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Abstract—Stereo matching is an inherently difficult problem
due to ambiguous and noisy texture. The non-convexity and non-
differentiability makes local linear (or quadratic) approximations
poor, thereby preventing the use of standard local descent
methods. Therefore recent methods are predominantly based
on discretization and/or random sampling of some class of
approximating surfaces (e.g. planes). While these methods are
very efficient in generating a rough surface estimate, via either
fusion of proposals or label propagation, the end result is usually
not as smooth as desired. In this paper we show that, if the
objective function is decomposed correctly, local refinement of
candidate solutions can be performed using an ADMM approach.
This allows searching over more general function classes, thereby
resulting in visually more appealing smooth surface estimations.

I. INTRODUCTION

In the last decade considerable progress has been made
in dense stereo matching, largely due to the availability of
powerful regularizers for handling ambiguous and noisy data.
The most common are the first order regularization priors [1],
[2], [3]. One reason for their popularity is that robust move-
making algorithms such as α-expansion [1] or fusion moves [4]
capable of modifying large numbers of pixels simultaneously
can be applied. Such moves are essential for avoiding poor
local solutions.

First order methods often implicitly assume fronto-parallel
planes. For example, standard piecewise smooth (e.g. truncated
linear or quadratic) pairwise regularization potentials assign
higher cost to surfaces with larger tilt with respect to the
camera [1]. To model surfaces more accurately Birchfeld and
Tomasi [5] introduced 3D-labels corresponding to arbitrary
3D planes. However, this approach is limited to piecewise
planar scenes. To address more general scenes recent papers
use 2nd derivative regularization [6], [7], [8]. There are two
ways of modeling such higher order smoothness potentials.
Woodford et al. [8] retain the scalar disparity labels while using
triple-cliques to penalize 2nd derivatives of the reconstructed
surface. This encourages near planar smooth disparity maps.
The optimization problem is however made substantially more
difficult due to the introduction of non-submodular triple
interactions. In contrast, [6], [7] use 3D-labels corresponding
to tangent planes to encode 2nd order smoothness as pairwise
interactions. It is shown in [6] that in contrast to the triple-
cliques used by Woodford et al. [8] the 3D-label formulation is
often submodular (or near submodular) making fusion moves
easier to solve optimally using standard methods like Roof
duality [9].

While these methods are very efficient in generating a
rough surface estimate the end result is usually not as smooth

as desired. Since proposals are often planar or piecewise planar
[8] approximations of the surface, a very large number of
tangents have to be generated in order to achieve a smooth
result. In this paper we focus on local methods for minimizing
the 2nd order stereo energy. Such approaches can be used to
generate proposals (in the form of locally optimal surfaces)
which can then be fused with the current solution.

The energies considered have three features that make
local optimization difficult; First, the parametrization of the
pairwise interaction is non-linear resulting in non-convex least
squares terms. Second, the interaction is truncated to preserve
discontinuities in the scene. This makes local optimization
difficult since the Taylor approximation can be an arbitrarily
bad approximation of the function (even locally). And third,
the data term is based on photo consistency of local patches,
making it highly non-convex with lots of local minima, see
Figure 1. In this paper we show that with the right parametriza-
tion all of these difficulties can be addressed within an ADMM
framework [10]. We show that the use of local optimization in
the proposal generation process results in smoother and more
visually appealing surface estimates.

II. STEREO AND FUSION MOVES

A. Energy

The goal of stereo reconstruction is to compute a depth
estimate for every pixel in an image. Doing so requires that
every pixel in the image is matched to a corresponding pixel
in another image. Due to ambiguous texture this matching is
rarely unique and as a result the stereo problem is most often ill
posed. Resolving these ambiguities requires adding knowledge
of the types of surfaces that we can expect to see in natural
scenes, in the form of regularization.

The problem is therefore typically formulated as an energy
minimization problem of the form

min
z
E(z) (1)

where

E(z) =
∑
p

∑
q∈N (p)

Epq(z) +
∑
p

Ep(z). (2)

The function z represents the sought depth map and N (p)
is a predefined neighborhood to p. Throughout the paper we
will think of our assignments as samples of the underlying
depth function. The value z(p) represents the assignment at
pixel p. The term Ep is a data term that only depends on
the assignment at the particular pixel p. Typically this term



is based on some measure of photo consistency. For a given
assignment z(p) its value can be computed by backprojecting
into another image and comparing pixel appearance. In our
work we will use normalized cross correlation between a 3×3
patch with center at p in the original image and a patch with
center at the backprojection point.
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Fig. 1: The dataterm Ep for three pixels in the Örebro Castle
dataset.

