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Abstract

In this thesis we work on a model of string inflation called fibre inflation
where the inflaton is a 4D string modulus which parametrises the size of
an internal 4-cycle in the six extra dimensions. We investigate whether
this inflationary model can predict a tensor-to-scalar-ratio of order r ≈ 0.01
which might be detectable in the near future. The main constraint comes
from the amount of axionic dark radiation produced from the inflaton
decay at reheating. Very light axions are a generic feature of 4D string
models and behave as extra neutrino species which give rise to ∆Neff , 0.
We first analyze the inflationary dynamics and derive the predictions for
the spectral index ns and the tensor-to-scalar ratio r as a function of the
number of e-foldings Ne under the requirement of generating the correct
measured amplitude of the density perturbations. We then focus on reheat-
ing. We start by computing the inflaton couplings to all particles in our
model: MSSM fields in the visible sector (open strings living on D7-branes
wrapping internal 4-cycles) and light axions belonging to the hidden sector
(closed strings living in the bulk of the extra dimensions). This computa-
tion allows us to derive the dominant inflaton decay channels which are
into Higgses, gauge bosons and light axions. In turn, these decay rates lead
to a clear prediction for the reheating temperature Trh ∼ 1010GeV and the
amount of dark radiation ∆Neff ∼ 0.5− 0.6.
These values require Ne ∼ 57 which can allow for ns ' 1.000 and r ' 0.01 in
agreement with Planck observations in the presence of extra dark radiation.
We finally point out that, due to the high inflationary scale Minf ∼ 1016GeV,
the supersymmetry breaking scale turns out to be too high to yield a correct
Higgs mass around 125 GeV. This tension can be easily overcome if the
visible sector is a simple extension of the MSSM like the NMSSM.
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Sommario

In questo lavoro di tesi consideriamo un modello di inflazione di stringa
chiamato fibre inflation, dove l’inflatone è un modulo di stringa 4D che
parametrizza la dimensione di un 4-ciclo nelle sei dimensioni extra. Veri-
ficheremo se questo modello inflazionario può predire un tensor-to-scalar-
ratio dell’ordine di r ≈ 0.01, il quale potrebbe essere osservato in un
prossimo futuro. Il vincolo principale proviene dall’ammontare di ra-
diazione oscura assionica prodotta dal decadimento dell’inflatone durante
il reheating. Assioni molto leggeri sono una proprietà generale di modelli
di stringa 4D e si comportano in modo simile ai neutrini dando origine a
∆Neff , 0.
Per prima cosa analizzeremo la dinamica inflazionaria e deriveremo le
predizioni per lo spectral index ns e il tensor-to-scalar-ratio r come funzioni
del numero di e-foldings Ne con il vincolo di generare la corretta ampiezza
delle perturbazioni di densità. Ci concentreremo poi sul reheating. Inizier-
emo con il calcolare gli accoppiamenti dell’inflatone a tutte le particelle
del nostro modello: campi del MSSM nel settore visibile (stringhe aperte
che vivono su D7-brane che wrappano 4-cicli interni) e assioni leggeri
che appartengono al settore nascosto (stringhe chiuse che vivono nel vol-
ume delle dimensioni extra). Questa calcolo ci consentirà di determinare
i decadimenti dominanti dell’inflatone, i quali sono nei bosoni di Higgs,
nei bosoni di gauge e negli assioni leggeri. Questi decadimenti conducono
ad una chiara predizione per le temperature di reheating Trm ∼ 1010 GeV e
l’ammontare di radiazione oscura ∆Neff ∼ 0.5− 0.6.
Questi valori richiedono Ne ∼ 57 i quali consentono ns ' 1.000 e r ' 0.01
in accordo con le osservazioni di Planck in presenza di extra radiazione
oscura. Notiamo infine che, a causa della elevata scala inflazionaria Minf ∼
1016 GeV, la scala di energia della rottura della supersimmetria risulta
essere troppo elevata per avere una corretta massa dell’Higgs intorno ai
125GeV. Questo problema può essere facilmente risolto se il settore visibile
è una semplice estensione del MSSM come il NMSSM.
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Chapter 1

Introduction

The recent discovery of gravity waves gives us another spectacular confir-
mation of General Relativity and it starts a new epoch in the exploration of
the Universe. In fact, gravitational radiation provides us new ways to look
at our Universe. However, General Relativity is far from be a fundamental
theory of gravitation, since it describes gravity only at the classical level.
Moreover, the Standard Model of cosmology, which is based on General Rel-
ativity supplemented by the Standard Model of Particle Physic, has many
flaws, both theoretical and experimental in nature, despite its undeniable
success. Inflation provides a possible solution of the problems of the Stan-
dard Model of cosmology: inflationary models assume that the Universe
has undergone a period of exponential expansion at its very early stages.
This expansion is driven (in the simplest models) by a single scalar field,
called inflaton, whose quantum perturbations lead to the formation of large
scale structures and the anisotropies of the CMB observed nowadays. Actu-
ally, there are two types of quantum fluctuations around a homogeneous
background that occur during inflation:

• inflaton δφ, which is the source of scalar perturbations

• metric δgµν , giving rise to tensor perturbations

The tensor-to-scalar ratio r is essentially the ratio between the power spec-
trum of tensor and scalar perturbations. Since gravity waves can be seen as
perturbations of the metric tensor, a relatively large tensor-to-scalar-ratio
acts as marker of gravity waves in the early stages of the Universe, i.e.
primordial gravity waves. A tensor-to-scalar ratio of order r ≈ 0.01 is in
range of near future experiments and its detection would be a smoking
gun for primordial gravity waves.



1. Introduction

A useful observable related to r is the spectral index ns, which essentially
measures the scale invariance of the power spectrum of the density pertur-
bations. It appears that the spectral index ns is positively correlated with
the number of neutrino-like species, ofter referred to as dark radiation.
Hence the amount of dark radiation constraints the predictions for ns and
r.

Together with General Relativity, the Standard Model of particle physic
represents one of the cornerstones of our current understanding of Nature
down to 10−18 m, which is the smallest length actually probed with the
LHC. The Standard Model of Particle Physic has been tested so far with
great accuracy and the discovery of the Higgs boson in 2012 has signed
the complete affirmation of this theory. Despite its outstanding success,
it turns out to be only an effective field theory of a more fundamental
one. A compelling theory which can accommodate gravity and quantum
mechanics in an unified framework is instead string theory.
From a cosmological perspective, it includes many scalar particles which
can play the rôle of the inflation, making possible to embed an inflationary
model in the low-energy limit of string theory.

In this thesis we will work on a model of inflation derived from string,
named fibre inflation, which can easily predict a high tensor to-scalar ratio.
The aim of this work is to find out if fibre inflation can predict a tensor-to-
scalar ratio of order r ' 0.01 which is consistent with current experimental
constraints. This thesis has the following structure:

• Chapter two is a brief description of dark radiation

• Chapter three is an overview of global supersymmetry and the MSSM

• Chapter four is focused on the supergravity low-energy limit of string
compactifications, supersymmetry breaking soft terms and moduli
fields

• Chapter five illustrates the fibre inflation model. We shall perform
a numerical evaluation so as to give a range of values for ns and r
consistent with the COBE normalisation of the density perturbations

• Chapter six contains the main results of this thesis. We will carry out
our analysis by calculating the decay rates of inflaton, the reheating
temperature and the number of extra neutrino species. All this infor-
mation combined together allow us to conclude that r ' 0.01 is viable
in fibre inflation.
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Chapter 2

Dark Radiation, neutrinos and
axions

2.1 Lambda-CDM model

The cosmological counterpart of the Standard Model is the ΛCDM model:
it is a parametric version of the Hot Big Bang paradigm with Dark Energy
and Dark Matter. More precisely, it assumes that the accelerated expansion
of the Universe is due to a cosmological constant Λ i.e. from vacuum energy
density, while non baryonic matter are Cold Dark Matter.

2.1.1 Review of standard cosmology

The Hot Big Bang theory is based under the assumption that the evolution
of the Universe is described in term of General Relativity. We briefly recall
here some concepts about cosmology. We start with the Einstein’s field
equations

Rµν − 1
2
Rgµν = 8πGT µν +Λgµν

Assuming that the Universe

• is isotropic and uniform

• is filled with a perfect fluid (in other words, timelike geodesics do not
intersect except that in a singular point in the past and may be in a
singularity in the future)

and using comoving coordinates, the solution of the Einstein field equation
is the Friedmann-Robertson-Walker (FRW) metric:
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ds2 = dt2 − a2(t)
[ dr2

1− kr2 + r2
(
dθ2 + sin2θdφ2

)]
(2.1.1)

Here, the scale factor a(t) characterizes the relative size of spacelike hyper-
surfaces Σ at different times. The curvature parameter k is +1 for positively
curved Σ, 0 for flat Σ, and −1 for negatively curved Σ. It is possible to study
the evolution of the homogeneous and isotropic Universe with only one
function, the scale factor a(t): the behaviour of the scale factor depends on
the energy-momentum tensor and so it depends on the energy and matter
content of the Universe. For a perfect fluid the energy momentum tensor is

T µν = (ρ+ p)uµuν − pδµν (2.1.2)

where ρ and p are respectively the proper energy density and pressure in
the fluid rest frame and uµ is the 4-velocity of the fluid. In a frame that is
comoving with the fluid we may choose uµ = (1,0,0,0) and so

T µν = (ρ+ p)δ
µ
0δ

0
ν − pδµν (2.1.3)

Thus, we can recast the Einstein equations in two coupled, non linear
ordinary differential equations called the Friedmann equations

H2 ≡
( ȧ
a

)2
=

1
3
ρ − k

a2 +
1
3
Λ (2.1.4a)

Ḣ +H2 =
ä
a

= −1
6

(ρ+ 3p) (2.1.4b)

where H is the Hubble parameter H , defined as

H B
ȧ
a

(2.1.5)

Equations (2.1.4a) and (2.1.4b) can be combined into a continuity equation:
in fact, if we derive (2.1.4a) respect to the time, we obtain

2HḢ =
1
3
ρ̇+ 2k

ȧ

a3

and putting this expression into (2.1.4b) leads to

−H
3

(ρ+ 3p)− 2H3 =
1
3
ρ̇+ 2

kH

a2

If we substitute the first Friedmann equation in the previous expression,
we can write the following continuity equation

ρ̇+ 3H(ρ+ p) = 0 (2.1.6)

4



Section 2.1. Lambda-CDM model

Using the fact that

a
ȧ

d
dt

=
a
ȧ

da
dt

d
da

= a
dln(a)

da
d

dln(a)
=

d
dln(a)

the continuity equation can also be written as

dln(ρ)
dln(a)

= −3(1 +ω) (2.1.7)

if we define the equation of state parameter

ω =
p

ρ
(2.1.8)

Eq. (2.1.7) may be integrated to give

ρ ∝ a−3(1+ω) (2.1.9)

We can now find the form of the scale factor by solving eq. (2.1.4a) with
the energy density given by the previous expression. In the case of a flat
Universe (k = 0) the solution of the Friedmann equation is

a(t) ∝

t

2
3(1+ω) ω , −1
eHt ω = −1

(2.1.10)

The contributions to the overall energy density are mainly divided in
non-relativistic matter, relativistic matter (or radiation) and dark energy. In
general, the Universe may have non-vanishing spatial curvature. For a flat
Universe dominated by one kind of matter, the energy density and the scale
factor are

ρ ∝



a−3 non-relativistic matter domination ω = 0
a−4 radiation domination ω = 1

3
a0 cosmological constant domination ω = −1

(2.1.11)

a(t) ∝



t2/3 non-relativistic matter domination ω = 0
t1/2 radiation domination ω = 1

3
eHt cosmological constant domination ω = −1

(2.1.12)

In the presence of more matter species with non negligible energy densities,
the first Friedmann equation (2.1.4a) becomes

H2 =
1
3

(ρM + ρrad + ρΛ + ρcurv) (2.1.13)

5



2. Dark Radiation, neutrinos and axions

where ρM , ρrad, ρΛ are respectively the energy densities of non-relativistic
matter, relativistic matter (“radiation”) and dark energy, and by definition

1
3
ρcurv = − k

a2 (2.1.14)

is the contribution due to spatial curvature. Let us introduce the critical
density ρc by

ρc B 3H2
0 (2.1.15)

Remember that in cosmology is customary to label with a subscript ‘0’ a
quantity evaluated at the present time t0. Using the following parameters

ΩM =
ρM,0
ρc

Ωrad =
ρrad,0

ρc
ΩΛ =

ρΛ,0
ρc

Ωcurv =
ρcurv,0

ρc
(2.1.16)

the first Friedmann (2.1.4a) takes the form

H2 =
1
3
ρc

[
Ωmatter

(a0

a

)3
+Ωradiation

(a0

a

)4
+ΩΛ +Ωcurv

(a0

a

)2
]

(2.1.17)

If we evaluate the previous equation today, we get the consistency relation

1 = Ωmatter +Ωradiation +ΩΛ +Ωcurv

while the second Friedmann (2.1.4b) at t = t0 becomes

1

a0H
2
0

d2a0

dt2
= −1

2
(Ωmatter + 2Ωradiation +−2ΩΛ) (2.1.18)

2.1.2 Experimental evidence for dark radiation

Measurements of the Baryon Acoustic Oscillation (BAO) and of the Cosmic
Microwave Background (CMB) combined with redshift and brightness
measurements of supernovae (SNe) were able to drastically constrain the
Ωi . These observations working out that the Universe we live in is almost
exactly flat i.e his spatial curvature is near to zero (Ωk ≈ 0). Moreover, the
Ωi measured are [1]

Ωradiation ≈ 5 · 10−5 Ωmatter ≈ 0.27 ΩΛ ≈ 0.73 (2.1.19)

with ωΛ ≈ −1. Non relativistic matter is divided in baryonic matter, that
is observable through electromagnetic radiation, and dark matter, which
instead does not interact electromagnetically and strongly.

Ωbaryons ' 0.046 ΩDM ' 0.23 (2.1.20)

6



Section 2.2. Dark radiation and extra neutrino species

Dark matter can be firstly classified in non thermal and thermal. Thermal
dark matter is originated via decoupling from a thermal bath and it can be
further classified in hot dark matter and cold dark matter. Particle candidates
which were relativistic at the time of decoupling constitute hot dark matter,
while cold dark matter is formed of particles which were non relativistic.

From these data it is evident that the major contribution to the overall
energy density comes from dark radiation with properties close to a cos-
mological constant Λ. Also, a significant contribution is due to dark matter,
while known matter of the universe gives a negligible contribution to the
energy density of the universe. These cosmological observations strongly
suggests the search of new models beyond the Standard Model of particle
physic.

2.2 Dark radiation and extra neutrino species

Dark radiation is usually quantified in terms of extra neutrino species ∆Neff,
i.e. the difference between the number of neutrino families of the Standard
Model Neff, SM = 3 and the effective number of neutrino specie Neff. In
order to understand how ∆Neff can be related to the energy density of
dark radiation and why it is useful doing so, we have to review some basic
notions about thermodynamics and the thermal history of the universe.
Assuming that early universe was in local thermal equilibrium (this hypoth-
esis is suggest from the perfect black-body spectrum of the CMB) allows
us to use the tools given by statistical mechanics. Remember that for a
relativistic perfect gas the energy density is given by

ρ =
π2

30
g(T )T 4



1 bosons

7
8

fermions
(2.2.1)

where T is the temperature of the gas and g∗ is the number of degree of
freedom, i.e spin. Let us now consider a thermal bath of photons and other
relativistic particle and let be T the temperature of the photon gas. We can
define the effective number of relativistic degrees of freedom g∗(T ) as [2]

g∗ = gth∗ + gdec∗ (2.2.2)

7



2. Dark Radiation, neutrinos and axions

where

gth∗ (T ) =
∑

i=b

gi +
7
8

∑

i=f

gi (2.2.3)

gdec∗ (T ) =
∑

i=b

gi

(
Ti
T

)4
+

7
8

∑

i=f

gi

(
Ti
T

)4
(2.2.4)

g∗ has two contributions:

• gth∗ is given by the particles in thermal equilibrium with the photon
gas i.e. Ti = T �mi . When the temperature T drops below the mass
mi of a particle species, it becomes non relativistic and decouple from
the photons, giving no more contributions to g∗

• greh∗ is the contribution due to relativistic particle decouple from
the photon. Neutrinos after e± annihilations are an example, within
an excellent approximation, of relativistic particles decouple from
photons

Neutrinos interact with the thermal plasma only through weak interactions
and decouple from photons at T ≈ 1 MeV. At this temperature, only
photons, neutrinos and electrons (with the corresponding antiparticles) are
still relativistic, so g∗ is given by [2]

g∗ = 2 +
7
8

2Neff, SM +
7
8

4 · 2 = 10.75 (2.2.5)

withNeff, SM = 3 in the case of instantaneous neutrino decoupling. However,
when the temperature T dropped below the electron mass starting e+e−
annihilations neutrino decoupling was still occurring, so neutrinos got
some energy and entropy from electron and positron decoupling. Taking
this into account raises the effective number of neutrinos to Neff, SM = 3.046.

2.2.1 Entropy conservation

In the case of relativistic particles, we have that

ρ =
π2

30
g∗T 4 p =

1
3
ρ

so, we get
∂p

∂T
=

4
3
π2

30
g∗T 3 =

ρ+ p
T

(2.2.6)

8



Section 2.2. Dark radiation and extra neutrino species

Using the second law of thermodynamics: T dS = dU +pdV combined with
U = ρV and (2.2.6) , we obtain

dS =
1
T

[d(ρV ) + d(pV )−V dp]

=
1
T

d[(ρ+ p)V ]− V
T 2 (ρ+ p)dT

= d
[
ρ+ p
T

V

]
(2.2.7)

For thermal process at equilibrium, we can show that entropy is conserved.
In fact

dS
dt

=
d
dt

[
ρ+ p
T

V

]

=
V
T

[
dρ
dt

+
1
V

dV
dt

(ρ+ p)
]

+
V
T

[
dp
dt
− ρ+ p

T
dT
dt

]

=
V
T

[
dρ
dt

+ 3H(ρ+ p)
]

+
V
T

dT
dt

[
dp
dT
− ρ+ p

T

]
= 0

(2.2.8)

This show the conservation of entropy at equilibrium, since the first term
vanishes by the continuity equation (2.1.6) while the second is equal to
zero due to equation (2.2.6).
It is more convenient to work with entropy density s ≡ S/V and from (2.2.7)
s is equal to

s =
ρ+ p
T

(2.2.9)

Using (2.2.6) the total entropy can be written as [2]

s =
∑

i

ρi + pi
Ti

=
2π2

45
g∗S(T )T 3 (2.2.10)

where we have defined the effective number of degrees of freedom in entropy,

g∗S = gth
∗S + gdec

∗S (2.2.11)

where

gth∗ (T ) = gth
∗S (T ) (2.2.12)

gdec
∗S (T ) =

∑

i=b

gi

(
Ti
T

)3

+
7
8

∑

i=f

gi

(
Ti
T

)3

, gdec∗ (T ) (2.2.13)

9



2. Dark Radiation, neutrinos and axions

Hence, g∗S is equal to g∗ only when all relativistic species are in equilibrium
at the same temperature. In the real universe this is true until the e+e−
annihilation, when the neutrinos are decoupled from the photons but they
can still be considered relativistic.

