + ¢3 . In the last two equalities, Corollary 1 sup  inf 0(y,t) = W (30)
was used twice. The third row of the above proof gives us that ¢ 9l =ntt v Mey
) ) gT A + t%2L+1 _¢ The inner minimization is the well known generalized Ragfei
p-=sup inf T A~ = quotient, for which the minimum is given by the algebraigall
t §T Agg=n+1 g+ A2g ) : .
. ) T smallest generalized eigenvatuef (La+tEg) and M. Letting
—swp  int ! A1+ tyn gy — U5 A& (1) and vS, (t) denote the smallest generalized eigenvalue
t 4T Asf=n-+1 4T Agj and corresponding generalized eigenvector(bf, + tEx) and
T (2 A . M+, we can write problem (30) as
.0 (Av+e (1891 - ) 27) ¢ .
= su m =
tp gTASg}:nJ,-l QTAQQ Sl;p )‘min(Lé + tEC" Mé) (31)
[ |

) ) ) It can easily be shown that the minimizer of the inner probtdm
Finally, since strong duality holds, we can state the follmyv (30), is given by a scaling of the generalized eigenveat@), =
corollary. . . T o ([0S ()] v, )v5in (£). The relaxed Normalized Cut problem can
Coiollary 2.1t _angy_ solves (25), therty™)” Ng" =n+1 h,q be solved by finding the maximum of (31). As the objective
andy;,, = 1. Thatis," is an optimal feasible solution to (24).f,nction is the point-wise infimum of functions linear init is a
concave function, as is expected from dual problems. Sargplv
IV. THE DUAL PROBLEM AND CONSTRAINED NORMALIZED (31) means _maximizing a concave function in one varia_bteis _
can be carried out using standard methods for one-dimeasion

CuTs
. _optimization.
Returning to our relaxed problem (12) we start off by intro- Unfortunately,

ducing the following lemma.
Lemma 2: L and M as defined in (7) are botfm +1) x (n+1)

the task of solving large scale generalzigen-
value problems can be demanding, especially when the reatric

o e . ) / ! involved are dense, as the case is here. This can however be
positive semidefinite matrices of ramzk—Tl. Their 2-d|menS|oTnaI remedied. By exploiting the unique matrix structure we can
nulispaces are spanned by = [1 ... 1 0] andny =[0...01]". * rayrite the generalized eigenvalue problem as a standaed on
ConsequentlyL, and M, as defined in (11) are also positiver gt e note that the generalized eigenvalue prohfem= ABv
semidefinite. is equivalent to the standard eigenvalue problBm' Av = v,

if B is non-singular. Furthermore, in large scale applicatibis

t .PrO]?I:h L 'f? t[le zerto.-padde:.p%smve slemldefllr;lte Lapl%“??%asonable to assume that the number of variabled is much
matrix of the affinity matrixi¥” and is hence also positive semide ‘greater than the number of constraints Then the base for the

. . . . . T T .
|n|te_i_ For M |_td31:_ff|_<t:es to show that the matrid”d)D — dd” is null space of the homogenized linear constraiNts can then be
positive semidetinite, written on the formN = [ °]. Now we can write

o (T d)D = dd" o = 3, di 3, djol — (X divy)?

Mo = [€c0 T( ((1Td)yD—dd™) 0 y[eeo] =
=224, didjui(vj —vi) = 32 didivi (v; — v;) + e=1 D[ 01y O} e
— 1
+Zi,j<i didj’l)j(’l)j — ’Ui) + djdi'Ui('Ui — vj) = _ D:= 0 D2} _ |:D2 . 0 i| +
9 n d:[dl] 0 Cq Dico+1
Zi,j<i didj(v; —v;)° >0, Yo € R™. (28) da —_—
D
The last inequality comes from) > 0 for all ¢ which means that T ediidy 07 [ D1 L co
(1Td)D — dd"', and thus alsa/, are positive semidefinite. + [coT oTdy 1 ] { 1 71] {dl et dllcﬂ} =
The second statement follows since bdth; = Mn; = 0 for _V'—’%/—f
i=1,2. s N
Next, since =D+Vsv'. (32)
v Ly >0, Vo e R" = o1 Lv >0, Yo € Null(C) = . Hence, M, is the sum of a positive definite, diagonal matrix
N wTNCTLNCTw >0, Vw € RF = D and a Iow-rgnk cor.rectiorVSVT. As a direct rgsult of the
T 5 Woodbury matrix identity [11] we can express the inverse/f
= w Law >0, weR, as
it holds thatL ~ > 0, and similarly forM . ] -1 ~ T\—1
. ¢ o= .C . My =(D+VSV =
Assuming that the original problem is feasible then we have . (13 T(~ T ) )~ )
that, asf(f) of problem (24) is the quotient of two positive =D~ (I— V(ST +V D V) VD~ ) (33)

sem_|d_ef|n|te quadratic forms and th_erefcfr@) 'S non-neg_atlve_, Despite the potentially immense size of the entering medric
a minimum for the relaxed Normalized Cut problem will exist,

