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Abstract

Nel presente lavoro di tesi si dimostra il miglioramento delle perfomances termiche di un
detector basato su pozzi quantici (QWIP-Quantum Well Infrared Photodetector)(n-type
doped GaAs/AlGaAs) nel range infrarosso dello spettro (λ ≈8.6µm), processato in un
array di nano-antenne a doppio metallo.
I Quantum Well detectors generano fotocorrente attivando transizioni intersottobanda
(ISB-Intersubband) nel supereticolo di pozzi quantici ([12]). Nel range spettrale del mid-
infrared (5µm<λ<20µm), le prestazioni di questi detectors sono deteriorate dal rumore
associato alla corrente di dark. La corrente di dark, proporzionale all’area del detec-
tor, aumenta esponenzialemente con la temperatura, limitando quindi la temperatura di
funzionamento del detector. Ad ora, i QWIPs disponibili in commercio richiedono un
costoso sistema di raffreddamento. Inoltre, i QWIPs necessitano di un’opportuna ge-
ometria in grado di permettere la transizione intersottobanda, proibita ad un’incidenza
normale della radiazione [17]. In questo lavoro, si dimostra che il concetto di antenne
patches consente il miglioramento delle prestazioni dei detectors a quantum well. In-
fatti, le antenne agiscono da micro-cavitá che confinano fortemente il campo elettrico
incidente in uno strato di semiconduttore con dimensioni minori della lunghezza d’onda
incidente, evitano la regola di selezione intersottobanda selezionando la polarizazzione
della luce e raccolgono fotoni da un’area maggiore delle dimensioni fisiche del dispositivo
stesso, riducendo la corrente di dark senza diminuire la fotocorrente ([36],[37]). Il miglio-
ramento delle prestazioni del detector é espresso in termini di area di collezione Acoll e di
focusing factor F, l’aumento di campo locale ([38]). Queste quantitá sono state estratte
da spettri di riflettivitá presi tramite spettroscopia infrarosso a Trasformata di Fourier
(FTIR-Fourier Infrared Transform spectroscopy) a 300K. La radiazione assorbita dalla
microcavitá corrisponde ad un dip con lineshape Lorentziana nello spettro di riflettivitá,
alle frequenze di resonanza di un risonatore Fabry-Perot. Per quantificare l’impatto della
geometria sulle prestazioni del dispositivo, spettri di riflettivitá sono stati presi al variare
delle dimensioni fisiche e della periodicitá dei campioni, dell’angolo di incidenza e della
polarizzazione della luce incidente. Caratteristiche tensione-corrente (IV) sono state mis-
urate in condizioni dark e di background (300K) in campioni aventi diverse dimensioni,
per un range di temperature da 4K a 300K, e paragonate ad un dispositivo con la stessa
regione attiva a quantum-well ma processato con una faccetta a 45°. Da queste curve
la temperatura di BLIP (Background Infrared Limited Performance) é stata ricavata sia
per il dispositivo mesa che per i QWIPs a microcavitá. Queste strutture sono state in-
oltre caratterizzate tramite spettri di fotocorrente usando l’interferometro a trasformata
di Fourier in scan rapido. Misure di fotocorrente in funzione del bias applicato sono state
prese tramite tecnica con amplificatore lock-in. Le figure di merito responsivitá e detec-
tivity, sono state estratte dalle misure di fotocorrente, dopo la calibrazione della potenza
di radiazione incidente sul dispositivo. Queste misure mostrano un miglioramento di
10K nelle performanecs limitate dalla radiazioni di background rispetto al dispositivo
mesa e un notevole aumento di prestazioni ad alta temperatura, dimostrando un’elevata
sensibilitá fino a temperatura ambiente.
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Abstract

The present thesis work reports the demonstration of the thermal performance enhance-
ment of a mid-infrared (λ ≈8.6µm) Quantum Well Infrared Photodetector (QWIP) (n-
type doped GaAs/AlGaAs) embedded into an array of double-metal nano-antennas.
QWIPs devices use intersubband (ISB) transitions in a semiconductor Quantum Well
superlattice to generate photocurrent ([12]).
In the mid-infrared spectral region (5µm<λ<20µm), the performances of Quantum Well
Infrared Photodetectors (QWIPs) are deteriorated by the dark current noise. The dark
current, which is proportional to the detector area, grows exponentially with tempera-
ture, limiting the operating temperature of the detector. To date, commercially available
QWIPs require expensive cooling equipment and cooling down time. Moreover, a suit-
able geometry is needed for QWIPs to allow the photon transitions forbidden by the ISB
transition rule in normal incidence radiation.
In this work we demonstrate that the concept of nano-antennas is beneficial for the im-
provement of the QWIPs detector performances. The antenna act as microcavities that
strongly confine the electric field into sub-wavelength semiconductor layers, provide a
way to overcome the ISB polarization selection rule and gather photons from an area
larger than the device’s physical dimensions, thus reducing dark current noise without
affecting the photocurrent signal ([36],[37]). The improvement of the detector perfor-
mance is expressed in terms of the collection area Acoll and the local field enhancement F
([38]). These general quantities have been extracted from reflectivity spectra performed
in QWIPs by means of Fourier Transform Infrared spectroscopy (FTIR) at 300 K. The
absorbed light in the microcavity corresponds to a lorentzian-lineshape dip in the re-
flectivity spectrum at Fabry-Perot resonator-like frequencies. In order to quantify the
impact of the cavity array geometry on the device performance, reflectivity spectra were
systematically performed with samples of different patch geometrical dimensions, differ-
ent angles and different polarizations of incident radiation. Current-Voltage (IV) profiles
were measured on samples with varying dimensions, for temperatures ranging from 4K
to 300K, and compared to QWIP with the same quantum well absorbing region but
processed into a standard 45°polished facet mesa, under dark and background (300K)
conditions. Background limited infrared performance (BLIP) temperature was extracted
from IV measurements both for mesa device and microcavity QWIPs. The structures
were further characterized through photocurrent spectra using Fourier transform inter-
ferometer (FTIR) in rapid scan mode. Photocurrent measurements as a function of the
bias voltage for temperature ranging from 4K to 300K were then carried out by means
of a lock-in amplifier technique. Responsivity and Detectivity parameters, detector’s
figures of merit, were extracted from photocurrent measurements, after incident power
calibration. These measurements show a 10K improvement on the background limited
performances respect to the 45°mesa device, and a enhanced detectivity at high temper-
atures of one order of magnitude, with high sensitivity up to 300K.
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Chapter 1

Infrared Detection

This chapter presents an insight on the figures of merit used in the characterization of
any infrared detector.

1.1 History

Figure 1.1: History of the development of infrared detectors and systems. HgCdTe detector alloy has
been demonstrated in 1959 [3], Quantum Well Photodetector (QWIP) in 1987 by Levine et Al. [12],
Quantum Dot Photodetector (QDIP) in 1998 [5]. From [4]

Observing the history of the development of the IR detector technology in the XX cen-
tury, many solutions have been investigated, on the basis of a simple matter of fact due
to Norton ([2]):

"‘All physical phenomena in the range of about 0.1-1 eV will be proposed for IR
detectors."’

Among these detectors we can mention thermocouples, Golay cell (gas expansion),
bolometers, Josephon junctions, pyroeletric detectors, photodetectors and quantum well
or quantum dots detectors. The majority of these can be classified in two categories:
detectors based on electron transitions or detectors based on thermal effects.
Between 1870 and 1920, technological advances led to the development of the first quan-
tum detectors based on the interaction between radiation and matter. These photo-
conductive or photovoltaic devices, based on the direct conversion of radiation into an
electrical signal, have higher sensitivies and high modulation frequency. Chronology of
quantum infrared detectors is described in figure Figure 1.1 and follows an increasing
development to expand the operating range in the whole IR frequency range. We can in
general recognize three periods:

• 1930 - 1944. Development of lead sulfide (PbS) detectors, specifically for military
needs. These detectors are sensitive in the 1.3-3 µm band.

9



10 CHAPTER 1. INFRARED DETECTION

• 1940 - 1950. Extension of the spectral range to middle infrared, 3-5 µm by the use
of indium antimonide (InSb).

• 1960. Exploration of the far infrared, 8-14 µm by mercury-tellurium-cadmium
detectors (HgTeCd or MCT) in 1959 by Lawson and co-workers ([3])

Discovery of variable band-gap HgTeCd alloy has provided an unprecedented degree of
freedom in infrared detector design. At present HgTeCd is the most widely used variable
gap semiconductor for IR photo-detectors. Because of their higher sensitivity and short
response times, these quantum detectors have led to the development of thermal imaging
systems that rely on the detection of infrared radiation emitted by matter in the range
2-15 µm. During the last two decades, significant advances have been made in the band
gap engineering of various compound semiconductors leading to new types of detector
architecture. New emerging strategies include low-dimensional solids, barrier structures
such as nBn detector, photon trapping detectors and multi-stage/cascade infrared devices
[4]. Implemented after the invention of the CCD camera, the silicon readout integrated
circuits of HgCdTe array is referred to as a focal plane array (FPA).
Infrared detectors require cryogenic temperatures to decrease the noise of the detector
caused by various mechanisms associated with the narrow band gap.
Figure 1.2 shows detectivity values, characterizing the signal-to-noise of a detector, for
various available detectors for hemispherical field of view at 300 K. As we can see, thermal
detectors have a large bandwidth response.

Figure 1.2: Comparison of the detectivity for various commercially available infrared detectors op-
erating at the indicated temperature. Chopping frequency is 1000 Hz for all detectors except the
thermopile (10 Hz), thermocouple (10 Hz), thermistor bolometer (10 Hz), Golay cell (10 Hz) and pyro-
electric detector (10 Hz). Each detector is assumed to have a π FOV surrounding at a temperature of
300 K. PC-photoconductive detector, PV-photovoltaic detector, PE-photoemissive detector and PEM-
photoelectromagnetic detector.From [6]

The difficulties in growing HgCdTe material, due to solidus-liquidus separation and the
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high vapor pressure of Hg, encouraged the development of alternative technologies over
the past fifty years. Among different types of QuantumWell IR Photodetectors (QWIPs)
technology of the GaAs/AlGaAs multiple quantum well detectors is the most mature.

1.2 Blackbody radiation
The description of detectors’ figures of merit starts from the definition of the impinging
radiation power on detector surface, and therefore on the expression of the blackbody
radiation.
In a large cavity (compared to a wavelength), each allowed electromagnetic mode of
frequency ν has energy E=hν and the number of the modes excited is determined by
the Bose-Einstein statistics applicable for photons. If the temperature of the wall under
equilibrium conditions is T, we can find [7] that the energy per unit volume and unit
frequency range is:

duν = 8πh
c3

ν3dν

(exp (hν/kT )− 1) (1.1)

where h is the Planck’s constant= 6.6 x 10−34 Js. For a surface of area A, in the solid
angle dΩ subtended by this surface element, the power striking it at an angle θ from the
normal is given by:

dPν = c

2duν
AcosθdΩ

2π (1.2)

In this last equation, the factor of 2 counts for that only the incident waves traveling at c
are relevant. The argument dΩ/2π assumes that the radiation flow is isotropic. Recalling
that the solid angle element is dΩ = 2πsinθdθ, Equation 1.2 may be integrated to find
the irradiance or the total power per unit surface area for the black body:

dIν = 2πh
c2

ν3dν

(exp (hν/kT )− 1) (1.3)

Figure 1.3: In an infrared detection system, the blackbody flux is screened by cooling the detector
enclosure. The detector observes the background with an acceptance angle of θ defining the field of view
FOV.

This last expression is the commonly used form of Planck’s radiation law. The radiation
temperature is constant at each position inside the cavity and this equilibrium is main-
tained if the absorbed radiation power equals the emitted radiation power. Therefore a
surface with emissivity ε and temperature T emits energy, even in the absence of incident
radiation, at a rate that is equal to the rate at which it absorbs energy from the radiation
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that is incident on it in a cavity that is at the same temperature. For a given emissivity
ε(ν,Ω) the radiance Hν,Ω (radiation power per unit area and steradian) is:

dHνΩ = ε(ν,Θ)2πh
c2

ν3dνcosθ

(exp (hν/kT )− 1) (1.4)

In the black-body case, ε is 1: the emitted radiation is identical to a thermal radiation
field. Real object often show a "‘greybody"’ behavior, where ε is slightly less than one
and more in general it is not a constant but it has a complicated angular and frequency
dependence.
For isotropic ε and for the photon energy E the power PE per energy interval radiated
from a surface with area A:

dPE = Aε
2π
h3c2

E3dE

(exp (E/kT )− 1) (1.5)

If an optical objective is placed before a detector with area A, the incident blackbody
radiation has to be corrected by the optical field of view through the f-number of the
objective F, the ratio between its focal length fL and the lens diameter DL. Integrating
over the angular variables Equation 1.4, we obtain the radiation power emitted by the
source:

PE = ΩfAdetIE(E, T ) (1.6)
where Ωf is the fraction of solid angle seen by the optical objective, Adet is the light
collection detector area, and IE(E,T) is the Equation 1.3 in energy variable. This equation
provides the basis for calculating the temperature resolution of any infrared detector.

1.3 Photodetection Process and Figures of Merit

Figure 1.4: Definition of the BLIP temperature.

We will consider the general case of an ideal photoconductor. All detectors introduce
noise to an idealized signal. Detecting a signal consists in obtaining a signal-to-noise
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ratio S/N as large as possible. The signal-to-noise ratio is then:

S/N = i2S
i2n

(1.7)

A signal is is the product of a response, or responsivity R (A/W) to an incident power
Pop. Pop is the optical power seen by the detector in study. Pop is the spectral integral of
the PE of Equation 1.6 superimposed to the normalized spectral response of the detector
Rn (E)=R(E)/Rmax:

Pdetector =
∫
dEPE(E, T )×Rn(E) (1.8)

If we separate the normalized integral function called Σ from the peak value IE,p in
Equation 1.6 we have:

Pdetector = ΩfAdetectorIE,pΣdetector (1.9)
The noise, as the electron-emission events are randomly distributed in time, is given by
the mean-square fluctuation of the number of events. In an ideal photoconductor the
lifetime of photoexcited electrons obeys to a Poisson distribution. It can be shown ([8])
that these statistics result in the following noise expression:

i2n = 4egphotoI∆f (1.10)

For photoconductors the total noise current comes from the contribution of several noise
sources:

i2n = 4egdarkIth∆f + 4egphotoIph∆f + 4kTdet∆f
R

(1.11)

The first term is noise due to thermal origin of charge carriers, the second one is the
photon noise which takes the form of generation-recombination noise, originated from
fluctuations in the density of free carriers in the semiconductor. The last term is the
thermal noise as function of the detector’s temperature. Other sources can be made
negligible. It is possible to reduce thermal noise, by cooling the detector and 1/f noise by
chopping at frequencies above 1kHz. The quantity gphoto is the photoconductive gain, a
measure of the effective charge transported through the external circuit per photoinduced
electron. It can be defined as:

gphoto = τ

τtrans
(1.12)

the ratio between the lifetime of the carrier and the transit time for electrons traveling
between the two contacts.
Noise is not only induced by the signal itself, but also by background radiation of power
PB, the thermal radiation from the surroundings, and by the dark current Idark of the
detector.
The resulting current is Itot=RPS+RPB+Idark. Depending on what we are measuring, we
can distinguish between signal-noise-limited, background-noise-limited and dark-current-
limited detection. A common descriptor in detectors is the minimum detectable power,
the noise equivalent power (NEP), which is the signal power required to yield S/N=1.
From Equation 1.7 NEP is determined by the condition that i2n = R2P 2

S , such that
NEP=in/R. To make the NEP independent upon the size and the frequency bandwidth,
we define the detectivity D* (cm Hz1/2 W-1) as:

D∗ = R
√
A∆f
in

(1.13)

D* is a figure of merit which applies to any detector for which the mean-square noise
current is directly proportional to the area of the detector, and permits comparison
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between different technologies. For background-limited detection this current noise has
two origins:

• The detection of blackbody radiation from the environment at TB;

• The dark current of the detector that depends to the temperature of the detector
Tdet.