An important consequence of the entropy conservation is, via eq. (2.2.10),
that

g∗S(T )T 3a3 = const =⇒ T ∝ g −1/3
∗S a−1 (2.2.14)

Whenever a particle species becomes non-relativistic, its entropy is trans-
ferred to the other relativistic species still present in the thermal plasma,
so T decrease slightly less slowly than a−1 thanks to the factor g−1/3

∗S . This
is happening in e+e− annihilation, where electrons and positrons decouple
from the thermal bath.

gth
∗S =


2 +

7
8
· 4 =

11
2

T &me

2 T < me

(2.2.15)

In equilibrium, the entropy of thermal bath and of the decoupled particles
is separately conserved, so we have

gth
∗S (T1) · (a1T1)3 = gth

∗S (T2) · (a2T2)3 =⇒ (a2T2) =
(

11
4

)1/3
(a1T1)

where T1 and T2 are the temperature of the thermal bath (i.e of the photons)
respectively before and after e+e− annihilation. If the universe did not
expand so much during the electron-positron decoupling then a1 ≈ a2 and

T2 =
(

11
4

)1/3

T1 (2.2.16)

Therefore the photons are slightly reheated while the neutrinos temper-
ature Tν do not change because neutrinos are decoupled from photons.
Before e+e− annihilations, T1 ≈ Tν since Tν ∝ a−1 was still valid with an
excellent approximation. Thus, defining Tγ = T2 the photons temperature
after e+e− annihilations, we get

Tγ =
(

11
4

)1/3

Tν (2.2.17)

10



Section 2.2. Dark radiation and extra neutrino species

Equation (2.2.17) is valid up to now and it allows to link the total energy
density of relativistic particles ρtotal at CMB time with Neff:

ρtotal = ργ + ρν

=
π2

30
2T 4

γ +
π2

30
7
8

2Neff

(
Tν
Tγ

)4
T 4
γ

=
π2

30
2T 4

γ

(
1 +

7
8
Neff

(
4

11

)4/3 )

then

ρtotal = ργ

(
1 +

7
8
Neff

(
4

11

)4/3 )
(2.2.18)

where ργ and ρν are respectively the energy density of radiation and neu-
trinos. Therefore, if ∆Neff > 0 dark radiation can be explained in terms of
relativistic particles at CMB times not included in the Standard Model.

2.2.2 Current evidences for extra neutrino species

Extra relativistic degrees of freedom are mainly constrained by the mea-
surements of CMB anisotropies. In fact, extra radiation implies a faster
expansion of the Universe in the past and so a higher Hubble constant,
leaving a footprint in the anisotropies of the CMB which is observable in
the angular power spectrum of the CMB temperature.

Estimates from Hubble constant measurement

Estimates of the present value of the Hubble constant H0 can be obtained
through direct astrophysical measurements or from indirect measurements
via CMB experiments. These two methods to measure H0 explore different
periods in the history of the Universe, thus any tension between them
may be a smoking gun of the presence of new physics. In fact, CMB
measurements are generally model dependent: the Planck collaboration
fitted his data with the 6 parameter ΛCDM model taking ∆Neff = 3.046.
On the contrary, direct observations of H0 do not use ∆Neff as a prior.
The Hubble Space Telescope (HST) [3] (hereafter R11) measured H0 =
(73.8± 2.4)kms−1Mpc−1(68% CL). However, the author of [4] (hereafter
E14) re-analyzed R11 Cepheid data and found a lower valueH0 = (70.6± 3.3)
kms−1Mpc−1(68% CL).
On the CMB side, the Planck collaboration in 2013 and 2015 found re-
spectively H0 = (67.3± 1.3)kms−1 Mpc−1(68% CL) [5] and H0 = (67.3± 1.0)

11



2. Dark Radiation, neutrinos and axions

kms−1 Mpc−1(68% CL) [6]. Both of them are in tension at 2.5σ with R11
while they are within 1σ with respect to E14. Using the R11 value as a H0
prior, Planck 2013 estimated Neff = 3.62+0.50

−0.48(95% CL). By contrast, Planck
2015 found ∆Neff = 3.13± 0.32(68% CL) without using any prior.
So far a general consensus regarding the HST measure of the Hubble con-
stant is missing, hence the Planck 2015 collaboration has also measured
H0 taking ∆Neff = 0.39 as a prior and they have obtained H0 = (70.6± 1.0)
kms−1 Mpc−1(68% CL), which is in good agreement with the H0 value
found by E14. But this is not the end of the story: the authors of [7] have
performed new HST observations and they have also improved the previous
analysis made by R11, giving H0 = (73.24± 1.74)kms−1Mpc−1(68% CL).
The tension between HST and CMB measurements of H0 could be solved or
at least ameliorated if we take into account that H0 and Neff are positively
correlated, as shown in fig. 2.1. So, a non zero ∆Neff leads to a value of H0
higher than Neff = 3.014.

Figure 2.1: Adapted from [6, pag.33, fig.20]. 68% and 95% confidence regions
on 1-parameter extensions of the base ΛCDM model for Planck TT+lowP (grey),
Planck TT,TE,EE+lowP (red) and Planck TT,TE,EE+low P+BAO (blue). Horizontal
dashes lines correspond to Neff = 3.014.

Relations between ∆Neff, ns and r

As we said previously, the presence of extra relativistic degrees of freedom
affect the power spectrum of the CMB. The tensor-to-scalar-ratio r and the
spectral index ns measurements made by Planck assume the validity of

12



Section 2.2. Dark radiation and extra neutrino species

the ΛCDM model with Neff = 3.014. Taking into account an Neff greater
than 3.014 leads to different predictions with respect to the base ΛCDM
model, as shown in fig. 2.2. In particular, for ∆Neff = 0.39 the spectral index

Figure 2.2: Adapted from ref. [6, pag.34, fig.21]. Constraints on the tensor-to-
scalar ratio r0.002 in the ΛCDM model, using Planck TT+lowP (red) and Planck
TT+lowP+lensing+BAO+JLA+H0. The result is model-dependent: for example,
the grey contours show how the results change if there were ∆Neff = 0.39

is in the range ns ≈ 0.98 − 0.99 at one σ . We will use these experimental
constraints in the next chapters in order to make a prediction for r in our
model of fibre inflation. In fact, given a theoretical estimate for ∆Neff, we
can infer a reasonable value for ns from fig. 2.1. Since ns and r are not
independent, we make a prediction for r given ns, provided that inflation
is viable for these values.

13



2. Dark Radiation, neutrinos and axions

2.2.3 Why axions as dark radiation?

As we have seen previously, dark radiation is composed of particles not pre-
dicted by the Standard Model which are relativistic at CMB and BBN times,
so these particles need to be extremely light and very weakly interacting.
Axions and axion-like-particles (ALPs) are scalar particles which meet both
the previous requirements since they enjoy an approximate Peccei Quinn
shift symmetry that forbids perturbative mass terms, making them almost
massless [8].
Moreover, ALPs often appear in low energy effective models derived from
string theory since they are the imaginary part of moduli fields. Moduli
are complex fields ubiquitous in the context of string compactification
which interact only through gravity, so they are long lived and may had
dominated the energy density of the Universe. For these reasons, we can
build up a model of string inflation where the inflaton is the real part of
a modulus with a non zero branching ratio for decays into light axions.
This is possible if some of the moduli are stabilised in a perturbative way,
since the real part of the moduli is not protected by any approximated shift
symmetry and so it can takes a mass greater than that of the axions. In this
situation the decay channels for one or more real parts of the moduli into
axions are open, making axionic dark radiation an unavoidable feature [9].
There are other possible candidates as dark radiation particles, like hidden
photons or right handed neutrinos, but dark radiation axions are, in princi-
ple, a general feature of moduli string inflation. So, axions can be produced
in a natural way from the decay of the inflaton into hidden sectors of the
theory.

2.2.4 Magnitude of dark radiation

We now derive a formula which expresses ∆Neff in terms of the branching
ratio Ba of the inflaton decay into axions. Let be

ρν1 B
ρν

Neff,SM
=

7
8
ργ

(
4

11

)4/3
(2.2.19)

the energy density of one neutrino species at neutrino decoupling. Given
that the energy density of dark radiation at neutrino decoupling can be
written as

ρDR =
7
8
ργ∆Neff

(
4

11

)4/3
(2.2.20)
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it follows that
∆Neff =

ρDR

ρν1

∣∣∣∣∣
νdecouple

(2.2.21)

In our model dark radiation is composed only of axions, which never
thermalize during the history of universe with the thermal bath of SM
particles because they interact only gravitationally. Therefore, the energy
density of dark radiation and thermalized radiation scales as

ρDR = ρa ∝ a−4 (2.2.22)

ρSM ∝ g∗(T )−1/3a−4 (2.2.23)

The ratio between ρDR and ρSM at Trh, the reheating temperature of the
universe, can be expressed in terms of Ba as (see [10])

ρDR

ρSM

∣∣∣∣∣
T=Trh

' Ba
1−Ba

(2.2.24)

Moreover, this ratio evolves with time as

ρDR

ρSM

∣∣∣∣∣
T=T1

=
(
g∗(T1)
g∗(T2)

)1/3 ρDR

ρSM

∣∣∣∣∣
T=T2

(2.2.25)

Putting all the previous equations together, we finally get

∆Neff =
ρDR

ρν1

∣∣∣∣∣
νdecouple

=
ρSM

ρν1

∣∣∣∣∣
νdecouple

ρDR

ρSM

∣∣∣∣∣
νdecouple

=
ρSM

ρν1

∣∣∣∣∣
νdecouple

(
10.75
g∗(Trh)

)1/3 ρDR

ρSM

∣∣∣∣∣
T=Trh

=
ρSM

ρν1

∣∣∣∣∣
νdecouple

(
10.75
g∗(Trh)

)1/3
Ba

1−Ba
(2.2.26)

where g∗(Tνdecouple) = 10.75. At the temperature of neutrino decoupling
Tνdecouple, the energy density of ρSM and ρν1 are given by

ρSM =
π2

30
g∗(Tνdecouple)T 4

νdecouple

ρν1 =
π2

30

(7
8

2
)
T 4
νdecouple

Thus

∆Neff =
43
7

(
10.75
g∗(Trh)

)1/3
Ba

1−Ba
(2.2.27)
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Chapter 3

Supersymmetry and the MSSM

In this chapter we will briefly overview global supersymmetry and the
MSSM. In a few words, supersymmetry relates particles with different
statistic, i.e. bosons and fermions, into the same multiplet. The Minimal
Supersymmetric Standard Model is an extension of the Standard Model of
particle physics in a supersymmetric fashion. It is the low energy descrip-
tion of more fundamental theories like string theories, so it is certainly
worth to study it.

3.1 Global supersymmetry

Supersymmetry (SUSY) arises as an extension of the Poincaré symmetry.
In fact, a no-go theorem by Coleman and Mandula shows that, under mild
and reasonable assumptions, the only possible Lie algebra related to the
continuous symmetries of the S-matrix has the following generators:

• Poincarè generators Pµ , Mµν

• a finite number of Lorentz-scalars generators Bl which are related to
some conserved quantum number (like electric charge, isospin, etc...)

Obliviously, the generator Bl must satisfied the following commutators
relations

[Pµ , Bl] = 0 [Mµν , Bl] = 0

Supersymmetries avoid the restrictions of Coleman-Mandula theorem by
relaxing one of its assumptions. Indeed, a theorem by Haag, Lopuszanski
and Sohnius shows that it is possible to generalised the Coleman Mandula
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theorem by considering a graded Lie algebra, which are defined by commu-
tators and anticommutators. The simplest extension of the Poincaré algebra
can be obtained by including a Majorana spinor charge with 4 components
Qa , a = 1, . . . ,4 which satisfies the following (anti)commutation relations

{Qa , Qb} = 2(γµ)abPµ [Qa , Pµ] = 0 [Qa , Mµν] = (σµν4)abQb
where

(σµν4) =
i
4

[γµ,γν] Qa = (Q†γ0)a

In terms of two component Weyl spinors Qα ,Qα̇ the previous relations
look like

{Qα ,Qβ} = 0 {Qα̇ ,Qβ̇} = 0 {Qα,Qβ̇} = 2(σµ)αβ̇Pµ

[Qα , Mµν] = i(σµν2)α
βQβ [Qα , Pµ] = 0 [Qα̇ , Pµ] = 0

Majorana spinor charges with spin 1/2 are the only fermionic generators
allowed by the theorem of Haag, Lopuszanski and Sohnius. In other words,
there cannot be a consistent extension of the Poincaré algebra including
generators transforming in dimensional representation higher than 1/2
under the Lorentz group. From now on we consider only one spinor charge
(N = 1). The graded extension of the Poincaré algebra is often called
superalgebra.

N = 1 supersymmetry representations

In ordinary quantum field theory massive and massless particles are irre-
ducible representations of the Poincaré group and they are labels through
the eigenvalues of the Casimir operators. The same things can be done for
supersymmetry: it turns out that C1 = P µPµ is still a good Casimir while
C2 = W µWµ is not. Thus, in the same supermultiplet there are particles
with the same mass and different spin. It is possible to show that the
operator C2 defined as:

BµBWµ − 1
4
Qα̇(σµ)α̇βQβ Cµν B BµPν −BνPµ C2 B CµνC

µν

is a Casimir operator for the superalgebra. Thanks to C1 and C2 each super-
multiplet is labelled by the mass m (eigenvalue of C1) and by the so called
superspin y (eigenvalue of C2). In any supersymmetric multiplet, the num-
ber of bosonic degrees of freedom equals the number of fermionic degrees
of freedom and for N = 1 supersymmetry the irreducible representations
belongs to one of three kinds of supermultiplet:
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Section 3.1. Global supersymmetry

• chiral multiplet. It consists of a complex scalar φ and a Weyl spinor
ψα ,

• vector or gauge multiplet, which contain a vector Aµ and one Weyl
spinor,

• gravity multiplet. It contain a spin 3/2 particle, the gravitino, and the
graviton.

Internal symmetry generators commute with the SUSY generators, so parti-
cles within the same supermultiplet share the same quantum numbers.

Supersymmetric theories have many features that make them very ap-
pealing as (high energy) extension of the Standard Model. First of all,
SUSY leads to cancellations between bosonic and fermionic corrections to
the Higgs boson mass (the so called miraculous cancellation), solving the
naturalness issue of the hierarchy problem.
From a more theoretical perspective, SUSY relates bosons with fermions
since they are both contained in the same representation of the super
Poincaré group. Furthermore, in SUSY theories it happens that the three
gauge couplings unify at one single point at larger energies. This unification
does not occur in the Standard Model. Furthermore SUSY theories emerge
naturally as an effective low energy description of more fundamentals
theories like string theory. Actually, it turns out that SUSY is required for
making string theory consistent since it allows the absence of tachyonic
scalars.
In the next subsection we will take a look at how to build up actions
invariant under SUSY with the aid of superfields and superspace.

3.1.1 Superfields and superspace

In relativistic quantum field theories the formalism is chosen in such
a manner that the physical equations are manifestly Lorentz covariant.
This choice allows to easily build up actions which are invariant under
Lorentz transformations. One may think to do the same for SUSY theory
by introducing the notion of superspace and superfields.
Superspace is a generalisation of 4D Minkowski space (x0,x1,x2,x3) by
including additional anticommuting spinorial coordinates θα , θα̇ on which
SUSY transformations act. Thus, superspace is parametrised by coordinates
(xµ,θα,θα̇). The anticommuting properties of the fermionic coordinates
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3. Supersymmetry and the MSSM

imply

θ2
1 = θ2

2 = 0 θ1θ2 = −θ2θ1

∫
dθαθβ ≡ ∂

∂θβ
θα = δβα

∫
dθ1

∫
dθ2 B

∫
d2θ

∫
dθ1̇

∫
dθ2̇ B

∫
d2θ

∫
d2θ(θθ) = 1

∫
d2θ(θθ) = 1

Let be ε a Grassmann variable parameter: a translation in the superspace
can be written as

xµ 7→ xµ − i(εσµθ) + i(θσµε)

and the Majorana spinorQα charges can be seen as generators of superspace
translations

Qα = −i ∂
∂θα

− (σµ)αβ̇θ
β̇ ∂
∂xµ

(3.1.1)

Qα̇ = +i
∂

∂θ
α̇ −θβ(σµ)βα̇

∂
∂xµ

(3.1.2)

Superfields unify the different components of a supermultiplet into a single
mathematical object and they are functions of the superspace coordinates.
It follows that superfields have a finite power expansion in θα,θα̇ leading
to a finite number of components fields which belong to the supermultiplet.
The simplest superfield is a scalar S(xµ,θα,θα̇) and its transformation
under SUSY is given by

δS = i[S,εQ+ εQ] =
(
εQ+ εQ

)
S

A general scalar superfields S(xµ,θα,θα̇) is reducible with respects to SUSY
transformations, however. In order to extract irreducible representations, a
useful strategies is to impose extra constraints. For instance, they can be
introduced by using the SUSY covariant derivatives

Dα =
∂
∂θα

+ i(σµ)αβ̇θ
β̇∂µ Dα̇ = − ∂

∂θα̇
− iθβ(σµ)βα̇∂µ
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Chiral superfields

Chiral superfields are characterised by the condition Dα̇Φ = 0 and the
constrained is solved by the superfield structure

Φ(yµ,θ) = Φ(yµ) +
√

2θψ(yµ) +θθF(yµ)

where y = x+ iθσµθ. Here and in the following, we use the same symbol for
the superfield Φ and its scalar component. F is an auxiliary non dynamical
field, which can be integrated out through the equations of motion. Under
SUSY transformation

δΦ = i
(
εQ+ εQ

)

the fields components transform as

δΦ =
√

2εψ

δψ = i
√

2σµε∂µΦ +
√

2εF

δF = i
√

2εσµ∂µψ

Notice that δF is a total derivative term.
Antichiral superfields Φ† are similarly defined by the constraint DαΦ† = 0,
and lead to the conjugate field content (Φ∗,ψα̇,F

∗).