Theorem 1 states that strong duality holds for a program 5kr1]is inverse can be efficiently computed sine is diagonal

9 y prog and the size of the square matricésand (S—! + VI D~1v)
the form (24). Consequently, we can apply the theory frorgre both typically manageable and therefore easily indei@ur
the previous section directly and solve (12) through itsldua ypically 9 y

formulation. Let 1A generalized eigenvalue of two matricet and B is a scalarx =

NTN - TI__I ¢ AG (A, B) such that for a vectoo with ||v|| = 1, the equationdv = ABv
Ee [69] — =57% = Ng [ o 1] Ne (29)  has a solution.




generalized eigenvalue problem then turns into the proldém bipartition problem. At each iteration we have a problem loa t
finding the smallest algebraic eigenvalue of the mazuﬂg/rlLé. form

The dual problem becomes _ (Do
ap A (DN V(ST VT D)D) it J(2) = Sr@rarae
SyP Amin s.t. ze{-1,1}"

Not only does this reformulation provide us with the more ifam wherew, D, ¢ andb will be dependent on the current partition
iar, standard eigenvalue problem but it will also allow f@ry and choice of labels to be kept fixed. These matrices arermtai
efficient computations of multiplications of vectors tosttmatrix. by removing rows and columns corresponding to pixels not la-
This is a crucial property, since, even thouiiy. ~" (L +tEs)  beledi or j, the linear constraints must also be similarly altered to
is still dense, it is the product and sum of diagon@l ¢, E;), only involve pixels not currently fixed. Given an initial igion,
sparse L, Ng) and low rank matricesi(, S™'). It is a very randomly or otherwise, iterating over the possible choiges
structured matrix to which iterative eigensolvers can ssstully convergence ensures a multi-class segmentation thafiessts|
be applied. We will return to this in section VI-C. constraints. There is however no guarantee that this method
In certain cases it might however occur that the quadraiigll avoid getting trapped in local minimum and producing a
form in the denominator is only positive semidefinite andsthusub-optimal solution, but during the experimental valiatthis
singular. These cases are easily detected and must bedtregi®@cedure always produced satisfactory results.
separately. As we then can not invéff., and rewrite the problem
as a standard eigenvalue problem we must instead work with
generalized eigenvalues, as defined in (31). This is prefiera
avoided as this is typically a more computationally demagdi
formulation, especially since the entering matrices arasde In an attempt to keep the paper self-contained, this seetithn
Iterative methods for finding generalized methods for stmexl give an brief overview to one of the most important methods
matrices such ag; + tE and M4, do however exist [21]. Note available for computing eigenvalues and eigenvectors afela
that the absence of linear constraints is such a specia@niost matrices. This technique, known as the Lanczos algorittam, i
However, in that case homogenization is completely unrsaegs based on projections onto Krylov subspaces. This trivisgmesion
Problem (6) withCz = b removed is an standard unconstrainedf the simple power iteration turns out to give one of the most
generalized Rayleigh quotient and the solution is given ty tpowerful methods for extracting eigenvalues of large Héemi
generalized eigenvalugl, (D — W, (17d)D — dd™). matrices. The method was first introduced in 1950 [13] as a way
Now, if t* andg™ = (vam(t*)u%)vgm(t*) are the optimiz- of reducing an entire matrix to tridiagonal form. Unfortteig,
ers of (30), Corollary 2 certifies thay*)TNgNéy* —n+1and due toissues with round-off errors, the method failed naislrin
this capacity. However, twenty years later it was discodelet
despite this shortcoming the Lanczos algorithm is still fiective
tool for computing extremal eigenvalues and their eigetorsc
The Krylov subspaces associated with a square symmetric
matrix A € R™*"™ for a vectorq; is defined as