As the temperature decreases, Idark in general drops exponentially as e−Eact/kTdet , as
shown in Figure 1.4. Even cooling down the temperature of the detector, we reach a
temperature for which the noise is dominated by the background radiation and it can’t
diminish. This is called the BLIP condition of the detector (for background limited
infrared performance). This is the operation temperature below which it’s useless to cool
the detector further. Of course, the operating temperature is an important consideration,
as refrigeration become more costly and difficult as the operating temperature is lowered.
The temperature TBLIP required to reach the BLIP regime is given by:

Iback = Idark → I = Iback = 2Idark (1.14)

or similarly when the detectivity in Equation 1.13 become:

D∗(TBLIP ) = R
√
A√

4eg(2Iback)
= D∗BL√

2
(1.15)

where D∗BL is the background-limited detectivity, constant with the detector’s tempera-
ture:

D∗BL = R
√
A√

4egIback
(1.16)

As mentioned before, in actual applications, a detector observes an object against a back-
ground through an objective. The background noise is established by the fluctuations
in the rate of arrival of photons from all angles within the field of view. If the field of
view is reduces by means of a cooled aperture, the background noise will be reduced:
the value of D* depends upon the field of view. As the flux from background radiation
decreases by sin2(θ), the detectivity for the system is given by:

D∗(TB, θ) = D∗(TB, 2π)
sin θ (1.17)

The BLIP detectivity can be then increased by diminishing the acceptance angle θ of
the detector.
We are interested in finding the limiting temperature variation measurable by the de-
tector for imaging applications. This quantity is defined as NETD, the noise equivalent
temperature difference, and it is given by the change in temperature that would produce
a signal-to-noise ratio of unity in the detector output.

NETD = (NEPBL)
dPB/dT

(1.18)

In this equation NEPBL is the background-limited noise equivalent power and PB is
the background radiation. NETD is typically expressed in milli-Kelvin (mK). Typical
values for uncooled, micro-bolometer detector thermal cameras are of the order of 45mK.
Scientific cameras with photon based and cryogenically cooled detectors can achieve
NETD value of about 18mK (see for example commercially available products [10])
The noise measurement value is specified at the background temperature, bandwidth
frequency and f-number of the lens used.



Chapter 2

Quantum well Infrared
Photodetectors

Quantum well Infrared Photodetectors (QWIPs) are based on the absorption of photons
between two quantum well subbands. The quantum well-structure is designed so that
the excited carrier in the subband can escape from the well and be collected as pho-
tocurrent. Intersubband absorption has been studied by many groups in III-V surface
layers. Following this work, Levine et al. ([12]) in 1987 demonstrated the first quantum-
well infrared photodetectors (QWIP) based on intersubband absorption between two
bound quantum-well states with GaAs/AlxGa1−x As and achieved a peak responsivity
of Rp = 0, 52A/W at λ = 10µm.

2.1 Quantum well in heterostructures
Several textbooks on quantum well physics have been written. Here we present a brief
recapitulation following references [14], [8], [15].
A one-dimensional potential V(z), corresponding to a quantum well, is constructed al-
ternating different layers of dissimilar semiconductors, if selected semiconductors possess
compatible crystal structure and lattice spacing. Here we discuss only samples made by
GaAs fabricated by molecular beam epitaxy (MBE). This technique permits the real-
ization of epitaxial structures on demand. In particular, a layer of GaAs between two
layers of AlGaAs would form a Type-I finite quantum well, where the conduction band
appears as in Figure 2.1 The potential energy VB represents the discontinuity in the
conduction band-edge between the material. The conduction band offset is proportional
to the aluminum fraction x for x<0.4, ∆ Ec=0.87± 0.04 × x eV.
The quantum well general Schröndinger equation to solve is:[

− ~2

2m∇
2 + V (R)

]
ψ(R) = Eψ(R) (2.1)

Since the potential is dependent only on the coordinate z, we can decouple the in plane-
motion and the z component to obtain the following eigenstate wavefunction and energy:

ψn(kxy) =
√

2
LwA

sin(πnz
Lw

) exp(ikxy · x) (2.2)

En(kxy) = ~2

2m(π2n2/L2
w + k2

xy) (2.3)

where A is the normalization area in the x-y plane, Lw is the width of the well, n is a
positive integer, kxy is the in-plane wavevector and m is the effective mass in the well.

15



16 CHAPTER 2. QUANTUM WELL INFRARED PHOTODETECTORS

Figure 2.1: A quantum well with two discrete energy levels and its energy dispersion relation. [8]

While in the plane of the semiconductor quantum well there is a continuous range of
allowed energy, solutions along the axis of the one-dimensional potential produce discrete
states of energy Ez=En, one degree of freedom less. These energy domains associated
with confined levels are called subbands.
Each subband contributes withm/π~2 to the density of states, provided that the subband
has parabolic dispersion and the effective mass does not depend on energy. Although the
calculation of static energy levels within quantum wells should account for the variation in
the effective mass across the heterojunction, for simplicity we used a costant-mass model.
Details for non-costant mass model can be found in [15]. When band-non parabolicity
is taken into account too, a parameter α ([13]) is subtracted to the eigenenergies. In
this case the density of states is no more constant with respect to energy and increases
linearly between each step.
If attention is restricted to GaAs, the energy of the states in the first two non-parabolic
subbands are close to those in the parabolic model, even at large wave vector. For GaAs,
taking m*= 0,067 me and a well width of 10 nm, the parameter α is less than 0.70 eV-1.
For the ground state and n=2, our states of interest, the non-parabolicity correction is
therefore negligible.

Subbands occupation

The overall density of states is a step-like function for a two-dimensional electron gas,
as in Figure 2.2.
The number of occupied subbands depends on the density of the electrons and temper-
ature. In the limit of low temperatures the density of electrons per unit area is:

n2D = m

π~2

∑
(EF − εj)Θ(EF − εj) (2.4)

where EF is the Fermi energy. As the temperature of the system rises, according to kB
T»ε2-EF

(1), or energy is gained from an applied electric field, an increasing proportion of
electrons is transferred into high-energy subbands, losing the two-dimensional nature of
the system.
Fermi level can be shifted by doping to select the optically active transitions:

E0K
F = π~2n2D

m∗
(2.5)
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Figure 2.2: Occupation of step-like density of states for a quasi-two dimensional system; only one
subband is occupied if the Fermi energy takes the lower value E(F)

(1)

2.2 Intersubband Transitions
Intersubband transitions (ISBT) happen between confined states in bidimensional sys-
tem. The intersubband absorption coefficient is derived from Fermi’s golden rule for the
induced transition rate. The complete demonstration can be found in [17]. The model’s
assumptions are:

• single-particle approach, to which many-body corrections can be added afterward.

• single electronic band subjected to quantum well potential only: envelope-function
approach in the effective mass approximation.

• the infrared IR photon flux is sufficiently weak so that the electromagnetic inter-
action can be treated as a perturbation.

Conduction band of the GaAs system satisfies these approximations.
Fermi’s golden rule for the transition rate from a state i to a state f, induced by an
external electromagnetic field is:

Wi,f = 2π
~
|〈ψi |H ′|ψf〉|2 δ(Ef − Ei − ~ω) (2.6)

where H’ is the interaction Hamiltonian: H’= (e/2m*)(A · p+p · A).
Making use of the dipole approximation, fulfilled when the wavelength of the radiation
is larger than the quantum well width, the matrix element of the photon absorption
process [18] is:

〈i |e · p| f〉 ≈ e · 〈u′c |p|uc〉cell 〈φn|φ
′
n〉+ e · 〈u′c|uc〉cell 〈φn |p|φ

′
n〉 (2.7)

where index c,c’ and n,n’ refer to respectively band and subband initial and final states,
φn is the envelope function slowly varying within the periodic lattice and uc is the peri-
odic Bloch function. We separated the contributions from interband and intersubband
transitions.
For the intersubband transitions the first term gives zero, because the scalar product is
calculated within the same band c. The second term brings to the matrix element:

〈n |e · p|n′〉 =
∫
dzϕ∗n(z)e · pϕn′(z) (2.8)
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Because the envelope functions are orthogonal, this integral is different from zero only
if the polarization of the electric field is along the quantum well direction z as shown
in Figure 2.3. Thus optical transitions associated with a single spherical band are only
induced by light polarized in the quantum well direction. This selection rule has of course
practical implications on how a IR detector is built, because incident light normal to the
surface doesn’t cause intersubband transitions.

Figure 2.3: Several layers of semiconductor grown along z, in which for intersubband transitions, only
the component of the electric field normal to the quantum wells can optically couple to the ’quantum
oscillators’. [8]

Oscillator strength

The relevant quantity for the dipole transition between subbands is the dimensionless
oscillator strength, defined as [16]:

fnn′ = 2
m∗~ωnn′

|〈n |pz|n′〉|2 (2.9)

and obeys the Thomas-Reiche-Kuhn f-sum rule:∑
fi,j = 1forj, j 6= i (2.10)

The oscillator strength for the transition n=1 to n=2 in an infinitely deep well at 0<z<a
is:

f12 = 2m
~2 (ε2 − ε1)| 〈2|z|1〉 |2 ≈ 0.96 (2.11)

The lowest transition in a quantum well is therefore an efficient way of absorbing light
since its oscillator strenght of 0.96 exhausts most of the f-sum rule.

2.2.1 Intersubband absorption coefficient
The dimensionless absorption coefficient in the well α is defined as the ratio of the
absorbed electromagnetic energy per unit time and area and the intensity of the incident
radiation, summed over all combinations of final and initial states:

η2D = 1
A

~ω Wi,f

I
= 1
A

~ω Wif

(1/2)ε0cnrE2
0

(2.12)

where Wi,f is the calculated transition probability defined in Equation 2.6 and nr is the
refraction index, assumed to be constant. At temperature approaching zero only the
first subband is occupied, so considering the transition from n=1 to n=2 we find:

η2D(T = 0) = n2De
2~

2ε0cnrm∗
sin2 θ

cos θ f12
Γ

(E2 − E1 − ~ω)2 + Γ2 (2.13)
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where n2D is the areal electron concentration as calculated in Equation 2.4. For the
polarization selection rule, the electric-field component interacting with the intersub-
band transition is Ez = E0 sin θ, where θ is the angle between the growth axis and the
propagation direction of the optical beam. The projected area into the direction of the
coupling is Acos θ. Because of the finite lifetime of the excited state, we replaced the
energy-conserving δ function by a normalized Lorentzian with half width at half max-
imum (HWHM) Γ and the momentum matrix element by the oscillator strength from
Equation 2.9.
The linewidth Γ is related to the intersubband lifetime and so energy relaxation. Lifetime
has generally a contribution from elastic and inelastic collisions. Acoustic and optical
phonon scattering are inelastic processes, while elastic processes are determined by scat-
tering between ionized impurities and interface roughness. By means of an accurate
long-term controlled MBE growth, we can reach nearly the intrinsic broadening limit
due to the only optical phonon emission. To date, the narrowest linewidths are given by
GaAs-AlGaAs samples.
For a multi quantum-wells system, Equation 2.13 is to be multiplied by the number of
quantum wells NQW. Intersubband transitions have therefore an atomic-like absorption
spectra, in contrast to interband transitions that show a staircase like absorption spectra.
The absorption coefficient of GaAs at the resonance, with E2 − E1 = ~ω, m*=0.067me

and nr=3.4 is:
η2D = 0.15 n2D

[
1012cm−2

] sin2 θ

cos θ
f12

Γ[meV] (2.14)

For 10µm GaAs, taking n2D=1012 cm-2 and Γ=10meV the absorption peak height is
about 1%, which is consistent with measured absorption per quantum well ([20]).

2.2.2 Corrections to the Intersubband Energy
As intersubband transitions are fully collective phenomena, the linewidth and energy
positions should be calculated using many-particle theory. For practical purposes we
can approximate fairly well with a single-particle problem, at which corrections can be
added. As calculated by Helm [17], the energy shift of the resonance position is less
than 10% and is dominated by depolarization effect. The depolarization shift is caused
by oscillation of the electrons charge density when exposed to the external radiation:
the system behaves as a plasma and external field is screened by the two-dimensional
electron gas. By using the time-dependent perturbation theory to evaluate the induced
oscillating charge, the correction is given by:

Ep = Ẽ21 − E21 ≈
e2~2n3Df12

2εE21m∗
(2.15)

where f12 is the oscillator strenght defined in Equation 2.9, E21 is the bare energy reso-
nance and Ẽ21 is the corrected energy resonance. The net effect of all interactions is to
move resonance to a slightly larger energy.
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2.3 Photoconductive QWIP
Quantum wells can be designed to detect infrared light (IR) by tuning well width Lw and
barrier height VB: the most famous example is the quantum well infrared photodetector
(QWIP) [12]. The simplest picture of a QWIP made of n-type GaAs/AlGaAs is given
in Figure 2.4.

Figure 2.4: Conduction-band diagram for a bound-to-bound QWIP, showing the photo-excitation
(intersubband transition) and tunneling out of well [19]. Ea is the activation energy, Ef the fermi enrgy.

This device is a unipolar photoconductor, where the photoexcited electrons rapidly es-
cape out of the well, thereby producing a photocurrent.

