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Introduction

At the beginning of the twentieth century Einstein proposed his theory

of General Relativity generalizing the Special Relativity theory in order to

describe the gravitational interaction. He noted that the field equations of

General Relativity would imply a dynamical Universe and for this reason

he introduced a constant Λ, known as cosmological constant, in order to

preserve a static Universe. After the Hubble discovery that galaxies recede

from us with a velocity proportional to their distance it was clear that the

Universe could not be static and so Einstein did not consider anymore the

possibility of the presence of a cosmological constant.

By the end of the same century two independent groups, through observa-

tion of the luminosity of distant Supernovae, discovered that the Universe

expansion is in an accelerated phase. In order to explain these results, the

cosmological constant came back again, as the simplest explanation for the

accelerating Universe. This new component, which dominates the energy-

density at the present time, is known as Dark Energy. The current cosmo-

logical scenario, known as ΛCDM, considers the presence of a cosmological

constant, responsible for dark energy, plus a ”cold” dark matter component.

This model gives a satisfactory explanation of many observations, from the

accelerated expansion to the formation of structures although it shows issues

in the theoretical explanation for such a small constant.

The cosmological constant is not the only possibility to describe dark energy,

in fact many other models have been considered in the literature. There are

substantially two different approaches when trying to describe dark energy:

1



2 Introduction

modify the energy sector in the Einstein field equations or acting on the

gravitational one. The latter approach lead to a class of models known as

Modified Gravity that involves different gravitational effects with respect to

General Relativity. A subclass of Modified Gravity is that of Scalar-Tensor

theories in which gravity is described by both a scalar and a tensor field. The

dependence of gravity from the scalar field is obtained through a non-minimal

coupling function F (ϕ) which multiplies the Ricci scalar in the Lagrangian.

This leads to a non-trivial modification of the Einstein equations and to the

presence of a varying gravitational constant. These models have been exten-

sively studied in the literature (see for example [58][6][72][25][14][10][69]) and

it has been shown that they can provide a viable dark energy candidate.

In this thesis we considered a specific shape of the coupling function F (ϕ) =

N2
pl + ξϕ2, where Npl is a constant with the dimension of a mass and ξ is

the coupling constant. This shape is relatively general for it reduces to the

minimal-coupling case for ξ → 0 and to the Induced Gravity case for Npl → 0.

In order to study the background and the linear perturbations within non-

minimally coupling we have extended the public code CLASS [42], starting

from an earlier Induced Gravity implementation [71] [8] [70]. Furthermore

we considered two shapes of the potential: V ∝ F 2 and V ∝ ϕ4. For the

former we investigated the special case of conformal coupling which, in our

notation, is given by ξ = −1/6. The thesis is organized as follows:

The first chapter is an introduction of the current cosmological model, we

introduce the formalism and the fundamental quantities and features that

will be compared to the non-minimally coupling case in the last chapters.

In the second chapter we describe the cosmological perturbation theory.

In particular we pay attention to the gauge choice and then present the

perturbed Einstein and fluid equations in the synchronous gauge.

The third chapter is an overview of the scalar tensor theories. We present

the modified Einstein and Klein-Gordon equations for non-minimally cou-

pling and the effective gravitational constant.

In the fourth chapter we present the results obtained for the background
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and confront them with the ΛCDM model for both the potential considered

and, in the case of conformal coupling for V ∝ F 2. The evolution of the dark

energy density parameter and the equation of state are shown. Furthermore

we pay attention to the actual value of the post-Newtonian parameters in

order to see which choices of Npl and ξ satisfies the Solar System constraints.

In the fifth chapter we present the results obtained for CMB anisotropies,

linear matter power spectrum, metric and scalar field perturbations. As

for the background we confront them with the ΛCDM model for both the

potential considered and, in the case of conformal coupling for V ∝ F 2.

In what follows we will use the signature (−,+,+,+) and we will consider

c = ~ = 1 unless otherwise specified. An overdot denotes a derivative with

respect to cosmic time while we use a prime for the derivative with respect

to conformal time.





Chapter 1

The standard cosmological

model

Since the ancient times the Mankind has shown a great interest in trying

to provide an explanation for the phenomena observed on the Earth and in

the sky. Many attempts have been made in order to describe the complexity

of the Universe; first with a mythological and religious description and then

driven by philosophy. In the past century, thanks to the development of

more and more precise observational techniques, cosmology has passed from

being a pure theoretical science to being an observational one. In the 1916

Einstein proposed his theory of General Relativity [23] which connects the

geometry of spacetime to the distribution of mass-energy. Six years later

Friedmann applied the equations which describe General Relativity to the

Universe considering the approximation of a perfect fluid [28] and assuming

homogeneity and isotropy, which is now in good agreement with observations.

The results showed a solution with a Universe which, contrary to what stated

by the static cosmological models of the time, is not static. In 1929 Hubble

discovered that galaxies recede from us with a velocity which is proportional

to their distance from the observer [33], this observational evidence may

be explained only assuming that the Universe is expanding. This sets an

important mark in the history of cosmology: the Universe is not static but

5



6 1. The standard cosmological model

it’s expanding. In 1964 the cosmic microwave background (CMB) radiation

was discovered by Penzias and Wilson [56] confirming the theory of the Hot

Big Bang and in 1992 the COBE team observed the first anisotropies of the

CMB[65]. In 1998 another great discovery changed our view, the observations

of distant type Ia supernovae indicated that the expansion of the universe

is accelerated [62] [57] . In the framework of modern cosmology this leads

to the postulation of the existence of a new kind of energy which, for its

mysterious nature, is called dark energy.

1.1 General Relativity

It is well known that gravitational interaction determines the dynamics

on large scale, that is because matter is inclined to form clusters in which all

the other interactions sum up to produce a negligible effect. The best known

theory which describes the gravitational interaction is Einstein’s General

Relativity. This theory, which is a generalization of special relativity, poses

its basis upon the so called equivalence principle. This principle asserts that

the inertial mass numerically coincides with the gravitational mass or, the

strong formulation, that is always possible to find a frame which is locally

inertial. This leads to a geometrical representation of the gravitational force:

the effect of gravity is to change the geometry of spacetime. In order to

represent this change one can substitute the Minkowsky metric ηµν
1 with the

general metric gµν , thus the spacetime interval is written as:

ds2 = gµνdx
µdxν .

If we want to make derivatives in a generally curved spacetime we have to pay

attention about the orientation of the incremental vectors. In order to make

the differences on parallel vectors we have to take in account the variation

1The Minkowsky metric is associated to a flat geometry, in which case it takes the

simple form of the matrix diag[−1, 1, 1, 1].
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of the metric. This can be achieved by the covariant derivative, defined as:

∇µA
λ = ∂µA

λ + ΓλµνA
ν , (1.1)

where Aλ is a generic vector and Γλµν are the Christoffel symbols defined as:

Γλµν =
1

2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (1.2)

The distortion of spacetime induced by gravity makes the definition of the

geodesic not as straightforward as in flat spacetime. In fact, in order to define

a straight line in a curved spacetime (i.e., the shorter path), we can imagine

that it is a curve for which the tangents taken in different points coincide.

This can be expressed as the requirement that the covariant derivative of

the tangential vector along the curve vanishes. This leads to the geodesic

equation that describes the motion of free falling particles :

ẍλ + Γλµν ẋ
µẋν = 0, (1.3)

where the dot represents the derivative with respect to the proper time. In

order to fully describe the dynamical behaviour of the spacetime geometry

under the influence of gravity we need to construct a tensor which contains

also the derivatives of the metric. By virtue of the equivalence principle we

can’t simply use the metric and its first derivative because we can find a

locally inertial frame in which the first derivative vanishes. Therefore we

have to include the derivatives up to the second order. It is possible to

demonstrate that there is only one tensor that can be constructed from the

metric tensor and its first and second derivatives, and is linear in the second

derivatives, that is the Riemann tensor [75]:

Rµν = ∂λΓ
λ
µν − ∂νΓλµλ + ΓαλαΓλµν − ΓλαµΓαλν . (1.4)

The trace of this tensor R = gµνRµν is called the Ricci scalar. The behaviour

of gravity is entirely described by the Riemann tensor which represents a

uniquely defined geometry of the spacetime. By construction the Riemann

tensor obeys to the Bianchi identities:

∇τRλµνρ +∇ρRλµτν +∇νRλµρτ = 0. (1.5)
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We have that the covariant derivative of the metric vanishes, and so con-

tracting the above expression gives:

∇µ

(
Rµν − 1

2
gµνR

)
= 0, (1.6)

which is also known as the second Bianchi identity. Einstein’s field equations

describes how the curvature tensor reacts to the distribution of matter and

energy and how in turn this distribution is driven by geometry:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.7)

where G = (6.67408 ± 0.00047) · 10−8cm3s−2g−1[50] is the Newton constant

and Tµν is the energy-momentum tensor of the source producing the gravi-

tational field and describes the mass distribution. Since the left hand side of

Eq.(1.7) satisfies the second Bianchi identity we have:

∇νT
µν = 0, (1.8)

which is the energy-momentum conservation for General Relativity. It is

interesting to observe that adding a term such as Λgµν does not change this

property if:

∇ν(Λg
µν) = gµν∂νΛ = 0→ Λ = cost. (1.9)

Thus the equation Eq.(1.7) can be written as:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν . (1.10)

This constant is called the cosmological constant and was added by Einstein

himself in order to recover a static solution for the universe [24]. When it

became clear that a static universe was not in agreement with the observa-

tions, Einstein did not consider further the possibility of adding this constant

although many years on, with the discovery of the accelerated expansion, this

constant was considered back again in the cosmological paradigm.
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1.2 The Robertson-Walker metric

Einstein’s equations are non-linear second order partial differential equa-

tions, solving the general case may prove to be extremely difficult. That’s

why we need to make some assumptions on the symmetry of the spacetime.

The starting point is known as the cosmological principle: on large scales the

universe can be considered homogeneous and isotropic. This is an important

degree of symmetry which allows a relatively simple solution to the Einstein

equations. Starting by this symmetry it is possible to infer many characteris-

tics of the metric itself. This study is done by using the symmetry properties

alone, that is the properties of a maximally symmetric space. In particular,

a maximally symmetric space is homogeneous and isotropic and in turn an

homogeneous and isotropic space is maximally symmetric, furthermore it is

uniquely defined by the number of positive eigenvalues of the metric and by a

constant curvature K. Let’s consider a space-like hypersurface with t = cost.

For the cosmological principle it’s homogeneous and isotropic and therefore

maximally symmetric. The induced metric in this subspace can be written

as [75]:

gµν(x) = Cµν +
K

1−KCρσxρxσ
Cµλx

λCνβx
β,

where Cµν = |K|−11 for K 6= 0, Cµν = 1 for K = 0 and 1 is the unit matrix.

If we consider a N -dimensional space which possesses a maximally symmetric

M -dimensional subspace, we can define M coordinates ui of the maximally

symmetric subspace and (N−M) coordinates va for the remaining subspace.

Thus the metric of the N -dimensional space can be written as:

ds2 = gab(v)dvadvb + f(v)g̃ij(u)duiduj.

Let’s consider f(v) > 0 and define k = +1, k = −1, k = 0 if K > 0, K < 0

or K = 0 respectively. We can write the metric of the whole spacetime as:

ds2 = gab(v)dvadvb + f(v)

[
d~u+

k(~u · d~u)2

1− k~u2

]
.
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We can redefine the coordinates in a more familiar way:

t′ =

∫
−d,

u1 = r sin θ cosϕ,

u2 = r sin θ sinϕ,

u3 = r cos θ.

(1.11)

So that we obtain:

ds2 = −g(t′)dt′2 + a(t′)2

(
dr2

1− kr2
+ r2dΩ2

)
.