V. SOLVING LARGE-SCALE HERMITIAN EIGENVALUE
PROBLEMS

that gy, = 1. With 2 = [.7 | = Neg® and Zui1 = g,
we have that* prior to rounding is the minimizer of (6). Thus
we have shown how to, through Lagrangian relaxation, sdiee t
relaxed, linearly constrained Normalized Cut problem #xac
Finally, the solution to the relaxed problem must be diszeet
in prqler to obtain a'solution to the Qriginal binary probleﬁ).( Kp = Span{q1,Aq1,A2q1, _“7Ak71q1}7 (38)
This is typically carried out by applying some rounding stlee
to the solution. This simple type of subspace, which is uniquely determingd b
A and q1, is of considerable importance for numerous iterative
A. Multi-Class Constrained Normalized Cuts methods for extracting eigenvalues. It turns out that tlyerei
values of the projection of a symmetric mattixonto a Krylov
subspace approximates the actual eigenvalue$ wéry well. In
addition, there exists an orthogonal bagg for K, that reduces
% cut(A;, V) A to a tridiagonal form.
Neut = ZW (35) One way of finding an orthogonal basg, for a Krylov
= subspace of a general square matrxis through a Gram-
If one minimizes (35) in an iterative fashion, by, given therent Schmidt-like procedure known as the Arnoldi method, [1]isTh
k-way partition, finding a new partition while keeping allthwo  paseQ;, = [« 4= - a¢ ] is orthogonal by construction. It can also
partitions fixed. This procedure is known as the 5-swap when pe shown that each vecta = pj_1(A)q1, wherep;_; is a
used in graph cuts applications, [6]. The associated sbkgo (j-1)-th degree polynomial, and tha}, consequently spans,.

Multi-class Normalized Cuts is a generalization of (2) for a
arbitrary number of partitions,

at each iteration then becomes This base also has the property that it redugeso an upper
ok cut(A;V) cut(A;,V) Z cut(A;, V) Hessenberg matrix which means that the matrix has zerceentri
Ut assoc(A, V) | assoc(A;, V) = assoc(A, V) below the first subdiagonal. That is
cut(Ai, V) | cut(d;,V) o QL AQy, = Hy, (39)

- assoc(A;, V) assoc(A;,V) ) ] )
. . ' .. where H,, is upper Hessenberg. Further,Afis symmetric then
where pixels not labeled or j are fixed. Consequently, mini-

mizing the multi-class subproblem can be treated similaxlthe HkT = (QZAQk)T = QfAQk. = Hy, (40)



and hence;, must be tridiagonal. Consequently, the orthogon&ligorithm 5.2

base@; reducesA to the tridiagonal form Lanczos Method for Generalized Eigenvalue Problems
R M Begin with user supplied starting vectap.
T, = 0 B3 az ... 0 . (41) ro = Mug
SRR Bo = \Julr
0 0 .. Bk ok 070
po =10 .
So for Hermitian matrices the Arnoldi method can then befor ¢=1,2,... until convergence 1
simplified into what is known as the symmetric Lanczos method % ~— ui-1/Bi-1 1)
[16]. Uy = Agi — pi—18i-1 (2
o = q;»TfLi (3)
pi =1i/Bi—1 (4)
Algorithm 5.1 ZZ i?\}:gﬂi_ai Eg;
Lanczos Method for Symmetric Eigenvalue Problems v :
Bi = yJulr (7)
K3
Begin with go = 0 and user supplied starting vectay. end
Bo = |Irol|
for i =1,2,... until convergence
ai =ri—1/Bi—1 ) This algorithm produces a base fi, that tridiagonalizesA
b= Aq%' ) as before but instead of being orthogonal, is M-orthogonhat
@ =q;p (3) is
T =p— g — Bi—1¢i—1 (4) T
Bi = Il (5) Qk AQxk = Ti (43)
end Qi MQy = Iy, (44)

effectively reducing the generalized eigenvalue problem =
MMz again into a tridiagonal eigensystefs = 6s.

One of the major benefits of Lanczos methods is that the
< : entering matrices does not have to be directly defined, adste
orthogonal bas€), for K, that also tridiagonalized. However, they can be implicitly defined through operators that retuoa
in reality this orthogonality is usually lost in later itéi@n, owing A, M and M~'A acts upon arbitrary vectors, corresponding to
to round-off errors. In p_ractlcal Lanczqs algc_)rlthms sommrt of step (2) and (3) in algorithm (5.2). This makes this procedur
reorthogonalizing step is therefore typically incorperhtsee [16] especially well suited for the type of large sparse and sirad