2.3.1 Designing a QWIP: optimum electronic confinement
A more realistic description than the infinetely square quantum well described in the
previous section, must include the finite depth of the quantum well. Until now, we
used the quantum wells containing two bound states as in Figure 2.4. This is the first
configuration demonstrated by Levine et al, in a QWIP with a peak wavelength of 10.9
µm and a net absorption of 5% ([12]). Choi in [21] improved this structure using thicker
and higher barriers to reduce tunneling-induced dark current. Bound-to-bound QWIPs
show a nonlinear behavior of the responsivity and the dark-current, due to complex
tunneling process.
By reducing the quantum well width, it is possible to push the excited level into the
continuum, resulting in a strong bound-to-continuum intersubband absorption. Levine
et al. ([22]) demonstrated the first bound-to-continuum QWIP in 1990. In fact, the
advantage of the bound-to-continuum transition QWIP is that the photoexcited electron
can escape from the quantum well to the continuum transport states without tunneling
the barrier as shown in figure.
These perfomances were greatly improved by Gunapala and Bandara([23]), by designing
the bound-to-quasibound QWIP, with the first excited state at the well top. Having the
upper state close to the top barrier is of practical importance and corresponds to the
optimum detector design. As a result, the bias required to collect the photoelectrons is
reduced, and so the dark current. The further advantage of the bound-to-quasibound
QWIP over the bound-to-continuum QWIP is that the energy barrier for thermoionic
emission-electrons from the ground state directly to the the continuum, is the same as the
photoionization energy-photoelectrons from ground state to first excited state, instead to
be 10 meV more as in bound-to-continuum, so the dark current is reduced exponentially
as shown in Figure 2.5.
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Figure 2.5: Comparison of dark currents for bound-to-continuum and bound-to-quasibound VLWIR
QWIPs as a function of bias voltage at temperature T=55K [23]

Minimizing the thermoionic emission, the principal contribution of dark current, is crit-
ical to the commercial success of QWIP and high-temperature camera operation.

2.3.2 Model for photoconductive transport
Difficulties in modeling QWIPs relies on the interplay of two different regimes: the
transport between two wells, that can be tractable as a semiclassical Boltzmann equation
problem and the quantum mechanical phenomena in the vicinity of each well, such
emission, relaxation and capture. The current flows through the device both in dark
conditions and under illumination. We have to make some assumptions:

• Thick barriers, so the interwell tunneling is negligible;

• the electron density well remain constant, and so small bias voltages;

• heavily doped emitters, so they can act as perfect injecting contact;

Several models have been used for the theory of photoconductive transport in QWIPs,
which are reviewed in [13]. Here we refer to the emission-capture model ([24]), which
explains the current flowing in the device by means of the probabilities of capture and
emission of the electrons from the well. Under steady state operation, the current J
flowing through the device is injected at the contacts and partially captured into the
well. Considering the current conservation law, we have:

J = je + (1− pc)J (2.16)
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where je is the current emitted from the well and pc is the capture probability. To
visualize the physical process and the gain mechanism, a simple one well is showed in
Figure 2.6.

Figure 2.6: Schematic representation of the processes controlling the dark current, according to the
current conservation law.[13]

The dark current path is unchanged when the IR illumination is turned on. The pho-
tocurrent has instead a contribution from the direct photoemission of electrons from the
well and from an extra injections from the contacts necessary to balance the loss of the
photoemitted electrons.
A fundamental parameter for this description is the gain, already defined in Equation 1.12
as the ratio between the lifetime of the electron and the transit time of the electrons be-
tween the contacts. For a single quantum well this expression is equivalent to admit that
the gain is the ratio between the probability of emission of an electron from the well and
the capture probability:

g = pe
pc

(2.17)

We consider two situations for the QWIP: QWIP operating under dark condition and
under incident illumination. These will be also the two experimental conditions under
which we measured the current-voltage curves for the studied QWIPs in this work.

Dark current

Looking at Figure 2.6, the dark transport can be identified as electrons flowing in the
continuum, which are partially captured and re-emitted from the well, interacting with
the confined states of the superlattice. These transport phenomena are caused mainly
by the interaction of the electrons with the optical longitudinal phonons which supply
the energy for the inelastic disexcitation process. The interaction is Fröhlich type where
lattice displacements due to emitted phonons create strong electric fields which cause
transitions between electron states [13]. Contribution from tunneling, as we have already
mentioned, is neglected.
Regarding the capture process, the capture time is calculated to be 5.5ps by [25], with a
non-trivial derivation from the Fermi golden rule. This is consistent with experimental
measurements in [26] where it is set τc<7 ps. τ c does depend on the box width Lw. The
transit time for an electron across one quantum well region including barriers is τ trans.
τ trans is equal to Lp/v where Lp is the length of the well plus the barrier and v is the drift
velocity. For typical parameters of v=107cm s−1 and Lp=30-50nm, τ trans is estimated to
be 0.3-0.5ps.
Regarding the emission process, the population in the ground state is subjected to a
probability to escape into the continuum, mainly for electrons with energy greater than
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the barrier height or close to it. We therefore define a τ scatt and N2D/τ scatt as the thermal
escape or generation of electrons from the quantum well. From these consideration, the
capture probability is:

pc = τtrans
τtrans + τc

(2.18)

and it is in the range of 0.06-0.1. The dark emission probability is:

pde = τc
τc + τscatt

(2.19)

The dark current density, from the current continuity Equation 2.16 can be written as:

jdark = jdarke

pc
= e

N2D

τscatt

τc
τtrans

(2.20)

For typical GaAs/AlGaAs QWIPs at T=77K τc/τscatt ≈2. Calculation of dark current
now relies on estimating N2D in Equation 2.4, using the following expression which takes
in consideration the tunnel transmission probability:

N2D =
∫ ∞
E1

dE
m∗

π~2T (E,F )
[
1 + exp

(
E − Ef
kBT

)]−1
(2.21)

where T(E,F) is the transmission coefficient taken to be 1 for E higher than the bar-
rier, and 0 below the barrier in the pure thermoionic emission regime assumed here.
Equation 2.20 then becomes:

Jdark = evτc
τscatt

m

π~2Lp
kbT exp (−Eact/kbT ) (2.22)

Photocurrent

We now derive the expression for the photoconductive gain. When the well is illuminated,
the electrons in the ground state are excited and can escape the well from the ground
states to the continuum if they have sufficient energy. An electron in the excited state
has a relaxation time related to the intersubband absorption linewidth, as described in
the previous section. For a typical QWIP, 100 fs is a lower bound for τrelax [13]. The
time required to escape from the well is τesc. From the bound-to-quasibound case, the
process of escape is faster than the bound-to-bound case, since the bound photoexcited
carriers must tunnel through the barrier in order to escape the continuum. The escape
probability is so defined:

pe = τrelax
τrelax + τesc

(2.23)

The photoconductive gain expression for QWIP follows from Equation 2.17 with the
capture probability defined in Equation 2.18. For a simple square well and bound-to-
quasibound case (the optimal condition for QWIPs) we can use the approximation pe ≈ 1,
pc ≈ τtrans/τc << 1, the gain expression become:

gphoto ≈
1
Npc

≈ τc
τtot

= τcv

NLp
(2.24)

The photocurrent emitted by the well is given by:
iphe = eΦηAtot (2.25)

where Φ is the optical flux and η is the net quantum absorption efficiency for a single
well defined for GaAs in Equation 2.14. The total photocurrent is then given by:

Iphoto = eΦηgphotoAtot (2.26)
We can notice that as the absorption is proportional to N, the photocurrent is indepen-
dent of N since gphoto is inversely proportional to N, as observed in experiments [24].
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2.3.3 Detector noise
Noise sources for a detector are described in section 1.3. For a QWIP, experiments show
that 1/f noise and thermal noise can be neglected in a opportunely cooled and chopped
photoconductive QWIP.
Performances in QWIPs are limited by dark current noise and photon noise. Recalling
the Equation 1.10 in section 1.3, the expression for QWIP noise is:

i2n = 4eg (Iphoto,300K + Idark) ∆f = 4eg (Iback,300K) ∆f (2.27)

In this formula and in noise calculations, for bound-to-quasibound QWIPs we use g ≈
gphoto ≈ gdark as given in conventional photoconductive theory. The dark current gain is
usually measured through noise measurements as described in [28]. This approximation,
that is generally accepted, finds a clear demonstration in [27]: in QWIP generation-
recombination processes, contrary to conventional photoconductors, happen in discrete
centers in narrow QW regions separated by wide barriers. However, if the capture
probability pc << 1 the discrete structure of G-R centers is not significant and there’s
no more difference between noise gain and photocurrent gain.

2.3.4 QWIP Responsivity and Detectivity
The magnitude of responsivity is controlled by the photoconductive gain and quantum
efficiency. The spectral current responsivity mentioned in section 1.3 is given by:

R = Iphoto/(hνΦ) = e

hν
ηgphoto (2.28)

A responsivity-bias plot behaves differently for the bound and quasibound samples. In
the quasibound case, at low bias the responsivity is approximately linear whereas in the
bound case, the responsivity does not start linearly but there is a zero-bias offset due
to the necessity of a bias threshold to the photocarriers to escape the well. The QWIP
detectivity is found inserting Equation 2.27 inEquation 1.13 in section 1.3:

D∗ = ηg
√
A

hν
√

4g2Φη + 4gN3DvA
(2.29)

and the BLIP detectivity defined in Equation 1.15 is given by:

D∗BLIP =
√
Aη

hν
√

8Φ
(2.30)

For a given wavelength and in blip condition, D* only depends on the absorption quantum
efficiency and the background photon flux. The lifetimes become irrelevant in this regime.
From the dependence of detectivity on doping, we can find that TBLIP has a maximum
at a given doping given by Ef=kbT, recalling that the doping density relates to Fermi
energy by Equation 2.5.

2.4 Light coupling geometries and state of the art
ISBT selection rule requires a nonzero electric-field component along the quantum-
direction. Several geometries have been proposed to permit the intersubband interaction
with light.
The typical geometry used for QWIP wafer has a 45° facet coupling shown in Figure 2.7.
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Figure 2.7: Mesa geometry for the QWIP. The light is incident in a 45° polished substrate facet.

This geometry is simple to realize but reports a low coupling efficiency, with an absorp-
tion quantum efficiency per well of not more of 0.54% for the polarized light. As a result,
a number of periods up to 50 is often needed in a QWIP device in this geometry, which
imposes limitations on its detectivity and high temperature performance. We refer to
this as Mesa device, and we will use it as a reference for the performances of studied
QWIPs.
Diffraction gratings are often used for the coupling of normal incident light in large ar-
rays of QWIPs [13]. For the purpose of thermal imaging, QWIP based on 2D focal plane
arrays (FPAs) constitute a mature process and are already commercially available. In
these devices light is illuminated from the back side of the substrate and it is diffracted
and absorbed by the QWs. The typical quantum efficiency achieved with 2D gratings is
around 25% and the BLIP temperature is often below 73K ([29]).
Other geometries have intrinsically low absorption and high noise which limit their po-
tential applications. In the last decade there have been several attempts to use different
physical phenomenons to couple incident radiation, such as surface plasmon modes([31]),
photonic crystals ([33]), metamaterials ([32]).
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Chapter 3

Optical properties of antenna-cavity
structures

In this chapter we explore the implementation of patch-antenna and microcavity concept
for QWIP devices operating in MIR range of the spectrum.
Since the processing of GaAs/AlGaAs wafer is mature and well-known, the sought-after
goal of all groups working with Quantum Well Photodetectors is the search for a suitable
geometry to boost detector’s performances, in particular to allow the detector to work at
non-cryogenic temperatures. In order to design an efficient geometry for light-coupling
in QWIPs, one has to keep in mind the following general guidelines:

• provide a way to overcome the polarization selection rule for the ISB transition,
permitting an enhanced absorption coefficient.

• reduce the dark current of the photodetector and so the noise associated to it,
without affecting the photocurrent. This can bring to high-temperature operating
devices.

• boosting the light-matter interaction, creating a photons reservoir ready to trigger
the ISB transitions.

We will show that the concept of nano-antennas greatly satisfies these guidelines, allowing
QWIP to achieve performances never demonstrated before. In this implementation, the
QWIP devices are embedded in a double-metal structure, patterned as a patch-antenna
array. The theory and the measurements have been developed and studied in QUAD
team in MPQ (Matériaux et Phénoménes Quantiques) laboratory at the University Paris-
Diderot. The experimental and theoretical study of the optical properties of metal-
dielectric-metal structures in the THz frequency range is treated in [34]. The analytical
model for nano-antenna array can be found in [35]. The demonstration of the enhanced
performances for mid-infrared and THz patch-antenna QWIPs is presented in [36] and
[37]. An extended model for high temperature and high performance QWIP has been
recently reported in [38].

3.1 Modeling the antenna and cavity response
In this section we explore the implementation of the concept of patch antenna for ISB
optoelectronic devices in the MIR range.
Metal-dielectric-metal microcavities are able to support modes that are highly sub-
wavelength with respect to the distance between the metal layers. When the top metal

27
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is structured into an array of patches, these devices act as antennas that can effectively
couple light in and out of the dielectric. This concept is widely exploited in the mi-
crowave range in a device known as the microstrip patch antenna ([48]), which consists
of a ground metal, a dielectric layer and a square patch of size s. In the next paragraph we
will explain why a metal-dielectric-metal microcavity support only the sub-wavelength
TM00 mode of the radiation, starting from the simplest structure of parallel plate metal
waveguides.

3.1.1 Parallel Plate Metal waveguides

Figure 3.1: TE and TM modes inside a planar cavity.

A planar cavity, in Figure 3.1, consists of a layer of dielectric with a thickness L embedded
between 2 layers of metal. The solutions for the propagating EM can be solved by
considering the Maxwell’s equations ([40], [39]) and the boundary conditions at the
metallic walls. We look for the solution at the equation:

∇2E(r) = −ω2µ0εE(r) (3.1)

where ε is the refractive index of the dielectric. In the classical theory of optical waveg-
uide, transverse-electric TE and transverse-magnetic TM modes constitute a complete
set of fields which solves the Equation 3.1:

• TE has the electric field perpendicular to the plane of incidence, (0,Ey,0) and
(Hx,0,Hy);

• TM has the electric field parallel to the plane of incidence, (Ex,0,Ez) and (0,Hy,0);

The solutions of the Equation 3.1 are:H(r) = ŷH0cos(kxx)e−ikzz m=0,1,2,3 TMm modes
E(r) = ŷE0sin(kxx)e−ikzz m=1,2,3 TEm modes

where kz = mπ/L. The dispersion relation is:

kz =
√
ω2µ0ε−

(
mπ

L

)2
(3.2)

There’s a frequency above which kz become entirely imaginary: the wave cannot prop-
agate but decays exponentially with distance. The so called cut-off frequency for TMm
and TEm modes is:

ωm = 1
µ0ε

(
mπ

L

)
(3.3)
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For TM0 mode it’s easy to see that there’s not frequency cut-off and the mode can
propagate bouncing back and forth between the two metal plates along the z-direction.
The dispersion relation for the TM0 mode is independent on the semiconductor thickness
L, allowing the confinement of EM field in arbitrary thin cavities.
Until now we considered the case of a perfect-conductor. In the case of non-perfect
conductor, the EM field does not vanish completely at the surface, but there is a region
called skin-depth throughout fields are attenuated. The discontinuities equations are
satisfied if, instead of an idealized surface current K, we replace it with an equivalent
surface current distributed through this finite thickness. This current is responsible for
the power resistive losses for real cavities.