This coordinate system is comoving with the geometry itself. This can be

seen considering the geodesic equation (1.3). Taking in account the spatial

part and considering ẋi = 0 for xi = cost we obtain:

ẍi = −Γi00(ẋ0)2,

but Γi00 depends by g0j = 0 and ∂jg00 = 0. So we have ẍi = 0. Thus we can

choose as temporal coordinate the proper time of the privileged observers

comoving with the geometry:

dt2 = g(t′)dt′2,

which is called cosmic time. So the general metric for an homogeneous and

isotropic universe may be written as:

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
, (1.12)

which is known as the Robertson-Walker metric. This represents the general

metric for a homogeneous and isotropic universe. The parameter k indicates

the spatial curvature that defines the geometry of the universe, flat (k = 0),

spherical (k = +1) or hyperbolic (k = −1). The present day measurements

suggest that the spatial curvature is nearly flat, as reported on the Planck

2015 results [59] . We can see that once the spatial curvature parameter is

fixed all the informations on the evolution are contained in the function a(t)
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which is called scale factor. This function describes the expansion of the

universe, we choose the convention to set its present day value to a0 = 1.

Sometimes in cosmology it is useful to define a different temporal coordinate

τ , named conformal time, such that dt = a(τ)dτ . In the following we will

use a dot to denote derivatives with respect to cosmic time while a prime

denotes a derivative with respect to conformal time.

1.3 The Friedmann models

In order to compute the Einstein’s equation for the universe we have to

choose an appropriate form for the energy-momentum tensor. Under the

assumption that the internal interactions of the universe are negligible we

can approximate the universe as a perfect fluid. In this case the energy-

momentum tensor takes the form:

Tµν = Pgµν + (ρ+ P )uµuν , (1.13)

where ρ and P are the density and the pressure respectively and uµ = dxµ/dt

is the four-velocity. Using the Robertson-Walker metric (1.12) one can com-

pute the Christoffel symbols using Eq.(1.2) and then all the components of

the Riemann tensor (1.4), and then substitute these results into the Einstein

equations (1.7). From the 0 - 0 component and the trace respectively we can

obtain the two Friedmann equations:

H2 =
8πG

3
ρ− k

a2
,

Ḣ = −4πG(ρ+ P ) +
k

a2
,

(1.14)

where H = ȧ/a is the Hubble constant. Combining the equations (1.14) we

obtain:
ä

a
= −4πG

3
(ρ+ 3P ). (1.15)

But for ordinary matter and radiation ρ+ 3P > 0 so we can see that ä < 0

and therefore the Friedmann equations describe a universe in decelerated
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expansion, which is not in agreement with current observations which show

an accelerated expansion that following Eq. (1.3) may be given only by a

dominant component with negative pressure ρ + 3P < 0. Observations tell

us that ȧ0 > 0 so going backwards in time we have a monotonous decreasing

function, therefore there will exists a time which corresponds to a(t) = 0,

this time where classical physics predicts infinite density and pressure, a

singularity, is called the Big Bang. We can consider tbb = 0 as the starting

time of the universe.The two Friedmann equations are not independent if the

continuity equation is taken into account:

ρ̇+ 3H(ρ+ P ) = 0. (1.16)

It is useful to define the equation of state for the different components of the

fluid which describes the universe:

wi =
Pi
ρi
, (1.17)

where the subscript i denotes a particular component. Integrating Eq.(1.16)

till the present time gives:

ρi = ρ0i

(
a

a0

)−3(1+wi)

. (1.18)

Considering the different components we can see that for matter (w = 0) the

density scales as the volume (ρm ∝ a−3) whereas for radiation (w = 1/3) it

scales faster (ρrad ∝ a−4). This means that existed a time in which the two

densities were equal. We define equivalence the time teq at which ρm(teq) =

ρrad(teq). It is useful to define the density parameter for each component:

Ωi ≡
ρi
ρcrit

=
8πGρi
3H2

, (1.19)

where ρcrit = 3H2/(8πG) is the critical density. The density parameter of

the whole universe is given by Ωtot =
∑

i Ωi and it gives us the information

of the overall geometry of the universe. If Ωtot > 1 the universe is closed, if

Ωtot = 1 is flat and if Ωtot < 1 is open. It is usual to define Ωk = k/(a2H2)
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so that Ωk + Ωtot = 1. Here we highlight the fact that this parameter is

time-dependent due to the dependence of both ρ(t) and H(t), however the

geometry of the universe is determined by its initial energy content and can

not change.

1.3.1 Hubble law

The observations of galaxies show us that most of them, except the nearby

ones, experience a redshift of their spectrum. Assuming that the shift is due

to the relative motion via the Doppler effect in 1929 Hubble showed that

there is a linear relation between the relative velocity of the galaxies and

their distance [33]:

vgal = Hl, (1.20)

where l is the distance of the galaxy. This observation was interpreted as

the proof that the universe is expanding, but anyway this is an approximated

relation. In fact, the shift may account for both the expansion of the Universe

and the proper motion of the observed galaxy, so the total velocity becomes:

vgal = vp + vexp = vp +Hl ' Hl. (1.21)

This explains why the nearest galaxies exhibit a blueshift: when the distance

is small the peculiar velocity dominates over the expansion factor and given

the fact that the nearby galaxies are gravitationally bounded with our Galaxy

we observe a preferred motion in our direction. From the Doppler formula

we have:

z =
dλ

λ
= dvexp = Hdl =

ȧ

a
dt =

da

a
, (1.22)

where z is the redshift and λ is the proper wavelength of the emitted light.

From this equation it is easy to derive:

1 + z =
a0

a
. (1.23)

In cosmology it is often used the redshift as a measure of distance for the

remote objects.
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1.3.2 Distances in the universe

The distance in the Robertson-Walker metric can be obtained choosing

the coordinate system such that dφ2 = 0 and dθ2 = 0 and assuming that the

cosmic time will be constant dt2 = 0:

dpr =

∫ r

0

a(t)dr′

(1− kr′2)1/2
= a(t)f(r). (1.24)

This is called proper distance. The function f(r) depends on the curvature

parameter, and is:

• f(r) = sin−1 r for k = 1,

• f(r) = r for k = 0,

• f(r) = sinh−1 r for k = −1.

As we can see this definition has the intrinsic issue that changes with time as

the universe expands. In order to avoid the time dependence we can define

the comoving distance such that dc = dpr/a(t) = f(r). However this does not

correspond to any physical observable, in fact it is impossible to measure at

the same time both the ends of a ruler. Let’s define the luminosity distance in

a way that preserve the law for which the radiation flux scales as the square

of the distance:

l =
L

4πR2
, (1.25)

where l is the observed luminosity flux, L is the absolute luminosity and R is

the radius of the spherical surface over which the luminosity is distributed. If

the universe is non-static this surface increase with time for the propagation

of light but also for the expansion of the universe. So the proper distance

a0r is dilated by the factor a0/a:

dL =

√
L

4πl
=
a0

a
a0r = (1 + z)a0r, (1.26)

Another commonly used distance is the angular distance which is defined in

a way to conserve the variation of the angular dimension with the distance
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of the observer. If we consider an extended object at a distance r = cost and

of angular dimension ∆θ we can use the Robertson-Walker metric to find the

proper distance Dp = a(t)r∆θ. So the angular distance is:

dA =
Dp

∆θ
= a(t)r, (1.27)

We can see that there is a relation between the angular and the luminosity

distance, known as the duality relation, which is:

dL =
a2

0

a
r = dA(1 + z)2. (1.28)

1.4 The Hot Big Bang model

As we have seen in the previous section the Friedmann equations lead

to an initial singularity called Big Bang. This idea was firstly proposed by

Gamow in 1946 [30]. The assumptions at the base of the model are:

• the universe is homogeneous and isotropic (Cosmological Principle);

• the evolution is driven by the Friedmann equations (General Relativity

holds);

• the actual universe is composed mainly by matter and radiation;

• the components of the universe can be approximated with a perfect

fluid.

An interesting feature of the initial times can be seen considering the evolu-

tion of the density parameter:

Ωi(z) = ρi(z)
8πG

3H2(z)
,

ρi(z) = ρ0i(z)(1 + z)1+3wi ,

H2(z) = H2
0 (1 + z)2

[
Ω0i(1 + z)1+3wi + 1− Ω0i

]
.

(1.29)

Combining these equations we obtain:

Ω−1
i (z)− 1 =

Ω−1
0i − 1

(1 + z1+3wi)
, (1.30)
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whence we see that as z → +∞ the parameter Ωi(z) → 1. So the universe

in its initial stage is nearly flat independently by its actual geometry2.

Considering that ρm ∝ a−3 and ρrad ∝ a−4 we can see that as a → 0

the radiation becomes the dominant component. In the previous section we

defined the equivalence between matter and radiation as the time when their

densities were equal. This happened at zequiv ≈ 4 · 103. Before equivalence

we speak of radiation dominated era while we speak of matter dominated

era after equivalence. The radiation dominated era can be split up into the

following stages:

• Quark era: T > THad ≈ 2 · 1012K, all the hadrons are decomposed in

their components;

• Hadron era: THad > T > Tπ ≈ 1012K, hadrons dominate until the

equilibrium of the reaction γ + γ′ � π+ + π− isn’t in favour of the

annihilation of pions;

• Lepton era: Tπ > T > Te ≈ 5 · 109K, leptons dominate until the

equilibrium of the reaction γ + γ′ � e+ + e− isn’t in favour of the

positron-electron annihilation;

• Plasma era: Te > T > Teq, the universe is primarily composed by

electrons, protons and photons.

At the beginning of the matter dominated era temperature and densities are

still high enough to make matter and radiation totally coupled. As the Uni-

verse cools down the probability of interactions between photons and matter

decrease. When the characteristic time of the collision between photons and

neutral hydrogen (∝ ρ−1
m ) becomes of the order of the characteristic time of

the expansion (∝ H−1) matter and radiation can be considered to evolve in-

dependently from each other and we refer to this time as decoupling. Roughly

zdec ≈ 103. Before decoupling matter has a high degree of ionization, while

2As we will see further in this chapter this feature leads to a fine-tuning problem of the

initial total density parameter.
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temperature decrease ions combine to form neutral matter. It is called re-

combination the time for which half of the matter is in the form of neutral

atoms zrec ≈ 1.5 · 103 > zdec
3.

1.5 Successful predictions of the model

The Hot Big Bang model had great fortune predicting three fundamen-

tal phenomena: the Universe expansion, the abundances of light elements

produced in the early stages of the Universe through the Big Bang Nucle-

osynthesis (BBN) and the existence of a microwave background radiation

that permeates the universe, the so called Cosmic Microwave Background

(CMB).

The calculation of the nucleosynthesis is done under these hypothesis:

• the universe go through a hot phase (T ≈ 1012K) with all the species

in thermal equilibrium;

• the universe at the time of nucleosynthesis is still homogeneous and

isotropic;

• the neutrinos have three flavours.

With the expansion of the universe the first hadrons decade in smaller parti-

cles, while the temperature decreases several particles annihilate. The ther-

mal equilibrium between neutrons and protons is ensured by the interaction

n+νe � p+e−. Once the neutrinos decouple at Tν ≈ 1.5·1010K the neutrons

suffer the β-decay: n → p + e− + ν̄e. So the relative abundance of neutrons

evolves accordingly:

nn
np + nn

= χn(t) = χn(tν) exp

(
−t− tν

τβ

)
, (1.31)

where tν ≈ 20s is the time of the neutrinos decoupling, τβ ≈ 900s is the

characteristic time of the β-decay, nn and np are the number density of

3Actually the recombination process is not an instantaneous effect but is characterized

by a period ∆zrec.
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neutrons and protons, respectively. The relative abundance of neutrons at

the time of neutrinos decoupling is given by the Boltzmann statistic:

χn(tν) '
gn

nn + np

(
mnkBT (tν)

2π~2

)3/2

exp

(
−mn

kBT (tν)

)
≈ 0.17, (1.32)

where gn = 2 is the number of degrees of freedom for the neutron, mn is

the neutron mass, kB is Boltzmann’s constant and ~ is the reduced Planck

constant. At T ≈ 109K the reaction p + n � d + γ becomes in favour

of the production of deuterium. The deuterium quickly reacts through the

following reactions:  d+ d→ 3He + n,

3He + d→ 4He + p,
(1.33)

and so the relative abundance of helium (Y ) can be obtained as follows:

Y ' Y (THe = 109K) =
mHe

mtot

= 4
nHe
ntot

= 2
nn
ntot

= 2χn(THe). (1.34)

So finally:

Y ' 2χn(tν) exp

(
−tHe − tν

τbeta

)
≈ 0.25, (1.35)

which is in perfect agreement with the observed value. Similarly it has been

recovered the abundance of other light elements until 7Li.