In exact arithmetic arithmetic this algorithm will produes

for more on this topic. matrices we deal with in this work.
Originally, the Lanczos method was a procedure for tridiago
nalizing a matrix4, it is however its connection to the eigenvalues VI. EFFICIENT OPTIMIZATION

of A that makes it so interesting. Lét*) and s*) denote the

solution to the resulting tridiagonal eigensystdips — 0s after A Subgradient Optimization

k iterations. SinceC; C Ko C ... € Ky, = R™ it follows from First we present a method, similar to that used in [15] for
the Cauchy interlacing theorem that minimizing binary problems with quadratic objective fuiocis,
based on subgradients for solving the dual formulation af ou
A= A1 (A) = 95") <. < 952) < 951)4 (42) relaxed problem. We start off by noting thatés) is a pointwise

infimum of functions linear int it is easy to see that this
is a concave function. Hence the outer optimization of (25)
it will will produce a decreasing sequence of eigenvald d is a concave maximizqtion problem, as is expected from dual
that approaches;. A natural consequence is then to tak&) prob_ler_n_s. Thus a solution tc_> th? dual proplem can be found by
[paximizing a concave function in one variabileNote that the

and s*) as approximations of the eigenvalues and eigenvecto
of A, with A = 6%) andv = Qs(¥). By continuing the Lanczos choice of norm does not affect the value @ft only affects the

method, solving the& x k systemT} s = 6s at each iteration and mllr:ITIZS\/riélj I known that the eigenval e analvii nd
terminating when the norm of the residuﬁ((&Q—a(’“))s(k)H) IS theres diffgr)(/entiaf)l )fun?:ti ne aes?en 1U?§ aaer ?uti;tlyl'hcu (a
sufficiently small, we can obtain eigenvalues that are iy y & ons as fong as ey are S

close to);. From computational point of view, a crucial propert)}o [? er;dpfn:() l;feec;:ustf:%ee?ni%cfgtf r;ethkc)) d ;Xfegteed tol consider
here is also the tridiagonality df,,, since such such eigensystem&u gradients. i subgradient [Z}].[

- . i . wktl ;
can be solved extremely efficiently. This clearly motivates use Deaqun L1f a funpt|0n g : R . R s concave, then
of Krylov subspaces. veR is a subgradient tg at o if

The Lanczos procedure 5.1 can easily be extended to handle g(o) < g(oo) +UT(J —o00), Vo€ RFHL, (45)
generalized eigenvalue problem for positive definite syimime One can show that if a function is differentiable then thewd¢ive
matricesA and M. We present this algorithm here without anyis the only vector satisfying (45). We will denote the set 8f a
further discussion, see [16]. subgradients of; at a pointty by dg(tp). It is easy to see that

Consequently, a side effect of the Lanczos algorithm (% 1hat



this set is convex and if € dg(to) thenty is a global maximum.
Next we show how to calculate the subgradients of our probler
Lemma L:If go fulfills F(go, o) = 6(to) and|lgollx, = n+1, -

0

—0.02]

then -0.04 ~0.04
gg Egio -0.06 -0.06
v= ~T ~ (46) —0.08} —Objective function \ —0.08l| —Objective function|
y() Mé’yo |- - - Approximation |- - -Approximation
© Global optima © Global optima
is a subgradient of at tq. If ¢ is differentiable atty, thenwv is 04 02 0 02 04 06 08 -04 02 0 02 04 06 08

the derivative ofg at tg.
Proof: The statement follows from

0 ————- SN

-0.02 —-0.02]

~T ~ ~T ~
Do Lo ttERG b0 (Lo ttEg)o _

T TN A0 = ST 0
191 ‘?Vc =1 Y MCy Y0 Mcyo -0.06 -0.06
T N T N — : —
Io (Le +toEe)o | G0 Eebo _ 008l imaton | B [ o
~T N ~T N (t - to) - ©_ Global optima ©_ Global optima
Yo MéyO Yo M@yO 04 -02 0 02 04 06 08 04 -02 0 02 04 06 08

=0(tg) + v (t — to). (47)
Fig. 1. Approximations of a randomly generated objective fiomcafter the
B first four iterations of the algorithm.

1) A Subgradient Algorithm:Next we present an algorithm
based on the theory of subgradients. The idea is to find a simpl
approximation of the objective function. Since the funetibis Lethy = at+bandh_ = ct+d be the asymptote as— +oco
concave, the first order Taylor expansi@it), around a point;, respectively. To finds we need to compute the limit value 8@
always fulfills f;(¢) < f(t). If ; solve.':,infllmffw:n+1 F(g,t;) ast— oo.