Vector and gauge superfields

Vector superfields form another irreducible representations of the SUSY
algebra and they satisfy the reality condition

V (xµ,θα,θα̇) = V †(xµ,θα,θα̇)

Their (off shell) field content is

V →
(
λα , A

µ ,D ;C , χα , N
)

where λα , χα are Weyl spinors, N,D,C are real scalars and Aµ is a vector
field . In the previous equation we have omitted gauge indices. Let Λ be a
chiral superfield, then i(Λ−Λ†) is a vector superfield and we can define a
generalised gauge transformation to vector superfields via

V 7→ V − i
(
Λ−Λ†

)
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which induces a standard gauge transformation for the vector component
of V

Vµ 7→ Vµ +∂µ[ReΦ] ≡ Vµ −∂α
The vector supermultiplet is subject to a generalised gauge invariance, so
we can choose the components of Λ to gauge away some of the components
of V. In the so called Wess-Zumino gauge the fields C,χα,N are set equal
to zero. The remaining fields are a gauge boson Aµ, a Weyl spinor λα in the
adjoint representation and a non propagating real auxiliary field D. The
vector superfield expansion in the Wess-Zumino gauge is

V (x,θ,θ) = (θσµθ)Aµ(x) + (θθ)(θλ(x)) + (θθ)(θλ(x)) +
1
2

(θθ)θθD(x)

It is possible to construct a gauge invariant quantity out of Φ and V by
imposing the following transformation properties:

Φ 7→ exp(iqΛ)Φ

V 7→ V − i(Λ−Λ†)

 =⇒ Φ† exp(qV )Φ gauge invariant

Here, Λ is the chiral superfield defining the generalised gauge transforma-
tions. The usual gauge invariant field strength Fµν can be shown to belong
to a spinorial chiral superfield Wα (i.e. Dα̇Wα = 0) defined in the abelian
case as

Wα = −1
4
DDDαV W α̇ = −1

4
DDDα̇V

and generalised in the non-abelian case to

Wα = −1
4
DDe−VDαeV W α̇ = −1

4
DDe−gVDα̇egV

where now V = TaV a, with Ta the hermitian gauge generators.

Supersymmetric actions for chiral multiplets

In ordinary field theories, the action is the integral of the Lagrangian over
the spacetime

S =
∫

d4xL
and it is invariant for spacetime translations because the Lagrangian
changes by a total derivative under translations. Similarly, the action in a
SUSY theory is given by an integral of the Lagrangian over the superspace

SSUSY =
∫

d4x

∫
d2θd2θLSUSY
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A supersymmetry transformation is nothing more than a translation in
superspace, thus integrating the action variation over the full superspace
gives zero.

δ

∫
d4x

∫
d2θd2θh(Φ ,Φ†,V ) =

∫
d4x

∫
d2θd2θ

(
εQ+ εQ

)
h(Φ ,Φ†,V ) = 0

where h(φ,φ†,V ) is a generic function of chiral and vector fields. For chiral
fields, integrals over half of superspace are invariant. If f (Φ) is a function
of chiral fields only, f itself is chiral, so

Qα̇f ∝ θβ(σµ)βα̇∂µf

and this implies

δ

∫
d4x

∫
d2θ f (Φ) =

∫
d4x

∫
d2θ

(
εQ+ εQ

)
f (Φ) = 0

In summary, in order to build up a SUSY invariant Lagrangian in compo-
nents it is sufficient to look for the D terms and the F terms, since they are
the only terms which are non vanishing under integration over respectively
the entire superspace and half superspace.
The product of chiral superfields (with the same chirality) yields another
chiral superfield, so the 4D spacetime integral of the F-term of an arbi-
trary polynomial of chiral superfields is SUSY invariant. In particular, the
most general renormalizable supersymmetric couplings involving chiral
superfields Φi is

LW =
∫

d2θW (Φi) + h.c.

B

∫
d2θ

(
1
3
Y ijkΦiΦjΦk +

1
2
mijΦiΦj +λiΦi

)
+ h.c. (3.1.3)

The holomorphic function W (Φi) is called superpotential, and integration
over d2θ selects its F-term. Explicit integration over θ yields the interaction
terms for the component fields, which include Yukawa couplings and
fermion mass terms

LF = −1
2
∂2W
∂Φi∂Φj

ψiψj + h.c. = −Y ijkΦkψiψj − 1
2
mijψiψj + h.c.

Canonical kinetic terms for chiral multiplets are described in terms of
superfields by ∫

d2θd2θΦ∗iΦi
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The product Φ∗iΦi is a real superfield: explicit integration over θ,θ in the
previous equation produces the Lagrangian for the components fields. This
Lagrangian includes the kinetic terms for fermions and bosons, as well as
terms |Fi |2 for the non-propagating auxiliary fields. Using a coupling

Fi
∂W
∂Φi

arising from (3.1.3), the equations of motion

F∗i = −∂W
∂Φi

allow us to eliminate the auxiliary fields. This introduces a F contribution
to the scalar potential

VF(Φi) =
∑

i

|Fi |2 =
∑

i

∣∣∣∣∣
∂W
∂Φi

∣∣∣∣∣
2

Altogether, the interactions for chiral superfields give rise to masses, Yukawa
couplings, and a scalar potential, with coupling uniquely determined by
the superpotential.

SUSY gauge interactions

The kinetic terms and gauge interactions for gauge bosons and their super-
partners arise from

L =
1
4

Tr
∫

d2θW αWα + h.c. = Tr
(
− 1

4
FµνF

µν − iλσµDµλ+
1
2
D2

)
(3.1.4)

The interactions of a gauge multiplet V with a chiral superfield Φ are
described by ∫

d2θd2θ Φ†egVΦ (3.1.5)

The terms (3.1.4), (3.1.5) are invariant under the following generalised
gauge transformation, with gauge parameters in chiral superfield Λ(x,θ) =
T aΛa(x,θ)

Φ(x,θ)→ e−iΛΦ(x,θ) eV → e−iΛ
†
egV eiΛ

†

with Φ transforming in some representation of the gauge group.

24



Section 3.1. Global supersymmetry

Expansion in components shows that generalised gauge transformations
restricted to the Wess-Zumino gauge yield ordinary gauge transformations,
and that the physical fields ψ , Φ , and Aµ,λ transform as usual under them.
The term (3.1.5) includes kinetic terms for the chiral multiplet fermions
and scalars, and their usual gauge invariant interactions with gauge bosons.
In addition, it produces a linear term in the auxiliary fields Da, which
together with the |D |2 term in (3.1.4) yields the equation of motion

Da = −gΦ∗i (T a)ijΦj
where i, j run over gauge indices. Elimination of the auxiliary field leads to
a D-term contribution to the scalar potential

VD =
∑

a

1
2
|Da|2 =

∑

a

g2

2
|Φi(T a)ijΦj |2

Finally, for a U (1) gauge field there is an additional SUSY invariant term
that one may add to the Langrangian, the Fayet Illiopoulos (FI) term

LFI = ξ
∫

d2θd2θV

The integration selects the D-term, whose transformation under supersym-
metry is a total derivative, thus producing a SUSY invariant term upon 4D
spacetime integration. The only effect of the FI term is to modify the U (1)
D-term scalar potential, which in a theory of chiral multiplets Φk with U (1)
charges qk reads

VU (1) =
1
2
|D |2 =

g2

2

∣∣∣∣∣
∑

k

qk |Φk |2 + ξ
∣∣∣∣∣
2

It is also possible to introduce field dependent gauge kinetic terms, with
structure

1
4

∫
d2θf (Φi)Tr(W αWα) + h.c.

where f (Φ) is the gauge kinetic function.

Global SUSY breaking

Experimental observations clearly state that SUSY must be a broken symme-
try. In fact, SUSY implies that all fields in a supermultiplet must have the
same mass. We may expect SUSY to be broken spontaneously for energies
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not too far from the electroweak energy scale. In spontaneous symmetry
breaking the vacuum state is no more invariant under a certain symmetry
while the Langrangian still does, that is in the case of SUSY

Qα |0〉 , 0

In theories with global SUSY the order parameter for SUSY breaking is
the ground state energy, as follows. From the anticommutation relation
{Qα ,Qα̇} we obtain that the ground state energy is positive semi definite

〈0|H |0〉 ≥ 0

which is equal to zero if and only if the vacuum is invariant Qα |0〉 = 0.
Notice that this is consistent with the form of the scalar potential seen
previously, i.e.

〈0|H |0〉 = 〈0|V |0〉 =
∑

i

|Fi |2 +
1
2

∑

a

|Da|2 ≥ 0

Hence SUSY breaking requires non zero vevs for some of the auxiliary
fields, i.e.

〈0|Fi |0〉 , 0 and/or 〈0|Da |0〉 , 0 for some i,a.

The broken generator Qα is a spinor with spin 1/2, so the associated Gold-
stone particle is a Weyl spinor, the goldstino ψG, which is characterised
by

〈0|δθψG |0〉 , 0

The goldstino is in general the fermionic partner of the non-vanishing F or
D auxiliary fields breaking SUSY, or a combination thereof.

3.2 Minimal SUSY extension of the SM

The simplest way to extend the Standard Model to a phenomenologically vi-
able supersymmetric theory is by introducing all the superpartners needed
to fill out the supermultiplets with N = 1 SUSY generator. If we take into
account only renormalizable interactions, the irreducible representations
are only given by chiral and vector supermultiplets [11].
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Particle content of chiral superfield

By construction SUSY generators commute with the gauge generators, so
particles belonging to the same supermultiplets must transform in the
same way under SU(3) × SU(2)L ×U(1)Y . Standard Model gauge bosons
must trasforms as the adjoint representation of the gauge group, which
is always its own conjugate. Thus, vector multiplets can only contain
fermions whose left handed and right handed components transform in
the same way under gauge group. The known quarks and leptons are chiral
fermions instead, so they must belong to chiral supermultiplets.
As consequence, the bosonic superpartners of quark and leptons are spin-0
bosons and they are respectively called squarks and sleptons. Describing the
Standard Model fermions through Dirac spinors, it means that each left
handed and right handed part has its own scalar complex partners. In fact,
they are separate two component Weyl fermions with different properties
under gauge trasformation. For example, the electron Dirac field e has
two superpartners called selectrons and denoted by ẽL and ẽR. Necleting
their masses, neutrinos can be treated as left handed Weyl spinors. The
gauge interactions of each of the these squark and slepton fields are the
same as for the corresponding Standard Models fermions: for instance, the
left-handed squarks ũL and d̃L couple to the W boson, while ũR and d̃R do
not.

The Higgs boson SU(2)L-doublet has spin 0 so it is embedded into a chiral
supermultiplet, that is usually denoted by Hu . However, one chiral Higgs
supermultiplet it is not sufficient in order to generate all fermions masses,
because the superpotential must be holomorphic. In fact, Hu couples to
up-type quarks and generates their masses after electroweak breaking.
Down-type quark masses instead requires coupling containing H ∗u terms,
which are forbidden because the superpotential must be holomorphic.
Moreover, if we consider only one Higgs chiral multiplet the electroweak
gauge symmetry is plague with a gauge anomaly, making the theory in-
consistent. All the previous observations enforce the presence of another
Higgs chiral multiplet with opposite U(1)Y quantum number respect to
Hu. This supermultiplet is usually label as Hd and it must transform in
same way under gauge group SU(3) × SU(2)L as Hu. Following the usual
nomenclature where spin 1/2 superpartners are labelled by appending
“-ino” to the name of the Standard Model particles, fermionic superpartners
of the Higgs bosons are called higgsinos. These particles are denoted by
H̃d , H̃u for the SU(2)L doublet left-handed Weyl spinor.
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Names spin 0 spin 1/2 SU(3)C ,SU(2)L U(1)Y U(1)em

squarks, quarks
( x 3 families )

Q

(
ũL
d̃L

) (
uL
dL

)
(3,2) 1/6

(
2/3
−1/3

)

u ũ∗R u†R (3,1) −2/3 −2/3

d d̃∗R d†R (3,1) 1/3 −1/3

sleptons, leptons
( x 3 families )

L

(
ν̃L
ẽL

) (
νL
eL

)
(1,2) −1/2

(
0
−1

)

e ẽ∗R e†R (1,1) 1 1

Higgs, higgsinos Hu

(
H+
u

H̃0
u

) (
H̃+
u

H̃0
u

)
(1,2) 1/2

(
1
0

)

Hd

(
H0
d

H−d

) (
H̃0
d

H̃−d

)
(1,2) −1/2

(
0
−1

)

Table 3.1: Chiral supermultiplets in the MSSM. The spin 0 fields are complex
scalars, and the spin 1/2 fields are left handed two component Weyl fermions.
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Section 3.2. Minimal SUSY extension of the SM

Table 3.1 summarizes all of the chiral supermultiplets necessary for
a minimal phenomenologically viable extension of the Standard Model,
classified according to their transformation properties under the gauge
group SU(3)× SU(2)L. It is customary to defined chiral multiplets in terms
of left-handed Weyl spinors, so we have taken into account the charge-
conjugation of all right-handed fields.
In the second column of 3.1 we indicate a symbol for the whole supermul-
tiplet. Thus, for example:

• Q is a SU(2)L-doublet chiral supermultiplet containing ũL , uL and d̃L
, dL

• u is a SU(2)L-singlet chiral supermultiplet containing ũ∗R and u†R

For each of the quark and lepton supermultiplets there are three families
and table 3.1 just lists first families representative. The nomenclature
for the other families is similar to that of first family. When needed, a
family index i = 1,2,3 can be affixed to the chiral supermultiplets names
(Qi ,ui . . . ), for example (e1, e2, e3) = (e,µ,τ). The bar on u,d,e field is part of
the name, and does not denote any kind of conjugation.

Particle content of vector supermutliplet

The gauge bosons of the Standard Model are contained in vector supermul-
tiplets together with their fermionic superpartners which are generically
called gauginos. We have that

• SU(3)C color gauge interaction of QCD have the gluons as strong
force mediators. The corresponding fermionic superpartners are spin
1/2 color octet called gluinos.

• gauge bosons vector W +,W −,W 0 and B0 mediate electroweak inter-
actions. Their supersymmetric partner with spin 1/2 are W̃ +, W̃ −, W̃ 0

and B̃0 named winos and bino.

Electroweak symmetry breaking cause W 0 and B0 gauge eigenstates to mix
giving mass eigenstates Z0 and γ . The corresponding gaugino mixtures of
W̃ 0 and B̃0 are called zino (Z̃) and photino (γ̃). In the case of unbroken
supersymmetry they have respectively masses mZ and 0.
Tables 3.1 and 3.2 summarize the particle content of the MSSM.
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Names spin 1/2 spin 1 SU(3)C ,SU(2)L U(1)Y U(1)em

gluino, gluon g̃ g (8,1) 0 0

winos, W bosons W̃ 0, W̃ ± W 0,W ± (1,3) 0 (0,±1)

bino, B boson B̃0 B0 (1,1) 0 0

Table 3.2: Vector supermultiplets in the MSSM

3.2.1 MSSM superpotential

The superpotential for the MSSM is

WMSSM = ūYuQHu − d̄YdQHd − ēYeLHd +µHuHd (3.2.1)

where Yu ,Yd ,Ye are 3 matrices in family space. All color, weak isospin and
family indices are understood. For instance, we denote

µHuHd ≡ µεαβ (Hu)α(Hd)β ūYuQHu ≡ ūia(Yu)ijQ
j
aαε

αβ (Hu)β

with

• α,β = 1,2 are SU(2)L weak isospin index,

• a = 1,2,3 is a SU(3)C color index,

• i = 1,2,3 is a family index.

Color index is lowered (raised) in the 3(3̄) of SU(3)C . The parameter µ has
mass-dimension one and gives a mass to the component of chiral supermul-
tiplets Hu and Hd . It is in general required to obtain a phenomelogically
viable electroweak breaking and Higgs spectrum.

Matter parity

The superpotential (3.2.1) is not the most general superpotential compati-
ble with gauge invariance and renormalizability. There are other possible
terms for the superpotential but they violate either baryon number (nB) or
lepton number (nL). Thus these extra terms induce dangerous couplings
which contribute to the proton decay, leading to an extremely short proton
lifetime.
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Section 3.2. Minimal SUSY extension of the SM

Therefore, in the MSSM one adds a new symmetry, which has the effect
of eliminating the possibility of nB and nL violating terms in the superpo-
tential. This new symmetry is called matter parity: it is a multiplicatively
conserved quantum number defined as

PM = (−1)3(B−L)

for each particle in the theory. It follows that

• all quarks, leptons and sfermions have PM = −1

• Higgs bosons and higgsinos have PM = 1

• gauge boson and gauginos do not carry any baryon or lepton number,
so PM = +1

Each term in the Lagrangian (or in the superpotential) is allowed only if
the product of PM for all fields in it is +1. It is easy to see that the terms
in (3.2.1) are allowed.

3.2.2 MSSM soft term Lagrangian

A naive way to break SUSY is by introducing explicit breaking terms in the
effective MSSM Lagrangian. These terms must take a particular form in
order not to induce quadratic divergence for Higgs mass. In this case they
are called soft terms and satisfy the following properties:

1. the couplings must be of positive mass dimension (hence the name
soft)

2. the soft term Lagrangian is gauge invariant

3. the soft term Lagrangian is compatible with matter parity

The first condition ensures a natural solution of the hierarchy problem if
the scale of the soft terms is not too far from the TeV scale. Having in mind
the previous conditions, we can write down the soft term Lagrangian for
the MSSM

LMSSM
soft =

1
2

(
M ′aλaλa + h.c.

)
− (m′2)αβC

αC∗β+

−
(

1
6
A′αβγC

αCβCγ +B′HuHd + h.c.
) (3.2.2)

where λa are gaugino fields lists in table (3.2). The unnormalized soft terms
are given by:
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3. Supersymmetry and the MSSM

• mass terms M ′a for the gauginos.

• mass terms (m′2)αβ for sfermions (i.e. squarks and sleptons) and the
Higgs scalars. They are 3× 3 hermitian matrices in family space.