In the early times matter and radiation are tightly coupled, so they behave

as a single coupled fluid. After the decoupling the matter evolves clustering

to form the structures we observe today whereas radiation free streams up to

the present day. Due to the fact that matter and radiation were in thermal

equilibrium we should see a black body background radiation that permeates

the universe. The radiation expands adiabatically and because of its black

body shape we know the relation that binds ρrad and Trad, that is Prad =

ρrad/3 = σradT
4
rad/3, so assuming the expansion as adiabatic we find that

Trad(z) = T0rad(1+z). In order to estimate the temperature at the decoupling

one can find the temperature at recombination assuming thermal equilibrium
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via the Saha equation for the reaction p+ e− � H + γ:

npne
nH

=

(
mekBT

2π~2

)3/2

exp

(
− E1

kBT

)
, (1.36)

where np, ne and nH is the number density of free protons, electrons and neu-

tral hydrogen respectively, me is the mass of an electron, kB is Boltzmann’s

constant, ~ is the reduced Planck constant and E1 is the ionisation potential

of hydrogen (13.6 eV ). It is possible to rewrite this equation in function of

the fraction of free electrons xe = ne/(np + nH):

x2

1− x
=

1

np + nH

(
mekBT

2π~2

)3/2

exp

(
− E1

kBT

)
, (1.37)

the number densities scales like (1 + z)3 and knowing its present value it

is possible to find the temperature for which the fraction of free electrons

is ≈ 50%. Doing so we find Trec ≈ 4000K. We know that the decoupling

happens shortly after recombination, so we can infer that the present time

temperature for the radiation should be of the order of ≈ 2 - 4K. Therefore

following the black body spectrum at ∼ 3K the radiation should have a peak

in the microwave band. Due to its nature this radiation is known as Cosmic

Microwave Background (CMB). In 1964 A. Penzias and R. Wilson of the

Bell Laboratories studying the noise for satellite communications by chance

discovered an isotropic noise in the sky identified as this relic radiation [56]

and in 1978 they won the Nobel prize for their discovery.

1.6 The Cosmic Microwave Background

Before recombination and decoupling the typical photon energy was higher

than the ionization of the neutral hydrogen and thus neutral atoms were not

able to exist. As the Universe was expanding and cooling the photons energy

was decreasing and atoms combined. Thus, in a short interval of time, the

Universe passed from being completely opaque to being completely trans-

parent, allowing photons to travel mainly undisturbed until the present day.
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Therefore observing the CMB is like taking a picture of the first light of

the Universe. Given that photons were in thermal equilibrium before the

last scattering the CMB has a spectrum which is the best known black-body

in nature, with a temperature T = 2.72548 ± 0.00057K [27]. The CMB is

isotropic in the sky but for small anisotropies of the order of δT/T ∼ 10−5.

Given the tight coupling between photons and matter we can argue that these

anisotropies represents the primordial fluctuations in the matter component

and thus represents a crucial source of information in the study of structure

formation.

1.6.1 Anisotropies

The anisotropies of the CMB are usually divided in primary and sec-

ondary anisotropies. Primary anisotropies consist of those present at the

time of the decoupling while the latter refers to those originated after recom-

bination during the journey of the photons from the last scattering surface

to the present day.

The primary anisotropies are the most important in order to study the

structure formation and they are the result of different effects. On scales

larger than the horizon at decoupling the photons are subject only to the

gravitational force, if they are located in a potential well they’re going to lose

energy climbing the gravitational potential while they undergo a net energy

gain rolling down the potential hills created by dark matter perturbations,

this causes a fractional variation of the temperature δT/T = Φ where Φ is the

gravitational potential. If the fluctuations are adiabatic the overdense regions

are hotter than the underdense ones and thus this effect is in contrast with

the effect of gravity giving a contribution δT/T = −2Φ/3. The net effect is

therefore δT/T = Φ/3, which means that the gravitational effect dominates

(Sachs-Wolfe effect). On scales smaller than the horizon the baryon-radiation

fluid falls in the potential wells of the dark matter perturbations. Its com-

pression leads to an increasing radiation pressure that counteracts this effect

resulting in an oscillating behaviour of the fluid. There is the additional
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contribution of the velocity perturbations that affect the temperature aniso-

tropies because of the Doppler effect. Because these perturbations are π/2

out of phase respect to the gravitational potential perturbations no acoustic

peak should be seen, however the presence of baryons deepens the gravi-

tational potential wells acting like an offset for the gravitational potential

oscillation (baryon drag). Therefore the amplitude of oscillations, in partic-

ular the amplitude of peaks and depth of troughs, is related to the baryon

content and provides a unique method to measure the baryon density.

At even smaller angular scales the perfect fluid approximation for the cou-

pled baryon-radiation fluid breaks up. In this context we have to consider

that photons travel a non-negligible distance before being scattered. This

feature leads to the presence of a characteristic size λS, the Silk scale, under

which fluctuations are cancelled (Silk damping).

Secondary anisotropies are usually smaller, and can contribute up to a

∼ 10% of the primary anisotropy angular spectrum in the region before the

Silk damping. The primary sources of these anisotropies are:

• Integrated Sachs-Wolfe effect (ISW): photons passing in a potential

which varies in time suffer a net gain or loss of energy. This effect can

be divided in:

– Early ISW: after decoupling the radiation component has still a

non-negligible value and this leads to a variation of the gravita-

tional potential that influences the anisotropies. Due to its early

origin it is often considered as part of the primary anisotropies.

– Late ISW: this effect arises when matter no longer dominates the

expansion in favour of a new component, such dark energy. There-

fore the potential decays leading to an ISW effect.

• Sunayev-Zel’dovich effect: photons passing through a cluster of galaxies

may interact with the free electrons of the cluster by Inverse Compton
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scattering.

• Lensing: photons are deflected by the gravitational potentials that en-

counter during their travel from the surface of last scattering. The

result is that we observe photons from directions that differ from the

original ones producing a blur of the CMB map.

1.6.2 CMB anisotropies angular power spectrum

The CMB anisotropies are analyzed in a statistical way. They are ex-

panded in terms of spherical harmonics Ylm:

δT (θ, φ)

T
=
T (θ, φ)− 〈T 〉

〈T 〉
=

+∞∑
l=1

+l∑
m=−l

almYlm(θ, φ), (1.38)

where the index l represents the multipole and describes the characteristic

angular dimension of the fluctuation while the index m describes the angular

orientation. The mean value of all alm’s is zero, but they will have a non-zero

variance which is called Cl:

〈alma∗l′m′〉 = δll′δmm′Cl, (1.39)

the Cl’s are obtained making the average over an ensemble of different re-

alizations: this can be achieved averaging over all the values with different

m’s:

Cl =
1

2l + 1

+l∑
m=−l

|alm|2, (1.40)

it is important to notice that for low multipoles the average is done over few

realizations thus giving us a major uncertainty of the underlying variance.

This fundamental uncertainty is called cosmic variance and scales as the

inverse of the square root of the number of possible samples, so we have:(
∆Cl
Cl

)
=

√
2

2l + 1
. (1.41)



1.6 The Cosmic Microwave Background 23

Let’s consider the Cl spectrum: in figure I is shown the temperature anisotro-

pies power spectrum and the best-fit obtained by Planck 2015 [59]. For con-

venience we start considering scales larger than the horizon. As previously

said on these scales the gravitational interaction is the only force present,

thus the spectrum has a shape given by the Sachs-Wolfe effect which leads

to l(l+ 1)CSW
l = cost. In the presence of a cosmological constant that dom-

inates the energy content at recent times the integrated Sachs-Wolfe effect

enhances the spectrum at very low l.

For scales smaller than the horizon at recombination we observe the acoustic

Figure I: Planck 2015 temperature anisotropies power spectrum and best-fit.

In our notation DTTl = l(l + 1)CTT
l . Credits:ESA.

peaks due to the oscillation of the baryon-photon fluid. The first peak cor-

responds to the angular scale of the horizon at recombination and is located

at l ≈ 200. The only free parameter in this computation is the geometry of

the universe, so an accurate precision of the first peak can give us a valu-

able estimation for the total density parameter. The odd peaks represent

the maximum compression while the even ones represent the maximum rar-

efaction. Thanks to the baryon drag the odd peaks are higher with respect

to the even ones, their comparison gives us a good estimation of the baryon

density at the time of decoupling. In principle it could be possible to observe

the acoustic peaks to the smaller scales, however the presence of the Silk
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damping progressively decreases the amplitude of the power spectra and this

leads to a tail for l & 1000 which is clearly visible in figure I.

The cosmological parameters constrained with the angular power spectrum

may be degenerate which means that they can give the same result for differ-

ent choices of the parameters. In order to overcome this issue it is convenient

to include the study of the polarization.

1.6.3 Polarization

The CMB is linearly polarized. In fact if around a scattering center

the temperature field has a quadrupole moment the scattered radiation will

be linearly polarized. On the other hand the scattering processes dilute

the quadrupole anisotropies. We can therefore expect that the polarization

anisotropies are much weaker than that in the temperature field, in fact

are about 10% of the total temperature fluctuations for small angular scales

while it drops to 1% at large angular scales. The polarization field in the sky

can be decomposed into two types, named E and B, which are combinations

of the Stokes parameters Q and U , respectively, scalar and pseudo scalar

fields. While the polarization field is coordinate dependent the E and B fields

are not. Furthermore E modes emerge from density perturbations whereas

primordial B modes are generated by tensor perturbations. The E modes

represent the component of polarization with even parity, while B modes

represent the odd parity component. Since the temperature fluctuations are

also even functions, these correlate with the E mode but not with the B

mode. In an analogous way with what we did for the temperature field we

can expand the E and B modes in spherical harmonics and compute the Cl

spectrum for these quantities:

CEE
l = 〈E∗lmElm〉, (1.42)

CTE
l = 〈T ∗lmElm〉, (1.43)

CBB
l = 〈B∗lmBlm〉. (1.44)
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Because polarization results from scattering, its effect is maximum when the

fluid velocity is maximal, therefore the peaks in the EE spectrum should be

π out of phase with those for temperature. In figure II and III are shown

the EE and TE spectrum respectively and their best-fit obtained by Planck

2015 [59].

Figure II: Planck 2015 E-mode polarization power spectrum and best-fit.

Credits:ESA.

Figure III: Planck 2015 temperature and E-mode polarization cross-

correlation power spectrum and best-fit. In our notation DTEl = l(l+1)CTE
l .

Credits:ESA.

It is important to observe that polarization modes are affected by lensing.

In fact lensing warps the polarization field and generates B-modes from E-

modes, thus even if no tensor perturbation is present it is possible to measure
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a non-vanishing B-mode thanks to the lensing effect of matter that photons

encounter during their travel from the last scattering surface.

1.7 Problems of the Hot Big Bang model

Despite its undoubted successes in explaining the primordial nucleosyn-

thesis and the CMB, the Hot Big Bang model suffers from some problems.

Current observations indicate that the current density parameter of the Uni-

verse is very close to unity. If we consider Eq.(1.30) we can see that the

density parameter is increasing for closed models and decreasing for open

ones, while it stays constant in the flat case. In order to match the observed

value, its initial value should have been:

|Ωi − 1| < 10−60, (1.45)

which requires a fine tuning of initial conditions. This is known as the flat-

ness problem.

Another issue is the problem of the asymmetry between matter and antimat-

ter. To solve this problem we can rely on the GUT theory which can violate

the conservation of the baryon number. If we consider the early stage of

the universe and let the temperature decrease a phase transition will occur

that breaks the GUT symmetry separating the strong and the electroweak

force. With the expansion and the consequently decrease in temperature

another phase transition occur and the electroweak symmetry breaks too. In

this phase transitions the GUT theories predict the formation of magnetic

monopoles, which are topological defects. However the predicted density of

these defects at the present day is much higher than that of the matter, but

no magnetic monopole has ever been seen.