and this solution is unique then the Taylor expansiof af ¢; is . 0(t) o1 . QT(LC +tEa)g
a= lim — = lim - |min——m——+—| = (51)
0:(t) = F(gi,ts) + " (t — t:). (48) e b et A 0 Mey
L . o o . 197L~g  9TEAg
Note that if; is not uniquef; is still an overestimating function = lim min [ - (CLA — C7 ) = (52)
sincew is a subgradient. tmoo g \EGTMpy  §7 Mey
One can assume that the functi®n approximatest well . gTEég} A (Ea M) = gleEégl 53
in a neighborhood around = ¢; if the smallest eigenvalue is - mgmg Mg =M(Bg M) = 9T M i (53)
distinct. If it is not we can expect that there is somesuch that ©
min(0;(t), 0, (t)) is a good approximation. Thus we will constructSimilarly for the asymptote atco we get
a functiond of the type
yp c= i @ =\ (-Ep, M) = (54)
0(t) = inf F(g;,t;) + v (t —t;) (49) T .
il TE
. . . . = (B, M) = 2ncVn (55)
that approximate® well. That is, we approximat® with the e QZ[Mégjn

point-wise infimum of several first-order Taylor expansiccem-
puted at a number of different values #fan illustration can be
seen in Fig. 1. We then take the solution to the problem 6(t),

where\; and \,, are the smallest and largest generalized eigen-
values of(E4, M), the corresponding eigenvectors are denoted
71 and g,

given by Finding b requires us to computém; .o 0(t) — at.
SUp; o & ~T o
< F(h , 50 Lo +tEg
a < F(fi,ti) + v (t—t;), Vi € I, timin <t < timax 0) b= lim 6(t) —at = lim (mjn W) (56)
. . .- - b=oo \ 9 y- Mey
as an approximate solution to the original dual problem.etHer T CAT !
the fixed parameters,,;,,, tmaz are used to express the interval N Een P Lein (57)
for which the approximation is believed to be valid. Lt 9 Main 91 Mgain

denote the optimizer of (50). It is reasonable to assume &ha’And d becomes
approximates) better the more Taylor approximations we use in S
the linear program. Thus, we can improgeby computing the d= lim 0(t)—ct= YnLeyn (58)
first-order Taylor expansion aroung, ;, add it to (50) and solve ——00 9 Mgn

the linear program again. This is repeated ufiify; — tx| < Thus initializing the algorithm only requires finding the-ex
e for some predefined > 0, andty; will be a solution t0 ;0o eigenvalues for the pendiE, M). As this does not

Supy e(t.)-. o involve the Laplacian matriX. » this eigenproblem can be solved
2) Initialization: In order for the problem (50) to have Avery little computational effort.

meaningful (finite) solution the sdt needs to have at least size

two. Further more, since the function is concave, there rbast

i€landj eI (i#j)suchthat; < t* < t;, wheret* is B. A Second Order Method

the optimal solution. In order to achieve this we will stanet  The algorithm presented in the previous section uses fidgror
algorithm by using the asymptotic behavior 4if). derivatives only. We would however like to employ higher erd



methods to increase efficiency. This requires calculategpsd At each step in the Newton method, a new iterate is found by
order derivatives of (25). Most formulas for calculating second approximating the objective function is by its second-ortheylor
derivatives of eigenvalues involves all of the eigenvextand approximation
eigenvalues. However, determining the entire eigensysenot (1)
feasible for large scale systems. We will show that it is jlies 0(t) = 0(t;) + 60" (L) (t — t;) + Tl(t —t;)? (67)
to determine the second derivative of an eigenvalue fundip
solving a certain linear system only involving the corresfiog
eigenvalue and eigenvector.
The generalized eigenvalues and eigenvectors fulfill tHevie
ing equations, b 0’ (t;)
i+1 = gll(ti)
R If ;41 is not in the interval[tyin, tmax] then the second
||y(t)HNc~ =n+1 (60)  order expansion can not be a good approximation,dfere the
safeguarding comes in. In these cases we simply fall back to
the first-order method of the previous section. If we sudeeks
store the values of(¢;), as well as the computed subgradients at
these points, this can be carried out with little extra cotaponal
(B —)\’(t)Mé)g(t) +((Lg +tEp) —XOM)F (t)=0. (61) effort. Ther_1, t_he upper and lower bounds;, and tmax are
updated,: is incremented byl and the whole procedure is
This (k + 1) x (k 4+ 1) linear system ing’(t) will have a rank repeated, until convergence.
of k, assuming\(k) is a distinct eigenvalue. To determiné(t) If the smallest eigenvalug(;) at an iteration is not distinct,
uniquely we differentiate (60), obtaining then ¢ (¢) is not defined and a new Newton step can not be
computed. In these cases we also use the subgradient dgradien
method to determine the subsequent iterate. However, @alpir
studies indicate that non-distinct smallest eigenvalues ex-
tremely unlikely to occur.