• mass term B′ required in order to have the correct electroweak break-
ing energy scale

• trilinear scalar couplings A′αβγ

It has been shown rigorously that the MSSM with a softly broken super-
symmetry Lagrangian LMSSM

soft is indeed free of quadratic divergences in
quantum corrections to scalar masses, to all orders in perturbation theory.
However, soft terms are rather ad hoc parameters and they seem not well
motivated on theoretical grounds. Actually, we will see in the next chapter
that soft terms appear naturally in the low-energy limit of supergravity
theories with spontaneously broken SUSY.
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Chapter 4

Four dimensional string theories

In this chapter we will give an overview of four dimensional effective
models derived from string theory. First of all, we will just introduce four
dimensional supergravity, which is a quantum field theory of gravity in a
supersymmetric fashion. Supergravity is a "bridge" between the MSSM (or
some extension of it) and the high energy physics that could be hopefully
described by string theory. We will see how supergravity is linked with the
MSSM through gravity mediation, a mechanism that naturally generate
the soft terms needed for the theory to be consistent with experiments.
Actually, supersymmetry can be spontaneously broken only in a hidden
sector and it is transmitted to the visible sector through some "messenger
fields". Moduli fields coming from string theory belong to the hidden sector
and can play role of these messengers in gravity mediation. The last section
of this chapter briefly describes the moduli fields and how they arise in the
four dimensional low energy limit string theory.

4.1 A supersymmetric theory of gravity

We have seen that one missing piece of the puzzle is a quantum theory of
gravity. Three of four fundamental interactions of Nature are correctly
described in terms of (renormalizable) quantum field theories so the per-
turbation theory is viable and consistent for them. But if we try to quantize
gravity in the same way, the resulting quantum field theory of gravity is
not renormalizable. In fact, they appear an infinite number of infinities in
all order of perturbation theory. So, we have look for a new path.
Generally, quantum field theories with more symmetry are more conver-
gent in the perturbative expansion. An example is global supersymmetry,
where all divergences in the Higgs sector are cancelled. So, it is tempting to
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introduce supersymmetry in the general theory of gravitation. We expect
that this new theory, the so-called supergravity (SUGRA in short), has a
better high energy behaviour than pure gravity. This is basically true but
unfortunately, still (super)symmetry is not enough to cancel all divergences
in the theory.
Things go better when we consider more than one supersymmetry generator
i.e. extended supergravity but divergences are still present in perturbation
theory. Moreover, supergravity with N > 1 generators is not chiral, because
their appear right handed fermions in the same supermultiplet. For this
reason extended supergravity in four dimensions is not interesting from a
phenomenological viewpoint [12].
Despite supergravity is not a renormalizable theory, it is an essential ingre-
dient in the framework of superstring theory. In fact, the supergravity La-
grangian can be seen as an effective Lagrangian which comes as a low-energy
limit of a supersymmetric string theory. More precisely, supergravity in
D = 10 is the effective theory of superstring for energy below the string
scale Ms = 1/ls, where massive string modes cannot be produced. For en-
ergy below the Kaluza-Klein scale MKK, only the massless modes of the
Kaluza-Klein tower are relevant, therefore it is possible to integrate out
the 6 extra dimensions, leaving as approximate theory an N = 1 , D = 4
supergravity theory. The breaking of supergravity leads to the so-called
soft supersymmetry-breaking terms which determine the spectrum of su-
persymmetric particles.
From the previous argument it is now clear how supergravity is crucial
in order to connect low energy supersymmetric theories with the possible
final theory of elementary particles.

energy

MPl

10D string theory

Ms

Effective 10D
Supergravity

MKK

Effective 4D
Supergravity

Figure 4.1: Energy scales relevant in string phenomenology. Supergravity is an
effective field theory which is valid up to the string scale Ms.
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Section 4.2. Scalar potential

4.1.1 Local supersymmetry

Supergravity can be seen as a gauge theory of global supersymmetry, like-
wise gravity is a “gauge theory” of global space-time transformation. Re-
member that a superfield Φ transforms under global supersymmetry like

δΦ = i(εQ+ εQ)Φ

From the anticommutator of the Majorana spinor generator Q it is evident
that supersymmetry is an extension of the Poincarè space-time symmetry

{Q,Q} = 2γµPµ

Thus, promoting global supersymmetry to local i.e. taking ε = ε(x), we ob-
tain space-time dependent translation that differ point to point or, in other
words, we make a general coordinate transformations [12]. As consequence
local supersymmetry necessarily implies gravity and by obvious reasons
it is also called supergravity. In order to keep the action invariant under
local supersymmetric transformations a gauge field has to be introduced,
as in the case of ordinary gauge symmetry. In supergravity, the gauge field
is a Majorana spinor field with spin 3/2, the so-called gravitino Ψ

µ
a , which

carries both a vector index µ and a spinor index a.

4.2 Scalar potential

4.2.1 F-term potential

In our inflationary model the potential is given by the scalar potential of a
four dimensional, N = 1 supergravity theory. Let us concentrate first on
the chiral supergravity Lagrangian. It turns out to depend only on a single
arbitrary real, dimensionless function of the scalar fields φ∗i and φj with
i, j = 1, . . .n, the Kähler function [11]

G(φ∗,φ) =
1

M2
Pl

K(φ∗,φ) + ln
( |W (φ)|2
M6

Pl

)
(4.2.1)

where K is the Kähler potential and W is the superpotential. Remember
that K is a real function which has both perturbative and non- perturbative
corrections, while W is an analytic function and it can only receive non
perturbative correction, since the superpotential is not renormalizable.

35



4. Four dimensional string theories

Equation (4.2.1) expresses the fact that the scalar-field space in supersym-
metry is a Kähler manifold and the scalar field should be thought of as the
coordinate of the manifold. From now on we use the following notation

∂iG =
δG
δφi

∂iG =
δG

δφi
∂iG =

δG
δφ∗i

∂iG =
δG

δφ∗i

In particular, the Kähler metric Kij̄ is a hermitian matrix given by

Gij ≡ ∂2
ij
G =

δ2G

δφiδφ∗j
=

1

M2
Pl

δ2K

δφiδφ∗j
=

1

M2
Pl

Kij (4.2.2)

where Kij
∗ = Kji and ∗ indicates the conjugate transpose. The inverse of this

matrix is denoted Gij =M2
PlK

ij so that

Gik̄Gk̄j = GīkGkj̄ = δij = δi
j

(4.2.3)

An important property of G is its invariance under the transformations

K → K + h(φ) + h(φ∗)

W → e−h(φ)W

with h an arbitrary analytic function. This property is the Kähler invari-
ance and it makes the chiral Lagrangian invariant under the previous
transformation.
We are only interested in the scalar potential so it is sufficient for our
purpose to consider the following simplified action in the flat spacetime
limit [13]:

S = −3

U
d4xd4θϕwϕw exp

{
− K

3M2
Pl

}
+




U
d4xd2θϕ3

wW + h.c.


 (4.2.4)

The field ϕw is an auxiliary non physical field know as Weyl compensator
field, introduced in such a way that it makes the action invariant under
scale and conformal transformations. This fictitious symmetry makes easier
to derive the action in components. The field ϕw has to be fixed in order to
break the artificial conformal invariance and its value is chosen such that
the physical fields are properly normalized:

ϕwϕw exp
{
− K

3M2
Pl

}
=M2

Pl
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It can be shown that the F-term scalar potential is given by (sum over
repeated indexes is understood)

VF =M4
Pl e

G
[
Gij∂iG∂jG − 3

]
(4.2.5)

This implies that, contrary to global supersymmetry, K and W are not
totally independent since the action depends only on the invariant combi-
nation G. In terms of K and W the F-term scalar potentials reads

VF = exp
{
K

M2
Pl

}[
DiWK ijDjW

∗ − 3
|W |2
M2

Pl

]
(4.2.6)

DkW B ∂kW +
1

M2
Pl

W∂kK DkW
∗B ∂kW

∗ +
1

M2
Pl

W ∗∂kK

The F-terms are given by

Fi = −MPl e
G/2Gik∂kG = −MPl e

G/2∂iG = −exp
{

K

2M2
Pl

}
W ∗

|W |K
ikDkW

∗

(4.2.7)

Fi = −MPl e
G/2Gik∂kG = −MPl e

G/2∂iG = −exp
{

K

2M2
Pl

}
W
|W |K

ikDkW

(4.2.8)

and we can rewrite the scalar potential (4.2.6) as

VF = KijF
iFj − 3exp

{
K

M2
Pl

} |W |2
M2

Pl

(4.2.9)

For MPl→∞ we recover the expression for the scalar potential of a global
supersymmetry:

VF ∼ Kij∂iW∂jW ∗ for MPl→∞

where the F - terms are given by Fi = ∂iW ∗

4.2.2 D-term potential

So far we have considered only pure supergravity. If we consider super-
symmetric matter and Yang-Mills coupled with supergravity, we must take
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into account D-terms contributions to the scalar potential, which are given
by [11]

VD =
1
2

Re[fabD̂
aD̂b] (4.2.10)

with

D̂a = f −1
ab D

b where Da = −Gi(T a)i jφj = −φ∗i(T a)i jGj̄ (4.2.11)

where the label a,b are gauge groups indexes and (T a)i
j are the group gener-

ators in the same representation as the chiral matter. The analytic function
fab(φ) is called gauge kinetic function, which transforms as a symmetric
product of adjont representations of the chiral matter gauge group.
Note that both D-terms (4.2.10) and F-terms (4.2.7) are linear combination
of Gi . Thus, we can recast the D-terms in the following way

Da =
e−G/2

M2
Pl

Fi(T a)i
jφj

and this show that D-terms can be written as linear combinations of F-
terms [13]. As consequence, in supergravity there is no single D-terms
supersymmetry breaking, since a non zero D-term requires at least a non
vanishing F-term.
If gauge singlet scalar fields acquire expectation values, supersymmetry
may be broken only by F-terms; in case of gauge non-singlets, both F- and
D-terms lead to supersymmetry breaking. The full scalar potential is

V = VF +VD

and it is completely determined once the functions G and fab are known.
Also the supergravity Lagrangian turns out to depend only on G and fab.

4.3 Minimum of the scalar potential

In our model of string inflation we take into account as tree-level infla-
tionary potential only the F-part of scalar potential i.e. we assume that VF
dominates during inflation over VD . D-term scalar potential is treated as a
small correction which may uplift the minimum [14]. Thus, from now on
we focus only on VF .
In global supersymmetry the scalar potential is non-negative, so there is
supersymmetric breaking if and only if the vacuum energy is positive.
Things are drastically different in the case of supergravity, since the scalar
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potential VF (4.2.6) may be negative because of the term −3|W |2/M2
Pl. Thus,

we can have supergravity breaking with the minimum of the potential
positive, negative or equal to zero and these three cases correspond to:

1. positive vacuum energy implies a de Sitter space

2. zero vacuum energy implies a Minkowski space

3. negative vacuum energy implies an anti-de Sitter space.

Recent cosmological observations point out a positive vacuum energy of
the observable universe [11],

ρvac = Λ4M4
Pl ≈ (2.3× 10−12 GeV)4 ≈ 10−120M4

Pl

which is clearly tiny compared to the scale ΛS usually associated with
supersymmetric breaking. In fact, requiring a supersymmetric particle
mass of about msoft ≈ 1TeV sets ΛS to

• ΛS ≈ 1010 GeV for gravity mediated supersymmetry breaking

• ΛS ≈ 104 GeV for gauge-mediated supersymmetry breaking

In fact, a naive estimate would give a supersymmetry breaking vacuum
〈V 〉 of order |〈F〉|2, so at least roughly [11]

• 〈V 〉 ≈ (1010 GeV)4 for gravity mediated supersymmetry breaking

• 〈V 〉 ≈ (104 GeV)4 for gauge-mediated supersymmetry breaking

Thus, it is unclear why the terms in the scalar potential in a supersymmetric
breaking minimum should be such that 〈V 〉 ≈ 0 at the minimum. Without a
clear explanation for the tiny value of ρvac, it is questionable to set 〈V 〉 ≈ 0.
Nevertheless, taking 〈V 〉 = 0 as constraint, we obtain from eq. (4.2.7) and
eq. (4.2.9)

〈
KijF

iFj
〉

= 3exp
{
K

M2
Pl

} |〈W 〉|2
M2

Pl

= 3M4
Ple
〈G〉 (4.3.1)

We will see later on that, in our model, the tree level Kähler potential
and superpotential coming from string theory are such that eq. (4.3.1) is
satisfied for all Kähler moduli.
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4.3.1 Super Higgs effect

When one or more Fi acquire a VEV, supergravity is broken and the grav-
itino obtain a mass in similar fashion the gauge vectors take mass during
electroweak symmetry breaking. In supergravity the evidence of sponta-
neous breaking of supersymmetry is the appearence of Goldstone fermions
or goldstinos, which are linear combinations of the spinors ψi in the same
multiplets of the auxiliary fields Fi . These Goldstone fermions can be
“gauged away” [15] through a gauge transformation of the so far massless
gravitino Ψ µ. As a result the two helicity degrees of freedom h = ±1/2 of
the goldistino are swallowed by the gravitino to give a massive spin 3/2
particle with mass

m2
3/2 = exp

{
K

M2
Pl

} |〈W 〉|2
M4

Pl

(4.3.2)

This is the so called super-Higgs effect: the two degrees of freedom of
the goldstino become the longitudinal component of the gravitino. From
eq. (4.3.1) we can infer that if we want a Minkowski vacuum i.e. 〈V 〉 = 0,
the gravitino mass can be recast as

m2
3/2 =

1

3M2
Pl

〈
KijF

iFj
〉

showing that the gravitino mass can be seen as the order parameter of the
spontaneous symmetry breaking of supergravity.
In realistic models supersymmetry has to be broken spontaneously, as we
will see in next section, in order to generate the so called “soft” supersym-
metry breaking terms, soft terms in short. These terms must not spoil the
solution of the hierarchy problem, hence their name.

4.4 SUSY breaking and gravity mediation

As we said so far, SUSY breaking must be parametrized using the so-called
soft terms. In fact, there is a general (tree level) constraint among boson and
fermions masses, given by [16]

∑
m2
J=0 − 2

∑
m2
J=1/2 + 3

∑
m2
J=1 = 0 (4.4.1)

This equation ensures the absence of quadratic divergences and it holds
separately for particles of a given charge, since SUSY generators commute
with eletric charge. For instance, the sum of d-type squark masses cannot
exceed 2m2

b, with mb the b quark mass, clearly contradicting experimental
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constraints on sparticles masses. So, this is the ultimately reason why we
consider soft breaking terms.
A supersymmetry breaking order parameter cannot belong to any of the
MSSM supermultiplets, thus supersymmetry can be spontaneously bro-
ken only in a separate sector, named hidden sector,and SUSY breaking is
transmitted to the SM visible sector by some mediating particles. There are
several proposal for the mediation mechanism: we consider the case where
gravitational interaction act as the messenger, i.e. the so called gravity
mediation [16].
In this context we consider two types of chiral multiplets:

• matter supermultiplets Cα which correspond to MSSM chiral multi-
plets list in table 3.1

• hidden sector supermultiplets hm with gravitational strength cou-
plings to the MSSM.

In our model, the hidden sector is given by the moduli coming (together
with their fermionic superpartners, the modulini) from the embedding
Type IIB string theory. One or more of these moduli acquires a non van-
ishing vev and so do some auxiliary fields 〈Fm〉 , 0, breaking supergravity.
Thus, the gravitino takes mass and gravitational interactions induced the
soft terms in the observable sector, which feels the SUSY breaking indi-
rectly.

Kähler potential and superpotential

By expanding in powers of chiral matters fields Cα the superpotential and
Kähler potential of the MSSM we obtain [16]

W =W (hm) +
1
2
µ(hm)HuHd +

1
6
Yαβγ (hm)CαCβCγ + . . . (4.4.2)

K = K(hm,h
∗
m) +Kαβ(hm,h

∗
m)CαC∗β +

[
Z(hm,h

∗
m)HuHd + h.c.

]
+ . . . (4.4.3)

where the term µ in the superpotential is the supersymmetric version of
the Higgs boson mass in the Standard model.
As to ensure the correct Higgs vev of order 174GeV without miraculous
cancellations, the SUSY mass term µ has to be in range of msoft. However,
we can already see a puzzle: the µ term is SUSY preserving while B′ (the soft
term which appears in Higgs potential) is not. Since they are dimensionful
parameters that are conceptually quite distinct, why µ should be of the same
order as the soft SUSY breaking terms? This is the so called µ problem[11].
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We consider one of the several solutions proposed in the literature: the
Giudice-Masiero mechanism [17]. The proposal of Giudice and Masiero
is to introduce a non-vanishing Z term in the Kähler potential which can
naturally generate a µ term of the order of msoft. This solution fits well in
superstring models, since a bilinear term likes ZαβCαCβ in the observable
fields often appears in the Kähler potential.

Derivation of the soft terms

The soft terms can be derived in the context of gravity mediation through
the following procedure: first of all, we need to insert equations (4.4.2)
and (4.4.3) in the supergravity lagrangian and then we have to replace
hm and their auxiliary fields Fm by their vevs. Finally, by taking the limit
MPl→∞ keeping m3/2 fixed (the so-called flat limit) we formally eliminate
the non-renormalizable gravity corrections and we decouple from gravity.
Thus, we are left with a global SUSY Lagrangian plus a Lagrangian with
SUSY breaking terms.

Lsugra(〈hm〉,〈Fm〉 )
m3/2 fixed−−−−−−−−→
MPl→∞

LSUSY +LSUSY breaking terms

We can infer the soft terms by comparing the general soft terms Lagrangian
LMSSM

soft (3.2.2) with the effective one LSUSY breaking terms coming from super-
gravity.

Diagonal Kähler matter metric

The Kähler matter metric Kαβ is in general non diagonal but string com-
pactifications often lead to a diagonal metrics, which is a welcome feature
since it obviously simplify the soft terms:

Kαβ(hm,h
∗
m) = δαβK̃α(hm,h

∗
m)

From now on we label with Cα the corresponding scalar particles of the
chiral matter supermultiplets (i.e. squarks and sleptons) and likewise hm
are used to denote the scalar fields belonging to the hidden sector chiral
supermultiplet. The SUSY breaking soft terms in the effective action for a
diagonal matter metric is

LMSSM
soft =

1
2

(
Maλ̂

aλ̂a + h.c.
)
− (m2)αĈ

αĈ∗ᾱ+

−
(

1
6
Aαβγ Ŷαβγ Ĉ

αĈβĈγ +Bµ̂ ĤuĤd + h.c.
) (4.4.4)

42



Section 4.5. Moduli fields

where Ĉα and λ̂α are the canonically normalized scalars fields (sfermions
and Higgs boson) and gauginos

Ĉα = K1/2
α Cα λ̂α = (Refα)1/2λα

while Ma , (m2)α , Aαβγ and B are the normalized soft terms. In the previous
expressions Ŷαβγ and µ̂ are respectively the physical Yukawa couplings and
the rescaled parameter

Ŷαβγ = (K̃αK̃βK̃γ )−1/2W
∗

|W |e
K/2Yαβγ (4.4.5)

µ̂ = (K̃Hu
K̃Hd

)−1/2µ′ =
(
W ∗

|W |e
K/2µ+m3/2Z −Fm∂mZ

)
(4.4.6)

where
∂mZ ≡ δZ

δh∗m
In the context of gravity mediation, the overall scale of the soft terms are
roughly set by the mass of the gravitino: Msoft ≈ m3/2. In our model the
mass of the gravitino is of the order

m3/2 ≈
(
1014 − 1015

)
GeV

which makes the mass of the soft terms very high [18].