Photo consistency based measurements such as this one
generally results in noisy and ambiguous functions. Figure 1
shows Ep for three typical pixels in the Örebro Castle dataset.
To handle this the smoothness term Epq is added to the
energy. (By the subscript pq we mean that it only depends
on the assignments at p and q.) This term is meant to
penalize unrealistic assignments such as surfaces with high
depth variation. The simplest possible interaction is the so
called Potts model, which adds a penalty if neighboring depth
assignments are different [1]. In this work we follow [6] which
uses a slightly more complicated interaction that penalizes
second order smoothness, see Figure 2. In addition to assigning
a depth z(p) we also assign a depth gradient ∇z(p) to pixel p,
which allows us to determine the tangent of z at p. To enforce
smoothness we extend the tangent at p to q and measure
the difference Vpq to the depth assignment at q. Intuitively,
if the function is smooth then the tangent should be a good
approximation, and therefore Vpq should be small. Note in
particular that planar depth functions do not incur any penalty.

B. Fusion Moves

Optimizing energies, such as (1), is difficult since Ep is
often non-convex and even non-differentiable. An approach
that has been effective are the so called fusion moves [4].
Given two assignments z0 and z1 we fuse them into a new
one with lower energy by solving

min
x∈{0,1}n

E
(
x · z0 + (1− x) · z1

)
, (3)

where · is element-wise multiplication. These moves are very
effective since they allow changes of a large number of pixels
at the same time. In addition they are not local and can
therefore escape bad local minimas. In the case of pairwise
energies, such as (1), the fusion move can be solved using
standard methods [9], [11].

The candidate solutions are typically selected by randomly
sampling functions from some low dimensional class, for ex-
ample [8], [6] use planes and piecewise planes. The motivation
for using such a subclass of functions is that sampling can
be made very efficient and the resulting solution typically
approximates the optimal solution well. However to achieve
truly smooth estimations we need to go beyond a fixed class
of functions and generate more general surfaces. In this work
we show that for the stereo energies that we consider this can
be done efficiently using local optimization. Our strategy will
be to mix the usage of random sampling of planes with local
refinement to generate proposals which are then fused with the
current solution.

III. PARAMETRIZATION OF THE INTERACTION

In order to do local refinement we need to find a
parametrization of the distance Vpq . In [6] the tangent plane at
p is parametrized using a unit normal np and a scalar dp via
the affine plane equation nT

px−dp = 0. Such a parametrization
does however introduce a non-linear constraint (‖np‖2 = 1).
In addition this parametrization introduces a singularity. If the
tangent plane is selected such that it contains the entire viewing
ray, then no unique depth can be determined for that pixel.

I qp

(p, 1)z(p)
(q, 1)z(q)

Vpq

(q, 1)k

Fig. 2: The regularization interaction Vpq measures the de-
viation from the neighboring tangent along the viewing ray.
Note that interactions are modeled in depth space, working in
disparity space would require a modified model.

In the following, we instead derive an expression for the
distance Vpq in terms of the assigned depths z and gradients



∇z at the points p and q. The point (q, 1)k is the intersection
between the tangent plane and the viewing ray at q. The line
between (p, 1)z(p) and (q, 1)k is contained in the tangent
plane and can therefore be found by linearizing the curve (p+
tv, 1)z(p+ tv), where v is a unit vector such that q = p+sv
for some s. We get

l(t) =

(
p
1

)
z(p) + t

((
p
1

)
z′v(p) +

(
v
0

)
z(p)

)
.

(4)
At the intersection point (q, 1)k, we have

l(t) = k

(
q
1

)
= k

((
p
1

)
+ s

(
v
0

))
. (5)

Identification of the coefficients yields

k = z(p) + z′v(p)t, (6)

s =
z(p)t

z(p) + z′v(p)t
⇔ t =

sz(p)

z(p)− sz′v(p)
. (7)

Therefore we get the residuals

k − z(q) = z(p)2

z(p)− sz′v(p)
− z(q). (8)

IV. ENERGY AND OPTIMIZATION

Next we formulate the optimization problem. We denote
the regularization terms

Vpq(z) =
z(p)2

z(p)− sz′v(p)
− z(q). (9)

The energy consists of a regularization term and a data term∑
p

∑
q∈N (p)

h (Vpq(z)) + λ
∑
p

Dp(z). (10)

Here Dp is a data term that evaluates the cost of the assigned
depth for pixel p. We will assume that this function is densely
sampled such that its global minima can be found by simply
searching all the sample points. The one dimensional function
h is typically of the form h(x) = min(|x|p, τ) where τ is
some threshold level and p ∈ {1, 2}. The only assumption we
make is that it is piecewise differentiable so that the minimum
can be found by computing stationary points.