The last main problem of the Hot Big Bang comes from the CMB and re-

gards the causal connection of different regions of the sky. The cosmological

horizon is defined as the radius of the sphere that contains all the points in

the past light cone of its center, that is the distance that the light can travel
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starting from the initial time:

Rc(t) = a(t)

∫ t

0

dt′

a(t′)
, (1.46)

which is finite for 0 ≤ w ≤ 1. Considering Ω0 = 1 we can find:

Rc(t) =
2

H0(1 + 3w)

(
a

a0

) 3(1+w)
2

, (1.47)

in a matter dominated universe (as the case of the surface of last scattering):

Rc(t) = 3t, (1.48)

computing this quantity at the time of decoupling we obtain:

Rc(tdec) ' 3tdec ' 3t0z
−3/2
dec , (1.49)

the surface of last scattering is roughly at a distance:

rdec =
t0 − tdec
1 + zdec

' t0
zdec

, (1.50)

thus the angular dimension of the causal connected regions at the time of

decoupling is approximately:

θdec '
Rc(tdec)

rdec
≈ 5◦, (1.51)

which is only a tiny fraction of the whole sky dimension. On the other hand

the CMB is almost isotropic and homogeneous over the whole sky, suggesting

the thermal equilibrium at the time of decoupling. This is called the horizon

problem. The search for a solution to these problems led to the development

of inflation, an accelerated stage prior to the beginning of the relativistic

epoch of the Hot Big Bank cosmology.

1.8 Inflation

Inflation was developed in a series of papers by Starobinsky[66], Guth[31],

Albrecht and Steinhardt [4] and Linde [46][47] in order to solve the flatness,
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horizon and monopole problems. All models of inflation are based on the idea

that in the primordial times the Universe underwent a phase of accelerated

expansion. In section (1.3) we saw that the Friedmann equations lead to a

decelerating universe because ρ + 3P ≥ 0. So if we want to reproduce an

accelerating expansion we must have P < −ρ/3, or in other words w ≤ −1/3.

It’s easy to see that if this condition last long enough the flatness problem is

immediately solved; in fact taking a look at the equation (1.30) we see that

if w ≤ −1/3 we have [Ω−1(z) − 1] ∝ z and so if z → 0 we have Ω → 1. In

order to see how inflation can solve the horizon problem too it is useful to

define the comoving Hubble horizon as:

rH(t) =
a0

aH
=
a0

ȧ
, (1.52)

which is the radius of the sphere of the causally connected regions at the

time t. This is different from the cosmological horizon because it does not

account for the past history of the universe but refers to a specific time. In

fact while the cosmological horizon is an increasing monotone function, the

comoving Hubble horizon can even decrease: we see it by considering its time

derivative:

ṙH(t) ∝ −ä, (1.53)

that is, if the universe undergo an accelerated expansion the comoving Hubble

radius decrease. This means that two causally connected regions can separate

and pass out each other horizon if an accelerated expansion last for enough

time.

It is easy to understand that inflation can solve the magnetic monopoles

problem diluting them in the great amount of space generated in the process,

making them almost impossible to observe. In order to satisfy the conditions

necessary for inflation one should find a material which has the unusual

property to possess a negative pressure. The simplest case we can consider

is a scalar field4. The recent discovery of the Higgs particle [1][18], as well as

4There is a great variety of inflationary theories, for example most complex theories

consider the mutual presence of different scalar fields and are known as multi-field inflation.

See [74] for a review.
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a great success of the standard model of the elementary particle, is also the

first observation of a scalar field. The field which gives origin to inflation is

called inflaton. Such field does not necessarily have to be the Higgs field, in

fact scalar fields are a common component in modern particle physics.

Considering a homogeneous scalar field φ ≡ φ(t), its density and pressure

are given by:

ρφ = 1
2
φ̇2 + V (φ), (1.54)

Pφ = 1
2
φ̇2 − V (φ), (1.55)

the term V (φ) is the potential of the scalar field; different inflationary models

correspond to different choices of the potential. Substituting in the Fried-

mann equation (1.14) and the continuity equation (1.16) gives:

H2 = 8πG
3

[
1
2
φ̇2 + V (φ)

]
, (1.56)

φ̈+ 3Hφ̇ = V ′(φ), (1.57)

where we used the prime to denote the derivative with respect to the scalar

field. In order to study the dynamics of inflation it is of common use the slow-

roll approximation which consists in considering the field slow rolling towards

the minimum of the potential. The approximation can be summarized as

follows: 

3Hφ̇ ' −V ′(φ),

ε(φ) ≡ 1

16πG

(
V ′

V

)2

� 1,

η(φ) ≡ 1

8πG

V ′′

V
� 1.

(1.58)

Every potential that satisfies these conditions can give rise to a period of

inflation. In order to solve the problems we saw in the previous section,

inflation must endure for a sufficient time. The amount of inflation is quan-

tified by the logarithm of the ratio of the scale factor at the final time to its

value at some initial time. This is called the number of e-foldings Ne:

Ne ≡ ln
a(tend)

a(tin)
, (1.59)



30 1. The standard cosmological model

We can set as condition for a successful inflation the fact that the Hubble

horizon at the initial stage of inflation is much bigger than the present day

value:

rH(ti) =
a0

ȧi
� rH(t0) =

1

H0

=⇒ Hiai � H0a0, (1.60)

and so:
Hiai
Hfaf

� H0a0

Hfaf
=

H0a0

Heqaeq

Heqaeq
Hfaf

, (1.61)

where a subscript f denotes the time at the end of inflation and a subscript

eq denotes the time of the matter-radiation equivalence. The first fraction

on the left hand side gives the number of e-foldings. Substituting in typical

values gives:

Ne ' 60. (1.62)

1.9 Dark matter

We usually observe astrophysical objects through their emitted radiation.

A common assumption is that the light we observe trace the mass distribu-

tion. In this context it is useful to refer to the M -to-L ratio, which is a well

known parameter for each class of stars. Thus, in order to infer the mass of

a galaxy, it is sufficient to make some assumption on the stellar population,

recovering the theoretical M/L, and then a measure of the luminosity gives

the expected mass of the galaxy. Unfortunately this estimation is always

smaller than the one based on the dynamical proprieties. The first evidence

was provided by F. Zwicky in 1933 measuring the mass of clusters rich in

galaxy content. He used the virial theorem developed in 1916 by A. Ed-

dington [22] in order to evaluate the mass content of a galaxy cluster. The

theorem connects the total internal kinetic energy of galaxies in a cluster

T = 1/2M〈v2〉 to its gravitational potential energy at the statistical equi-

librium U = GM2/(2Rcl), where Rcl is the radius of the cluster. Eddington

showed that T = 1/2|U | and so M ' Rcl〈v2〉/G. After measures of the ve-

locity dispersion in the Coma cluster Zwicky found a mass approximately of

one-hundred times the mass inferred taking in account only the visible parts
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of the galaxies [78]. This is considered the first evidence of the presence of a

mass component which, interacting weakly via electromagnetic force, results

undetectable by all the radiation based observations. Many other galaxies

and clusters have been studied and show the same characteristic: the mass

estimated with the stars dynamical proprieties is always higher than that

expected by the measured luminosity. Another argument in favour of the

existence of this unknown matter is given by the study of the rotational

curves in spiral galaxies. In 1980 V. Rubin studied the rotational curves for

different spiral galaxies, completing this study measuring the radio line at

21cm of the neutral hydrogen. These atoms extend to several galaxy radius

from the center. It was observed that in the external regions the rotational

curve was extremely flat, that is vrot = cost [64]. This is compatible with a

spherical distribution of matter with the total mass within the radius r to

increase linearly with the radius: M(< r) ∝ r. This is in contrast with the

assumption that the mass should follow the luminosity distribution, in fact

luminosity decrease exponentially departing from the center. Thus we need

to suppose that the galactic halos are mainly composed by a kind of matter

which does not emit at any frequency. Furthermore in 1973 P. Ostriker and

P. Peebles, showed that the internal disk of spiral galaxies are subject to bar

instability unless the presence of a massive halo with a significant fraction of

mass [53], giving a theoretical argument in favour of the existence of a dark

massive component.

Another possible way to determine the mass of a cluster is by its lensing

proprieties on the background galaxies. When a light ray passes through a

massive object it’s deflected by the potential well and so the images of the

source are distorted and magnified. The lensing proprieties are related to the

mass distribution of the cluster and so a measure of the distortion can pro-

vide an estimation for the mass. Even in this case the luminous mass is not

sufficient to explain the observed distortion in the images [19]. In principle

it is possible that this lack of matter is caused by a huge presence of non-

luminous objects or tiny sources such as brown dwarfs, black holes or neutron
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stars, however different studies suggest that their presence is insufficient to

explain the observed difference in mass [67][5]. All these arguments suggest

the presence of a weak interactive massive component which is referred to as

dark matter.

1.9.1 Hot and Cold Dark Matter

Dark matter candidates are usually divided into hot (HDM) and cold

(CDM) components. This definition is related to the typical kinetic energy

of the dark matter particles at the time of decoupling from radiation. That is,

while HDM was relativistic at that time, the CDM was not. Since the more

massive a particle is the earlier it attains non-relativistic velocities HDM

relates to light particles (m < few eV) while for CDM heavy particles are

preferred (m > 2GeV). These two components lead to a different behaviour

for the structure formation. HDM is still relativistic when galaxy-size fluc-

tuations (∼ 1012M�) first re-entry the Hubble radius and so fluctuations on

galaxy scales are wiped out by the ”free streaming” of the hot dark matter

particles. This leads to a ’top-down’ scenario in which the first structures

to form are massive clusters that later split up to form smaller structures.

Cold dark matter is non-relativistic already for very small mass perturba-

tions entering the Hubble radius, therefore all the cosmologically relevant

fluctuations are preserved. With CDM gravitational collapse starts earlier

and the first objects to collapse are low-mass globular clusters [20] while the

high-mass structures are formed later with merging processes (’bottom-up’).

Considering that galaxies have been observed to exist less than a billion years

after the big bang this latter scenario seems the most likely [52]. Thus it is

commonly accepted that dark matter was not relativistic, or ”cold”, at the

time of decoupling.
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1.9.2 Candidates for Dark Matter

Since the Standard Model of elementary particles does not give a valuable

candidate for a dark matter particle, our search must move to the extensions

of the Standard Model. Many alternative theories have been proposed in the

past decades in order to solve different problems in the framework of elemen-

tary particles. The existence of dark matter gives us another argument to

distinguish extensions of the standard model that provide one or more parti-

cles that can account for all the dark matter needed in cosmology. Theories

which are often considered to provide a viable dark matter particle are:

• Supersymmetry (SUSY) postulates the existence of a broken symmetry

between fermions and bosons. This theory provides different massive

neutral particles that can account for dark matter such as the gravitino,

the sneutrino and the neutralino. The latter is considered the best

candidate because it acts as cold dark matter as opposed to the others.

• Extra Spatial Dimensions (ESD) postulates the existence of more than

three spatial dimensions which are usually un-observables at low en-

ergy. Particles able to propagate in these extra dimensions possess a

quantified momenta which leads to a set of Fourier modes. Usually the

first excitation of the photon is considered a good candidate for dark

matter.

• Axions: in order to solve the ”strong CP-problem” it has been pro-

posed the existence of a new symmetry which prevents neutrons to

have electric dipole moment [55]. This symmetry should be slightly

broken which leads to a new light particle which is called axion. An

axion can account for all dark matter because of its high number den-

sity, despite the small mass.

Apart from axion, the particles that can reproduce CDM candidates which

match cosmological observations are called WIMPs (Weak Interactive Mas-

sive Particles). Many experiments have been set up to search for WIMPs.

They can be classified into two main categories:
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• direct detection experiments: the strategy is to use a large amount of

a sensitive material (large cross section) sufficiently shielded from the

cosmic rays. Dark matter particles should interact sufficiently often

to be seen, it is hoped that at least few events per year will occur.

The aim is to find an annual modulation of these events related to the

variation of the velocity of the detector relative to the galactic halo (see

for example XENON[7], LUX[3], DAMA [11]).

• indirect direction experiments: consists in the search of products of pos-

sible WIMPs annihilation or decay. This should result in an excess of

gamma rays, positrons, antiprotons and other particles in astrophys-

ical emissions (see for example Pamela[2], IceCube[39], AMS-02[68],

Fermi[32]).

Although it can mimic the CDM behaviour the axion is not considered as

part of the WIMPs due to its extremely small mass. Search for axions are

based only on indirect detection: the presence of axions could be observed

as an excess power in radio frequency cavities due to their coupling with

photons (see for example ADMX[48]).