3.1.2 Metal-dielectric-metal microcavities gratings
Given the considerations on the planar cavity described above, we study now the case of
double metal patches of size s, subwavelength dimension with thickness L«λ in a periodic
array of microcavities, size s as shown in Figure 3.2. The distance between each replica
is a and the period is p=s+a.

Figure 3.2: Schematics of the (i) 1D and (ii) 2D devices, with the indicated direction for electric and
magnetic field for incident light at an angle θ to the normal of the surface (schematic not to scale).

The equation for EM fields in the implemented structure can be solved by means of a
numerical model([41]), the ’modal method’, with surface impedance boundary conditions,
which consider the attenuation of the electric field into a non-perfect conductor.
The diffracted field from the incident wave can be decomposed into a Raleigh composition
of evanescent and propagating waves [34]. We write the expansion for the Ex component
of the electromagnetic field, general solution of Equation 3.1:

Ex(x, z) =
∑
n

E±n e
iαnx±iγnz (3.4)

where En
± is a complex amplitude and the wave vectors αn and γn are:

αn = k0sinθ + 2π
p
n (3.5)

γn =
√
k2

0 − α2
n (3.6)

where n is an integer indicating the diffracted order, k0 = 2π/λ is the incident wave
vector intensity, θ is tha incidence angle of radiation and p is the period of the gratings.
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According to the sign in radical Equation 3.6, we can distinguish real case and imaginary
case: k0 >

∣∣∣k0sinθ + 2πn
p

∣∣∣ running waves
k0 <

∣∣∣k0sinθ + 2πn
p

∣∣∣ evanescent waves

In the second case, for a certain value of n, the wave vector is a purely imaginary number
i.
The incident wave, according to Equation 3.4, is a infinite sum of such waves: its compo-
nents get partly reflected as running waves, while partly give rise to a grating near field,
that is a field composed of evanescent waves very adherent to the surface of the grating.

Evanescent fields

The imaginary component of the wave-vector γn in Equation 3.6 describes a field that
propagates along the surface but decays exponentially into the medium of transmittance
over a distance 1/=γn[42] . The evanescent component, confined near the grating surface,
mediates the near-field energy transfer from the incident plane wave to the tightly con-
fined TM modes in the double-metal region. The energy transfer mechanism is enhanced
for shorter periods.

Propagating fields and impedance mismatch

Figure 3.3: Plot of the three components of TM electromagnetic field for the K=1 resonance and
normal incidence. The maximal value are in red and the minima in blue. The Ez component undergoes
impedance mismatch at the openings. From [34]

We consider first the case p« λ: there is no diffraction by the grating, and the only
propagating wave in Equation 3.5 is the n=0 order, a superposition of incident and
reflected wave of amplitude R0. The metal-metal region supports only the propagating
TM0 mode, which does not have a cut-off frequency as seen before. The open single-
metal region can be seen as a continuum of plane waves. At the opening, there is so
a discontinuity in the effective index: in the metal-semiconductor-air system is close to
the index of air if L<λ. In contrast, the effective index for a metal-semiconductor-metal
system is close to the index of the semiconductor. The two semiconductor slabs around
the two-metals region behaves therefore as the ending supports in a walls-tied string
under oscillation: the pulse is reflected from where it is tied to the support.
We have the formation of a standing wave pattern typical of a Fabry-Perot resonator
with frequencies:

νk = cK

2neffs
(3.7)
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where K is an integer counting the EM field nodes/maxima, neff is the effective modal
index, higher than the bulk index, s is the size of the cavity.
Electric field distribution for the K=1 resonance under normal incidence is plotted in
Figure 3.3. For Ez, there is the illustration of the impedance mismatch between the
TM0 guided mode and the continuum in the single-metal region. If the semiconductor
is a quantum-engineered active medium, the confined radiation modes can be tuned in
resonance to the intersubband transition, where electrons resonantly interact with an
extremely confined photonic mode.
Under MIR incident light, the structure shows periodic dips in the reflectivity spectrum
which correspond to resonant absorption, as in Figure 3.4, because at these wavelengths
no diffraction happens at orders other than 0. The depth of the resonance 1-Rmin in
the 0th-order reflectivity spectrum is the ability of the whole array to absorb incident
photons called coupling efficiency or contrast C.

Figure 3.4: Reflectivity spectrum for s=1.35 µm and a=2µm at 15°of incidence. The coupling efficiency
C=1-Rmin is defined as the amplitude of the Lorentzian profile.

The ability of a single cavity to dissipate the confined radiation can be measured by the
quality factor Q ([40]), defined as 2π times the ratio of the time-averaged energy stored
in the cavity to the energy loss per cycle:

Q = ω0
Stored energy
Power losses (3.8)

where ω0 is the resonant frequency.
The coupling efficiency 1-Rmin can be extracted from a Lorentzian fit of the absorption
line shape [34]:

R(ν) = 1− C

1 + (ν−νK)2

π2ν2
0
Q2

(3.9)

where C is the reflectivity minimum at the resonant frequency and Q=2πν0/∆ν, with
∆ν the full width FWHM at half maximum. When the coupling efficiency reaches 100
% we are in the critical coupling regime: the loss on the metallic wall counterbalances
the capture rate of the incoming photons.

The energy conservation in and out the cavity can be studied by means of the Poynting
theorem [40] applied to the volume described in Figure 3.5.
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Figure 3.5: Schematic of the volume used for the Poynting theorem, where the different Poynting
fluxes normal to the surfaces are indicaed. Representation of a direction of the incident plane wave.
From [35]

According to the periodicity of the structure, the energy conservation must account only
for the upper and lower surfaces of the volume:

dU

dt loss
= ω0U0

Qloss

=
∑

ST +
∫
V
j EdV (3.10)

where ω0 is the resonance frequency of the cavity, ST is the Poynting flux through the
metal ground and the last term describes the ohmic losses in the metal stripes and in
the semiconductor region of the resonator. Since the metal ground is optically thick, no
field tunnels through, and the flux ST is all lost as ohmic dissipation.
The right hand side of Equation 3.10 describes therefore all the non-radiative loss of the
resonator.
Neglecting the contribution of the fringing fields, the total electromagnetic energy stored
inside the resonator is :

U0 = εε0 |Ez0|2 swL (3.11)

Replacing Ez0 with the Rayleigh-Bloch expansion in Equation 3.4, we rewrite Equa-
tion 3.10 in the following form:

1− |R0|2 = C = ε
swL

Q

|Ez0|2

Σ |Ein|2
(3.12)

where |Ein|2 is the incident electric field and Σ is the unit cell area. From Equation 3.12
we can extract the focusing factor F:

F = 2π |Ez0|
2

|Ein|2
(3.13)

F is an dimensionless constant measuring the ratio between the electromagnetic energy
of free space radiation stored in the resonator cavity volume V respect to the density
energy of incident radiation. It physically represents how the field is compressed into the
cavity.
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Diffraction fields at higher orders

When the period p is comparable to λ/2 , we have to consider the nth order propagating
diffracted wave in Equation 3.4 and not only the specular reflective order ([43]). We can
evidence in the expression for wave-vector Equation 3.6 the angles of diffraction:

αn
k0

= sin θn = sin θ + 2πn
pK0

, −π2 < θn <
π

2 (3.14)

This is the grating formula for the diffraction angle. The diffraction phenomena interfere
with the resonating mode changing the line shape of the reflectivity in Equation 3.9.
The first diffraction order is the -1 diffracted order, for which the z-component of the
incident wave-vector can be expressed:

γ1 =
√
k2

0 − (k0 sin θ + 2π/p)2 (3.15)

Considering λ = 2π/k0 = hc/Ediff we find the corresponding diffraction energies:

Ediff = hc

p(1 + sin θ) = 1242 [meV µm]
p(1 + sin θ) (3.16)

For a fixed period, the position of the diffraction pics depends on the angle of incidence
the radiation and this is linear with the function:

Y = [p(1 + sin θ)]−1 (3.17)

The angle Equation 3.16 is coherent with the fact that for greater periods, the diffraction
energy diminishes and become irrelevant, since the radiation is mostly reflected.

Patch antenna

So far, we have analyzed the microcavity properties of the double metal resonant patch.
Moreover, this structure can be treated as a microstrip quadrupolar antenna.
A list and a description of the standard parameters to describe a patch antenna in the
microwave region is found in [48] and [47].
Seen as an antenna, the losses in the patch derive from a radiation component and from
a resistive non-radiative dissipation in the metal and semiconductor region. Thus the
quality factor is written as:

1
Q

= 1
Qloss

+ 1
Qrad

(3.18)

Microwave patch antenna are very inefficient and have a narrow frequency bandwidth.
The antenna radiates and receives thanks to the fringing fields extended over a distance
d at the edge of the patches, defining an effective radiating or receiving aperture, as in
Figure 3.6. The extended calculations can be found in [47]. This effective tangential
field Ea, illustrated in Figure 3.7, can be expressed as a function of the perpendicular
component of the electric field inside the cavity Ea=ẑ Ez. The radiation patterns are
therefore calculated from the aperture magnetic currents, Jms=-2n̂×Ea which generate
a radiated electric field E:

E = ik
e−ikr

4πr r̂×
∫
A
Jms(x, y)eikxx+ikyydS (3.19)

The normalized gain g(θ, φ) depends on the direction arrival (θ, φ) of the incident wave
and measures the ability of an antenna to direct its power towards a given direction
relative to its maximal value. For a microstrip antenna the normalized gain is:

g(θ, φ) = |E(θ, φ)|2

|E|2max
= (cos2 θ sin2 φ+ cos2 φ) |F (θ, φ)|2 (3.20)
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Figure 3.6: Fringing fields pattern for
a single resonator. [47]

Figure 3.7: Aperture model for microstrip
antenna, where d is the extension of the fring-
ing fields. [47]

where F(θ, φ) is the aperture function of the patch antenna, describing its radiation
pattern:

F (θ, φ) = cos(πs
λ

sin θ cosφ) sinh(πw
λ

sin θ sinφ) (3.21)

where s and w are the lateral dimensions of the patch.
For an antenna in the receiving mode, the effective area, Aeff, is defined as the amount
of received power relative to the incident power. The effective area as a function of the
direction arrival (θ, φ) of the incident wave is not the same as the physical aperture:
patch antenna can capture much more power than is intercepted by its physical size.
Defining the beam solid angle ∆Ω as the solid angle through which the incident power is
seen from the antenna, it can be demonstrated that the effective area can be determined
from ([35]):

Aeff = 4π
∆Ω = 4π∫ π

0
∫ π/2
0 g(θ, φ)dΩ

(3.22)

where g(θ, φ) is defined in Equation 3.22. We apply the general definition Equation 3.8
for Qrad in Equation 3.18:

Qrad = 2π U0

Prad
(3.23)

where U0 is the stored intensity defined in Equation 3.11 and Prad, the total radiated
power, is found by integrating over the solid angle the radiation intensity U:

Prad =
∫

Ω
UdΩ (3.24)

The radiation intensity U is related to the far-zone electric field defined in Equation 3.19.
We find for Qrad:

Qrad = πε

4neff
Aeff
wL

(3.25)

Here ε is the dielectric constant of the bulk GaAs.
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Matching microcavity and antenna concept

To uniform the previous description for a detector, we insert Equation 3.22 in Equa-
tion 3.12 performing the integration over the unit cell of the grating. This leads to the
final result for normal incidence (φ = 0, θ = 0) and TM polarization:

C = 4α
(1 + α)2 , α = Aeff

Σ
Qloss

Qrad

(3.26)

Of course this derivation must be adapted for the particular geometry of the resonator.
The critical coupling regime C=1 requires α=1, a perfect match between the power
dissipated and the power coupled in the microcavity array.

Figure 3.8: Schematic representation
of the collection area for the resonator,
compared to the effective surface σ.

Figure 3.9: Schematic view of the ar-
ray of resonators, where it is indicated
the unit cell area Σ and the collecion
area.

We now define a collection area of each patch in the array as Acoll, such that the number
of photons absorbed by the detector per unit time is equal to AcollΦ, where Φ is the flux
of photons. A qualitative picture is in Figure 3.8. Since the contrast C is the fraction of
photons absorbed by the whole array, the collection area is provided by the equation:

Acoll = (1−R0)Σ = CΣ (3.27)

The collection area can be thus extracted from the reflectivity spectra.
Following [38], we can rewrite Acoll as:

Acoll = A1
coll(Qloss)(

1 + A1
coll

(Qloss)
4Σ

)2 , A
1
coll = 64V

πλres
Qloss (3.28)

A1
coll is derived from Equation 3.27 and Equation 3.26 and can be thought as a single

element array with constant quality factor Qloss. In the limity of infinity Σ we have:

A1
coll(Qloss) Σ→∞→ 64V

πλ21
Q∞tot (3.29)
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with Q∞tot the asymptotic limit of the quality factor for very diluted arrays. The collection
area diminishes as the array become denser and is maximum for a single resonator.
The focusing factor defined in Equation 3.13 can be also determined combining Equa-
tion 3.12 and Equation 3.27:

F = Acollλres
Veff

Qloss (3.30)

where V is the volume of the resonator e λres is the resonance wavelength. We obtain
that the F factor is dependent on the geometrical properties and the quality factor of
the structure.
We find the limiting value for the local field enhancement for the single patch antenna:

F∞ = A∞collλres
Veff

Q∞loss = 64
π

(Q∞loss)2 (3.31)

The value F∞ depends only on the resonator loss, and it represents the superior limit of
geometry improvement respect to the light confinement in a microcavity. Such funda-
mental limitation arises from propagation effects as the lateral dimensions of the cavity
are commensurable with the incident wavelength.
In Table 3.1 we report the calculated parameters described above, for both patch geom-
etry and stripes geometry.

L s λ12 Qrad Drad neff
Stripes 386nm 1.2µm 8.7µm 72.8 3.2 3.6
Patches 386nm 1.3µm 8.6µm 28.7 6.6 3.3

Table 3.1: The thickness L, dimension s, Qrad,Drad and the effective index neff values cal-
culated for patches and stripes geometry, according to Equation 3.25 and Equation 3.22.
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3.2 Reflectivity measurements
The theory exposed in sections before has been tested in the MIR range of the spec-
trum using reflectometric measurements. We have tested two different geometries of
microcavities, stripes and patches, of different dimensions, to understand the influence
of geometry on the performances of the cavities.