Optimizing energy (10) is typically very challenging since
the data term is often non-differentiable with lots of local
minima. In addition, the smoothness term is a sum of non-
convex functions. To handle these problems we decouple the
terms by introducing two new sets of variables; xpq and yp.

We constrain these variables to be xpq = Vpq(z) and yp =
z(p). The Augmented Lagrangian [10] is now

L(x, y, z, λ) =
∑
p

∑
q∈N (p)

h(xpq)

+
∑
p

∑
q∈N (p)

λpq(xpq − Vpq(z))

+ σ
∑
p

∑
q∈N (p)

(xpq − Vpq(z))2

+
∑
p

(
λp(yp − z(p)) + σ(yp − z(p))2

)
+

∑
p

Dp(yp). (11)

When applying ADMM we get the subproblems

min
xpq

h(xpq) + λpq(xpq − Vpq(z)) + σ(xpq − Vpq(z))2 (12)

min
z

∑
p

( ∑
q∈N (p)

λpq(xpq − Vpq(z)) + σ(xpq − Vpq(z))2

+
(
λp(yp − z(p)) + σ(yp − z(p))2

))
, (13)

min
yp

λp(yp − z(p)) + σ(yp − z(p))2 +Dp(yp) (14)

In addition we obtain the dual update rules (see [10])

λk+1
pq = λkpq + σ(xpq − Vpq(z)), (15)

λk+1
p = λkp + σ(yp − z(q)). (16)

This decoupling of terms has the following positive effects:
The terms h(xpq) and Dp(yp), that are non-smooth and
difficult to approximate locally, end up in two different sub-
problems both of which are separable and where optimization
can be carried out over individual pixels separately, greatly re-
ducing the search space. The coupling between pixels appears
in problem (13) where the involved functions are smooth and
can be optimized locally using standard descent methods. In
the following subsections we outline our solution strategies for
the individual problems.

A. Problem (12)

To solve (12) we first note that the optimum must be in
either a stationary point or in a transition between differen-
tiable segments of the function h. Since we will be using
h(xpq) = min(|xpq|, τ) in the experiments we illustrate the
process using this choice. We get four cases:

1) |xpq| > τ . Taking derivatives of (12) gives

λpq + 2σ(xpq − Vpq(z)) = 0. (17)

Solving for xpq gives the stationary point. Note that
the solution may violate |xpq| > τ . In this case the
solution is false and there is no stationary point in
the interval. However since we compare the energies
of all ”candidate” minimizers we do not have to test
for this. We are guaranteed that one of the candidates
is the global minimizer of (12).

2) −τ < xpq < 0. In this case the stationary point is
given by

−1 + λpq + 2σ(xpq − Vpq(z)) = 0. (18)

3) 0 < xpq < τ . Here the stationary point is given by

1 + λpq + 2σ(xpq − Vpq(z)) = 0. (19)

4) In addition we need to test the two transition points
xpq = ±τ and xpq = 0.

B. Problem (13)

The objective function in (13) is similar to non-linear
least squares problem. We will apply a Levenberg-Marquart
approach to solve it. We linearize the residual

xpq −
(

z(p)2

z(p)− sz′v(p)
− z(q)

)
. (20)
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(a) Our parametrization.
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(b) Using unit normals.
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(c) Using unit normals at a larger scale.

Fig. 3: The effects of parameterizing the problem using the parametrization with unit normals form [6] instead of our
parametrization. Green curve shows our approximation and the blue curve the exact error function. For our parametrization the
approximation cannot be distinguished from the exact function. Using unit normals at a larger scale gives visible singularities.