1.10 Dark energy

As already stated, we know that the density parameter is close to unity

[59]. We know that the radiation component is negligible with respect to the

matter component so we expect that the latter exhibits a density parameter

close to one. Unfortunately this is not what we observe. The baryon mass

barely reaches the 5% of the expected value and adding the expected dark

matter mass inferred by the dynamical measures and by the CMB is about

∼ 30% ?? . Therefore there must be another component that accounts for

∼ 70% of the energy content of the Universe. This component is called dark

energy. There is another reason to introduce dark energy and is related to

the age of the Universe: substituting Eq.(1.3) in Eq.(1.14) and integrating
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yields: ∫ a

0

[(
a′

a0

)(1+3w)/2
]
da′ =

∫ t

0

H0

√
Ω0wdt

′, (1.63)

if we compute these quantities for t = t0 and consider a matter-dominated

universe we obtain:

t0 =
2

3

1

H0

√
Ω0m

' 6 Gyr. (1.64)

This estimate is at odd with the age of the oldest globular cluster in our

Galaxy, which is approximately 13 Gyr[40]. In order to solve this discrepancy

we can observe that lowering the value of w leads to an increase of the age

of the universe. We can observe that the cosmological constant appearing in

Eq.(1.10) acts like a perfect fluid with ρΛ = Λ/(8πG) and PΛ = −Λ/(8πG),

hence with w = −1, so for this component we obtain:

t0 =
1

H0Ω0Λ

[ln a]a00 = +∞. (1.65)

Thus the cosmological constant is able to arbitrarily increase the age of the

universe. Considering all the different components and rewriting in function

of the redshift leads to:

t0 =
1

H0

∫ +∞

0

dz

(1 + z)
√

(1 + z)3Ω0m + Ω0Λ

, (1.66)

where we neglected the radiation because the most of the contribution to

this integral comes from late times. The solution can be found numerically:

considering Ωtot = 1, H0 ≈ 70 kms−1Mpc−1 and t0 ≈ 13.8 Gyr[59] we find

that the best choice is Ω0m ≈ 0.3 and Ω0Λ ≈ 0.7 [54]. If we accept these

values we can compute the equivalence between matter and dark energy:

1 + zeq,mΛ =

(
Ω0Λ

Ω0m

)1/3

→ zeq,mΛ ≈ 0.3, (1.67)

thus dark energy should become dominant in the recent past. This is known

as the coincidence problem.
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1.10.1 The accelerated expansion

As we saw one possibility for the dark energy is the aforementioned cos-

mological constant. If this is the case we should be in an accelerating phase

of the expansion. In order to prove this statement one should measure the

evolution of the luminosity distance with redshift. In fact, for a matter dom-

inated universe we have:

dL,m =
2

H0

√
Ω0m

[
(1 + z)−

√
1 + z

]
, (1.68)

while a model driven purely by a cosmological constant gives:

dL,Λ =
z(1 + z)

H0

√
Ω0Λ

, (1.69)

thus, for a given z, the dL is larger for the cosmological constant model, i.e.

for an accelerated expansion. In order to measure the luminosity distance

at different redshift one should find a standard candle (a source of known

absolute luminosity) for high values of the redshift (z ∼ 1). These standard

candles can be the Supernovae Ia. Supernovae are classified in base of the

observational properties they exhibit in their spectrum. In particular, Super-

novae Ia have weak hydrogen and strong silicon lines. However their main

feature is that it has been found an empirical correlation between the sharply

rising light curve in their initial phase and their peak luminosity [63]5. This

means that they can be used as standard candles and so we can recover the

absolute magnitude M of the source. The observed apparent magnitude m

is related to the absolute one by the relation:

m−M = 5 log10

(
dL
Mpc

)
+ 25, (1.70)

and so one can recover the luminosity distance. A parameter which is often

used when dealing with a change in the expansion rate is the deceleration

5These kinds of supernovae originate when a white dwarf in a binary system accretes

from a companion and then collapses after reaching a limit mass known as Chandrasekar

mass.
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parameter q0, whose value can be related to the density parameter of the

different components:

q0 = − ä0a0

ȧ2
0

= −
(
ä0

a0

)
1

H2
0

=
Ω0m

2
+ Ω0r − Ω0Λ. (1.71)

In 1998 the Supernova Cosmology Project led by S. Perlmutter at Lawrence

Berkeley National Laboratory [57] and the High-Z Supernova Search Team

led by B. Schmidt at the Australian National University both studied high

redshift Supernovae Ia. A. Riess was the first to find that their data on the

luminosity of high-z Supernovae are consistent with negative values of q0 at

the 2.8σ [62]. Furthermore the data best-fit is in agreement with Ω0m ' 0.3

and Ω0Λ ' 0.7. For their discovery A. Riess, S. Perlmutter and B. Schmidt

won the Nobel prize in 2011.

1.10.2 Interpretation of Λ

As we have seen the cosmological constant acts like a perfect fluid with

w = −1, this means that its density and pressure does not evolve with the

scale factor. One of the most frequent interpretation of this component is that

it represents the vacuum. In particle physics the vacuum denotes the state

of lowest energy of a theory. In general, this ground state must be Lorentz

invariant, that is, is the same for all observers. Thus, in any locally inertial

frame, the energy-momentum tensor of the vacuum must be proportional

to the diagonal Minkowsky metric, diag(−1, 1, 1, 1), because this is the only

4× 4 matrix that is invariant under Lorentz boosts in special relativity. We

can see that the energy-momentum tensor of a perfect fluid can describe such

behaviour once we assume:

PV = −ρV , (1.72)

where PV and ρV are the pressure and density of the vacuum respectively.

Thus, this perfect fluid has w = −1, just like the cosmological constant. If

the interpretation is correct, it follows that the energy density and pressure
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of the vacuum should be:

ρV =
Λ

8πG
, (1.73)

PV = − Λ

8πG
. (1.74)

The lowest energy state of the harmonic oscillator has a zero point energy

E0 = 1/2~ω, the generalization to quantum field theory is straightforward

due to the fact that a relativistic field can be thought as a collection of

harmonic oscillators of all possible frequencies. Let’s consider a scalar field:

the vacuum energy is given by:

E0 =
∑
j

1

2
~ωj, (1.75)

where the sum is made on all the possible modes of the field, that is on the

wave-vectors k. We can consider a box of size L and then let L → +∞,

the boundary condition imposes that λi = niL where ni is an integer and i

denotes the direction. The number of modes between k+ dk and dk is given

by dkiL/(2π), thus the expression (1.75) becomes:

E0 =
1

2
~L3

∫
d3k

(2π)3
ωk, (1.76)

where ωk = (k2 +m2/~2)
1/2

, and k = |k|. In order to recover the vacuum

energy density we have to divide each side of the expression by L3 and let

L → +∞. The integral diverges unless we impose a cut-off at a maximum

wavevector kmax � m/~. Doing so we obtain:

ρV ≡ lim
L→+∞

E0

L3
= ~

k4
max

16π2
. (1.77)

The presence of the cut-off is due to the fact that we consider a low energy

theory which should not be applied at high energy, therefore we define an

energy scale kmax which represents the bound beyond which we do not confide

anymore in our low energy theory. Considering this level to be the Planck

energy Ep ≈ 1019 GeV we can choose kmax = Ep/~, so we obtain:

ρV ≈ 1074 GeV4~−3 ≈ 1092 g/cm3, (1.78)
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On the other hand last estimates of the cosmological constant gives a value

[15]:

ρΛ = (1.35± 0.15) · 10−123ρp ≈ 10−31 g/cm3, (1.79)

where ρp ≈ 5 · 1030g/cm3 is the Planck density. Thus, the estimated value

for the energy density of vacuum is 123 orders of magnitude higher than the

observed one. This fact is usually referred to as the cosmological constant

problem [76][17]. This may persuade us to believe that the interpretation of

Λ as the vacuum energy is wrong; even if this may be the case the problem

of the wrong estimation of the vacuum energy remains.

Another possible interpretation of the cosmological constant is that it is

a net effect of a slowly varying scalar field, as for inflation, although for

totally different values of the parameters . This class of models is known as

quintessence, the general action for this case is given by:

S =

∫
d4x

[
R

8πG
− 1

2
∂µφ∂

µφ− V (φ)

]
+ Sm, (1.80)

where R is the Ricci scalar, G is Newton’s constant, φ is a scalar field, V (φ)

its potential and Sm is the action for the matter. The energy-momentum

tensor of the scalar field can be expressed as that of a perfect fluid:

T φµν = ∂µφ∂νφ−
1

2
gµν∂

ρ∂ρ − gµνV (φ)

= Pφgµν + (ρφ + Pφ)uµuν .
(1.81)

Assuming an homogeneous field φ = φ(t) the equation of motion becomes:

φ̈+ 3Hφ̇+
dV

dφ
= 0, (1.82)

which is the equation for a damped harmonic oscillator with the Hubble

constant doing the role of the damping term. The parameter w is given by:

wφ =
Pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (1.83)

Thus the scalar field goes to the minimum of its potential damped by the

Hubble constant. If this effect is strong enough the scalar field kinetic energy
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is negligible and w → −1 leading to an accelerated expansion in an analo-

gous manner of the cosmological constant. In order to avoid fine tunings one

should choose a potential that permits a wide range of initial values to pro-

duce the same scalar field behaviour. In addition quintessence should produce

a negligible effect for the past epochs, in fact as we have seen dark energy

overcome matter only after z ≈ 0.3. Thus the potential of quintessence must

be choose in a way that satisfies the above conditions.



Chapter 2

Cosmological perturbations

theory

In the previous chapter we have summarized the main features of the

standard cosmological model: starting from the cosmological principle we

have derived the background equations which describes the evolution of the

Universe, and we have seen how their predictions are in agreement with

observations. However the assumption of homogeneity asserted by the cos-

mological principle can at most be valid in the primordial Universe, since in

the sky we observe a high level of inhomogeneity: we see galaxies, clusters

and many other gravitational bound structures. The most logical way to

explain these phenomena is to consider them as the effect of gravity: in this

picture small over-densities grow in time until they collapse into non-linear

objects. We can pose two main questions: how these initial inhomogeneities

were generated? And how can this process be quantified and tested against

observations? A possible answer to the former is given by inflation which

predicts the amplification of quantum fluctuations yielding the seeds for the

formation of structures [43]. In this chapter we will try to answer to the

second question, reviewing a formalism which allows us to study the linear

fluctuations and define quantities which can be connected to observations.

41
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2.1 The density perturbation

If we want to study the structure formation we should perform a statistical

analysis. In order to obtain a good statistics we should have a large sample of

independent realizations of the system, however we have only one Universe to

observe. In order to avoid this issue we can consider in our analysis different

regions with enough spatial separation so that we can consider them to have

evolved independently from each other. Throughout this chapter we will

consider the perturbations to be small so that the linear approximation will

be valid. For each component i we can define the spatial density perturbation

as:

δi(~x) =
ρi(~x)− 〈ρi〉
〈ρi〉

, (2.1)

where the brackets denote the spatial average. It is convenient to move in

the Fourier space expanding this perturbation in plane waves:

δi(~x) =
1

(2π)3

∫ +∞

−∞
δ̂i(~k)ei

~k·~xd~k. (2.2)

The amplitude δ̂(~k) represents the fluctuation over a distance λ = 2π/k. At

the linear order, different k modes evolve independently. We can then define

the matter power spectrum P (k) as the variance of the distribution δ̂(~k),

that is:

〈δ̂(~k)δ̂(~k′)〉 = (2π)3P (k)δ(3)(~k − ~k′), (2.3)

where δ3(~k−~k′) is the three-dimensional Dirac delta function, which is equal

to one if ~k = ~k′ and zero otherwise. The matter power spectrum is the

analogous for density perturbations of the Cl’s we encountered for the CMB.

2.2 The perturbed Universe

In general relativity the metric is governed by the energy-momentum

tensor and vice versa, therefore matter and metric perturbations are inter-

connected. We consider the flat Robertson-Walker metric as the background



2.2 The perturbed Universe 43

spacetime. This assumption simplifies the problem because the slices at

t = const have Euclidean geometry, and allows us to make 3-dimensional

Fourier transformation in space. Furthermore we consider as time coordinate

the conformal time τ which is related to the cosmic time t by a(τ)dτ = dt.