4.5 Moduli fields

As we said, supergravity theories can be seen as low energy description of
superstring theories. For us it sufficient to mention that our model of string
inflation is derived from a type IIB string theory, which is a ten dimensional
N = 2 chiral superstring theory. The six extra dimensions are described by
compact Calabi-Yau 3-folds, a very special class of 3 dimensional Kähler
manifolds. By taking a particular projection on the Calabi Yau three fold,
named orientifold projection, it is possible to obtain an N = 1 chiral theory
(remember that SUSY theories with N > 1 cannot be chiral).
Making contact with our four dimensional world requires a compactifica-
tion of extra dimensions. We assume the ten dimensionalM10 to take the
form

M10 =M4 ×X6

where X6 is the Calabi-Yau manifold (with six real dimension) [19].
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4. Four dimensional string theories

This is referred to as compactification of string theory on X6. In order to
grasp the essentials concepts of the derivation of an effective low energy
4D supergravity theory from a string theory, lets write the Einstein-Hilbert
action [19]

S (10)
EH =

M8
s

2π

∫

M10

d10x
√−ĝ R10 (4.5.1)

where R10 is the ten dimensional Ricci scalar while ĝ is the metric ten-
sor determinant of the ten dimensional metric ĝMN . The integral can be
factorized in the following way

S (10)
EH =

M8
s

2π

∫

M4

d4x
√−g R4

∫

X6

d6x
√−ĝ6 (4.5.2)

where R4 and g are respectively the four dimensional Ricci scalar and
metric tensor determinant. We know that the second integral must give the
volume of the extra dimensions:

vol(X6) = V l6s =
V
M6
s

=

∫

X6

d6x
√−ĝ6

Thus, the 4D Einstein-Hilbert action for energies below the Kaluza Klein
scale Mkk looks like

S
(4)
EH =

M2
s

2π
V
∫

M4

d4x
√−g R4 =

M2
Pl

2π

∫

M4

d4x
√−g R4

and after compactification and dimensional reduction i.e. once we have
integrated out the extra dimensions we are left with a four dimensional
supergravity effective action. In the second equation we used

Ms ∼MPl/
√
V

which expresses the string scales in terms of the volume V of the Calabi
Yau in string length natural unit ls = 1.
A by product of string compactification are scalar particles called moduli.
So far we have only mentioned these particles, now we give some details of
them. Moduli arise from non trivial perturbations of the ten dimensional
metric ĝMN such that the Calabi Yau condition RMN = 0 (vanishing Ricci
tensor) is preserved. These fields essentially parametrise the shape and the
size of extra dimensions and there are three kinds of moduli:
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Section 4.5. Moduli fields

• the axion dilaton S whose VEV gives the string coupling,

• complex structure moduli Ua , a = 1, . . . ,h1,2 parametrising the shape
of the extra dimensions

• Kähler moduli Ti , i = 1, . . . ,h1,1 parametrising the size of the extra
dimensions

All these moduli are uncharged massless scalar fields with gravitational
couplings to all ordinary particles. Since massless scalars can mediate
long range forces, moduli would lead to an unobserved fifth forces, so it is
mandatory to find a mechanism which give mass to them. This procedure
is call stabilisation of moduli. Finding a non zero vacuum expectation value
(vev) for the moduli may be useful for understanding the main features of
the low-energy field theory, since the gauge and Yukawa couplings turns
out to depend on the moduli fields.
Let us now focus on the axio-dilaton modulus S and on the Kähler moduli
Ti . The former can be written as

S = e−φ + iC0 e−〈φ〉 = 1/gs

As the string coupling is a parameter which appears in all string theories,
the dilaton represents an universal feature in string compactifications. Its
imaginary part, C0, is an axion-like field.
Kähler moduli are given by integration of differential p-form over cy-
cles [20]:

Ti = τi + ibi = τi + i
∫

Di

C4

where C4 is a 4-form while Di is a 4-cycle. We have that τi = vol(Di) in
string length natural unit (ls ≡ 1 ) while bi is an axion-like field which enjoy
a Peccei- Quinn shift symmetry bi → bi + iε.
As this shift symmetry is only broken by non perturbative corrections,
the perturbative expansions terms in both α′ and gs cannot be functions
of Im(Ti) [21]. On one hand, the Kähler moduli Ti must be enter in the
perturbative action as Ti + T ∗i , leading to a Kähler potential of the form
K = K(Ti + T ∗i ). On the other hand, the non-renormalisation theorem
forbids perturbative corrections to the superpotential, and since Ti + T ∗i is
non-holomorphic,W cannot depend on Ti . This implies that the Ti does not
appear in the Yukawa couplings Yαβγ to any order in perturbation theory,
because Yαβγ are determined by the superpotential [21]. Therefore, it is
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4. Four dimensional string theories

possible to show that at the leading order in α′ and gs, the Kähler potential
can be written as [20]

Ktree = K(U,T ,S) = −2ln[V (T + T ∗)]− ln[S + S∗]− ln
[
− i

∫

X
Ω(U )∧Ω(U ∗)

]

where Ω is the Calabi Yau holomorphic (3,0) form. The tree level superpo-
tential is given by

W =Wtree(U,S) ∼
∫

X6

G3(S)∧Ω(U )

where G3(S) is a three form.

4.5.1 No-scale structure

One of the main consequences of the shift symmetry enjoy by the Kähler
moduli is the no-scale structure of the scalar potential i.e. the moduli Ti
are flat directions of leading order scalar potential. In order to under-
stand this important feature it is worth to mention that the volume V is a
homogeneous function of degree 3/2 in the τi = Re(Ti) [20]

V (λτ) = λ3/2V (τ) for all λ ∈ R
We have that

∂Ktree

∂Ti
=

1
2
∂Ktree

∂τi
= − 1
V (τ)

∂V
∂τi

so, thanks to the Euler theorem for homogeneous function we can write

h1,1∑

i=1

τi
1
2
∂Ktree

∂τi
= − 1
V (τ)

h1,1∑

i=1

τi

(
∂V
∂τi

)
= − 1
V (τ)

3
2
V (τ) = −3

2
(4.5.3)

Using the previous equation it can be proved that [20]

h1,1∑

i,j=1

K ijKiKj = 3 (no-scale structure) (4.5.4)

Eq (4.5.4) is usually indicated as the no-scale structure equation. We
have now all the necessary ingredients for calculating the tree level scalar
potential:

V = eK(U,T ,S)
(
K ijDiWDjW

∗ − 3|W |2
)

i,j=U,S,T
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Taking into account that
DTW =WKT

we readily obtain

Vtree = eK


h1,2∑

i,j=1

K ijDiWDjW
∗ + KSS |DSW |2


 + eK



h1,1∑

p,q=1

KpqKpKq


 |W |2

= eK


h1,2∑

i,j=1

K ijDiWDjW
∗ + KSS |DSW |2


 ≥ 0 (4.5.5)

where in the second line we used eq. (4.5.4). Since the tree level scalar
potential is positive semidefinite, we can locate its minimum at Vtree = 0.
This condition leads to a set of differential equations

DSW = 0 =DUW (4.5.6)

whose solutions allow to fix supersymmetrically the dilaton and the com-
plex structure moduli at tree level [20]. Therefore we can integrate out the
dilaton and the complex structure moduli by setting them equal to their
vev.
By contrast, Kähler moduli cannot be stabilised by the tree level scalar po-
tential because the leading contributions for the Ti fields identically vanish.
Thus, Kähler moduli are flat directions for the potential. This implies that
we must consider subleading perturbative and non perturbative corrections
if we want to stabilise these moduli.
It is worth to notice that Kähler moduli already break supersupersymmetry
at this level of approximation, since DTW = WKT , 0. In the context
of type IIB string compactification with supergravity mediation, Kähler
moduli can lead to the spontaneous symmetry breaking of supergravity in
the hidden sector. As consequence, the supersymmetry is also broken in
the visible sector thanks to the soft terms induced by the Kähler moduli.

In conclusion of this chapter, we just mention that the scalar potential
corrections needed to stabilise Kähler moduli may also generate a potential
suitable for inflation, where the inflaton could be one Kähler modulus.
This is the case for many different Calabi Yau set up and our model of fibre
inflation is one of them.
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Chapter 5

A string inflationary model

5.1 Fibre inflation

We finally discuss our model of string inflation, called Fibre inflation. It is
a 4D string model embedded in a type IIB string theory whose Calabi Yau
is endowed with a K3 fibration structure (so the name fibre inflation)[22].
We can express the volume of the K3 Calabi-Yau as a function of three τi
fields:

V = α
(√
τ1τ2 −γτ3/2

3

)
(5.1.1)

where

• τ1 is the fiber modulus,

• τ2 is the base modulus,

• τ3 is a blow-up mode. It is an "auxiliary" field required to stabilise
the volume V at its minimum

α and γ can be regarded as real constants, with the constant γ taken to be
positive and order unity.
As we said in the previous chapter, all moduli need to be stabilised and this
can be achieved in the context of LARGE volume scenario. We do not enter
in the technical details here. We just mention that by taking the volume
V of the Calabi Yau large and positive respect to l6s , we can obtain a scalar
potential which admits an Anti de Sitter non supersymmetric minimum.
In particularly, we will work in the parameter regime

V0 B α
√
τ1τ2 >> αγτ

3/2
3 >> 1



5. A string inflationary model

All moduli can be stabilised at the minimum of this LARGE volume sce-
nario potential, which receives both perturbative and non perturbative
corrections:

V ≈ Vtree + δV(α′) + δV(sp) + δV(gs)

where Vtree is given by (4.5.5). We consider three kind of corrections to the
scalar potential:

• δV(gs) are given by non perturbative corrections to the superpotential

• δV(α′) and δV(gs) arise from perturbative corrections to the Kähler
potential, where δV(gs) are string loop corrections

In Fibre inflation the inflationary potential are due to string loop corrections
to the Kähler potential, which is a characteristic feature of the model
together with the prediction of observable primordial gravity waves (i.e.
large tensor-to-scalar-ratio).

Corrections to the Kähler potential and superpotential

If we take into account leading order corrections in α′, the Kähler potential
reads

K ' K0 + δK(α′) = −2MMPl
ln

[
V +

ξ̂
2

]
(5.1.2)

where ξ is a model dependent constant which controls the size of the α′
corrections

ξ̂ ≡ ξ

g3/2
s

ξ ∈ R

and K0 is defined as
K0 = −2lnV

Including non perturbative corrections to the superpotential leads to

W =W0 +
3∑

i=1

Aie
−aiTi (5.1.3)

W0 and gs are fixed after the stabilisation of the dilaton S and of the
complex moduli Ua to

W0 =
〈∫

X
G3(S)∧Ω(U )

〉

gs = 〈Re(S)〉

50



Section 5.1. Fibre inflation

Ai , i = 1,2,3 corresponds to threshold effects and can depend on the com-
plex structure moduli and on the details the model, while the constants
ai depend on the source of the non perturbative corrections. For our pur-
pose we treat both of them as numerical constants, with the constraint
aiτi � 1, i = 1,2,3. We can neglect the contributions given by the mod-
uli T1 and T2 at first approximation, since we consider the large volume
regime [14]:

W ≈W0 +Ae−aT3 (5.1.4)

5.1.1 Inflationary potential

Scalar potential without string loop corrections

In the aim of work out some predictions for the spectral index ns and
the tensor-to-scalar-ratio r we need first to calculate the scalar potential.
Neglecting in a first stage the string loop corrections, the potential can be
written as [14]

V ≈ Vtree + δV(α′) + δV(sp) =

= 8a2
3|A3|2

√
τ3

3αγV e
−2a3τ3 − 4a3|A3||W0| τ3

V2 e
−a3τ3 +

3ξ̂ |W0|2
4V3 +Vup (5.1.5)

where the phases ofW0 and A3 are absorbed in the stabilisation of the axion
b3. Vup is the uplift term in the scalar potential. It enables the tuning of
the minimum near to zero in the presence of string loop corrections. It can
be seen that the tree level scalar potential depends on the fields T1 and T2
only through the volume V . As consequence, it is not possible to stabilise
both the moduli τ1 and τ2 at this level of approximation and there is one
modulus (or combination of) τ1 and τ2 which remains completely flat.

For simplicity we consider the modulus τ1 as flat direction. In fact, as
we will see in the next susbsection, string loop corrections to the potential
depends on τ1, so this flat direction can be easily lift, giving a mass to τ1.
This is a good candidate for the inflaton, since we expect that τ1 remains
lighter than V and τ3 after stabilisation. Indeed, the inflaton is usually the
lighter modulus in string inflation which is displaced from his minimum.
During inflation it rolls down (slowly) towards his minimum while the
others heavier moduli stay (approximately) at their minima.
The potential completely stabilises the fields τ3 and V and the minimum
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5. A string inflationary model

satisfying a3τ3� 1 is given by [14]

〈τ3〉 =
(
ξ̂

2αγ

)2/3

and 〈V〉 =
(

3αγ
4a3|A|3

)
|W0|

√
〈τ3〉ea3〈τ3〉 (5.1.6)

String loops corrections to the potential

The scalar potential receives the following string loop corrections

δV(gs) =
|W0|2
V2

(
g2
s
A

τ2
1

− B

V√τ1
+ g2

s
Cτ1

V2

)
(5.1.7)

where A, B and C are unknown coefficients. Here the use the same notation
adopted by ref. [18] which is slightly different respect to the one use by
ref. [14]. Label by A′, B′ and C′ the parameters used in ref. [14] we have
that

A′ = g2
s A B′ = B C′ = g2

s C (5.1.8)

So, from the values taken from ref. [14, table 2, pag.19] by setting gs ' 0.301
we expect the following ranges for the parameters A, B and C

A ≈ O(10−1)−O(10−2) B ≈ O(1)−O(10) C ≈ O(10−3)−O(10−4)

In either case, we expect that the string loop corrections stabilise τ1 at a
minimum. Indeed, minimizing δV(gs) with respect to τ1 with V and τ3 fixed
at their minima gives

〈τ1〉3/2 =
(8g2

s AV
B

)(
1 +

B
|B|

√
1 + 32g4

s
AC

B2

)−1

(5.1.9)

When g4
s � 1, the previous expression reduces to

〈τ1〉3/2 '



g2
s

(4AV
B

)
if B > 0

g−2
s

( |B|V
2C

)
if B < 0

(5.1.10)

which require A > 0 for B > 0 and C > 0 for B < 0. Rewriting these minima
in terms of the original fields τ1 and τ2 leads to

〈τ1〉 '



g2
s

(4A
B

)
〈τ2〉 << 〈τ2〉 if B > 0

g−2
s

( |B|
2C

)
〈τ2〉 >> 〈τ2〉 if B < 0

(5.1.11)
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For large enough V we can safely suppose that the fields V and τ3 are
not displaced from their minima during inflation, making a single field
dynamic an excellent approximation. Since the inflaton will turn out to be
mostly τ1 after canonical normalisation, we have a simple pictorial view
of the inflationary process. For B > 0 inflation start with the K3 fibre τ1
much larger than the base and then the situation evolves in such a way
that K3 decreases his size while the τ2 being larger keeping the volume V
approximately constant. At the end of inflation the base has became larger
than the K3 fibre.

5.1.2 Single-field inflation

When τ3 = 〈τ3〉 and V = 〈V〉 are fixed at their τ1-independent minima, so
that ∂µτ3 = ∂µV = 0, the relevant dynamics reduces to [14]

Linf = −3
8

1

τ2
1

∂µτ1∂
µτ1 −Vinf(τ1) (5.1.12)

with the scalar potential given by

Vinf = V0 +
(
g2
s
A

τ2
1

− B
Vτ1

+ g2
s
Cτ1

V2

) |W0|2
V2 (5.1.13)

The τ1 independent constant V0 consists of

V0 =
8a2

3|A3|2
√〈τ3〉

3αγ〈V〉 e−2a3〈τ3〉 − 4|W0|a3|A3|〈τ3〉
〈V〉2 e−a3〈τ3〉 +

3ξ̂ |W0|2
4〈V〉3 + δVup

(5.1.14)
Once V is fixed at this minimum this term does not depend at all on τ1.
The canonical inflaton is therefore given by (we set MPl = 1)

ϕ =

√
3

2
lnτ1 and so τ1 = eκϕ with κ =

2√
3

(5.1.15)

The potential becomes

Vinf = V0 +
W 2

0

V2

(
g2
s Ae

−2κϕ − BV e
−κϕ/2 + g2

s
C

V2 e
κϕ

)
=

=
1

〈V〉10/3

(
C0e

κϕ̂ −C1e
−κϕ̂/2 + C2e

−2κϕ̂ + Cup

)
(5.1.16)
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where we shift ϕ =
〈
ϕ
〉

+ ϕ̂ by its vacuum value and adjust

V0 =
Cup

〈V〉10/3
with Cup = C1 −C0 −C2

In the regime g4
s << 1 we have

〈
ϕ
〉

=
1√
3

ln(ζV )

with

ζ '



g2
s

4A
B

if B > 0

g−2
s
|B|
2C

if B < 0

The coefficients Ci are independent on 〈V〉 and they are given by

C0 = g2
s C|W0|2ζ2/3 C1 = B|W0|2ζ−1/3 C2 = g2

s A|W0|2ζ−4/3

From now on we focus only in the case with B > 0, since the case B < 0 leads
to a prediction for r ruled out by observations [18]. Notice that we have

C0

C1
=
ζC
B

= 4g4
s
|A|C
B2 (5.1.17)

RB
C0

C2
= ζ2C

A
= 16g4

s
|A|C
B2 (5.1.18)

C1

C2
=
ζB

g2
s A

= 4 (5.1.19)

Thus, we can finally write the scalar potential as

V ' gse
−Kcs

8π
C2

〈V〉10/3

[
(3−R)− 4e−κϕ̂/2 + e−2κϕ̂ +Reκϕ̂

]
(5.1.20)

where the prefactor (gse
−Kcs)/8π is the correct overall normalisation ob-

tained from dimensional reduction [22]. Hereafter we set e−Kcs = 1 since [20]

e−Kcs =
〈
−i
∫

X6

Ω∧Ω
〉
≈ O(1)
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Therefore, from now on we consider