Note that yp−z(q) is already linear in terms of the unknowns
(z(p),z(q) and z′v(p)), and does therefore not require modifi-
cation. The approximation that we make using linearization is
in fact in most cases very accurate. This can be heuristically
explained by looking at the equivalent expression

xpq −
(
z(p) + sz′v(p) +

(sz′v(p))
2

z(p)− sz′v(p)
− z(q)

)
. (21)

Assuming that s is small (recall that this is the distance
between pixels) the nonlinear term is likely to be neglectable
for reasonable values of the derivative z′v(p).

Figure 3 shows an example plot of the exact error function
and its least squares approximation, that is, residuals are
linearized into Aδ−b and the non-linear least squares objective
is approximated with ||Aδ − b||2. Here δ represents the incre-
ment in the assignments z,∇z. We plot the functions in the
direction −2AT b which is the gradient of the approximation.
(The data for this figure was taken from the first iteration
of local refinement of Örebro Castle, see Figure 5.) For
comparison we also plot the approximation obtained when
parameterizing with unit normals as in [6]. Note that the two
parameterizations are the same in some (possibly very small)
local neighborhood. Therefore their linear approximations will
be the same. However, it can be seen from Figure 3 that the unit
normal parametrization deviates faster from its approximation.
In addition it has singularities.

C. Problem (14)

Since the function Dp is one dimensional and sampled
densely it is easy to optimize it by simply searching the sample
values. To solve (14) we simply recompute the samples of Dp

by adding

λp(yp − z(p)) + σ(yp − z(p))2 (22)

to Dp(yp) and chose the optimum as the best new sample.

V. IMPLEMENTATION AND RESULTS

In this section we test our proposed approach. We compare
two approaches; Fusion moves with sampled planar proposals
without local refinement vs. with local refinement. In all of
the experiments we use normalized cross correlation (with a
minus sign to get a minimization) with patch size 3 × 3 as
data term. As regularization term we use the truncated L1

term h(Vpq) = min(|Vpq|, τ). For the specific choices of λ
and τ see Figure 5. For local refinement we use the ADMM
approach. Since the problem is not convex convergence is
not guaranteed for fixed σ. Therefore we start with σ at a
low value (0.1 in our implementation) and slowly increase it
each iteration to a high value (10 seems to be enough for
convergence). The specific update rule is

σk+1 = ησk, (23)

where η is determined by ensuring σk is 10 in the last iteration.

Fig. 4: Comparison of 3D-point positions in unregularized and
regularized solutions for the Eglise dataset. Left: unregularized,
Right: Regularized. The surface reconstruction (viewed from
a different viewpoint) of the regularized solution can also be
seen in Figure 5.

In Figure 4 we show the difference between an unregular-
ized solution and one obtained with regularization. We only
show the 3D-points since the unregularized solution does not
have any normal estimation. (A surface reconstruction of the
regularized solution is displayed in the results in Figure 5).



In Figure 5 we show the results of applying the two
competing approaches to 4 datasets of varying difficulty; From
smooth highly textured surfaces (Église du Dôme) to non-
smooth untextured surfaces (Nijo Castle). Note that, in addition
to ambiguous texture, the Nijo Castle data set contains people
that have walked around between images making the data term
incorrect at these positions. We do not handle this in any spe-
cial way other than applying more regularization. In all of these
cases, the fusion moves provide solutions that approximate
the underlying surfaces well. However, the planar nature of
the proposals gives the appearance of piecewise planarity. In
contrast, with local refinement the resulting surfaces have a
much smoother appearance and at the same time capture fine
details better. In addition the local refinement also repairs some
defects, most likely caused by insufficient sampling, such as
the hole visible on the roof of the Nijo castle gate.
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Image No local refinement (E: 14028). With local refinement (E: 13411). Local refinement and texture.

(a) Église du Dôme, Paris. (λ = 0.5, τ = 0.18)

Image No local refinement (E: 7661). With local refinement (E: 7424). Local refinement and texture.

(b) Skansen Lejonet, Gothenburg. (λ = 0.5, τ = 0.2)

Image No local refinement (E: 25823). With local refinement (E: 23559). Local refinement and texture.

(c) Örebro Castle, Örebro. (λ = 0.5, τ = 0.16)

Image No local refinement (E: 5471). With local refinement (E: 5254). Local refinement and texture.

(d) Nijo Castle, Kyoto. (λ = 0.5, τ = 0.67)

Fig. 5: Reconstructed stereo surfaces, the energy of each solution is given inside parenthesis. After local refinement the energies
are lower and the surfaces are more detailed.