In this context we can write the metric on the perturbed spacetime as:

gµν = ḡµν + δgµν = a2(τ)(ηµν + hµν), (2.4)

where, from now on, the over-bar denotes background quantities, ηµν is the

Minkowsky metric and hµν is the metric perturbation and it is assumed to

be small. We will consider only the linear order. Even if these objects are

not tensors we can define:

hρν = ηµρhρν ; hµν = ηµρησνhρσ, (2.5)

thus the inverse metric can be written as:

gµν = a−2(ηµν − hµν), (2.6)

the perturbation metric hµν can be written as:

[hµν ] =

[
−2A −Bi

−Bi −2Dδij + 2Eij

]
, (2.7)

where D = −hii/6 carries the trace of the spatial metric perturbation and

Eij is traceless:

δijEij = 0, (2.8)

thus the perturbed metric at linear order can be written in a general way as:

ds2 = a(τ)2
{
−(1 + 2A)dτ 2 − 2Bidτdx

i + [(1− 2D)δij + 2Eij] dx
idxj

}
.

(2.9)

The function A(τ, xi) is called lapse function and it relates the proper time

of the reference system and the conformal time while Bi(τ, x
i) is the shift

vector that accounts for the relative velocity between the surfaces of fixed

conformal time.
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2.2.1 Gauge transformations

For a given coordinate system in the background, there are many possible

coordinate systems in the perturbed spacetime for which Eq.(2.4) holds. A

gauge transformation is a coordinate transformation between such coordinate

systems in the perturbed spacetime. Let us denote with xα the coordinates on

the background spacetime and with x̃α, x̂α two different coordinate systems

(gauges) on the perturbed spacetime, related by the transformation:

x̃α = x̂α + ξα, (2.10)

the coordinate systems {x̃α} and {x̂α} relates a point P̄ in the background

to the corresponding point in the perturbed spacetime P̃ and P̂ respectively:

x̃α(P̃ ) = x̂α(P̂ ) = x̄α(P̄ ). (2.11)

The coordinate transformation refers to the coordinates at the same point in

the perturbed spacetime:

x̃α(P̃ ) = x̂α(P̃ ) + ξα,

x̂α(P̂ ) = x̃α(P̂ ) + ξα.
(2.12)

Considering a single coordinate system we can recover the expression for the

relation of the two different points:

x̃α(P̃ ) = x̃α(P̂ )− ξα,

x̂α(P̃ ) = x̂α(P̂ )− ξα.
(2.13)

Let us consider a scalar s = s̄ + δs which lives in the perturbed spacetime.

The gauge transformation acting on a scalar leaves this quantities unchanged.

However this is true only if we consider the same point in the perturbed

spacetime for the two gauges. This means that the corresponding background

point is different for the two gauges and so is the quantity s̄. As a consequence

δs is gauge dependent. The perturbation in different gauges is:

δ̂s(xα) = s(P̂ )− s̄(P̄ ),

δ̃s(xα) = s(P̃ )− s̄(P̄ ).
(2.14)
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In order to relate them we can observe that:

s(P̃ ) = s(P̂ ) +
∂s

∂x̂α
(P̂ )

[
x̂(P̃ )− x̂(P̂ )

]
= s(P̂ )− ∂s

∂x̂α
(P̂ )ξα, (2.15)

we can observe that the last term on the right is equal to the same term

computed at the background point P̄ since the difference between them is a

first order perturbation and the multiplication by ξα makes it second order.

Furthermore, since the background is homogeneous, we obtain:

s(P̃ ) = s(P̂ )− ∂s

∂x̂α
(P̄ )ξα = s(P̂ )− s̄′ξ0, (2.16)

where the prime denotes the derivative respect to conformal time. Thus we

get:

δ̃s(xα) = δ̂s(xα)− s̄′ξ0. (2.17)

In analogy to what we have done it is possible to recover the gauge transfor-

mation for vectors and tensors. Here are the most useful relations:

δ̃s = δs− s̄′ξ0,

δ̃w
α

= δwα + (∂βξ
α)w̄β − (∂βw

α)ξβ,

δ̃A
µ

ν = δAµν + (∂ρξ
µ)Āρν − (∂νξ

σ)Āµσ − (∂αĀ
µ
ν )ξα,

δ̃Bµν = δBµν − (∂µξ
ρ)B̄ρν − (∂νξ

σ)B̄µσ − (∂αB̄µν)ξ
α.

(2.18)

Applying the last of these transformations to the metric perturbation we

obtain:

δ̃gµν = δgµν − (∂µξ
ρ)ḡρν − (∂νξ

σ)ḡµσ − (∂0ḡµν)ξ
0,

= δgµν + a2

[
−(∂µξ

ρ)ḡρν − (∂νξ
σ)ḡµσ − 2

a′

a
ηµνξ

0

]
.

(2.19)

We therefore obtain the gauge transformation for the lapse function A:

Ã = A− ∂0ξ
0 − a′

a
ξ0, (2.20)

and for Bi from δg0i:

B̃i = Bi + ∂0ξ
i − ∂iξ0. (2.21)
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Finally considering δgij and separating the trace and traceless parts we ob-

tain:

D̃ = D +
1

3
∂kξ

k +
a′

a
ξ0,

Ẽij = Eij −
1

2
(∂jξ

i + ∂iξ
j) +

1

3
δij∂kξ

k.

(2.22)

2.3 Scalar, vector and tensor perturbations

In this section we fix a gauge while we perform a coordinate transforma-

tion on the background spacetime. This will induce a coordinate transfor-

mation on the perturbed spacetime and we are interested in characterizing

the perturbations by their proprieties under this transformation. In order to

retain the symmetric properties of the background we can consider homoge-

neous transformation of the time coordinate (reparameterizations of time) or

a transformation in the space coordinates. Let us consider rotations in the

3-dimensional Euclidean space of t = const slicing. The transformation can

be written as:

xµ
′
= Xµ′

ν x
ν . (2.23)

Applying the transformation on the metric we obtain:

g0′0′ = Xµ
0′X

ν
0′gµν = X0

0′X
0
0′g00 = g00 = −a2(1 + 2A),

g0′l′ = Xµ
0′X

ν
l′gµν = X0

0′X
j
l′g0j = −a2Rj

l′Bj,

gk′l′ = X i
k′X

j
l′gij = a2

(
−2Dδkl + 2EijR

i
k′R

j
l′

)
,

(2.24)

from which we can observe that A and D transform as scalars, Bj as a 3-

vector and Eij as a 3-d tensor. The vector field Bj can be divided in two

parts, the first with zero curl and the second with zero divergence. The

former can be expressed as minus the gradient of a scalar potential:

Bi = −∂iB +BV
i , where δij∂jB

V
i = 0. (2.25)

In a similar way the tensor Eij can be divided into three parts:

Eij = ES
ij + EV

ij + ET
ij , (2.26)
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where the first two terms can be expressed in terms of a scalar E and a vector

field Ei:

ES
ij =

(
∂i∂j −

1

3
δij∇2

)
E,

EV
ij = −1

2
(∂iEj + ∂jEi) , where δij∂jEi = 0,

and δik∂kE
T
ij = 0, δijET

ij = 0.

(2.27)

Thus the metric perturbation can be divided into:

1. four scalars, consisting of A, B, D and E,

2. two divergenceless vectors, consisting of BV
i and Ei,

3. one tensor ET
ij .

At the linear order these different parts do not couple to each other and thus

evolve independently. The scalar perturbations are the most known since

represent the perturbations in density and pressure of the cosmological fluid

and are the main responsible for structure formation. Vectors perturbations

represent the rotational velocity perturbations in the cosmic fluid. Since

they decay in time in an expanding universe they have a negligible effect on

CMB unless sourced by exotic mechanisms. Tensor perturbations represent

primordial gravitational waves, and are a fundamental prediction of inflation-

ary models but they have never been detected experimentally, contrary to

astrophysical gravitational waves which are at different frequencies directly

detectable. These perturbations have an impact on the CMB anisotropies,

the effect is small in temperature which is dominated by the scalar mode but

tensors have an impact through their coupling with the B mode of polar-

ization. The amount of tensor perturbations is quantified with the tensor-to

scalar ratio r. The available data allows us to set a maximum limit for the

tensor-to-scalar ratio r which is r < 0.11 [60]. An important feature of tensor

perturbations is that they are gauge invariant.

From now on we will consider only scalar perturbations. Therefore we can
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write the metric as:

ds2 = a(τ)2
{
−(1 + 2A)dτ 2 + 2∂iBdτdx

i + [(1− 2ψ)δij + 2∂i∂jE]
}
, (2.28)

where we have defined the curvature perturbation:

ψ ≡ D +
1

3
∇2E. (2.29)

2.3.1 Gauge invariant formalism

It is in general not straightforward to compare quantities computed in

different gauges. For this reason it has been developed a gauge invariant

formalism which considers gauge invariant quantities. An important example

are the Bardeen potentials defined by [9]1:

Φ ≡ A+H(B − E ′) + (B − E)′, (2.30)

Ψ ≡ D +
1

3
∇2E −H(B − E ′). (2.31)

where H = a′/a is the Hubble parameter in conformal time.

2.4 Synchronous gauge

Hereafter we will fix a specific gauge. We select the synchronous gauge by

setting A = B = 0. This gauge is the first one to be used in cosmological per-

turbation theory [45] and due to the simple form of the Einstein-Boltzmann

equations in this gauge it is widely used in numerical codes. From an arbi-

trary gauge we can get the synchronous gauge by a transformation ξµ that

satisfies:

ξ0′ +
a′

a
ξ0 = A, (2.32)

ξ′ = −ξ0 −B. (2.33)

1In the Bardeen notation ΦA ≡ Φ and ΦH ≡ −Ψ.
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In this gauge only the space part of the metric is perturbed, thus the line

element can be written as:

ds2 = a(τ)2
[
−dτ 2 + (δij + hij) dx

idxj
]
. (2.34)

Considering scalar perturbations only, we have for the spatial metric pertur-

bation hij:

hij =
1

3
hδij +

(
∂i∂j −

1

3
∇2

)
µ,

= −2ηδij + ∂i∂jµ,

(2.35)

where we have defined:

h ≡ −6D = hii, (2.36)

η ≡ ψ, (2.37)

µ ≡ 2E. (2.38)

It is convenient to consider the fields h(~k, τ) and η(~k, τ) so that we can

expand hij in Fourier modes as follows:

hij =

∫
d3kei

~k·~x
[
k̂ik̂jh(~k, τ) +

(
k̂ik̂j −

1

3
δij

)
η(~k, τ)

]
, (2.39)

with ~k = kk̂. In Fourier space the relation between the variables h, η and µ

simplify2 to: µ = −h− 6η.

2.4.1 Einstein equations in the synchronous gauge

As of now we have recovered the form for the metric perturbation δgµν .

In order to obtain the Einstein equations we first have to recover the inverse

metric perturbation δgµν , this is straightforward once we assume the linear

order. In fact we can write:

(gµν + δgµν) (gνα + δνα) = δαµ =⇒ δgαβ = −gαµgβνδgµν . (2.40)

2A commonly used convention when dealing with Fourier space in cosmological pertur-

bation theory is to divide the vector components by k and the tensor components by a

factor k2 in order to simplify the comparison of their magnitude.
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At this point one should compute the perturbed Christoffel symbols δΓλµν ,

the perturbed Ricci tensor δRµν and then substitute in the perturbed Ein-

stein equation. The time-time, longitudinal time-space, trace space-space,

traceless space-space parts give the following equations [49]:

k2η − 1

2
Hh′ =

a2δT 0
0

2M2
pl

= − a
2δρ

2M2
pl

, (2.41)

k2η′ =
a2

2M2
pl

(ρ+ P )θ, (2.42)

h′′ + 2Hh′ − 2k2η = −a
2δT ii
M2

pl

= −3a2δP

M2
pl

, (2.43)

h′′ + 6η′′ + 2H(h′ + 6η′)− 2k2η = − 3a2

M2
pl

(ρ+ P )σ, (2.44)

where Mpl = 1/
√

(8πG) is the reduced Planck mass, θ is the divergence of

the velocity of the fluid and σ is the anisotropic shear perturbation which

are defined as:

(ρ+ P )θ ≡ ikjδT 0
j , (ρ+ P )σ ≡ −

(
k̂i · k̂j −

1

3
δji

)
Σi
j, (2.45)

and Σi
j ≡ T ij − δijT kk /3. Here we highlight the difference between H, which

is the Hubble constant in conformal time, and H in cosmic time. They are

related by the following relations:

H = aH, (2.46)

H′ = a2(H2 + Ḣ). (2.47)

2.4.2 Conservation of the energy tensor

The evolution of the density and pressure perturbations of the cosmo-

logical fluid can be derived from the conservation equation of the perturbed

energy-momentum tensor. This means:

δ (∇µT
µν) = ∂µδT

µν + δΓβαβT
αν + δΓναβT

αβ + ΓβαβδT
αν+

+ ΓναβδT
αβ = 0.