V ' gs
8π

C2

〈V〉10/3

[
(3−R)− 4e−κϕ̂/2 + e−2κϕ̂ +Reκϕ̂

]
(5.1.21)

with

C2 = |W0|2
( |B|4

256g2
s |A|

)1/3

= Ctuning

(
1

256g2
s

)1/3

(5.1.22)

where we define

Ctuning B |W0|2
( |B|4
|A|

)1/3

Fig. 5.1 shows the inflationary potential for different values of R. The
potential in the graphic is unnormalised, i.e. we have set the prefactor

gs
8π

C2

〈V〉10/3
= 1 in graphic 5.1

0 2 4 6 8 10 12 14
0

1

2

3

4

5

ϕ̂end

ϕ̂

V

R = 2.7 · 10−5
R = 2.3 · 10−6
R = 2.0 · 10−8

Figure 5.1: Inflationary potential for different values of the parameter R. The
potential in the graphics is unnormalised, so the unit of measure is arbitrary. The
graphics also show the end point of inflation used in the following calculations

Notice in passing that the mass of the inflaton field ϕ̂ can be readily calcu-
lated by taking the second derivative of (5.1.21) evaluated at the minimum:

m2
ϕ = V ′′(0) =

gs
8π

C2

〈V〉10/3
(5.1.23)
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5.2 Fibre inflation predictions

In this section we will find out some predictions for the spectral index ns
and the tension-to-scalar ratio r. These two observables turn out to depend
only on the slow roll parameters ε and η evaluated at the horizon exit [14]

ns = 1 + 2η∗ − 6ε∗ and r = 16ε∗ (5.2.1)

Recalling the definitions of the slow roll parameters

ε =
M2

p

2V 2

(
∂V
∂ϕ̂

)2
η =

M2
p

V

(
∂2V

∂ϕ̂ 2

)

we can readily calculate ε and η from our inflationary potential (5.1.21):

ε ≈ 8
3



e−kϕ̂/2 − e−2kϕ̂ + 1

2Re
kϕ̂

3− 4e−kϕ̂/2 + e−2kϕ̂ +Rekϕ̂



2

(5.2.2)

η ≈ −4
3



e−kϕ̂/2 − 4e−2kϕ̂ −Rekϕ̂

3− 4e−kϕ̂/2 + e−2kϕ̂ +Rekϕ̂


 (5.2.3)

Thus, in order to give a predictions for ns and r we have to estimate the
value of inflaton field at the horizon exit ϕ̂∗.
The horizon exit is tied up with the number of e-foldingsNe, which measure
the slow roll inflation life span. So, in this section we will make the
following analysis:

1. we first calculate the horizon exit in the range of [50,62] e-foldings,

2. given ϕ̂∗ we estimate ns and r,

3. we finally taking into account experimentally observations that con-
straint the parameter space for inflation.

In fact, inflation has to last long enough for solving the horizon problem:
for instance, a typical value is about 60 e-foldings [2]. Moreover, the energy
scale at which inflation occurs must be sufficient so as to generate the
observed density perturbation. This requirement involve the so called
COBE normalisation: it is a quite stringent experimental constraint which
allows to fix the energy at which inflation occurs, thereby restricting the
accessible parameter space.
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Section 5.2. Fibre inflation predictions

Actually, the number of e-foldings is set by the post inflationary thermal
history and by the inflationary energy scale. In particular, Ne depends on
the reheating epoch through the equation of state p = wρ describing this
period and the reheating temperature Trh. The number of e-folding can be
written as [14]

Ne ' 62 + ln
(
Minf

1016

)
− 1− 3w

3(1 +w)
ln

(
Minf

Trh

)
(5.2.4)

where Minf is the energy scale of inflation.
In the next chapter we will calculate the reheating temperature and ∆Neff
due to the decay of the inflaton using the parameters inferred in this section.
Through the reheating temperature we can narrow the range of e-foldings
and so the predictions for ns and r. Finally, the number of extra neutrino
species allow us to select a spectral index ns and so a tensor-to-scalar r by
using fig. 2.1.

5.2.1 Number of e-foldings

The number of e-folding is given by (setting MP = 1)

Ne =

ϕ̂∗∫

ϕ̂end

V
V ′

d ϕ̂ ≈
ϕ̂∗∫

ϕ̂end

1√
2ε

d ϕ̂ (5.2.5)

where ϕ̂ is the value of the inflaton field at horizon exit, while ϕ̂end set the
end of inflation. From now on we consider ϕ̂end = 1, following [14] (see also
fig. 5.1). We have written a Matlab code so as to evaluating ϕ̂∗ numerically
for the number of efoldings listed in table 5.1 and table 5.2.
Once the horizon exit values are known, we can readily calculate both ns
and r: table 5.1 and table 5.2 report our predictions with R = 2.3 · 10−6 and
R = 2.7·10−5 respectively. Notice that the predictions for both ns and r with
R = 2.7 · 10−5 are greater than R = 2.3 · 10−6 for equal number of e-foldings.
Fig. 5.2 show r versus ns for two different values of the parameter R. The
green curve represents the approximate relation r ≈ 6(ns − 1)2 for R→ 0,
which is a good one for ns in the range [0.96,0.98].
From fig. 2.1 it is possible to infer that a ∆Neff ≈ 0.6 requires a spectral
index in the range of approximately [0.97,1.00]. By comparing fig. 2.1 with
the graphic 5.2 it seems that for R = 2.3 ·10−6 it is quite difficult to obtain a
tensor-to-scalar-ratio in range of r ≈ 0.01. By contrast, for R = 2.7 · 10−5 the
tensor-to-scalar-ratio is never below r = 0.01 for every ns.

57



5. A string inflationary model

Ne ns r Minf

50 0.965 7.14 · 10−3 7.4 · 1015

54 0.968 6.27 · 10−3 7.1 · 1015

57 0.970 5.73 · 10−3 7.0 · 1015

60 0.972 5.26 · 10−3 6.8 · 1015

62 0.973 4.99 · 10−3 6.7 · 1015

Table 5.1: R = 2.3 · 10−6 , gs = 0.301

Ne ns r Minf

50 0.987 1.06 · 10−2 8.1 · 1015

54 0.993 1.03 · 10−2 8.0 · 1015

57 0.998 1.02 · 10−2 8.0 · 1015

60 1.004 1.02 · 10−2 8.0 · 1015

62 1.008 1.04 · 10−2 8.0 · 1015

Table 5.2: R = 2.7 · 10−5 , gs = 0.301

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
·10−2

Ne = 50 Ne = 60

Ne = 50

Ne = 60

ns

r

R = 2.3 · 10−6
R = 2.7 · 10−5
6(ns − 1)2

Figure 5.2: r versus ns for different parameter R. The green curve represents the
approximate equation r ≈ 6(ns − 1)2 for R = 2.3 · 10−6
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Section 5.2. Fibre inflation predictions

5.2.2 Scale of inflation and COBE normalisation

We now evaluate the inflationary scale using the following expression [14]

Minf = V 1/4
end '

(
gs
8π
C2

)1/4
MPl

〈V〉5/6 (5.2.6)

It is possible to invert eq. (5.2.6) and express C2 as a function of Minf :

C2 =
8π
gs

(
Minf

MPl

)4

〈V〉10/3 (5.2.7)

The COBE normalisation is given by the requirement that inflation must
reproduce the observed primordial scalar density perturbations of δH =
1.92 · 10−5. This condition can be expressed as [14]

ACOBE ≡ 1

M6
Pl

(
V 3/2∗
V ′∗

)2
=

1

M4
Pl

V∗
2ε∗
' 2.7 · 10−7 (5.2.8)

where the potential V and ε are evaluated at the horizon exit. We rewrite
the previous expression in a more convenient way:

ACOBE =
1

2ε∗
gs
8π

C2

〈V〉10/3
V̂∗ with V =

gs
8π

C2

〈V〉10/3
V̂∗

where V̂∗ is the scalar potential (5.1.21) without the prefactor gsC2/
(
8π〈V〉10/3

)
.

By inserting eq. (5.2.7) in the previous expression we obtain:

Minf =MPl

(
2ε∗
V̂∗

2.7 · 10−7
)1/4

(5.2.9)

Eq. (5.2.9) allow to fix the scale of inflation once the horizon exit is known
using the constraint given by the COBE normalisation. If we want to
trust our effective field theory Minf should not be greater than 1016 GeV.
Table 5.1 and table 5.2 show that the scale of inflation is always below
1016 GeV for the range of Ne we considered.
Now we can estimate V using eq. (5.2.7) and (5.1.22):

8π
gs

(
Minf

MPl

)4

〈V〉10/3 = C2 = |W0|2
( |B|4

256g2
s |A|

)1/3

=⇒

=⇒ 8π(256)1/3
(
Minf

MPl

)4(〈V〉10

gs

)1/3

= |W0|2
( |B|4
|A|

)1/3

≡ Ctuning (5.2.10)

59



5. A string inflationary model

Assuming Minf = 7.5 · 1015 GeV and gs = 0.301 as reference values, we
readily obtain (

2.1 · 10−8
)
〈V〉10/3 = Ctuning

So, a Calabi Yau volume V ≈ 104 requires

Ctuning B |W0|2
(
B4

|A|
)1/3

≈ 4.6 · 105 with Minf = 7.5 · 1015 GeV

For B ≈ O(10) and |A| ≈ O(10−2) we have that |W0| ≈ O(100) and this shows
that our model of fibre inflation require little tuning. In fact, a superpo-
tential of about |W0| ≈ O(100) appears quite naturally during compactifica-
tions. Larger volumes require a considerable amount of fine tuning of the
parameters |W0| , A , B , C, so a Calabi Yau volume of about V ≈ 104 can be
considered as an upper bound.
Actually, this condition can be stated in an equivalent and clearier way.
Through the COBE normalisation we set the scale of inflation, which has to
be Minf ≈ 1016GeV. Let us consider |W0| ≈ 100, which is a "natural" order
of magnitude for the superpotential and let be gs = 0.301. For these values
C2 ≈ 105 and by recasting eq. (5.2.6) we can infer that

〈V〉 =
(
gs
8π
C2

)3/10(
MPl

Minf

)6/5

≈ 104

Thus, in order to match the COBE normalisation the volume of the Calabi
Yau can not be larger than 104. From now on we take V = 104 as benchmark
value.

Mass of the inflaton

We have seen that the mass of the inflaton can be written as eq. (5.1.23)

mϕ ≡
√
gs
8π
C2

MPl

〈V〉5/3 (5.2.11)

Using equation eq. (5.2.7) and eq. (5.2.9) the inflaton mass becomes

mϕ =
(
Minf

MPl

)2
MPl =

(
2ε∗
V̂∗

2.7 · 10−7
)1/2

MPl (5.2.12)

It can be seen from the previous expression that the mass of the inflaton is
set by the energy scale of inflation, which depends logarithimicaly on the
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Section 5.2. Fibre inflation predictions

number of e-foldings (5.2.4). Thus, in our case the mass of the inflaton is
essentially fixed by the amplitude of the primordial density perturbations
and by the "steepness" of the potential, where the former is an experimen-
tal constraint while the latter is a geometric feature of the inflationary
potential. It is important to remark that the right hand side of eq. (5.2.12)
is evaluated at the horizon exit, which can be considered as the starting
point of inflation, while the left handed side is of course calculated in the
minimum of the potential.
If the assume that Minf = 7.5 · 1015, the inflaton mass is about

mϕ ' 2.3 · 1013 GeV

in agreement with [18]. mϕ is significantly lower than the mass of the
gravitino m3/2 ∼MPl/V ≈ (1014 − 1015)GeV.
To conclude this section, we report in table 5.3 our parameters benchmark
that we will use throughout the next chapter:

Minf (GeV) 〈V〉 gs Ctuning

R = 2.3 · 10−6 7.0 · 1015 1.0 · 104 0.301 3.5 · 105

R = 2.7 · 10−5 8.0 · 1015 1.0 · 104 0.301 6.0 · 105

Table 5.3: Benchmark values for some parameters

As we can see in table 5.1 and table 5.2, the scale of inflation is slowly
varying with respect to the number of e-foldings, so it is an excellent
approximation taking a reference value for Minf. In table 5.3 we have
calculated Ctuning using the formula (5.2.10) and the parameters listed in
the same table.

Ctuning = 8π(256)1/3
(
Minf

MPl

)4(〈V〉10

gs

)1/3
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Chapter 6

Reheating after fibre inflation

In this concluding chapter, we will finally give some predictions for the
reheating temperature of the Universe and the extra neutrino dof. This
task requires the branching ratio for the inflaton decays into the visible
and the hidden sector, so the first half of this chapter is devoted to study of
the possible couplings and decay channels for the inflaton. Once we have
the decay rates, we are able to calculate the reheating temperature after
inflation and ∆Neff. The former allow us to give a prediction for ns and r
which basically depends only on the parameter R, while from the latter we
can conclude if fibre inflation can accommodate r ≈ 0.01.

6.1 Canonical normalization and axionic couplings

It is of primary importance to canonically normalize the Lagrangian so as
to determine the correct couplings of the inflaton to the others fields and
the mass spectrum. In this section we determine the fields redefinitions
necessary for this purpose. Neglecting the string loop corrections to the
Kähler potential, by taking the fields derivative of eq. (5.1.2), we obtain the
following Kähler metric in the large volume regime

K0
ij

(τi) =
1

4τ2
2




τ2
2
τ2

1
γ
(
τ3
τ1

)3/2
−3γ

2

√
τ3

τ3/2
1
τ2

γ
(
τ3
τ1

)3/2
2 −3γ

√
τ3
τ1

−3γ
2

√
τ3

τ3/2
1
τ2 −3γ

√
τ3
τ1

3αγ
2

τ2
2

V√τ3




(6.1.1)



6. Reheating after fibre inflation

where all the terms subleading respect to
√
τ3/τ2 has been dropped. In

particularly, from now on we consider V ≈ α√τ1τ2.
The kinetic Lagrangian to the leading order for the Kähler moduli is given
by (sum over repeated indexes is understood)

−Lkin√−g = K0
lm(Ti + Ti)∂

µT l∂µT
∗m =

=
(
δτi
δTl

)(
δτj
δT ∗m

)
δ2K0(τi)
δτiδτj

(
∂µτl∂µτm +∂µbl∂µbm

)
=

=
1
4
δ2K0(τi)
δτiδτj

(
∂µτi∂µτj +∂µbi∂µbj

)

Therefore, we can split the kinetic Lagrangian into two parts: one for the
real part of the Kähler moduli (Lkin,τ ) and one for the axions (Lkin,ψ), so we
can separately diagonalise them.

−Lkin√−g = −Lkin,τ√−g −
Lkin,b√−g

Moduli canonical normalization

In this subsection we just report the canonically normalized moduli fields.
For the extended calculations, see Appendix A. The relations between the
moduli τ1, τ3 and V and their canonical normalized counterpart are

τ1 = exp
(

2√
3

χ1

MPl
+

√
2
3

χ2

MPl
+

3
2
Φ2

M2
Pl

)
(6.1.2)

V = exp
(√

3
2

χ2

MPl
+

9
4
Φ2

M2
Pl

)
(6.1.3)

τ3 =
( 3V
4αγ

)2/3
(
Φ

MPl

)4/3

(6.1.4)

We start off by neglecting the field Φ which is involved in subleading
corrections to the canonical normalization, so we can write

τ1 ≈ exp
(

2√
3

χ1

MPl
+

√
2
3

χ2

MPl

)
(6.1.5)

V ≈ exp
(√

3
2

χ2

MPl

)
(6.1.6)
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Section 6.1. Canonical normalization and axionic couplings

A Taylor expansion around the vev of the canonically normalized χ1 and
χ2 fields leads to

τ1 ≈ exp
(

2√
3

〈χ1〉
MPl

+

√
2
3
〈χ2〉
MPl

)
exp

(
2√
3

δχ1

MPl
+

√
2
3
δχ2

MPl

)

V ≈ exp
(√

3
2
〈χ2〉
MPl

)
exp

(√
3
2
δχ2

MPl

)

The vev can be written as

〈τ1〉 ≈ exp
(

2√
3

〈χ1〉
MPl

+

√
2
3
〈χ2〉
MPl

)

〈V〉 ≈ exp
(√

3
2
〈χ2〉
MPl

)

and so we have

τ1 ≈ 〈τ1〉exp
(

2√
3

δχ1

MPl
+

√
2
3
δχ2

MPl

)

V ≈ 〈V〉exp
(√

3
2
δχ2

MPl

)

Expanding τ1 around his vev, i.e. τ1 ≈ 〈τ1〉+ δτ1, we find that

τ1 ≈ 〈τ1〉exp
{

2√
3

δχ1

MPl
+

√
2
3
δχ2

MPl

}
≈ 〈τ1〉

[
1 +

2√
3

δχ1

MPl
+

√
2
3
δχ2

MPl

]

hence
δτ1

〈τ1〉
≈

[
2√
3

δχ1

MPl
+

√
2
3
δχ2

MPl

]

We are only interested in the possible decays of δχ1, that turns out to be
mostly the inflaton. Thus, we can neglect δχ2

δτ1

〈τ1〉
≈ 2√

3

δχ1

MPl
(6.1.7)

The previous equation can be derived in the same way from eq. (5.1.15):

τ1 = exp
{
κϕ

MPl

}
≈ exp

{
κ
〈
ϕ
〉

MPl

}
exp

{
κϕ̂

MPl

}
=⇒

=⇒ τ1 ≈ 〈τ1〉
[
1 +κ

ϕ̂

MPl

]
=⇒ δτ1

〈τ1〉
≈ κ ϕ̂

MPl
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So, we can finally write

δτ1

〈τ1〉
≈ 2√

3

δχ1

MPl
≡ κ ϕ̂

MPl
κ =

2√
3

(6.1.8)

Couplings between moduli and axions

From the canonical normalization of Lkin,b we can derive the Lagrangian
of the couplings between the field ϕ̂ and the axions. The canonically
normalized axions b̂1 and b̂2 are given by [23]

b1 =
√

2 b̂1 b2 =
V
α
b̂2

and the canonically normalized kinetic Lagrangian for the axions reads

− Lkin,b√−g ⊃
1

2τ2
1

∂µb̂1∂
µb̂1 +

1
2
τ1∂µb̂2∂

µb̂2 (6.1.9)

Using eq. (6.1.8) we can write

−Lkin,b√−g ⊃
1

2τ2
1

∂µb̂1∂
µb̂1 +

1
2
τ1∂µb̂2∂

µb̂2 ≈

≈ 1
2

(
1

〈τ1〉2
− 2

δτ1

〈τ1〉3
)
∂µb̂1∂

µb̂1 +
1
2

(
〈τ1〉+ δτ1

)
∂µb̂2∂

µb̂2 =

=
1

2〈τ1〉2
(
1− 2

δτ1

〈τ1〉
)
∂µb̂1∂

µb̂1 +
1
2
〈τ1〉

(
1 +

δτ1

〈τ1〉
)
∂µb̂2∂

µb̂2 =

=
1

2〈τ1〉2
(
1− 4√

3

ϕ̂

MPl

)
∂µb̂1∂

µb̂1 +
1
2
〈τ1〉

(
1 +

2√
3

ϕ̂

MPl

)
∂µb̂2∂

µb̂2

By setting

a1 =
1
〈τ1〉

b̂1 a2 =
√
〈τ1〉 b̂2 (6.1.10)

we obtain the Lagrangian of the kinetic coupling between the field ϕ̂ and
the normalized axions a1 and a2:

Lkin coup = − 2√
3

ϕ̂

MPl
∂µa1∂

µa1 +
1√
3

ϕ̂

MPl
∂µa2∂

µa2 (6.1.11)
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Section 6.2. Suppressed decays into visible sector fields

Since we have that the axions a1 and a2 are almost massless [24], [25] i.e.