and finding its maximum. By differentiating (67) it is eassligown
that its optimum, as well as the next point in the Newton sagege
is given by

+ t;. (68)
(La +tEa) — M) Mp)g(t) =0 (59)

To emphasize the dependence orwe write A\(¢) for the
eigenvalue andj(¢) for the eigenvector. By differentiating (59)
one obtains

G (NN (8) = 0. (62)

Thus, the derivative of the eigenveciglt) is determined by the
solution to the linear system

[(chit(gfv)éé\x;%] §'(t) = [“EGJ”\/S)MC”)"’“) . (63) C. Approximating Derivatives of Eigenvalues and Eigernwect

The use of second order derivatives for maximizing (25), as
discussed in the previous section, should significantlyuced
the number of required iterations. The algebraic expres&io

0" (t) in (65) does have a significant disadvantage. It requires

If we assume differentiability at, the second derivative @f(t)
can now be found by computingza’(t), wheref’ (t) is equal to
the subgradient given by (46),

. d d g(t)TEég t solution of a very large linear system (63), this task can e a
07 (t) = 59 (t) = dt g(OTM -~ (t) (64) demanding as determining the smallest generalized eigeneh
2 T , , (LC+tEC"MC')'
= — 0" (t) (Eg — 0" (t)Mp) §'(t). (65)  This means that we reduce the number of iterations but also

PR e
GOT Myt increase the computational effort needed at each step.isn th
1) A Modified Newton AlgorithmNext we modify the algo- section we discuss how one can compute an approximation of
rithm presented in the previous section to incorporate ¢wersd the second derivative of the smallest eigenvalue.
derivatives. Note that the second order Taylor expansiomots  The underlying idea is best explained by, instead of (63),
necessarily an over-estimator &f Therefore we can not use thelooking at the unconstrained optimization problem
the second derivatives as we did in the previous section. . T T
Instead, as we know to be infinitely differentiable when the min 27 (Le + tEq = AMe)e = 207 (69)
smallest eigenvalue\(¢) is distinct, strictly convex around its Since(Lg +tEg — AMp) = 0 and (L +tEg — AMg)v =0, a
optimumt*, Newton’s method for unconstrained optimization cago|ution to this problem is given by* = (Le+tEp _AMC)JFI"
be applied. It follows from these propertiesdif) that Newton's o which +72* = 0 , thus minimizing (69) is equivalent to
method [2] should be well behaved on this function and thapying (63).
we could expect quadratic convergence in a neighborhood ofit we now constrain the above program to some m-dimensional
t*. All of this, under the assumption thatis differentiable in linear subspac® of R™ we get
this neighborhood. Since Newton’s method does not guagante
convergence we have modified the method slightly, addingesom $€III;1CDR" ol (Lg + tEq — AMp)z — 2b7 . (70)
safeguarding measures. ] B )
At a given iteration of the Newton method we have evaluatdeftting U be a base for> we can write (70) as

6(t) at a number of points;. As 6 is concave we can easily min  yTUT (LA +tE~ — AM AUy — 267 Uy. (71)
find upper and lower bounds afi, denoted byt,,in, tmax, by yeER™ ¢ ¢ ¢
looking at the derivative of the objective function for teeslues The optima of this problemy* will most likely not be equal
of t = ¢, to z* and will hence only be an approximate solution to (70).
From th ivalen roblem n con ntly al
foax = min f;, andtp. = max b, (66) om the equivalence to problem (63); can consequently also

1307 (£;)<0 507 (£)>0 be regarded as an approximate solution to that linear syaiam



have thatz*)" (L +tEs—AMg)a* —20" 2" < (y*)"UT (Ls+ overt was carried out using a golden section search, typically

tEs — AMp)Uy" — 26" Uy*, obviously with equality ifm =n.  requiring 15 — 20 eigenvalue calculations. The relaxed solution
How well the solution to (71) approximates (63) will clearlywas discretized by simply thresholding at O.

depend on the subspade, so a great deal of care is needed Firstly, we compared our approach with the standard Nor-

when choosing/. Ideally, the resulting system should also onenalized Cut method, Fig. 2. Both approaches produce similar

that can be solved with relative ease. It turns out that trse ba

for the Krylov spaceQ, associated with the matrices

tEs and My is a good choice. As this base is has already

been computed when determining the generalized eigersalue

(La+tEg, Mg) no additional work is needed. Recalling thiag

simultaneously tridiagonalizes both, + tEx and M, that is

Qi (Ly +tEz)Q) = Tj, and Qf M4 Qy, = 1, insertingQy, into

(71) gives

min 3" QY (Lg + 1B~ AM)Qry 2" Qry = (72)