(2.48)
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Assuming a fluid with equation of state P = wρ and considering the Fourier

components of the perturbations, the above equation implies [49]:

δ′ = −(1 + w)

(
θ +

h′

2

)
− 3H

(
δP

δρ
− w

)
δ, (2.49)

θ′ = −H(1− 3w)θ − w′

1 + w
θ +

δP

δρ

k2δ

1 + w
− k2σ, (2.50)

which are the evolution equation for the velocity and the density perturba-

tions. These equations are valid for any single component if the interactions

with the other components are negligible.

2.5 The Boltzmann equation

In order to take in account the interactions of the different components

one has to solve the Boltzmann equation for the momentum distribution

function f :
df

dt
= C[f ], (2.51)

where the term on the right hand side accounts for all the possible interac-

tions. A phase space is described by six variables: three positions xi and their

conjugate momenta P i. The latter are simply the space part 4-momentum

with lower indices. We consider now a locally orthonormal frame with time

directions lined up with the global coordinate system to first order and whose

space directions line up to zero order, i.e. the space coordinates in this frame

are not perturbed. In the absence of perturbations, the particle momentum

~p in this frame redshift like a−1. It is therefore convenient to define the

following quantities:

~q ≡ a~p, (2.52)

n ≡ ~q

q
, (2.53)

ε ≡ aE =
(
q2 +m2a2

)1/2
. (2.54)
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The total derivative in the Boltzmann equation can be decomposed in partial

derivatives respect to the considered variables:

df

dτ
=
∂f

∂τ
+
dxi

dτ

∂f

∂xi
+
dq

dτ

∂f

∂q
+
dni
dτ

∂f

∂ni
. (2.55)

The last term on the right-hand side is a second order quantity and it there-

fore can be neglected. In the third term dq/dτ is of first order and so ∂f/∂q

can be replaced by df(q)/dq. Thus the goal will be to recover an expression

for dxi/dτ and dq/dτ . The conjugate momentum in the synchronous coordi-

nate system is related to the proper momentum pi in the locally orthonormal

frame by the relation [43]:

Pi = a

(
δij +

1

2
hij

)
pj. (2.56)

We can observe that:

dxi

dτ
=
dxi

dλ

dλ

dτ
=
P i

P 0
= a

(
δij +

1

2
hij

)
pj

ε
. (2.57)

From the geodesic equation it is possible to recover the time dependence of

q [43]:
dq

dτ
= −1

2
qh′ijninj. (2.58)

It is convenient to write the phase space distribution as a zero order term

plus a perturbation depending on the variables of the locally orthonormal

frame:

f(xi, Pj, τ) = f0(q) + δf(xi, q, nj, τ), (2.59)

where f0 is the Fermi-Dirac distribution for fermions (with + sign) and the

Bose-Einstein distribution for bosons (with − sign):

f0(q) = gs
1

eε/T0 ± 1
, (2.60)

where gs is the number of spin degrees of freedom, T0 = aT is the temperature

of the particles today, ε = q for massless particles and we have used unity

such that h = kb = 1 where h and kb are the Planck and Boltzmann constant
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respectively. So the Boltzmann equation in the Fourier space can be written

as [43]:

∂δf

∂τ
+ i

q

ε
(k̂ · n̂)δf +

d ln f0

d ln q

[
η′ − h′ + 6η′

2
(k̂ · n̂)2

]
= C[f ]. (2.61)

The general expression for the energy-momentum tensor written in terms of

the distribution function is given by:

Tµν =

∫
dP1dP2dP3(−g)−1/2PµPν

P 0
f(xi, Pj, τ). (2.62)

Thus at the linear order the components of the energy-momentum tensor can

be written as:

T 0
0 = −a−4

∫
q2dqdΩ

√
q2 +m2a2(f0 + δf), (2.63)

T 0
i = a−4

∫
q2dqdΩqni(f0 + δf), (2.64)

T ij = a−4

∫
q2dqdΩ

q2ninj√
q2 +m2a2

(f0 + δf). (2.65)

2.5.1 Density evolution for the different components

We now consider the evolution for the different components of the stan-

dard cosmological model.

Cold dark matter (CDM)

We know that CDM weakly interacts with other particles and can be

considered to be totally decoupled well before the period of interest. This

means that the collision term in the Boltzmann equation can be set to zero.

The synchronous gauge has two degrees of freedom not fixed which generate

two unphysical gauge-modes. In order to avoid this we can use CDM parti-

cles to define the synchronous coordinates and therefore have zero peculiar

velocities. Thus the equations for the dark matter component are:

δ′c = −1

2
h′, θ′c = θc = 0. (2.66)
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Neutrinos

For massless neutrinos we still can neglect the collision terms, furthermore

for massless particles q = ε. It is convenient to expand the angular part of the

perturbation (dependent by k̂ · n̂) in terms of Legandre polynomials Pl(k̂ · n̂):

Fν(~k, n̂, τ) ≡
∫
q2dqqδf∫
q2dqqf0

,

≡
+∞∑
l=0

(−i)l(2l + 1)Fνl(~k, τ)Pl(k̂ · n̂).

(2.67)

The perturbations in which we are interested are related to the expansion

coefficient by simple relations: δν = Fν0, θν = 4/3Fν1 and σν = Fν2/2. The

Boltzmann equation becomes:

∂Fν
∂τ

+ ikµFν = −2

3
h′ − 4

3
(h′ + gη′)P2(µ), (2.68)

where µ = k̂ · n̂. And so for massless neutrinos we obtain:

δ′ν = −4

3
θν −

2

3
h′, (2.69)

θ′ν = k2

(
1

4
δν +−σν

)
, (2.70)

σ′ν =
1

10

(
8

3
θν +

4

3
h′ + 8η′

)
− 3

10
kFν3. (2.71)

We can observe that a given mode is coupled both with the preceding and

the following modes. The Boltzmann equations have been transformed in

an infinite hierarchy of moment equations so it is necessary to fix a way

to truncate it. One can choose to neglect all multipoles with order higher

than lmax, although this may lead to problems due to the fact that a given

multipole is affected by the following one. However considering large scales

it is safe to truncate the hierarchy at l = 2 because the following orders

produce a negligible effect.
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Photons

Photons behave similarly to neutrinos except that in this case we have

to consider Thomson scattering with electrons, therefore the collision term

in the Boltzmann equation does not vanish. Thomson scattering depends on

polarization and we can define two function that account for the sum and

difference of the two polarization states for each k̂ and n̂ as Fγ(~k, n̂, τ) and

Gγ(~k, n̂, τ). At the linear order the collision terms are given by [49]:

C[fF ] = aneσT

[
−Fγ + Fγ0 + 4n̂ · ~ve −

1

2
(Fν2 +Gγ0 +Gγ2)P2

]
,(2.72)

C[fG] = aneσT

[
−Gγ +

1

2
(Fν2 +Gγ0 +Gγ2)P2

]
, (2.73)

where ne and ~ve are the proper mean density and velocity of the electrons

while σT = 0.6652 · 10−24cm2 is the Thomson scattering cross section. As we

did for the neutrinos Fγ and Gγ can be expanded in Legandre polynomials.

The left hand side of Boltzmann equation is the same as for neutrinos, so for

photons we obtain:

δ′γ = −4

3
θγ −

2

3
h′, (2.74)

θ′γ = k2

(
1

4
δγ − σγ

)
+ aneσT (θb − θγ), (2.75)

σ′γ =
1

10

(
8

3
θγ +

4

3
h′ + 8η′

)
− 3

10
kFγ3 +

1

20
aneσT (Gγ0 +Gγ2),(2.76)

where we can see the extra terms due to the collisions.

Baryons

Finally we consider baryons, as for CDM their pressure and shear stress

are negligible but their interactions with photons produce an extra term with

respect to Eq.(2.49). The momentum transfer into the photon component

is given by aneσT (θb − θγ), furthermore the momentum density is related to

θ by ikjδT 0
j = (ρ + P )θ. The conservation of the momentum, implies we

have to add a term (4/3)(ργ/ρb)aneσT (θγ − θb) to the equation for θ′b. So the
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equations for baryons are given by:

δ′b = −θb −
1

2
h′, (2.77)

θ′b = −a
′

a
θb + c2

sk
2δb +

4ργ
3ρb

aneσT (θγ − θb), (2.78)

where cs = δP/δρ is the sound speed of baryons. Even if this term is much

smaller than 1 it can not be neglected when considering sufficiently small

scales.

2.5.2 The tight coupling approximation

Before recombination photons and baryons strongly interact via Thomson

scattering, this leads to a large value for the Thomson term aneσT ≡ τ−1
T >>

a′/a = τ−1
H in the equations. This large value of τ−1

T makes the equations

numerically difficult to solve. In this context we can take advantage of the

tight coupling to derive approximated equations which do not involve large

numbers. Our goal will be to derive approximated relations to the linear

order in τT . Combining the equations for θ′ for baryons and photons we

obtain:

(1 +R)θ′b +
a′

a
θb − c2

sk
2δb − k2R

(
1

4
δγ − σγ

)
+R(θ′γ − θ′b) = 0, (2.79)

where we have defined R ≡ (4/3)ργ/ρb. From the equation for θ′γ we have:

θb − θγ = τT [θ′γ − k2(δγ/4− σγ)]. (2.80)

Combining it with Eq.(2.79) we obtain:

θb − θγ =
τT

1 +R

[
−a
′

a
θb + k2

(
c2
sδb −

1

4
δγ + σγ

)
+ θ′γ − θ′b

]
. (2.81)

Differentiating this equation and combining it with Eq.(2.79) we obtain the

final result:

θ′b − θ′γ =
2R

1 +R

a′

a
(θb − θγ)+

+
τT

1 +R

[
−a
′′

a
θb −

1

2

a′

a
k2δγ + k2

(
c2
sδ
′
b −

1

4
δ′γ

)]
+O(τ 2

T ),

(2.82)
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where we have neglected σγ which results as a second order term in τT . With

this equation one can compute θ′b, while to obtain the equation for θ′γ it is

sufficient to combine equations (2.75) and (2.78):

θ′γ = −R−1

(
θ′b +

a′

a
θb − c2

sk
2δb

)
+ k2

(
1

4
δγ − σγ

)
. (2.83)

2.6 Adiabatic and isocurvature perturbations

We have derived the evolution equation for all the perturbation compo-

nent in which we are interested. In order to solve the system of differential

equations we have to set the initial conditions. In the introduction of this

chapter we stated that inflation can provide a mechanism for the origin of

the initial perturbations. It happens that the simplest inflationary theory

predicts the initial perturbations to be adiabatic [43]. This means that the

ratio δρi/ρ
′
i is the same for all the species i which implies:

δc = δb =
3

4
δγ =

3

4
δν , (2.84)

where δc, δb, δγ and δν are the fractional density contrast for cold dark matter,

baryons, photons and neutrinos respectively. For a species i the fractional

density contrast is given by: δi = δρi/ρi.

However most complex theories, such as multi-field inflation, predict the

presence of isocurvature perturbations together with the adiabatic ones [74].

Isocurvature perturbations are related to entropy perturbations, which pro-

duce a vanishing curvature perturbation. The total entropy perturbation is

defined by:

S ≡ H
(
δP

P ′
− δρ

ρ′

)
. (2.85)

This perturbation measures the deviation from the adiabatic pressure δP =

c2
sδρ in fact using some background relation we can write:

δP = c2
s [δρ− (ρ+ P )S] . (2.86)
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It is possible to define a relative entropy perturbation between two fluid

components i and j as:

Sij = −3H
(
δρi
ρ′i
− δρj

ρ′j

)
, (2.87)

which is gauge invariant. Usually the entropy perturbation for a component

is computed with respect to radiation, which is the dominant component for

early times. For instance the baryon density isocurvature perturbation is

given by:

Sb = −3H
(
δρb
ρ′b
− δργ

ρ′γ

)
. (2.88)

2.6.1 The comoving curvature perturbation

One useful quantity is the curvature perturbation in the comoving gauge.