�a1 ≈ 0 �a2 ≈ 0

we can write

ϕ̂∂µa1∂
µa1 � −∂µϕ̂ a1∂

µa1 ��ϕ̂ a1a1 +∂µϕ̂ ∂
µa1a1 =

= −m2
ϕ ϕ̂a1a1 + ∂µϕ̂ ∂

µa1a1 �

� −m2
ϕ ϕ̂a1a1 − ϕ̂ ∂µa1∂

µa1

=⇒ ϕ̂∂µa1∂
µa1 � −1

2
m2
ϕ ϕ̂a1a1

where � denotes that we have integrated by parts and neglected boundary
terms. Moreover, we have employed the equation of motion of ϕ̂ al tree
level. So, we can finally write

Lϕ̂→aa =
1√
3

m2
ϕ

MPl
ϕ̂a1a1 − 1

2
√

3

m2
ϕ

MPl
ϕ̂a2a2 (6.1.12)

6.2 Suppressed decays into visible sector fields

We now systematically analyse the possible decays of the inflaton. The
articles [24], [23] and [26] point out that in fibre inflation the following
decay channels are actually suppressed:

1. matter scalars (squarks, sleptons),
Our model belongs to the so-called class of non-sequestered string
models where, as we remarked in the previous chapter, the mass of
gravitino fixes the scale of the soft terms. Usually, in the context of
the cMSSM (constrained MSSM), the mass of the matter scalars are
set all equal to the mass of the gravitino around the energy scale
of Grand Unification 1 · 1016 GeV [11]. In our model, ϕ decays at
energy mϕ ≈ 2 · 1013 GeV, so we can safely neglect corrections due to
renormalization running (see [11] ) and we can still consider

mmatter scalars ≈m3/2 ∼ MPl

V ≈ 1014 GeV�mϕ

Thus, the decay into scalar matter particles is kinematically forbid-
den.
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2. matter fermions (quarks, leptons),
Given cϕ̂→f f the decay fraction of the inflaton into matter fermions,
it turns out that

cϕ̂→f f ∼
(
mf
mϕ

)2
� 1

This is a model independent feature called chirality suppression

3. gauginos.
Ref. [27] shows that the gaugino masses have the same magnitude as
the gravitino mass, so the inflaton decay in these particles is kinemat-
ically forbidden.

Therefore, we are left with the following unsuppressed decay channels:

1. gauge bosons

2. Higgs bosons

The magnitude of the couplings between the inflaton and the particles of
the visible sector depends crucially on the position of the Standard Model
(SM) in the Calabi-Yau three-fold. In our model it is localised on a stack
of D7 branes which wrap the four-cycle associated with the fibre modulus
τ1. Fig. 6.1 gives a pictorial view of the Calabi-Yau volume in our model: it
can be schematically seen as a parallelepiped whose lateral faces are the
base modulus τ2 and the fibre modulus τ1. The blow-up modulus τ3 can
be viewed as as a "hole" in the volume in the parallelepiped.

Figure 6.1: Pictorial view of the Calabi-Yau volume. The Standard Model lies on
D7 branes wrapping the four-cycle related to the fibre modulus τ1.

Without entering into technical details, we mention that a Dp brane is a (p+
1) dimensional subspace of spacetime where "D" stands for "Dirichlet". The
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Section 6.3. Moduli couplings with the Higgs bosons

endpoints of open strings lie on D-branes which give Dirichlet boundary
conditions on the motion of the open string endpoints [16]. Type IIB string
theory is compatible only with Dp branes with odd p [16].

For the gauge bosons the couplings with moduli arise from the real part
of the gauge kinetic function fab, which depends on the volume of the
four-cycle wrapped by the D-branes containing the Standard Model. In the
case of the Higgs boson, the correct normalization and the couplings with
the moduli can be derived from the Kähler potential (4.4.3).

6.3 Moduli couplings with the Higgs bosons

6.3.1 Giudice-Masiero term

We now focus on the possible interactions of the inflaton with the Higgs
sector. Following ref. [21] and ref. [27] we assume a diagonal Kähler matter
metric, so the Kähler potentials for the Higgs sector reads

Kmatter = K̃HuHuH
∗
u + K̃HdHdH

∗
d +Z (HuHd + h.c.) (6.3.1)

The functions Z , K̃Hu
, K̃Hd

are in general unknown and hard to compute
since they are not holomorphic. Nonetheless, it is possible to infer the mod-
uli dependence of these functions using some scaling arguments regarding
the physical Yukawa couplings (4.4.5). As shown in [27], in our model we
have two components for the Kähler matter metric for each Higgs boson

K̃‖ =
ki
τ2

K̃⊥ = ki with i =Hu ,Hd

This is due to the fact that the two Higgs doublet Hu and Hd come from
string modes which can be located inside the D7 branes or orthogonal to
them [27]. kHu

, kHd
are real functions on the complex structure moduli and

the axion dilaton. Assuming that Uα and S have been already stabilised at
their minima, we can safely treat kHu

, kHd
simply as constants. Let be

K̃Hu
= kHu

τ
−λHu
2 K̃Hd

= kHd
τ
−λHu
2 (6.3.2)

The function Z scale in the following way

Z = z
√
K̃Hu

K̃Hd
=

z

τ2
λ

√
kHu

kHd
with λ =

λHu +λHd
2

, z ∈ R (6.3.3)

where z is a real parameter. There are two possible cases: λ = 1 and
λ = 1/2.
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1. λ = 1

The Kähler matter metric for Hu and Hd is respectively

K̃Hu
=
kHu

τ2
K̃Hd

=
kHd

τ2

The corresponding Giudice-Masiero term is

Z =
z
τ2

√
kHu

kHd
≈ τ1

1/2

V z
√
kHu

kHd

If we expand near the vev and then use eq. (6.1.8) we obtain

Z ≈ 〈τ1〉1/2
〈V〉

(
1 +

ϕ̂√
3MPl

)
z
√
kHu

kHd
(6.3.4)

2. λ = 1/2

In this case there are two possible choices of the Kähler matter metric
for the Hu and Hd fields:

K̃Hu =
kHu

τ2
K̃kHd

= kHd
or K̃Hu= kHu

K̃Hd=
kHd

τ2

Both choices lead to the Giudice-Masiero term

Z =
z

τ2
1/2

√
kHu

kHd
≈ τ1

1/4

V1/2
z
√
kHu

kHd

If we expand near the vev and then use eq. (6.1.8) we obtain

Z ≈ 〈τ1〉1/4
〈V〉1/2

(
1 +

ϕ̂

2
√

3MPl

)
z
√
kHu

kHd
(6.3.5)

6.3.2 Normalization of Higgs fields

We now report the canonical normalization for the Higgs field for the two
Kähler matter metrics.

1. λ = 1

K̃HuHuH
∗
u + K̃HdHdH

∗
d =

α〈τ1〉1/2
〈V〉

(
1 +

1√
3

ϕ̂

MPl

)(
kHu

HuH
∗
u + kHd

HdH
∗
d

)

The canonically normalized Higgs fields are

Ĥu =
√

2
〈τ1〉1/4
〈V〉1/2

√
kHu

Hu Ĥd =
√

2
〈τ1〉1/4
〈V〉1/2

√
kHd

Hd (6.3.6)
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Section 6.3. Moduli couplings with the Higgs bosons

2. λ = 1/2

We choose for concreteness K̃Hu = kHu
and K̃Hd = kHd

/τ2, therefore

K̃HuHuH
∗
u + K̃HdHdH

∗
d = kHu

HuH
∗
u +
〈τ1〉1/2
〈V〉

(
1 +

1

2
√

3

ϕ̂

MPl

)
kHd

HdH
∗
d

The canonically normalized Higgs fields are

Ĥu =
√

2
√
kHu

Hu Ĥd =
√

2
〈τ1〉1/4
〈V〉1/2

√
kHd

Hd (6.3.7)

6.3.3 Interaction Lagrangian

It can be shown that inflaton decays into the Higgs bosons of the type
ϕ̂→ ĤuĤu and ϕ̂→ ĤdĤd are suppressed due to the equations of motion
at tree level [26]. So, the only unsuppressed decays come from the Giudice-
Masiero term. Thus, the interaction Lagrangian is given by

Lcubic ⊃ −1
2

m2
ϕ ϕ̂√

3MPl
z
(
ĤuĤd + h.c.

)
λ = 1

Lcubic ⊃ −1
2

m2
ϕ ϕ̂

2
√

3MPl
z
(
ĤuĤd + h.c.

)
λ =

1
2

We summarize the previous expression by writing

Lcubic ⊃ −ΛG.M.m
2
ϕ ϕ̂

(
ĤuĤd + h.c.

)
(6.3.8)

where

ΛG.M. =



1

2
√

3

z
MPl

for λ = 1

1

4
√

3

z
MPl

for λ =
1
2

From now on we follow the notations of ref. [26]. We set

Ĥ+
u =

1√
2

(ReĤ+
u + iImĤ+

u ) Ĥ−d =
1√
2

(ReĤ−d + iImĤ−d )

Ĥ0
u =

1√
2

(ReĤ0
u + iImĤ0

u) Ĥ0
d =

1√
2

(ReĤ0
d + iImĤ0

d)
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6. Reheating after fibre inflation

h1 = ReĤ+
u h2 = ReĤ−d h3 = ReĤ0

d h4 = ReĤ0
u

h5 = ImĤ0
d h6 = ImĤ0

u h7 = ImĤ+
u h8 = ImĤ−d

hence we can write

Lcubic ⊃ −ΛG.M.m
2
ϕ ϕ̂

4∑

i=1

(−1)i+1h2i−1h2i =
1
2

(ĤuĤd + h.c.) =

= (Ĥ+
u , Ĥ0

u)
(

0 1
−1 0

)(
Ĥ0

d
Ĥ−d

)
+ (Ĥ+∗

u , Ĥ0∗
u )

(
0 1
−1 0

)(
Ĥ0∗

d
Ĥ−∗d

)
=

= Ĥ+
u Ĥ
−
d − Ĥ0

uĤ
0
d + Ĥ+∗

u Ĥ−∗d − Ĥ0∗
u Ĥ0∗

d = Ĥ+
u Ĥ
−
d − Ĥ0

dĤ
0
u + h.c.

Since in the cMSSM electroweak symmetry breaking takes place at energies
of order of the gravitino mass while the inflaton decays at energies of order
mϕ �m3/2 [26], we need to switch from the basis of gauge eigenstates to
the basis of mass eigenstates. In the latter basis we have the neutral fields
Â0, ĥ0, Ĥ0, Ĝ0 and the charge fields Ĝ±, Ĥ± with Ĝ− = Ĝ+∗and Ĥ− = Ĥ+∗.
The gauge eigenstates are related to the mass eigenstates by the following
relations



Ĥ0

d

Ĥ0
u


 =

(
vd
vu

)
+

1√
2

(
cosα sinα
−sinα cosα

)(
Ĥ0

ĥ0

)
+
i√
2

(
sinβ0 −cosβ0
cosβ0 sinβ0

)(
Â0

Ĝ0

)



Ĥ+

u

Ĥ−∗d


 =

(
sinβ± cosβ±
−cosβ± sinβ±

)(
Ĝ+

Ĥ+

)

so we have

h1 = sinβ±Re Ĝ+ + cosβ±ReĤ+ h2 = −cosβ±Re Ĝ+ + sinβ±ReĤ+

h3 =
√

2vd + (cosαĤ0 + sinα ĥ0) h4 =
√

2vu + (−sinαĤ0 + cosα ĥ0)

h5 = −cosβ0 Ĝ
0 + sinβ0 Â

0 h6 = sinβ0 Ĝ
0 + cosβ0 Â

0

h7 = sinβ± Im Ĝ+ + cosβ± ImĤ+ h8 = cosβ± Im Ĝ+ − sinβ± ImĤ+

Note that

Ĥ−∗d = ReĤ−d + iImĤ−d
= −cosβ±(Re Ĝ+ + iIm Ĝ+) + sinβ±(ReĤ+ + iImĤ+)

=⇒ ImĤ−d = cosβ±Im Ĝ+ − sinβ±ImĤ+
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Section 6.4. Dominant decays into visible and hidden sector fields

Provided that vu and vd minimize the tree level potential, one finds that

β0 = β± = β m2
Ĝ0 =m2

Ĝ±
= 0 m2

Ĥ± =m2
Â0 +m2

W

m2
ĥ0,Ĥ0 =

1
2

(
m2
Â0 +m2

Z ∓
√

(m2
Â0 −m2

Z)2 + 4m2
Zm

2
Â0 sin2(2β)

)

m2
Â0 =

2b
sin2β

= 2|µ̂|2 +m2
Ĥu

+m2
Ĥd

with b = Bµ̂

The β angle is defined by tanβ = vu/vv with β ∈
]
0, π2

[
since we consider

positive vev by definition. The mixing angle α is determined, at the tree
level, by

sin2α
sin2β

= −


m2
Ĥ0 +m2

ĥ0

m2
Ĥ0 −m2

ĥ0




tan2α
tan2β

=



m2
Â0 +m2

Z

m2
Â0 −m2

Z




and is usually chosen to be negative, i.e α ∈]− π2 ,0[. Finally, the Lagrangian
of the couplings for the Giudice - Masiero term is given by

Lcubic ⊃ΛG.M.m
2
ϕ ϕ̂

{
1
2

sin(2α)
[
(ĥ0)2 − (Ĥ0)2

]
+ cos(2α)

[
ĥ0Ĥ0

]
+

+ vuvd +
√

2
[
vu(cos(α)Ĥ0 + sin(α) ĥ0) + vd(−sin(α)Ĥ0 + cos(α) ĥ0)

]

+
1
2

sin(2β)
[
|Ĝ+|2 − |Ĥ+|2

]
+ cos(2β)

[
ReĤ+Re Ĝ+ + ImĤ+Im Ĝ+

]

+
1
2

sin(2β)
[
(Ĝ0)2 − (Â0)2

]
+ cos(2β)

[
Â0Ĝ0

]}

(6.3.9)

6.4 Dominant decays into visible and hidden sec-
tor fields

Decay rates into the Higgs sector

The ϕ̂ field may decay only into the ĥ0, Ĝ0, Ĝ± fields, since all other decays
are kinematically forbidden [26]. So, the couplings of our interest are

Lcubic ⊃ ΛG.M.

2
m2
ϕϕ̂

{
sin(2β)|Ĝ+|2 + sin2(β)(Ĝ0)2 + sin(2α)(ĥ0)2

}
(6.4.1)
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with
Lϕ̂Ĝ+Ĝ− =

ΛG.M.

2
m2
ϕ sin(2β) ϕ̂Ĝ+Ĝ− (6.4.2)

Lϕ̂Ĝ0Ĝ0 =
ΛG.M.

2
m2
ϕ sin(2β) ϕ̂Ĝ0Ĝ0 (6.4.3)

Lϕ̂ĥ0ĥ0 =
ΛG.M.

2
m2
ϕ(sin2α) ϕ̂ĥ0ĥ0 (6.4.4)

The decays rates are

Γϕ̂→Ĝ+Ĝ− =
1

16πmϕ

Λ2
G.M.

4
m4
ϕ sin2(2β) (6.4.5)

Γϕ̂→Ĝ0Ĝ0 =
1

8πmϕ

Λ2
G.M.

4
m4
ϕ sin2(2β) (6.4.6)

Γϕ̂→ĥ0ĥ0 =
1

8πmϕ

Λ2
G.M.

4
m4
ϕ sin2(2α) (6.4.7)

where

ΛG.M. = Cj
z

2
√

3

1
MPl

with Cj =


1 for λ = 1
1
2 for λ = 1/2

thus

ΓHiggs =
Λ2

G.M.

64π
m3
ϕ

[
3sin2(2β)+2sin2(2α)

]
= C2

j
z2

16
1

48π

m3
ϕ

M2
Pl

[
3sin2(2β)+2sin2(2α)

]

Finally, we rewrite the previous expressions as follows

ΓHiggs = C2
j

( z
4

)2
Γ0

[
3sin2(2β) + 2sin2(2α)

]
with Γ0 =

1
48π

m3
ϕ

M2
Pl

(6.4.8)

Decays rates into visible and hidden sector fields

We find the following decay rates for the canonically normalized modulus
ϕ:

Decays into DR:



Γϕ̂→a1a1
=

1
24π

m3
ϕ

M2
Pl

Γϕ̂→a2a2
=

1
96π

m3
ϕ

M2
Pl

(6.4.9)
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=⇒ Γϕ̂→DR = Γϕ̂→a1a1
+ Γϕ̂→a2a2

=
5

96π

m3
ϕ

MPl
=

5
2
Γ0 (6.4.10)

Decays into SM:



Γϕ̂→A1A1
=
Ng

48π

m3
ϕ

MPl

Γϕ̂→Higgs = C2
j
z2

16
Γ0

[
3sin2(2β) + 2sin2(2α)

]
(6.4.11)

=⇒ Γϕ̂→SM = Γϕ̂→A1A1
+ Γϕ̂→Higgs =

=
[
Ng +C2

j
z2

16

(
3sin2(2β) + 2sin2(2α)

)]
Γ0 (6.4.12)

where Ng is the number of gauge bosons. Throughout the next calculation
we have set Ng = 12.