3.2.1 Sample preparation
The sample for reflectivity measurements has been fabricated in the Cleanroom facilities
of the MPQ lab. It contains arrays 500x500 µm2 of photonic resonators (either stripes,
described in paragraph 3.2.3, either square patches, described in 3.2.4): the structure
consists in a thin superlattice GaAs/AlGas layer of≈400nm which is sandwiched between
two metals, a bottom plane and the top pattern which is realized by electron-beam
lithography. The inclusion of epitaxial layers inside two metals is possible thanks to the
wafer-bonding technique, where the MBE grown GaAs wafer is metalized and bond by
thermocompression onto another metalized GaAs wafer, the so called ’host substrate’;
therefore removing the first substrate by selective wet etching, it is possible then to
pattern the MBE superlattice which relies on a bottom metal layer (around 1micron).
As last step the arrays of the sample are dry etched by ICP (Inductively Coupled Plasma),
in order to have the semiconductor structures only in the region between the two metals.

3.2.2 Experimental method
The set-up for reflectivity measurements is shown in Figure 3.10.

Figure 3.10: Schematic of the set-up for reflectivity measurements with FTIR. The beam from a
Globar is focused on the sample as function of the incident angle θ. The reflected light is then collected
by a MCT detector. Not in scale.

A beam from a Globar lamp of a Bruker Fourier-Transform Infra-Red spectrometer
(FTIR) is focused at room temperature on the sample and the reflected intensity is
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measured with a cooled MCT operating in the range λ=3-15µm outside the FTIR. The
incident angle θ and the polarization is varied depending on the experimental configura-
tion. The aperture of the beam is chosen to be 1mm.

Figure 3.11: Reflectivity spectrum with his reference from gold. The dip absorption K=1 is clearly
evident inside the green square. The central dips, that are eliminated with the reference, come from the
molecular CO2 absorption in the atmosphere in a no vacuum experimental configuration.

The sample is mounted on a copper base and covered by a paper mask with a micro
window that selects the array under study. The paper prevents the rest of the sample
to make contribution to the absorption dip, and gives a unity baseline in the reflectivity
spectrum. This is accomplished by measuring, each time a paper window is changed, a
reference spectrum taken on gold, as in Figure 3.11, to be divided to the measurement
spectrum.
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3.2.3 Grating stripes
Reflectivity spectra as function of the period and size

The stripes geometry under investigation is illustrated in Figure 3.2: a thin semiconduc-
tor slab GaAs of thickness L=400 nm, in between a gold mirror and a lamellar grating
of strip width s and pitch a. The periodicity of the grating is p=s+a.
Given the particular geometry of the stripe, the light is confined only along the width s;
therefore for the experiments it is required only p-polarized (TE) incident light, with the
electric field E perpendicular to the stripes: in the orthogonal polarization the reflectivity
of the structure is close to unity. Figure 3.12 shows normalized and shifted reflectivity

Figure 3.12: Experimental spectra
for incident angle 15°with fixed size, as
a function of period. The first mode re-
flectivity dip vanishes for periods com-
parable to the light wavelength.

Figure 3.13: Contrast C as a function of the period
and its fit from Equation 3.26. Contrast reaches a
maximum value for 4.3 µm, then decreases for diluted
arrays.

spectra at 15°, fixed size=1.3 µm and varying grating distance a and period. The reflec-
tivity dip or contrast, corresponding to the energy absorption into the cavity normalized
to unity, is evident for shorter periods and vanishes at higher ones as shown in Figure 3.4:
this is a consequence of enhanced confinement of light for sub-wavelength periods p«λ as
discussed in the previous section. In fact as the grating period is increased, less and less
evanescent waves with non-zero amplitudes mediate the energy transfer. In Figure 3.13,
we report the reflectivity contrast C, defined in Equation 3.26 for the sample s=1.3µm
and angle=15°as a function of the period s+a, extracted from the data in Figure 3.14
through the Lorentzian fit in Equation 3.9.
The fit is calculated from Equation 3.26, considering the 1/p dependence of α.
As expected, the contrast decreases with period and it has a maximum at p=4.4µm,
where it reaches a value up to 1: photons are all absorbed by the array and we are
closely to the critical coupling defined in the previous section. Increasing p, higher or-
der of diffraction have to be taken into account too in the reflectivity spectrum. In
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Figure 3.14, the trend of the dips position is consistent with Equation 3.7: each order
decreases its frequency in increasing the dimension of the patch. While the pic position
does not depend on the period, it is strongly influenced by the dimension s. The di-
mension does not change the reflected intensity and all dips shows the same contrast at
different sizes.

Figure 3.14: Experimental spectra for incident angle 15°with fixed period, as a function of size. The
dashed line underlines the linear energy blue-shift with decreasing size s according to Equation 3.7

Reflectivity spectra as a function of incident angle

In Figure 3.17 size and period are fixed and the sample is studied under different angles
of incidence. The absorption dip are labeled by the integer K defined in Equation 3.7.
One can see that K=1 resonances, highlighted by the dashed line, are excited at every
angle of incidence, whereas the second mode K=2 is present only at angles approaching
45°, and absent under normal incidence. These selection rules can be derived from an
intuitive model considering Figure 3.15.
The electric field E and the magnetic field H induce a surface charge on the edge of the
metal and a surface current density, as shown on the upper part of Figure 3.15. Surface
charge are placed following the sinusoidal component Ez of the electric field, stored inside
the cavity. As this component does not depend on z, charges in the two side metal are
of opposite sign: the cavity can be seen as a capacitor. For the K=1 mode, no matter
the angle of incidence of the light, a dipole, maximum-minimum of Ez, is created in
every resonator in the x direction. This dipole couples with TM mode of the incident
electric field, therefore allowing the absorption. For the K=2 mode, instead, under
normal incidence, two opposite and equal dipoles are present, canceling out themselves.
No absorption takes place and one does not observe the corresponding reflectivity dip
for the even modes. If an oblique incidence is used,the x component of that electric field
breaks the symmetry and creates a no-zero net dipole which can couple to the incident
field to allow the absorption.
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Figure 3.15: Expected charge distributions for the K=1 and K=3 modes at the left, and K=2 mode
at the right. The red arrow indicates the direction of the created dipole and consequently the selection
rule involved. From [34]

Figure 3.16: Effective index for samples with a=3µm deduced from Equation 3.7. The blue line is the
bulk semiconductor effective index.
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In Figure 3.16 we provide the effective modal index computed from Equation 3.7, knowing
the geometry and resonant frequencies of the structure, related to the dispersion of the
GaAs material index in blue (from [44]). Both neff and the refractive index of GaAs
remain fairly constant in this frequency range, but neff has an higher value. This difference
arises from impedance mismatch that confines the electromagnetic field under the patch,
as explained in the previous section.

Figure 3.17: Experimental spectra for dif-
ferent incident angles. We see the rise of a sec-
ond mode resonance, evidenced by the dashed
line, approaching 45°angle.

Figure 3.18: Quality factors for K=1 un-
der normal 15°and 45°incidence, for distance
grating a=3µm.

Figure 3.18 shows the quality factor described in Equation 3.18 for a=3µm as a function
of the size and for incidence of 15°and 45°.

Cross Section and sectional focusing factor

Figure 3.19 and Figure 3.20 report the cross section and the sectional focusing factor
calculated as in Equation 3.27 and Equation 3.30 from the contrast in Figure 3.13, with
s=1.3µm, K=1 and angle=15°.
The fit of the collection area Acoll in Figure 3.19 is calculated from Equation 3.27, con-
sidering the Σ dependence of C from Equation 3.26. The subtracted b parameter in the
fit takes in consideration the impossibility to reach the critical coupling regime at 100%,
due to the FTIR and the environment losses.
The model for the sectional focusing factor in Figure 3.20 is derived using Equation 3.30,
with for Acoll the fit in Figure 3.19 and Qloss calculated from Equation 3.18.
Now, the particular geometry of the stripes, having a lateral dimension infinite related
to the sub-wavelength size, prevent us to describe the unit cell area. We thus describe a
cross section instead of the collection area defined in Equation 3.27, replacing Σ with p,
and the Focusing factor F as a sectional focusing factor, removing one dimension. The
integral in the quantity ∆Ω in Equation 3.22 is adapted to the particular geometry of
the stripes, with 0 < θ < π/2 and 0 < φ < 2π. This gives a value of ∆Ω ≈3.2 and so
the theoretical effective area is Aeff=λ2/3.2.
According to Equation 3.25, the typical value of Qrad is ≈ 1.2 × 1010, calculated with
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Figure 3.19: Cross section and fit model extracted from Figure 3.14. As the array become diluted,
for greater period, the cross section increases as expected.

Figure 3.20: Sectional focusing factor and fit model extracted from Figure 3.14. It is calculated from
Equation 3.30, when the collection area Acoll is derived from the fit of Figure 3.19.
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dielectric bulk constant ε=12.2, the GaAs substrate refractive index neff=3.3 ([38]),
L=400nm and w=1mm. Therefore the overall quality factor in Equation 3.18 is domi-
nated by the ohmic loss of the microcavity Q≈ Qloss. This means that the system is in
the undercoupled regime α<1.
We notice that the cross section and the contrast have an opposite trend: while a denser
array is favorable to achieve an higher contrast value and to permit the single resonator
to absorb the maximum fraction of photons, the cross section increases for a diluted
array, meaning that the antenna has a better performance with a single element.

Diffraction mode

It is evident the modification of the reflectivity spectrum by the diffraction mode in
Figure 3.21: the diffraction dip shifts with the size or with angle, and so with energy.
We expect the diffraction pic to be a discontinuity in the reflectivity spectrum. As it has
a broadened shape, we conclude that some dispersion energy effect occurs at that angle of
incidence. Figure 3.22 reports the calculated energy fit according to Equation 3.16. We
can see, especially for greater periods and so smaller Y in Equation 3.17, Equation 3.16
fits very well the experimental data: for periods comparable to the wavelength higher
orders have to be included in the modal method theory.

Figure 3.21: Reflectivity spectra at different size under normal incidence, showing the diffraction
mode shift as a function energy.
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Figure 3.22: Experimental and theoretical calculation for the diffraction energy at different angles
and sizes from Equation 3.16. The linear fit does match with measured value.

3.2.4 Square patch grating

Figure 3.23: Scanning Electron Microscope SEM image of the patch wired array detector with indi-
cations of the main parameters of the array and directions of incident light polarization, respect to the
wire.

Figure 3.23 is a SEM picture of the patch cavities under study : the side of the patch is
s, the period of the square grating is p=s+a, the unit cell area is p2. The thickness of
the semiconductor GaAs slab is L=0.386 nm. In the sample under study the patches are
linked with gold wires between two lateral sides of the patch with same thickness and
width 150nm. The same geometry will be used for electrical characterization shown in
the next chapter.
In principle, in contrast to stripes geometry, for this 2D surface patterning the field is
confined in all the three dimensions of space. The absorption features are observed for
both polarization and also with unpolarized light.
In our experimental configuration indeed, the wire is perpendicular to the plane of in-
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cidence of light so along the TE or o-polarization. So under TE polarization the wire
modify the reflectivity spectrum reducing the absorption in that direction. So the TM
polarization is used to study the unchanged reflectivity properties of the structure.
Indeed, the resonant frequencies in Equation 3.7 are now identified with two integer N,M:

νNM = c

2nMs
√
N2 +M2 (3.32)

The effective index nM takes approximately the same values as for stripes.
Figure 3.24 shows normalized and shifted reflectivity spectra at 15°, fixed size=1.3µm
and varying grating distance a.
The reflectivity dip or contrast is evident for shorter periods and vanishes at higher ones,
as expected.

Figure 3.24: Experimental spectra for incident an-
gle 15°with fixed size and different grating distances.
The first mode reflectivity dip vanishes for periods
comparable to the light wavelength.

Figure 3.25: Reflectivity spectra for s=1.3 µm and
a=2µm at different angles of incidence. The (2,0)
mode for TM polarization is clearly visible at oblique
angles.

In Figure 3.25, we report reflectivity spectra for s=1.3µm and a=3µm at different angles.
The K=1 dip position and intensity does not depend on incident angle, but we notice
the presence of a second mode for higher angles.

As for the 1D case, we are interested in qualitatively defining the selection rules. We
consider again the induced charges on the edges and the retardation effects, as in Fig-
ure 3.26, where we have indicated k and E for experimental configuration. We recall
that figures presented are in TM polarization. For even K resonances, there is always a
non-zero dipole to be excited in both polarizations since the induced-charges have op-
posite signs. The (1,1) mode has a quadrupolar distribution of charge as in Figure 3.26
which create a non-zero dipole moment only if there is a retardation effect caused by
incident light at an oblique angle. The net and small dipole created is perpendicular
to the propagation plane, so only the TE o-polarization can excite it. In fact, we don’t
observe it in Figure 3.25. The mode present in Figure 3.25 is a (2,0) resonance, observed
only in p-polarization.
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Figure 3.26: Electric field Ez distribution and induced charge distribution for the first excited modes
for patch geometry.k// and E// are the projection of, respectively, the wavevector and the electric field
of the incident wave on the plane x-y. Recall that TM modes in the upper part of the figure refer to the
confined mode inside the cavity, while o- and p- polarizations refer to the incident light. From [34]

Figure 3.27: Contrast for TM polarized and unpolarized normal incident light. The TM polarized
incident light, avoiding the wire, causes more absorption and higher contrast values. The fit is calculated
from Equation 3.26 and is in good agreement.
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Figure 3.28: Quality factor from measurements as a function of the unit cell area Σ. The fit is derived
from Equation 3.26. Q shows a saturation for diluted arrays.

Contrast and Quality factor

In Figure 3.27, we report the reflectivity contrast C, defined in Equation 3.26 for s=1.3µm
and angle=15°for TM polarization and unpolarized light, as a function of Σ. The fit is
extracted from Equation 3.26, with the 1/Σ dependence of α. As for stripes, a param-
eter b subtracts the eventual losses into the measurement apparatus. The theory and
the collected data predict the presence of a maximum of the contrast for a particular
dimension.
Unpolarized light has always a component along the direction of wire, reducing the overall
contrast as we can see in Figure 3.27. This is well demonstrated in the angular diagram
of Figure 3.29: in the two symmetric polarization, the wire obstructs the coupling in the
resonator, consequently contrast vanishes in those directions.

Figure 3.29: Angular diagram that shows measured contrast value as a function of polarizations. A
schematic wired patch is designed to indicate the direction of reduced contrast, caused by the wire.