= yT (T}, — M)y — 2b" Qyy. (73)

A solution to this problem is given by* = (T}, — )J)'*'ng, Fig. 2. Image segmentation using the standard Normalized @otitim
with Z = Q,y an approximate solution to (70) will then be (left) and the reformulated Normalized Cut algorithm with nonstraints
(right).
- T T
T = Qi (T — M) " Q. (74)
Since typicallyk << n, we now have not only a much Smallerresults, suggesting that in the absence of constraints viloe t

problem but also one that is tridiagonal, such systems can fﬁémulatlons are equwalent_. However, where our approarm_ h
solved extremely efficiently. the added advantage of being able to handle linear contstrain

Combining (74) with (65) we can give a formulation for an .The s_implgst such constraint might be th.e hard coding of some
approximation of the second derivative of our objectivection pixels, i.e. pixeli should belong to a certain class. This can be

(25) expressed as the linear constrainis= +1, i = 1,...,m. In
_, " Fig. 3 it can be seen how a number of such hard constraints
0x(t) = —b" &= (75) influences the segmentation of the image in Fig. 2.
-2

=t WM = E)TQuTi — AN QL (WM ~ E)u (76)

Sincev = Qs and (T, — A)s = 0 we can simplify this
expression to

N -2 7T
Ne(t) =~y v B Qu(Tk = A1) T QB (77)
We can now use the approximation &f(t) in the Newton-

like method of section VI-B.1 in order to maximize the coneav
Lagrangian dual function (25). However since we now onlyehav
an overestimating approximation éf () we can not be certain
of how this method will now behave. In the following section
we wil .ShOW expe.”mentally that the approximationdf(z) stil Fig. 3. Image segmentation with constraints (left) and cairss applied
results in an efficient algorithm. (right).

VIl. EXPERIMENTAL VALIDATION . - . .
Another visually significant prior is the size or area of the
The experiments are divided into two separate parts. Thee fifgsulting segments, that is, constraints suchys; =17z = a.
one evaluates the proposed reformulation of Normalized @l The impact of enforcing limitations on the size of the patis
linear grouping constraints. The second part evaluatediffeeent js shown in Fig. 4.
numerical methods, discussed previously, for efficientiviag Excluding and including constraints such as, pixehnd j
the resulting optimization problem. should belong to the same or separate partitiensy z; = 0
or z; — z; = 0, is yet another meaningful constraint. The result
A. Normalized Cuts Reformulation and Linear Grouping Corbf including a combination of all the above types of constisi
straints can be seen in Fig. 5.
A number of experiments were conducted to evaluate ourFinally, we also performed a multi-class segmentation with
proposed formulation but also to illustrate how relevarduei linear constraints, Fig. 6.
information can be incorporated into the segmentation ggec  We argue that these results, not only indicate a satisfactor
through non-homogeneous, linear constraints and how #ms @erformance of the suggested method, but also illustrage th
influence the partitioning. relevance of linear grouping constraints in image segntienta
All images were gray-scale of approximately 100-by-10G@[sx and the impact that they can have on the resulting partitgni
in size. The affinity matrix was calculated based on edgerinfoThese experiments also indicate that even a simple rounding
mation, as described in [14]. The one-dimensional maxitiira scheme as the one used here can often suffice. As we threshold
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Fig. 4. Original image (top left), segmentation without coaisits (top

middle) and segmentation boundary and constraints appligdright). Seg-

mentation with area constraints, (area=100 pixels) (midefg, segmentation Fig. 5. Original image (top left), segmentation without coaisits (top mid-

boundary and constraints applied (middle right). Segmentatiith area dle), segmentation boundary and constraints applied (g)riSegmentation

constraints, (area=2000 pixels) (bottom left), segmematioundary and Wwith hard, including and excluding, as well as area constsaiarea=25% of

constraints applied (bottom right). the entire image) (middle left), segmentation boundary andtcaints applied
(middle right). Segmentation with constraints, (area=25@Ig) (bottom left),
segmentation boundary and constraints applied (bottont)rigtere a solid
line between two pixels indicates an including constraamty a dashed line

at zero, hard, including and excluding constraints arersbeed an excluding.
to hold after discretizing. Only the area constraints aré no

W
%ﬁ'

guaranteed to hold, however, since the relaxed solutiontheas
In this section a number of experiments were conducted in an
9

correct area, thresholding it typically produces a digcestiution
attempt to evaluate the suggested numerical approacheseAs

B. Numerical Experiments

with roughly the correct area.