6.5 Reheating temperature

After the end of inflation, ϕ starts oscillating around its minimum when
H ∼mϕ, at frequency k0 =mϕ (if we ignore effects associated with particle
creation). The oscillation amplitude will fall off as [a(t)]−3/2 and the energy
of the field decreases in same way as the density of non relativistic parti-
cles of mass mϕ [28]. So, during reheating the equation of state is p = 0,
implying

a(t) ∼ t3/2 H =
2
3t

ϕ ∼ a−3/2 ∼ t−1

In the slow roll approximation, we can treat ϕ as the amplitude of a
homogeneous field.
Now, let us consider the quantum corrections to the equation of motion of
this field, oscillating at a frequency k0 =mϕ �H(t):

..
ϕ + 3H(t)

.
ϕ +

[
m2
ϕ +Π(k0)

]
ϕ = 0

Here Π(k0) is the polarization operator for the field ϕ at a four- momentum
k = (k0,0,0,0). When k0 is greater than the threshold of particles pair
production, Π(k0) acquires an imaginary part ImΠ(k0). Form2

ϕ � ImΠ(k0),
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6. Reheating after fibre inflation

m2
ϕ �H2 and neglecting the time-dependence of H , we obtain a solution

which describes the damped oscillations of the field near the minimum [28]

ϕ = ϕ0 exp(imϕt) · exp
[
− 1

2

(
3H +

ImΠ(mϕ)

mϕ

)
t

]

From the unitary relations it follows that

ImΠ(mϕ) =mϕΓtot

where Γtot is the total decay width of the inflaton. Hence, when Γtot� 3H ,
the energy density of the field decreases exponentially in a time less than
the typical expansion time of the universe ∆t ≈H−1:

ρϕ =
m2
ϕϕ

2

2
≈ ρ0 e

− Γtot
2 t

If the coupling constant with the other fields are small, then initially

Γtot < 3H(t) = 2/t

In this case, the energy density of ϕ simply decreases due to the expan-
sion of the Universe. The fraction of total energy converted in particle
production is small since the particles produced during the oscillations
are diluted and the Universe cannot essentially reach thermal equilibrium.
This remains true until

Γtot ≈ 3
2
H(t∗)

At the time t∗ the contribution of the newly created particles becomes sig-
nificant and after t∗ practically all the energy of the field ϕ is transformed
into particles production. In slow roll approximation it is possible to write

H2 =
1
3
V (ϕ)

M2
Pl

=
1
3
ρ

M2
Pl

=⇒

=⇒ ρ = 3H2M2
Pl =

4
3
Γ 2

totM
2
Pl

If the reheating process occurs rapidly enough, virtually all the energy
from the oscillating field will be transformed into thermal energy, and the
matter acquires a temperature Trh where

ρ =
πg∗(Trh)

30
T 4

rh ≈
4
3
Γ 2

totM
2
Pl (6.5.1)
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Reheating temperature in fibre inflation

In fibre inflation, the total decay rate Γφ of the inflaton has two main
contributions, which comes from the decay into visible and hidden dof:

Γχ1
= Γvis + Γhid = (cvis + chid)Γ0 with Γ0 =

1
48π

m3
ϕ

M2
Pl

(6.5.2)

The hidden sector dof is constituted by axions, which never thermalise
during thermal history of the universe, so the reheating temperature is
given by (we use the same notation of ref. [26])

Trh =
( 30ρvis

π2g∗(Trh)

)1/4

where

ρvis =
cvis

ctot
3H2M2

Pl with ctot = cvis + chid

Using the relation 9H2 ≈ 4Γ 2
ϕ , we find

ρvis =
4
3
cvis

ctot
Γ 2
χ1
M2

Pl =
4
3
cvis

ctot
(cvis + chid)2 Γ 2

0 M
2
Pl =

=
4
3
cvis(cvis + chid)

( 1
48π

)2 m6
ϕ

M2
Pl

=
4
3
cvis ctot

( 1
48π

)2 m6
ϕ

M2
Pl

Thus, the reheating temperature can be rewritten as

Trh =
(

30ρvis

π2g∗(Trh)

)1/4
=




30
π2

1
g∗(Trh)

cvis ctot
4
3

( 1
48π

)2



1/4

=
1
π

(
5

288
cvis ctot

g∗(Trh)

)1/4
mϕ

√
mϕ
MPl

(6.5.3)

This reheating temperature has to be larger than about 1MeV in order to
preserve the successful BBN predictions. Using the relation (5.1.23) we can
recast the reheating temperature as

Trh =
1
π

(
5

288
cvis ctot

g∗(Trh)

)1/4
mϕ

√
mϕ
MPl

=

=
1
π

(
5

288
cvis ctot

g∗(Trh)

)1/4( 1

256g2
s

)1/4(
gs
8π
Ctuning

)3/4
MPl

〈V〉5/2
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In our model, the total decay of the ϕ field in the visible sector is

Γvis = Γϕ̂→A1A1
+ Γϕ̂→Higgs =

=
[
12 +C2

j

( z
4

)2(
3sin2 2β + 2sin2 2α

)]
Γ0 = cvisΓ0

whereas the total decay in the hidden sector is

Γhid = Γϕ̂→DR =
5
2
Γ0 = chidΓ0 (6.5.4)

We define
f (α,β)B

[
3sin2(2β) + 2sin2(2α)

]
(6.5.5)

with f (α,β) ∈ [0,5] in principle. So, we have

cvis = 12 +C2
j
z2

16
f (α,β) chid =

5
2

(6.5.6)

thus
cvis ctot = cvis(cvis + chid) = c2

vis +
5
2
cvis

In our computations we have used the following expression for the reheat-
ing temperature

Trh =
1

4π




5
288

c2
vis + 5

2cvis

g∗(Trh)




1/4(
g1/3
s

8π
Ctuning

)3/4
MPl

〈V〉5/2 (6.5.7)

6.5.1 Predictions for the reheating temperature

As to make some numerical predictions for Trh, we consider the following
parameters

α = β = π/4 z = 1 Cj = 1/2 (6.5.8)

For these values the constant cvis reads

cvis = 12 +
(

1
2

)2 1
16
f

(
π
4
,
π
4

)
' 12.1

Since we expect that z ≈ O(1), the constant cvis does not affect the order of
magnitude of the reheating temperature, that instead is basically fixed by
the inflaton mass. Using the benchmark values of table 5.3 and eq. (6.5.8),
our model predict the reheating temperatures of table 6.1 , which are in
agreement with [18]. We have set g∗(Trh = 106.75) since the reheating
temperature is always higher than 30GeV.
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Section 6.6. Dark radiation predictions

6.5.2 Predictions for ns and r

In the previous chapter we have calculated the spectral index ns and the
tensor-to-scalar-ratio r by taking into account a range of plausible numbers
of e-foldings for different values of the parameter R. The reheating temper-
ature combined with Minf naturally select a number of e-folding Ne thanks
to eq. (5.2.4):

Ne ' 62 + ln
(
Minf

1016

)
− 1− 3w

3(1 +w)
ln

(
Minf

Trh

)

Thus, fibre inflation predictions for ns and r turn out to depend essentially only
on the parameter R. Table 6.1 showsNe related to the reheating temperatures
listed in the same table and the benchmarks values of table 5.3. In our
calculations we have set ω = 0 i.e. we assumed that the reheating period is
matter dominated. It is clear now that the fibre inflation model can predict

Trh (GeV) Ne ns r

R = 2.3 · 10−6 1.0 · 1010 57.2 0.970 5.70 · 10−3

R = 2.7 · 10−5 1.5 · 1010 57.4 0.999 1.02 · 10−2

Table 6.1: Reheating temperatures and related number of e-foldings, ns and r.
The benchmark values for Minf reheating temperatures of table 5.3. We have set
ω = 0.

observable primordial gravity waves nowadays i.e. r ' 0.01 only if the
parameter R is in range of O(2 · 10−5). As we have seen in the previous
chapter, ns and r are not independent at all, so r ' 0.01 implies necessarily
ns ' 1.000.

6.6 Dark radiation predictions

Our final task is to calculate ∆Neff in order to verify if our model can
actually accommodate a ns ' 1.000. In fact, from fig. 2.1 we deduce that
ns ' 1.000 requires at least ∆Neff ' 0.5. If the decay of the inflaton into
axions is too much suppressed, the experimental constraints do not allow
ns ' 1.000 for our model, so a prediction of r ' 0.01 is forbidden in fibre
inflation.
From now on we consider ∆Neff = 0.5 as lower bound for dark radiation.

79



6. Reheating after fibre inflation

6.6.1 Extra neutrino species

We have seen previously that ∆Neff is given by (2.2.27)

∆Neff =
43
7

Ba
1−Ba

[
10.75
g∗(Trh)

]1/3

where Ba is the branching ratio for the ϕ decays into axions. In our case we
have

∆Neff =
43
7
chid

cvis




10.75
g∗(Trh)




1/3

=
43
7

5/2

12 +C2
j
z2

16f (α,β)




10.75
106.75




1/3

(6.6.1)

where the function f (α,β) is defined by eq. (6.5.5)

6.6.2 Parameter space constraints from dark radiation

We are now able to give some predictions for ∆Neff, which turns out to
be a function of the Giudice - Masiero term z and of the angles α and
β. Moreover, it depends on the theoretical D-brane setup of the model
through the constant Cj that we have seen it can take two possible values:

C1/2 =
1
2

C1 = 1 (6.6.2)

The search for realistic α and β angles is beyond the aim of this thesis, so we
simplify our analysis by considering the function f (α,β) as an independent
variable which takes values in [0,5]. Fig. 6.2 and fig. 6.3 show ∆Neff versus
f (α,β) for different values of z in the two setup Cj = 1/2 and Cj = 1.

80



Section 6.6. Dark radiation predictions
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Figure 6.2: ∆Neff vs f (α,β) for different values of z. ( Case Cj = 1/2)
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Figure 6.3: ∆Neff vs f (α,β) for different values of z. ( Case Cj = 1)
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These graphics show that for all the values of z considered we can have
∆Neff ≥ 0.5 as long as f (α,β) is sufficiently small. Notice that for z = 1,
the extra number of neutrino species is ∆Neff ' 0.59 for all the values of
f (αβ) in both the setup. Moreover, in the limit z→ 0 the extra number of
neutrino species tends to ∆Neff = 0.595 without any requirements. This is a
very interesting and uncommon feature in string inflation, because a too
small Giudice-Masiero term leads to an overproduction of dark radiation in
many models unless of the presence of some constraints in the parameters
space [24], [23].
For the sake of simplicity let us consider α = β = π/4, so f (α,β) = 5. From
graphic 6.4 we deduce that in order to have ∆Neff ≥ 0.5, the parameter z
must be in the following ranges

z ≤ 3 for Cj = 1/2 z ≤ 5.5 for Cj = 1

This in agreement with our expectation that the Giudice-Masiero term
z ≈ O(1).

0 1 2 3 4 5 6 7
0.33

0.36

0.39

0.42

0.45

0.48

0.51

0.54

0.57

0.60

z

∆Neff

α = β = π/4 (f (α,β) = 5)

Cj = 1/2
Cj = 1

Figure 6.4: ∆Neff vs z for α = β = π/4 (f (α,β) = 5)

Summarizing all the previous observations, we can finally state that our
model of fibre inflation is capable to predict a spectral index of order
ns ' 1.000 and so a tensor-to-scalar-ratio r ' 0.01 since it can easily accom-
modate ∆Neff ≥ 0.5 for z ' O(1).
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6.7 A shortcoming: the Higgs boson mass

Unfortunately, there is a serious shortcoming in our model due to the
small Calabi-Yau volume needed to match the COBE normalization: the
prediction of fibre inflation for the Higgs boson mass does not fit with its
experimental value. In fact, since there is no sequestering, the mass of the
soft terms Msoft is about the gravitino mass m3/2 thus

Msoft ≈m3/2 ∼ MP

V ≈ 1014 − 1015 GeV

Ref. [29] points out that the MSSM with high scale SUSY breaking does
not allow for a correct Higgs boson mass. The resulting upper bound is
Msoft . 1011 GeV. A possible way out is to consider a different D-brane
setup for our model: for example, we can in principle set the Standard
Model over a blow-up that shrinks to zero, namely sequestering the visible
sector of the theory. Nevertheless, as shown in [25], in a sequestered fibre
Calabi-Yau there is an overproduction of dark radiation, making this option
clearly not viable.
Another possible solution is to consider an alternative method to generate
the scalar density perturbations, so that the COBE normalization is satisfied
for higher Calabi-Yau volumes than in the vanilla fibre inflation. Ref. [22]
and ref. [30] describe this alternatives scenarios: the former article suggests
a curvaton model, while the latter propose a modulated reheating scenario.
Both of them require that the modulus driving inflation is not wrapped by a
stack of D7 branes containing the visible sector, thus the inflaton coupling
with the gauge bosons is drastically reduced respect to our model. As con-
sequence, dark radiation production is strongly enhanced, so the previous
models most likely predict an excessive number of neutrino species.

If we want a model of fibre inflation with suitable inflation, dark radia-
tion and the correct Higgs bosons mass at once, we probably have to look
for other solutions. A rather drastic and simple way-out is to drop out the
MSSM and instead take into account its minimal extension, namely the
NMSSM. In fact, ref [31] points out that in the NMSSM Msoft ' 1014 GeV
can lead to the correct Higgs boson mass, making our model still consistent
with current experimental constraints. Considering the NMSSM instead of
the MSSM does not require any change in our D-brane setup, so there is no
needed to modify our calculations of the Kähler matter metric. Moreover,
the singlet S in the NMSSM does not introduce new relevant couplings for
the inflaton field, thus our decay widths for the inflaton are still valid.

83



6. Reheating after fibre inflation

In summary, we may obtain the correct Higgs boson mass if we consider the
NMSSM and this possible solution has the virtue of requiring no modifica-
tions to our previous decay width calculations, making our fibre inflation
predictions for dark radiation, ns and r unaltered. However, a careful
analysis is mandatory in order to verify these preliminary observations.
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Chapter 7

Conclusions

In the context of string inflation, fibre inflation is a very interesting model
since many of its features make it very predictive. From the phenomeno-
logical viewpoint, fibre inflation is very appealing since it can predict an
axionic dark radiation of order ∆Neff ' 0.5−0.6 together with an observable
tensor-to-scalar-ratio r ' 0.010 and ns ' 1.000. Thus, fibre inflation points
out the existence of primordial gravity waves combined with a scale invari-
ant power spectrum for the density perturbations, making its predictions
very distinctive and easily testable in the next few years.
From the theoretical perspective, this model can easily accommodate dark
radiation within experimental constraints even if the coefficient of the
Giudice-Masiero term is equal to zero, i.e. the inflaton decay into the Higgs
sector is completely suppressed. This nice feature is a natural consequence
of the fact that the Standard Model is located on a stack of D7-branes wrap-
ping the fibre τ1, where the latter has an intersection with base modulus
τ2.
Despite these and other remarkable features, fibre inflation cannot predict
the correct Higgs boson mass due to the high scale of supersymmetry
breaking [29]. This serious drawback is unfortunately an example of
the known tension between large scale string inflation and low energy
supersymmetry. A possible bottom up solution could be taking into account
the Next to Minimal Supersymmetric Standard Mode, NMSSM for short.
We finally mention that it would be interesting to study possible general-
izations of vanilla fibre inflation models which could give more freedom
in the construction of a chiral visible sector with D7-branes. For example
one could consider a different Calabi-Yau setup leading to the so-called
generalised fibre inflation. In this context the volume of the Calabi-Yau looks
like:

V =
√
τ1τ2τ3 − τ3/2

s



7. Conclusions

Moduli stabilisation is more involved than vanilla fibre inflation since it
requires D-term contributions to fix, for example, τ2 in terms of τ1. But
after D-term fixing, moduli stabilisation proceeds in the same way as in
vanilla fibre inflation models and the resulting single field inflationary
potential can predict a tensor-to-scalar ratio in the range of 0.01 [18].
However, an in-depth analysis is needed in order to check if generalised
fibre inflation can predict a suitable amount of dark radiation.
In any case, it is certainly worth looking for a solution which gives the cor-
rect Higgs boson mass while preserving the nice features of fibre inflation.
We are confident that it is possible to find such kind of model.
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Appendix A

Canonical normalization

A.1 Moduli kinetic Lagrangian

The kinetic Lagrangian for real part of the moduli is given by (withMPl = 1)

− Lkin,τ√−g =
1
4
δ2K0(τi)
δτiδτj

∂µτi∂µτj =

=
(
∂µτ1 ∂µτ2 ∂µτ3

) 1

4τ2
2




τ2
2
τ2

1
γ
(
τ3
τ1

)3/2
−3γ

2

√
τ3

τ3/2
1
τ2

γ
(
τ3
τ1

)3/2
2 −3γ

√
τ3
τ1

−3γ
2

√
τ3

τ3/2
1
τ2 −3γ

√
τ3
τ1

3αγ
2

τ2
2

V√τ3







∂µτ1

∂µτ2

∂µτ3




=

=
1

4τ2
1

∂µτ1∂µτ1 +
1

2τ2
2

γ
(τ3

τ1

)3/2
∂µτ2∂µτ1 −

3γ
4τ2

√
τ3

τ3/2
1

∂µτ1∂µτ3 +

+
1

2τ2
2

∂µτ2∂
µτ2 − 1

2τ2
2

3γ
2

√
τ3

τ1
∂µτ2∂µτ3 +

3αγ
8

1
V√τ3

∂µτ3∂µτ3



A. Canonical normalization

Bringing out the dependence on the volume V for each term, we can rewrite
the previous expression as

−Lkin√−g =
1

4τ2
1

∂µτ1∂µτ1 +
α2γ

2
τ3

V2

√
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(A.1.1)

We now trade τ2 for V , in the limit in which τ1 and τ2 are much larger than
τ3.
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Putting all the previous expressions together we get
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where we have neglected subleading terms in 1/V . It is convenient to
canonically normalize order by order in 1/V :

Lkin,τ = LO(1)
kin,τ +LO(V−1)

kin,τ (A.1.2)

The leading terms are
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while the subleading ones at O(V−1) are
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We can get a canonically normalize Lagrangian by first diagonalizing LO(1)
kin,τ .

This can be done using the following transformations ( we reintroduce the
Planck mass dependence)
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The coefficients a,b and c are obtained from the condition that the matrix
M satisfies
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One possible solution of the previous system is
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Now we diagonalize the next-order kinetic term, LO(V−1)
kin . The first term

of (A.1.5) can be canonically normalized by setting

τ3 =
( 3V
4αγ

)2/3
(
Φ
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)4/3

(A.1.9)

while the second term of (A.1.5) requires a mixing between V and τ3. So,
by introducing the following subleading corrections
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we finally get
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