Figure 3.28 shows the quality factor, extracted through the Lorentzian fit of the first mode
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for a=3µm as a function of size and for incidence of 15°. The fit for the quality factor is
derived inserting Qloss from Equation 3.18 in the expression for α in Equation 3.26, and
considering the dependence on Σ. The model is in good agreement with observed data.
Note that both C and Q depend strongly on the array periodicity, as previously observed.

Focusing Factor and collection area

Collection area and focusing factor F are exctracted from the data of contrast and quality
factor presented above.
The integral in the quantity ∆Ω in Equation 3.22 is adapted to the geometry of the
patch, calculated now with 0 < θ < π and 0 < φ < 2π. We obtain a value of ∆Ω ≈6.6
and so the theoretical effective area is λ2/6.6.
Figure 3.30 shows the collection area for the patch antenna extracted from reflectivity
spectra according to Equation 3.27 and the model from Equation 3.28. Qloss is calculated
from Equation 3.18, where Q is from Qpatch and Qrad from Equation 3.25. The curve
does fit well data. We can notice that values of Acoll are much larger than the cross

Figure 3.30: Acoll as a function of Σ. Black dots are experimental data, red line is the fit from
Equation 3.27. Blue dashed line is the square effective area s2.

section of the square pad 1.69µm2. Figure 3.31 illustrates the focusing factor calculated
from Equation 3.30, from polarized contrast in Figure 3.27, with s=1.3µm, K=1 and
angle=15°. The model curve is calculated from Equation 3.30, considering the fit of the
collection area Acoll in Figure 3.30.
While the contrast C is optimum for dense arrays and decreases with the unit cell area Σ,
the collection area increases with Σ and saturates for very diluted arrays. The absorbing
elements, when put together, reduce their absorption area but, as a whole, they enforce
their absorbing feature.
The saturation for Acoll is linked to the saturation of the focusing factor in Figure 3.31:
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Figure 3.31: Focusing factor F as a function of the unit cell area Σ. Focusing factor saturates for
diluted arrays as expected. The red line is the fit calculated with Equation 3.30 and fitted value of Acoll.

F is ultimately limited by the quality factor of the resonator.
The discrepancies between experimental and theoretical Acoll for dense array are supposed
to be caused by the near-field coupling between the resonators, enhanced for dense arrays,
and the presence of the wire, that, even if located in the other side of the incident
polarization, can in part modify the absorption properties of the patch antenna.
We notice that the cross section and the contrast have an opposite trend: while a denser
array is favorable to achieve an higher contrast value and to permit the total array to
absorb the maximum fraction of photons, the cross section increases for a diluted array,
meaning that the antenna has the best field confinement only in the case of a single
resonator.



Chapter 4

Electric characterization of
antenna-coupled MIR QWIP

The absorption properties of antenna-coupled microcavities have been discussed in chap-
ter 3. In this chapter, we present in the first paragraph the figures of merit of the antenna-
coupled microcavity QWIP and in the second part, the experimental demonstration of
the enhanced performances of antenna coupled microcavity QWIPs. Responsivity, back-
ground limited temperatures (BLIP) and detectivity values are reported.

4.1 Modeling the antenna-coupled QWIP performances
The patch-antenna geometry is beneficial for applications involving optoelectronic de-
vices based on ISB transitions because:

• This geometry changes the polarization of the incident radiation, allowing the
absorbed photons to excite the transitions forbidden by the ISB transition rule in
normal incidence radiation.

• There is a strong confinement of electromagnetic energy density in the sub-wavelength
semiconductor layer.

• The energy of the cavity mode and the corresponding absorption strength can be
in principle tuned by adjusting the geometrical parameters of the cavity.

• Each microcavity collects light from an area larger than the patch itself, thus the
dark current is reduced.

In the following section we derive the expressions of figures of merit for microcavity
QWIPs and validate the benefices listed above. The improvement of the detector perfor-
mance is expressed in terms of the collection area Acoll and the local field enhancement
factor F, defined in the previous chapter.

4.1.1 Responsivity of a microcavity QWIP and background
limited regime

For practical purposes, we have to separate internal and external responsivity. The
power in the denominator of Equation 2.28 can be considered both as incident on the
collection area Acoll, as Acoll Φ E21 for denominating the number of photons absorbed by
the array, and as incident on the effective unit area of the device as ΣΦE, the standard
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definition for detectors. The corresponding responsivities are called internal and external
responsivity.
The total current produced by the illuminated detector comprises, as we discussed in
Chapter 2, a phocurrent Iphoto, defined in Equation 2.25 and a dark current Idark, defined
in Equation 2.22. We rewrite the photocurrent with the definition of collection area,
recalling that the number of photons absorbed by the microcavity detector per unit time
is AcollΦ:

Iphoto = RintAcollΦE21 (4.1)
where Rint is the internal responsivity of the detector, E21 is the energy of the quantum
transition resonant with the energy mode of the microcavity. The dark current of a
microcavity QWIP:

Idark = σJ0Texp(−Eact/kBT ) (4.2)
where σ is the geometrical cross section. If we think at σ as an electrical area and Acoll as
a photonic area, we can immediately notice that using the antenna concept we can greatly
enhance the photocurrent signal respect to the dark current if Acoll»σ. The responsivity
of a microcavity QWIP is derived from an energy model conservation, developed in [36].
The electromagnetic energy density in the cavity is:

U0 =
∫ ∫ ∫ 1

2εε0
|D|2 dV +

∫ ∫ ∫ µ0

2 |H|
2 dV (4.3)

When the microcavity QWIP is illuminated by a MIR source, some part of the radiation
is dissipated in the cavity, the other part is reflected away. In the cavity, we should
divide the part of energy dissipated by ohmic losses of metal and contact layers from the
fraction of energy that couples with the intersubband transition:

dU

dt
|cavity = dU

dt
|isb + dU

dt
|loss (4.4)

The photocurrent, from Equation 2.25, is:

Iph = eg
1
~ω

dU0

dt
|isb (4.5)

The Poynting theorem is then applied in a volume with base the unit cell area in the
array Σ=p2, as we did in Chapter 3 in Equation 3.10 and Figure 3.5. For this purpose we
introduce a coefficient Bisb describing the intersubband absorption and Qcav, the quality
factor of the cavity:

Bisb = 1
ωU0

dU

dt
|isb,

1
Qcav

= 1
ωU0

dU

dt
|loss (4.6)

These quantities are related to the total quality factor:
1

Qloss

= Bisb + 1
Q

(4.7)

Finding the value of Bisb from the Poynting theorem and inserting Equation 4.6 in Equa-
tion 4.5, we find the internal responsivity of microcavity QWIP defined in Equation 2.28:

Rint = Iph
AcollΦE21

= Bisb

(Bisb + 1/Q)
eg

NQWE21
ξcav (4.8)

with g the photoconductive gain, NQW the number of wells, ξcav is the polarization
coefficient, assuming the validity of the capture-emission model described in chapter 2.
The external responsivity is given instead by:

Rext = Iphoto
ΣΦE21

= Aisb
(Aisb + 1/Q)

eg

NQWE21
ξcavC (4.9)



4.1. MODELING THE ANTENNA-COUPLED QWIP PERFORMANCES 53

where C is the contrast of the cavity as defined in Equation 3.26. The explicit expression
for the coefficient Bisb(E) is obtained considering the general theory of electromagnetic
absorption ([40]), that states that the absorption is described by the imaginary part of
the dielectric function. The effective extension of the absorbing region related to the
total cavity lenght, is considered introducing a geometrical overlap factor fw, the ratio of
the effective thickness of the quantum well NQWLQW, with LQW the thickness of a single
quantum well, and the width of the semiconductor layer L, comprehensive of contacts
width. The direction of the intersubband absorption is perpendicular to the cavity, so
we take into account the z-component of the dielectric function in the equation for the
absorption coefficient:

Bisb(E) = fw=
(

ε

εzz(ω)

)
= fw

E2
p

4E21

~Γ
(E − E21)2 + (~Γ)2

4

(4.10)

Here Γ is the linewidth of the quantum transition, Ep is the plasma frequency that
depends on the number of available carriers for the photo-absorption:

Ep = f12nde
2~2

m∗ε0εLQW
(4.11)

where f12 is the oscillator strenght and nd the electron concentration. The ratio between
Equation 4.10 and the quantum efficiency η in Equation 2.13 provides the link between
η and Bisb:

Bisb(E) = η(E) cos θ
sin2 θ

λ21

2πL (4.12)

here θ is the incident angle and λ21=~c/E21 is the resonant wavelength. Here it’s evident
why the microcavity QWIP should have quantitatively an enhanced performance related
to mesa: BLIP detectivity depends on the responsivity defined in Equation 4.8, which in
turn depends on the coefficient Bisb, the fraction of absorbed energy in the cavity. Bisb,
related to the mesa absorption coefficient η, is multiplied by the factor λ21/L, with a
subwavelength thickness L«λ21, thus providing microcavity QWIP an improved capacity
to absorb light thanks to the vertical field confinement. The mesa configuration, used
for characterizing the absorbing region alone, has a collection area that coincide with the
effective area σ. For the mesa the photocurrent in Equation 2.25 is thus:

I0
photo = tR0σΦE21 (4.13)

where t is the transmission coefficient of the facet. The responsivity from Equation 2.28
is:

R0 = ηξmesaeg

NqwE21
(4.14)

The factor ξmesa=1/2 counts for QWIP absorbing only one polarization of light, accord-
ing to the intersubband transition rule. Recalling from chapter 1 that in blip regime
Iphoto=Idark(TBLIP), and using all the equations above, we found an expression for the
TBLIP of the antenna device as a function of the BLIP temperature T0

BLIP of the reference
mesa device:

TBLIP = T 0
BLIP

1− kbT
0
BLIP

E21

{
lnF − lnK + ln

(
T 0

BLIP

TBLIP

)} (4.15)

where F is the focusing factor as defined in Equation 3.30, and K is a geometrical factor
depending only on the mesa configuration:

K = πcosθ

sin2θ
t (4.16)
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K can be evaluated with n=3.3 for GaAs substrate in MIR, θ=45°and t=4n/(1+n)2=0.7,
that it gives K=1.01. The most prominent dependence in Equation 4.15 is therefore the
logarithmic one with the focusing factor F: TBLIP changes only if F is varied through
several orders of magnitude. Looking at the expression of Equation 3.30, we can modify
F by the collection area Acoll, the volume of the absorbing region V and the ohmic quality
factor Qloss. If Q is low compared to Bisb, the detector is inefficient as most of the photons
are dispersed by the metal. In the opposite regime, with an high Q cavity, all photons are
absorbed by the quantum transition. The responsivity in Equation 4.8, with Bisb»1/Q,
does not depend on Bisb and the focusing factor is inverse proportional to Bisb: increasing
the absorption does not have effect in the photocurrent, and is moreover limited by the
doping level required to maintain a low noise device. The only degrees of freedom one
can change to improve the BLIP temperature are the geometrical parameters contained
in the formula of the focusing factor in Equation 3.30. This is the final aim of the study
discussed in the previous chapter: optically studying the impact of the cavity geometry
for detector performances.

4.1.2 Detectivity of a microcavity QWIP
The definition of specific detectivity in Equation 1.13 for microcavity QWIP, considering
external responsivity, is:

D∗BLIP,cavity = Rext

√
Σ√

4eg(Iback)
(4.17)

where external responsivity, background current and the gain are experimentally mea-
sured. The mesa device detecitivity is:

D∗BLIP,mesa = R0
√
Adet

4eg(Iphoto + Idark))
= R0

√
Adet

4eg(tR0σΦE21 + σJ0Texp(−Ea/kBT )) (4.18)

where R0, Iphoto and Idark are expressed respectively in Equation 4.14, Equation 4.13
and Equation 4.2. From this formula we can find the analytical model for temperature
dependance of microcavity QWIP. In fact, we can fit the mesa device detectivity plot
with the formula:

D∗mesa(T ) = amesa√
1 + T × bmesa

amesa
exp(−Ea/kBT )

(4.19)

The activation energy Ea is found by an exponential fitting of the dark current-voltage
measurements for the studied cavity at the same voltage of the detectivity values. The
coefficient Amesa is the BLIP detectivity at 0K:

amesa = D∗BLIP (T = 0K) =
√
R0√

4egtE21Φ300K
= 1

2E21

√
ηmesaξmesa

tΦ (4.20)

where Φ is the black-body flux radiated at the peak of absorption energy. b/amesa is
defined instead as:

bmesa
amesa

= J0

tegΦηmesaξmesa
(4.21)

The photoconductive gain is considered as a constant, since the exponential dependence
on T of dark current is stronger than the temperature dependance of g. At this point,
we obtain the rescaled valued for a and b/a for the microcavity QWIP as:

acavity = amesa ×
√
ηcavityξcavt

ηmesaξmesa
(4.22)
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bcavity
acavity

= bmesa
amesa

× ξmesaηmesa
ξcavηcavity

× t× s2

Σ (4.23)

where ηcavity is the absorption coefficient for the cavity defined from Equation 4.9 as:

ηcavity = bisb
bisb + 1/QC (4.24)

The factor s2/Σ count for the fact that for the microcavity QWIP case, the photocurrent
is collected through the Acoll=CΣ, while the dark current is considered in the effective
detector area σ = s2. We can also provide a theoretical limit for the maximum achiev-
able background limited detectivity in microcavity QWIPs. Inserting Equation 4.8 in
Equation 4.20, for the case Bisb»1/Q we obtain:

D∗BLIP (T = 0K) ≤ 1
E21

√
2NQWΦ300K

(4.25)

From this result, we see that detectors which contain a single quantum well, NQW=1
have the maximum BLIP specific detectivity at 0K. Considering NQW=1, the maximum
specific BLIP detectivity depends therefore solely on the absorption energy E21 and on
the spectral width of the responsivity curve and it is constant with temperature.

4.2 Electric characterization of detector performances
The QWIP structure under study has a bound-to-quasibound transition in the quantum
well (QW). Each period is composed of a 35 nm Al0.25Ga0.75As barrier and a 6.5nm GaAs
well. The center 5nm of each QW is Si-doped with a sheet density nD=1.75×10−18cm−3.
The intersubband (ISB) transition energy between the two bound states is estimated to
be E12=147meV and having considered many body effects with the plasma frequency
Ep = 40meV , as discussed Equation 2.15. They have NQW = 5 periods of QWs, each
with a total thickness of 386nm, including the top (50nm) and bottom (100nm) contacts
Si-doped at 3×1018cm−3 and 4×1018cm−3.
The 45°facet substrate-coupled geometry consists of 100 µm2 radius mesa, with annealed
Pd/Ge/Ti/Au as a top contact and Ni/Ge/Ni/Au bottom contact.
The devices tested have a square patch geometry, of different lengths of side s, a thickness
L=0.386 nm and different grating distances a.
The growth sheets of the wafers are detailed in Appendix A.