are mainly interested in maximizing a concave, piece-wifferd Ui
entiable function, the underlying problem is actually se/hat
irrelevant. However, in order to emphasize the intendedtjma
application of the proposed methods, we ran the subgradient
modified Newton algorithms on both smaller, synthetic peafs
as well as on larger, real-world data. For comparison plﬂ$)0§:i9- 6. Original image (top left), three-class segmentatiithaut constraints

. - (top middle), segmentation boundary (top right). Threesclasgmentation
we also include the results of a golden section method [Z{d USyith hard, including and excluding constraints (bottomt)lefegmentation

in [9], as a baseline algorithm. boundary and constraints applied (bottom right).
First, we evaluated the performance of the proposed methods
on a large number of synthetic problems. These were created
by randomly choosing symmetric, positive definit@0 x 100 Finally, we applied our methods to two real world examples.
matrices. As the computational burden lies in determining t The underlying motivation for investigating an optimizatiprob-
generalized eigenvalue of the matrix pendil, +tEx, M) we lem of this form was to segment images with linear constsaint
wish to reduce the number of such calculations. Fig. 7 shbes tusing Normalized Cuts. The first image used was the same as
required number of eigenvalue evaluations for the subgradiin Fig. 3. The linear constraints included were hard constsa
method, the Newton method and its approximation, as well gsat is, the requirement that that certain pixels shoulerglto
the baseline golden section search. the foreground or background. The second image is of a traffic
The two Newton methods clearly outperform the subgradieintersection where one wishes to segment out the small dhaein
approach and golden section search. The difference bettheentop corner. We have a probability map of the image, giving the
standard Newton and the approximate Newton methods is tikelihood of a certain pixel belonging to the foregroundere
as discernible. It appears that the approximation of the dinsl the graph representation is based on this map instead ofdlye g
second order derivatives of the smallest generalized eide® level values in the image. The approximate size and location
produced by the base of the Krylov space is sufficiently aateur of the vehicle is known and included as linear constraind int
to ensure fast convergence. the segmentation process. The resulting partition can ee e
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45 T

—*— Golden Section

— — — Subgradient

— — Approximate Newton
Newton

I I I
0.01 0.001 0.0001 1e-005 1e-006

Fig. 7. The average number of eigenvalue evaluations retjuise the
different algorithms, as a function of tolerance, for 100thetically generated
experiments.

Fig. 9.

In both these real world cases, the resulting segmentatitbn w
always be the same, regardless of approach. What is differen
is the computational complexity of the different methodsic®
again, the two gradient based approaches are much morereffici
than a golden section search, and their respective perfmena
comparable. As the methods differ in what is required to aatep
a direct comparison of them is not a straight forward procedu .
Comparing the run time would be pointless as the degree to
which the implementations of the individual methods haverbe
optimized for speed differ greatly. However, as it is theeaig
value computations that are the most demanding we beliate th .
comparing the number of such eigenvalue calculations welab

good indicator of the computational requirements for tiferént Fig- 8. Top: Resulting segmentation (left) and constraimslied (right).
h It can be seen in Fig. 8 and 9 how the sub rad.Here an X means that this pixel belongs to the fo_rgground ancDan
approaches. 9. gradighte background. Bottom: Convergence of the modified Newtmiid),

methods converge quickly in the initial iterations only tovs subgradient (dashed) and the golden section (dash-daitgdjithms. The
down as it approaches the optimum. This is in support of tigorithms converged after 9, 14 and 23 iterations, respgti
above discussion regarding the linear appearance of tratidun

0(t) far away from the optimum. We therefore expect the modified . .
N(ez/vton mei/hod to be stJperior when higher accpuracy is reahuirz)y simple thresholding at 0. Even though we can guarantee tha
prior to rounding fulfills the linear constraints, this istno

In conclusion we have proposed three methods for emc'entiyecessarily true after thresholding and should be addiesse

optimizing a piece-wise differentiable function using bdirst- . ; .
. . - .. simpler constraints, as the ones used here, rounding schifiaie
and second order information applied to the task of paniiti . . . .
PP P 9 ensure that the linear constraints hold can easily be divise

images. Even though it is difficult to provide a completelgac . . . . S
rate comparison between the suggested approaches it isuabvfn'depth discussion on different procedures for discatiin is

that the Newton based methods are superior. OUtS.'de the scope Of. the present paper.
Finally, the question of properly initializing the multiass

partitioning should also be investigated as it turns out ths
choice can affect both the convergence speed and the final.res

VIIl. CONCLUSIONS

We have presented a reformulation of the classical Noredliz
Cut problem that allows for the inclusion of linear grouping ACKNOWLEDGMENTS
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