4.2.1 IV characteristics and Background-limited temperature
In current-voltage measurements, the device is mounted onto a copper holder, attached
to the cold finger of the open cycle Janis (ST-300) cryostat through a thermo-conductive
insulating paste. The device is wire bonded to ceramic pads with conducting surfaces,
which are connected to a BNC cable in the cryostat. The voltage is applied by a 2450
SourceMeter Keithley. Attention is devoted to maintain the device electrically floating
with respect to the cryostat and the table. Cryostat under vacuum is continuously cooled
up to 4K or 77K, with respectively liquid helium He4 or liquid nitrogen N2 transfer. I-V
characteristics on QWIP are performed under background and dark conditions. Back-
ground current is measured with cooled cryostat at Field of View FOV of 54° pointed
to the background radiation at 297 K. Dark conditions is achieved by totally shielding
from background the cryostat with aluminum. The set-up is illustrated in Figure 4.1.
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Figure 4.1: Schematic illustration of the set-up used for QWIP current-voltage measurements. In
dark-current condition the cryostat is totally covered by aluminum (not in scale).

Figure 4.2: IV characteristic for 45° mesa device
with 297 K background and FOV 54°.

Figure 4.3: IV characteristic for 45° mesa device
in dark conditions as a function of detector temper-
ature.

Figure 4.4: The ratio of the background and dark
currents as a function of voltage.

Figure 4.5: The ratio of the background and dark
currents measured at optimum voltage for the 45°
mesa device.
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Results are compared to mesa, identically grown, studied under the same experimental
conditions.
Figure 4.2 and Figure 4.3 report background and dark I-V measurements for 45° facet
mesa as a function of the applied voltage, in temperature range from 4K to 300K. Fig-
ure 4.4 and Figure 4.5 show the measured ratio Iback/Idark as a function of applied voltage
and the corresponding BLIP condition when the maximum ratio Iback/Idark equals 2, as
we discuss in chapter 1. Under BLIP condition the photocurrent generated by the back-
ground is equal to the detector dark current. The measured TBLIP for the mesa device
is 69 K.
The background IV characteristics of the s=1.2 µm and s=1.4µm are reported in Fig-
ure 4.6 and Figure 4.7 and dark IV characteristics in Figure 4.10 and Figure 4.11. Fig-
ure 4.8 and Figure 4.12 show the ratio Iback/Idark as a function of applied voltage and
the ratio at maximum voltage as a function of detector temperature.
The TBLIP for s=1.2µm and s=1.4µm is respectively of 79.6K and 81.5K.

Figure 4.6: Background current as a function of
the applied voltage for QWIP with s=1.2µm.

Figure 4.7: Dark currents measured at optimum
voltage for QWIP with s=1.2µm

Figure 4.8: The ratio of the background and dark
currents as a function of voltage for QWIP with
s=1.2µm.

Figure 4.9: Background-Limited temperature for
QWIP with s=1.2µm.
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Figure 4.10: Background current as a function of
the applied voltage for QWIP with s=1.4µm.

Figure 4.11: Dark current as a function of the ap-
plied voltage for QWIP with s=1.4µm.

Figure 4.12: The ratio of the background and dark
currents as a function of voltage for QWIP with
s=1.4µm.

Figure 4.13: Background Limited Temperature for
QWIP with s=1.4µm

The improvement of BLIP performance for patch antenna array geometry is clearly
illustrated in Figure 4.14, where we show six samples with different dimensions compared
to the mesa device.
These results are validated by comparing the dark current density in Figure 4.15 for
three different samples and mesa device at 80 K: curves show equivalent tendency, as
expected for samples with same grown absorbing region at the same temperature.
The dark current density is obtained by taking into account the area of the metal pat-
tern, including cavities, wires and pads. The measured curves, in general, display an
asymmetry between positive and negative bias polarities, which it is a point already
discussed in literature. The main cause of the asymmetry is attributed to the segrega-
tion of dopants during growth, as presented in [13] and [49]. Segregation of Si atoms
can cause asymmetry in the quantum well potential and electrons see effective barrier
heights different in the forward and reverse polarization.
The step in the tendency in IV characteristic from low bias to high voltages, stem from
the passage of electrons directly to the continuum, that is activated at higher electric
fields.
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Figure 4.14: The ratio of the background and dark currents measured at optimum voltage for cavity
array devices and 45°mesa device. We clearly see the enhanced-up to 10 K- of patch geometry with
respect to the mesa. Microcavity QWIP does show a substantial improved performance.

Figure 4.15: Dark current density measured at 80K for different samples and mesa. The plots show
identical behavior.

Activation energy

We extracted the electronic activation energy from the temperature dependence of the
dark current Idark in Equation 2.22. The deduced values of Ea are shown in Figure 4.17
and an example of a dark current fitted curve is shown in Figure 4.16.
The activation energy Ea decreases with increasing applied voltage because the top of
the energy barrier becomes thinner at larger bias and, hence, becomes more transparent
to tunneling [13]. The dominant mechanism at low bias range is due to thermoionic
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Figure 4.16: Dark current for a voltage of 0.015V as a function of the temperature for a cavity device
of s=1.35µm and a=4µm. The red line is the fitted curve according to Equation 2.22.

Figure 4.17: Activation energy derived both for mesa and cavity device, extracted from the tempera-
ture dependence of the dark current Idark in Equation 2.22.
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emission. With the increament of the bias voltage, because of thermally assisted mech-
anism, the effective height and width of the blocking barrier decrease and the resulting
activation energy decreases dramatically. At low bias voltages x<0.1V, the activation
energy for a QW, according to the picture described in Figure 2.4:

Ea = ∆Ec − (E1 + Ef + Ep) (4.26)

with barrier height ∆EC=217 meV from the conduction band offset, E1 the ground-
state energy from the bottom of the QW and Ef is the Fermi energy measured from the
doping density according to Equation 2.5 and Ep is the plasma energy as in Equation 2.15.
Using Ef= 33meV for the nominal QW doping density, E1=0.56meV,Ep=40meV that was
found from our calculations, we obtain 130meV, which is in excellent agreement with the
deduced value.
We can conclude that the patch array geometry allows the reduction of the dark cur-
rent over a wide range of operating voltages, bringing to an improved general thermal
performance.

4.2.2 Spectral Photoresponse Measurements
The set-up used for the spectral photoresponse measurements is shown in Figure 4.18.

Figure 4.18: Schematic of the set-up used for Spectral Photoresponse measurements. Not in scale.

The Globar of the FTIR, used as an excitation source is guided by parabolic mirrors
through the interferometer and focused by a germanium lens onto the device.
The device is connected to a low noise trans-impedance amplifier (DDPCA-300) that
applies a small voltage on the device and amplifies the photocurrent generated by the
incident radiation. The magnified signal is fed back in the FTIR to obtained the spectral
photoresponse of the device in direct scan.
Figure 4.19, Figure 4.20 and Figure 4.21 report the normalized photocurrent spectra for
respectively the 45° mesa device and the microcavity QWIP with s=1.3 µm and a=2µm,
at various temperatures. The resonant energy is as expected the same, of about 143
meV. Photocurrent spectra for the cavity are performed in direct scan up to 180K, never
demonstrated before.
Photocurrent spectra have been recently also remarkably obtained with microcavity
QWIP up to 300K, by step-scan FTIR measurements by Palaferri et Al. at QUAD
group in MPQ laboratory [51].
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Figure 4.19: Normalized Spectral Photocurrent for
various temperature of 45° mesa device.

Figure 4.20: Normalized Spectral Photocurrent for
various temperatures of a cavity QWIP s=1.3 µm,
a=2µm.

Figure 4.21: Normalized Spectral Photocurrent for various temperatures of a microcavity QWIP with
s=1.3 µm and a=2µm.
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4.2.3 Responsivity
We recall that the responsivity is the ratio between the photocurrent generated Iphoto
and the corresponding incident radiation power Pop seen by the detector, that give the
Equation 2.28. In this experiment the incident power onto the detector is supplied by
the radiation coming from a blackbody infrared source at 1000°C. We will present the
experimental set-up and the results for Iphoto, for a microcavity QWIP as well as the
mesa device, and the calculation of the incident radiation power. The latter demands
the calibration of the black-body source with a commercial MIR detector with tabulated
responsivity.

Experimental set-up and photocurrent curves

The set-up for device characterization is schematized in Figure 4.22 and it is identical
both for cavity array and mesa device. OL 480 Blackbody Calibration Standard is used as
excitation source: it is composed by an internal conical cavity which is electrically heated
up and emits at 1000°C, and externally, by an aperture wheel with circular openings of
different sizes.

Figure 4.22: Schematic illustration of the set-up used for QWIP responsivity measurements(not in
scale).

The output beam is then guided and focused by two parabolic mirrors f3 and f1 onto the
device (f1 indicates that the ratio focal lenght over mirror diameter is equal 1, and so
for f3). The device is mounted, as in IV characteristics measurements, in the cold finger
of an under-vacuum cryostat enclosed by a cooled shield, except for a 54°FOV aperture.
If we assume that the circular shape of the beam is maintained after the parabolic mirrors,
we should make the choice of the aperture which provides a final beam area greater than
the detector area, to be sure to gather all the incident power. A 2450 SourceMeter
KETHLEY applies a voltage and read the total current Itot flowing in the circuit. The
output beam is chopped at a reference frequency of 1059 Hz, imposed to a SR830 DSP
lock-in amplifier which reads only the signal from the photo-generated current in the
device plus the noise at the reference frequency. The lock-in amplifier reads the signal
through a shunt resistance Rshunt, chosen to be comparable to QWIP resistance in a
specific temperature range and to do not interfere with 10MΩ input resistance of the
lock-in.
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The electronic equivalent circuit of the set-up, illustrated in Figure 4.23, has to be
considered to calculate the real photocurrent signal.

Figure 4.23: Experimental circuit (left) and its equivalent (right) with a QWIP device as a photodiode
and the lock-in amplifier reading the photocurrent-signal as a voltage across a shunt resistance Rshunt

In fact, the electron concentration in the quantum well structure of QWIPs, n2D in
Equation 2.4, is similar to a photodiode concentration exponential function ([11]). The
photodiode behaves as a current source when illuminated: the total current source is
divided into dark, photo-generated and noise currents sources. The current sources have
a junction capacitance and a load resistance Rqwip in parallel. If we connect the lock-in
amplifier to this circuit, the shunt resistance Rshunt and internal impedance of the lock-in
Zlock should be added in parallel to the load resistance Rqwip. The BNC cables, used for
connection, have a characteristic parasite capacitance per meter length of about 100 pF.
Since we are chopping, the only source of interest is the photo-generated current and the
noise source at the reference frequency. The other DC sources are cut off by the lock-in
amplifier.
The internal impedance of the lock-in is given by:

Zlock = Rlock + 1
ωClock

(4.27)

In AC regime, the capacitance-resistance parallel acts as low-pass filter with a time
constant τL ≈ (Rshunt//Rqwip//Rlock)Clock + Co of and a cut-off frequency fL = 1/2πτL.
Considering a lock-in internal capacitance of 25 pF plus 100pF from cables, and an
equivalent resistance of 1kΩ, we find a fL of the order of MHz. By using a chopping
frequency of 1000 kHz, the signal is not attenuated by the parasite filter and we can
neglect this AC component. The photocurrent signal from the device is thus the signal
of the lock-in divided by an equivalent resistance Req, found by adding in parallel the
QWIP resistance Rqwip and the shunt Rshunt:

Iphoto = π√
2
Vlock−in
Req

(4.28)

Req = RshuntRqwip

Rshunt +Rqwip

(4.29)

The lock-in 10 MΩ resistance Rlock gives a negligible contribute. Since the QWIP is a
non-linear component, we should use its differential resistance:

Rqwip = dVqwip
dItot

(4.30)

recalling that Vqwip = V − ItotRshunt is the voltage across the device.
Figure 4.24 and Figure 4.25 show the photocurrents curves for mesa device at left and
cavity a=2µm and s=1.35µm at the right side, for temperature from 4K to room temper-
ature, as a function of the voltage across the device. The shunt resistance is varied when
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Figure 4.24: Photocurrent vs. applied voltage of a QWIP mesa device.

Figure 4.25: Photocurrent vs. applied voltage of a microcavity QWIP with s=1.35 µm and a=2µm.

high temperatures are reached, due to the increasing device resistance with temperature.
QWIP mesa device has a resistance of approximately 24 kΩ at 78K up to 214 Ω at 120
K, at a voltage of 0.3 V.
The dependence of the photocurrent curves on the applied field should be linear for
bound-to-continuum transitions: these devices photocurrent shows a slightly non-linear
dependence on applied field up to about 0.4V, then it reaches a maximum peak, and
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at higher voltages exhibits a negative differential behavior. This negative differential
conductivity is induced by scattering of the carriers from Γ-minimum into the L- and
X-minima of the conduction band. These intervalley scattering processes give rise to
a reduced conductivity due to the higher effective mass, and so a lower electron drift
velocity [13].
The two curves are not yet comparable, since the area of the two devices and the incident
power onto the detector surface are different.

Input power and black-body calibration

Power emitted from the black-body source has to be calculated to obtain the respon-
sivity curves. This is accomplished by using a Teledyne Judson J15D22 MCT detector
with tabulated responsivity of Rp=2909 V/W at frequency of 1059 Hz. We recall from
Chapter 1 that the power incident on the detector is the integrated spectral product of
the power from the black-body and spectral response of the detector as in Equation 1.6
and Equation 1.9.
The set-up for calibrating incident power onto the MCT in illustrated in Figure 4.26.
The black-body source, parabolic mirrors and chopping frequency are the same as the

Figure 4.26: Schematic illustration of the set-up used for the black-body calibration with MCT
photodetector (not in scale).

photocurrent set-up to maintain identical conditions and identical solid angle Ωf . The
signal from illuminated MCT is amplified by a gain of G=100. The out-put signal from
the amplifier overcomes the maximum voltage signal supported by the lock-in amplifier
within the shield (1V), so we need a voltage divider before the lock-in voltage entrance,
as shown in Figure 4.26, with R1 and R2 opportunely adapted. The signal read by the
lock-in Vlock is thus transformed to the voltage signal from MCT VMCT following:

VMCT = Vlock ×
π√
2
× 1
G
× R1 +R2

R2
(4.31)

The power incident on the MCT detector:

PMCT
E = VMCT

Rp
(4.32)

If we use the same solid angle and the same black-body source, from Equation 1.9 we
find the corresponding incident power onto the device QWIP under study:

PQWIP
E = PMCT

E
AQWIPΣQWIP

AMCTΣMCT
(4.33)
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where Σ is the normalized spectral integral of Equation 1.9, and A is the detector area.
For instance Figure 4.27 show the normalized superimposed curve between black-body
at 1273 K and spectral response of the microcavity QWIP taken at 0.750V voltage and
80K.

Figure 4.27: Normalized spectra of Blackbody emitting at 1273 K (red), microcavity QWIP device
photoresponse taken at 750mV and 80K (black), and their superimposition (blue), giving the spectral
integral Σ as area under the curve.

The area of mesa device is calculated considering its 45° facet and its diameter d as:

Amesa = πd2

4 cos(45◦) = 2.22× 10−8m2 (4.34)

In Table 4.1, we show the data of the incident power calculated for mesa device and
microcavity QWIP, that we used to obtain responsivity curves.

Adetector Pop

Mesa device 2.22× 10−8 m2 18.2 µW
Microcavity QWIP 50× 50µm2 0.176 µW

Table 4.1: Mesa and microcavity device parameters used for blackbody calibration. The
incident power Pop is used in calculation of responsivity curves.

Responsivities curves, calculated from Equation 4.13 and Figure 4.25 and values in Ta-
ble 4.1 are reported in Figure 4.28 and Figure 4.29, as a function of the bias voltage
across the device for increasing temperatures.
The responsivity of the 45°facet mesa shows values up to 0.2 A/W in accordance with
the results reported in [11]. For the microcavity device, we observe a five-fold enhance-
ment of the responsivity, with values up to 2.2 A/W in positive bias. These results prove
the enhancement due to augmented collection efficiency of antenna effect. We can also
observe a non-zero photocurrent signal at high temperature: up to now in literature the
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Figure 4.28: Responsivity vs. applied voltage Microcavity QWIP for mesa device.

Figure 4.29: Responsivity vs. applied voltage Microcavity QWIP for s=1.35 µm and a=2µm.
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only reported MIR responsivity plots for AlGaAs-GaAs QWIP at high temperature is
by Liu et al ([13] and [50]), but for a high absorption QWIP having high doping density
up to 1-2×10−12 cm−2, 100 quantum wells and using a CO2 laser.
The presented cavity is a dense array with a=2 µm and s=1.35 µm, with a TBLIP from
IV measurements of about 79 K. As it is a dense array, it has a maximum contrast
of C=0.90, but not the optimum collection area, and so the temperature BLIP perfor-
mance, through Equation 3.30, is not so improved as the responsivity signal, even at high
temperatures. There is always a trade-off between BLIP temperature and the collection
ability of detector array.

4.2.4 Detectivity
Detectivity is calculated for mesa device and microcavity QWIP from the above data of
responsivity.
The dark current is supposed to be reduced in microcavity architecture, so we can just
consider the background limited specific detectivity D*BL in Equation 1.16. To evaluate
it, we need to calculate the photoconductive gain g both for mesa device and cavity. The
background current Iback, entering the noise current in Equation 1.16, is measured under
the same temperature condition of responsivity curves.

Photoconductive gain

For the 45° facet mesa device we recall that the gain is calculating from Equation 2.26
as:

gmesa = R0E21

teη
(4.35)

where responsivity R0 are the values from Figure 4.28 and eta is the absorption coefficient
in Equation 2.13. For the cavity, the photoconductive gain is calculated from the external
responsivity in Equation 4.9 as:

gcavity = RextE12

ξCe Bisb

Bisb+1/Q
(4.36)

where Bisb derives from Equation 4.10, η is the same as mesa device, C is the contrast
found by reflectivity measurements in chapter 3 and ξ for the cavity is angular polariza-
tion integral due to wire effects. In Table 4.2 and Table 4.3 we report the value of the
above mentioned quantities both for mesa device and for cavity with a=2µm and s=1.35
µm.

E12 t η ξ

Mesa device 142.15 meV 0.70 0.053 0.50

Table 4.2: 45° facet mesa device parameters, used to calculate detectivity values.

E12 Contrast C Quality factor 1/Q ξ Aisb

Cavity QWIP 142.15 meV 0.90 1/4+1/22 0.71 0.069

Table 4.3: Parameters for detectivity, for microcavity QWIP of s=1.35µm and a=2µm.
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Figure 4.30: Photoconductive gain vs. applied voltage of a QWIP mesa device.

Figure 4.31: Photoconductive gain vs. applied voltage of a microcavity QWIP with s=1.35 µm and
a=2µm.

Figure 4.30 and Figure 4.31 show the photoconductive gain curves as a function of voltage
across the device for mesa at left side and cavity at right side: as expected, they are
equivalent since the active medium of mesa device and microcavity QWIP is the same.



4.2. ELECTRIC CHARACTERIZATION OF DETECTOR PERFORMANCES 71

Detectivity curves

Once the gain is calculated we finally plot detectivity curves as a function of applied
voltage across the device in Figure 4.33 and Figure 4.32.

Figure 4.32: Detectivity vs. applied voltage of a mesa QWIP device.

Figure 4.33: Detectivity vs. applied voltage of a microcavity QWIP with s=1.35 µm and a=2µm.

From these curves, detectivity peak values are shown in Figure 4.34 at an applied voltage
of 0.5 V, as a function of detector temperature, for both mesa and microcavity QWIP.
Fit curve for mesa device is traced following exponential expression in Equation 4.19
with data in Table 4.2. Parameters found by fit for mesa device are then rescaled for
microcavity QWIP, according to Equation 4.22 and Equation 4.23 with data again from
Table 4.2.
We obtain the impressive results that this new traced curve inferred from fitting the
mesa device, considering the model developed and exposed in the previous chapters, is
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perfectly matched to experimental data.
Results of TBLIP confirm those found by IV measurements with TBLIP

mesa=69K and
TBLIP

cavity=79 K. We confirm again the 10K temperature enhancement for QWIP in the
MIR range, with BLIP temperatures never reported to date in literature in this frequency
spectrum.
Moreover the cavity has a detectivity peak value at 300K of about 3×107 cmHz1/2/W,
which is remarkable for a cooled device, while room temperature thermal detector have
a D* value of about 108 cm Hz1/2/W. Mesa device needs to be cooled to about 150K to
achieve the same D*. Operation at high temperatures implies high dark current. Liu et
al. ([50]) demonstrated a near room temperature 10.6µm QWIP but with 10 times more
quantum wells, an order of magnitude more of doping density and a laser power of 5mW
onto 50×50 µm2, while the microcavity QWIP under study needed only 5 µW from a
Blackbody source to achieve the same performances. The high total absorption in fact,
is not due to the increased doping density, but thanks to the antenna effect and energy
field cavity enhancement.

Figure 4.34: Detectivity vs. temperature at -0.5V of with s=1.35 µm and a=2µm compared to 45°/
mesa device
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Figure 4.35: Detectivity vs. temperature of a microcavity QWIP with s=1.35 µm and a=2µm com-
pared to 45°/ mesa device and the model from Equation 4.23

The antenna effect and cavity enhancement can be explained using Figure 4.36, where
the ratio between cavity and mesa model obtained by Figure 4.34 is expressed in terms
of the coefficients a and b in Equation 4.22 and Equation 4.23.
The result of augmenting collection area compared to effective area and the enhanced
absorption of cavity due to an high focusing factor F implies a drastic reduction of the
dark current respect to photocurrent. Since dark current has an exponential tendency,
this enhancement is more inferred at high temperatures, above BLIP temperature. This
is why we could obtain spectral intersubband photocurrent even at room temperature,
and a greatly improved detectivity at high temperatures, while for low temperatures
data are equivalent to values already reported in literature ([11]).
High operating temperatures, small device capacitance due to reduced detector area are
desirable in high frequency and high speed operations at 30 GHz or higher, employing
long wavelength lasers.
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Figure 4.36: Ratio between D* model of microcavity and mesa device. The improvement of detectivity
values due to cavity is evident at high temperatures, where the ratio b/a for the cavity is multiplied
to the exponential dependance of the dark current in terms of η and geometrical rescale factor. The
antenna effect reduce the exponential contribute of dark current thanks to an increased absorbing area
and field enhancement.

4.2.5 Thermal Resolution
The noise-equivalent temperature difference (NETD) is defined in Sect.1.4.
It can be expressed as NETD=in/R(dPB/dT), where R is the responsivity and in the
background noise current [7]. For the photon energies considered here, the Bose- Einstein
distribution function can be approximated by an exponential dependence. In this way,
we obtain the relation dPB/dT = hν PB/kBTB

2, which results in the following expression
for the NETD:

NETD = in
R

kBT
2
B

RPB,298KE12
(4.37)

where E12 is the transition energy, TB is the black-body temperature of 298K.
Considering the expression for the indicent power PB into the detector defined in Equa-
tion 1.9 in Chap. 1, the final expression for NETD is:

NETD = in,det
Rdet

kBT
2
B

ΩfAdetectorIE,p,298KΣE,298KE12
(4.38)

where Adet is the detector’s area, IE,p,298K and ΣE,298K are the peak value and the spec-
tral integral defined in Equation 1.9 and calculated with a blackbody source emitting at
298K.

The values for NETD are calculated both for mesa device and cavity device as sub-
jected at the same 298K background radiation under the same solid angle Ωf . Results
are shown in Figure 4.37 as a function of the detector’s temperature.
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Figure 4.37: NETD values for the mesa (black line) and cavity device(red line) as a function of the
detector’s temperature T. Blackbody temperature is 298K. The improvement of the cavity is evident at
high temperature, one order of magnitude better than mesa device.

The value for NETD at low temperatures are comparable to those in literature and
commercially available. The improvement due to antenna effect is evident at high tem-
peratures, where the cavity device of array size of 50×50 µm, has a thermal resolution
of one order of magnitude better than the mesa device.
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Conclusions

In this thesis patch-antenna Quantum Well Infrared Photodetectors (QWIP) operating
at λ ≈8.6µm have been investigated by means of optical and electrical measurements to
completely characterize detector’s figures of merit.
The aim of the project was demonstrate the enhancement of the thermal performances
due to the antenna and microcavity effect, which boosts the light interaction with the
quantum well. The objective was minimize the contribution of the dark current on the
high-temperature QWIP response, with respect to a detector with the same absorbing
region but standard 45°facet geometry.
The performances were expressed in terms of a model that take into account the antenna
and the microcavity properties into the detector’s standard figures of merit.
Fourier transform infrared spectroscopy (FTIR) was used to obtain reflectivity spectra of
samples with varying sizes, periodicity, angle and polarization of the incident radiation,
to quantitatively define the role of geometry for the best patch-antenna QWIP design.
Two geometries have been compared, stripes geometry and patch-antenna, that show
different behavior when illuminated.
The contrast C and quality factor Q have been extracted from Lorentzian fit of reflec-
tivity spectra dip. As expected we found that contrast, the ability of the antenna-array
to collect light, for both cases, is maximum at a particular grating distance and decays
for diluted arrays.
Patch geometry, including wires, show a saturation of the quality factor, that is supposed
to be caused by the limiting resonator losses. The same tendency is found on the focusing
factor F, the local field enhancement, and collection area Acoll, the area of collection of
photons for the single resonator.
Fits derived from the theoretical model are in excellent agreement with collected data.
Collection area has the opposite trend respect to the contrast: it is minimized for denser
array and increases with the unit cell area, meaning that the single antenna has the best
ability to collect photons from incident radiation.
In reflectivity measurements diffraction peaks are observed for varying periods and an-
gles, and we proposed a model to describe its presence, despite the sub-wavelength
dimension of the patch-antenna. These optical measurements show that there exists an
optimum geometry, trade-off of ability of patch-antenna to gather photons as a single-
antenna or as a whole array.
The values found with these measurements have then been used in the theoretical model
for detector’s figures of merit responsivity and detectivity.
Current-voltage measurements have been performed under dark and background condi-
tions in 4K-300K temperature range for different samples: we demonstrated that this
geometry allows a 10K enhancement for background limited infrared performance tem-
perature TBLIP, reaching the value of 81.5K for s=1.4µm, a=2µm microcavity QWIP,
compared to 45°mesa device TBLIP of 69K with the same active region. This is a benefit
of the reduction of the dark current in the patch-antenna geometry.
From photocurrent measurements we have calculated responsivity values.
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For the s=1.35µm device, we observe a six-fold enhancement of the responsivity with
respect to mesa device (0.2A/W), with values up to 1.2 A/W in positive bias. Using
these measured responsivities, we calculated the corresponding gain.
The photoconductive gain is an intrinsic property of the active region, independent of
detector geometry, as we show in Figure 4.31. From measurements of the IV characteris-
tics and the responsivity, we have also estimated the background current-limited specific
detectivity.
Regarding the specific detectivity we show at two-fold enhancement detectivity in the
background limited regime (T<TBLIP) and one order of magnitude of enhancement in
the dark limited regime for 100K up to room temperature.
Finally, we demonstrated an improvement of one order of magnitude in the value of
NETD, the noise-equivalent temperature difference, describing the thermal resolution
ability of the infrared detector.
These results allow the investigation of the 300K photoresponse of quantum intersub-
band photodetectors which is innovative for devices generally cooled with liquid nitrogen.
Other infrared detectors exist which work at room temperature (for example bolomot-
ers), but quantum well infrared photodetectors can be exploited for the possibility to
work at high frequency modulation.

Experimental studies have shown that QWIPs response time lies in the picosecond range.
The high-frequency capability of QWIPs was demonstrated in a heterodyne experiments
with a 3dB bandwidth of about 30 GHz [53],[54]. Potential applications of high-speed
QWIPs are in wideband CO2-laser-based spectroscopy, quantum cascade laser-based
communications and infrared notch filters for the 3-5µm spectral window, and radar
[52]. At present, infrared photodetector working at these frequencies modulation and
high temperature are demonstrated with an increased absorption due to high doping
density and high number of wells [50],[55]. Patch-antenna QWIP could open the field of
room temperature, high-speed infrared photodetection with normal doping density and
reduced dark current.
This thesis work, while writing, lead to the measurement of room temperature pho-
tocurrent spectra, with Fourier Transform Infrared Spectroscopy, for a cavity QWIP
in patch-antenna architecture in the mid-infrared range of the spectrum in low doping.
The room temperature spectrum is shown in Figure 4.38. This is the first demonstra-
tion of the ability to photodetect hundreds of nanoWatts at room-temperature in the
mid-infrared range (≈9µm). Intersubband photoconductive devices, normally saturated
by dark current at high temperatures, become with the antenna-coupled geometry in-
teresting rapid sensors to be implemented in spectroscopy applications, space coherent
observations and imaging systems.
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Figure 4.38: Photocurrent spectra for cavity device, at 293 K performed with Fourier Transform
Infrared Spectroscopy in rapid scan mode.
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Appendix A

Growth Sheets

Photodetector 8.4µm/147meV GaAs/Al0.25Ga0.75As

Total thickness(except the etch stop layer): 0.386µm
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