This gauge is obtained considering v = B = 0. Thus the comoving curvature

perturbation can be defined as:

R = −ψC , (2.89)

where with the superscript C we denote that the quantity has to be evaluated

in the comoving gauge. The sign is chosen so that a positive R produces a

positive perturbation in the curvature parameter k in the Friedmann equa-

tion (1.14). In terms of the Bardeen potentials, the curvature perturbation

becomes:

R = −Ψ− 2

3(1 + w)

(
H−1Ψ′ + Φ

)
. (2.90)

Deriving this equation and considering the perturbed Einstein equations in

terms of the Bardeen potentials, the comoving curvature perturbation obeys

to the following equation [41]:

H−1R′ = 2

3(1 + w)

(
k

H

)2 [
c2
sΨ +

1

3
(Ψ− Φ)

]
+ 3c2

sS. (2.91)

We can see that for superhorizon perturbations k � H and S = 0 the left

hand side vanishes. Thus for adiabatic perturbations, the comoving curvature

perturbation remains constant outside the horizon.
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2.7 Super horizon scales and initial conditions

As stated earlier the simplest inflationary models predict the initial per-

turbations to be adiabatic, therefore we will consider this case. The initial

conditions are derived deep in the radiation era after neutrino decoupling.

This allows us to simplify the computation in fact we have that the density

is dominated by photons and neutrinos, i.e. ρtot ' ργ + ρν .

The tight coupling with baryons ensures that the quadrupole moment of the

photons is negligible and photons and baryons can be considered as a cou-

pled fluid with the same velocity. In the Boltzmann equation for photons and

neutrinos the multipoles l ≥ 3 can be neglected because they have a negli-

gible effect on the lower order ones. Initial conditions are derived on large

scales at early times, therefore we can neglect higher orders in kτ . With

these assumptions from equations (2.41) we obtain:

H−2h′′ +H−1h′ + 6 [(1−Rν)δγ +Rνδν ] = 0, (2.92)

where Rν = ρν/(ργ + ρν). The evolution equations for the different compo-

nents become:

δ′γ +
4

3
θγ +

2

3
h′ = 0, θ′γ −

1

4
k2δγ = 0,

δ′ν +
4

3
θν +

2

3
h′ = 0, θ′ν −

1

4
k2δν = 0,

σ′ν −
2

15
(2θν + h′ + 6η′) = 0.

(2.93)

Considering a Universe filled with radiation, the scale factor is given by

a(τ) ∼ τ and H = 1/τ . Then the perturbations can be expanded in power

series of kτ , and considering adiabatic fluctuations growing mode the initial
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conditions are given by [49] [16]:

h =
1

2
k2τ 2,

η = 1− 5 + 4Rν

12(15 + 4Rν)
k2τ 2,

δc = δb =
3

4
δγ =

3

4
δν = −1

4
k2τ 2,

θc = 0,

θb = θγ = − 1

36
k4τ 3,

θν = − 1

36

[
23 + 4Rν

15 + 4Rν

]
k4τ 3,

σν =
2

3(12 +Rν)
k2τ 2.

(2.94)



Chapter 3

Scalar-tensor theories

Scalar-tensor theories are a class of models of gravity which consider the

presence of a scalar field in addiction to the tensor field of general relativity.

In the simplest class of these theories the scalar field is non-minimally coupled

to the Ricci scalar at the Lagrangian level. This feature leads to a non-trivial

modification of the Einstein field equations and the Klein-Gordon equation

with consequences that affect the general behaviour of the cosmological evo-

lution. In what follows we start with an overview of the most important

scalar-tensor theories at historical level. We then present general features

and we end by considering the parametrized post-Newtonian approximation

which is used to compare different gravity theories.

3.1 Overview on scalar-tensor theories

The first attempt in developing a scalar-tensor theory is due to P. Jor-

dan [36] who considered a 4-dimensional curved manifold embedded in a

5-dimensional flat spacetime with a 4-dimensional scalar field, in order to

satisfy the Dirac’s requirement of a varying gravitational constant [21]. The

Lagrangian on the 4-dimensional manifold can be written as follows:

LJ =
√
−g
[
ϕγJ

(
R− ω

ϕ2
J

gµν∂µϕJ∂νϕJ

)
+ Lmatter(ϕJ ,Ψ)

]
, (3.1)

61



62 3. Scalar-tensor theories

where ϕJ(x) is the Jordan’s scalar field, γ and ω are constants while Ψ rep-

resents all the matter fields. The non-minimal coupling is given by ϕγJR, but

the matter Lagrangian depends on the scalar field, which implies a violation

of the weak equivalence principle. This issue convinced C. Brans and R.H.

Dicke to propose a modified Lagrangian in order to retain the validity of the

weak equivalence principle:

LBD =
√
−g
(
ϕBDR−

ω

ϕBD
gµν∂µϕBD∂νϕBD + Lmatter(Ψ)

)
, (3.2)

where the scalar field ϕBD is a redefinition of the previous one given by

ϕBD = ϕγJ . It can be seen that the second term on the left hand side resembles

a kinetic term but it is non canonical due to the factor ω/ϕBD, furthermore a

singularity seems to appear for ϕBD = 0. This can be avoided redefining the

scalar field such that ϕBD = γϕ2
IG/2 and γ = 1/(4ω), to obtain a standard

kinetic term:

LIG =
√
−g
(

1

2
γϕ2

IGR−
1

2
gµν∂µϕIG∂νϕIG + Lmatter

)
. (3.3)

We refer to Induced Gravity for the later case in order to underline the

difference between this scalar field and the Brans-Dicke’s theory. We can

observe that the first term on the left hand side of the Induced Gravity

Lagrangian resembles the Einstein-Hilbert action:

LEH =
√
−g 1

16πG
R, (3.4)

once we assume a varying gravitational ”constant” such as:

G =
1

8πγϕ2
. (3.5)

We highlight here that, for scalar tensor theories, the gravitational ”con-

stant” appearing in the Lagrangian is not necessarily the same as the one

that governs the gravitational force between test particles. The latter will be

discussed further in this chapter.

The general form of the Lagrangian for a scalar-tensor theory can be ex-

pressed as:

LSTT =
√
−g (F (ϕ)R− Z(ϕ)gµν∂µϕ∂νϕ− V (ϕ) + Lmatter) , (3.6)
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where V (ϕ) denotes a generic potential of the scalar field.

3.2 Origin of the scalar field

We now discuss some of the ideas on the origin of the scalar field. Follow-

ing the original thoughts that led to the development of the Jordan model

we can start considering Kaluza-Klein theories. Such theories consider extra-

dimensions which are compactified in order to be unobservable by sufficiently

low energy experiments. It can be shown that the size of the compactified

extra-dimensions behaves like a 4-dimensional scalar field. If we assume n

extra-dimensions with a common radius A, this induce on the 4-dimensional

curved manifold a scalar field given by [29]:

ϕ = 2

√
n− 1

n
An/2. (3.7)

In this case the kinetic term of the scalar field in the Lagrangian has an

opposite sign suggesting that the scalar field should have negative energy,

however the energy of the whole system remains positive [29].

Another possible origin comes from string theory: gravitons described as zero

modes of closed strings have two companions: a scalar field which is called

dilaton and an antisymmetric tensor. The field equations of these zero mode

fields can be derived considering the Lagrangian [29]:

Ld =
√
−ge−2φ

(
1

2
R + 2gµ̄ν̄∂µ̄φ∂ν̄φ−

1

12
Hµ̄ν̄λ̄H

µ̄ν̄λ̄

)
, (3.8)

where the over-bar indicates that the indices run from 0 to 9 because we are

considering a 10-dimensional spacetime, the field φ is the dilaton and Hµ̄ν̄λ̄ is

a totally antisymmetric field. A redefinition of the dilaton as ϕ = 2 exp (−φ)

leads to a Lagrangian of the Induced Gravity type with ξ = 1/4. Even in

this case the kinetic term has opposite sign but the positivity of the energy

is ensured once dimensions are more than 2 [29]. Another possibility, driven

by recent discoveries involves the Higgs boson. Let’s consider a Lagrangian
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for the Higgs field H such as:

LHiggs =
√
−g
(
M2 + ξh2

2
R− 1

2
gµν∂µh∂νh−

λ

4

(
h2 − v2

)2
)
, (3.9)

where M is a mass parameter, ξ is the coupling constant, h is a scalar field

which is related to the Higgs in the unitary gauge by H = h/
√

2 while λ

and v are constant defining the potential. It has been shown that a Higgs

field which is coupled to gravity such as in the above Lagrangian can give an

inflationary scenario in agreement with observations [13].

3.3 Conformal transformations

In general relativity a conformal transformation is a transformation of

the metric such that [73]:

g̃µν = Ω2gµν , (3.10)

where Ω is a smooth, strictly positive function of the coordinates. Spacetimes

connected by a conformal transformation have the same causal structure, i.e.

time-like, space-like or null vector maintains the same properties after the

conformal transformation. An equation for a field ψ is said to be conformally

invariant if there exists a number s ∈ R such that ψ̃ = Ωsψ is a solution with

metric g̃µν . If we consider the generic scalar-tensor Lagrangian and perform

a conformal transformation on the metric such as Ω2 = F (ϕ) we obtain:

LE =
√
−g̃
(

1

2
R̃− 1

2
g̃µν∂µϕ̃∂νϕ̃+ Lmatter(ϕ̃,Ψ)

)
, (3.11)

where the new scalar field ϕ̃ is given by:

ϕ̃ =

∫ [
3

2

(
1

F

dF

dϕ

)2

+
Z

F

]1/2

dϕ. (3.12)

Thus a non-minimally coupled Lagrangian can be redefined in a minimally-

coupled one. However this is done at the cost of a coupling with the matter

fields violating the weak equivalence principle. The frame in which the first
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term in the right hand side of the Lagrangian has the form of the Einstein-

Hilbert action is called Einstein frame, whereas the frame in which the non-

minimally coupled term is present is the Jordan frame. We can observe that

frames connected by a conformal transformation describe different physics:

indeed G is constant in the Einstein frame whereas it varies in time in the

Jordan frame. Furthermore, the scalar field couples to matter in the Einstein

frame.

3.3.1 Conformal coupling

The request of conformal invariance for the massless Klein-Gordon equa-

tion for the scalar field:

2ϕ = 0, (3.13)

leads to a preferred choice of the non-minimal coupling. Here the generalized

D’Alembert operator is given by:

2 =
1√
−g

∂α
(√
−ggαβ∂β

)
. (3.14)

In order for equation (3.13) to be conformally invariant one have to add a

term proportional to the Ricci scalar such as [73]:

2ϕ− n− 2

4(n− 1)
Rϕ = 0, (3.15)

where n is the dimension of spacetime. As we will see in section (3.5) the non-

minimally coupled scalar field obeys the following Klein-Gordon equation:

2ϕ+ ξRϕ = 0. (3.16)

Thus assuming n = 4, the request of conformally invariance for the Klein-

Gordon equation leads to ξ = −1/6. This choice for the non-minimally

coupling is called conformal coupling.
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3.4 Non-minimally coupled Einstein equations

Hereafter we will consider Z = 0, which is sufficiently general, thus the

action becomes:

SNMC =

∫
d4x
√
−g
(

1

2
F (ϕ)R− 1

2
gµν∂µϕ∂νϕ− V (ϕ) + Lmatter

)
.

(3.17)

Applying the principle of least action we recover the modified Einstein equa-

tions:

Gµν =
1

F (ϕ)

(
Tµν + T̃µν

)
. (3.18)

where Tµν is the energy-momentum tensor for the matter fields, given by:

Tµν =
2√
−g

δ (
√
−gLmatter)

δgµν
. (3.19)

For cosmology we can assume the energy-momentum tensor of a perfect fluid:

Tµν = Pgµν + (ρ+ P )UµUν , (3.20)

where P and ρ are respectively the pressure and density of the fluid, while

Uµ is the 4-velocity of the fluid element.

In the Einstein equations the term T̃µν represents the energy-momentum

tensor of the scalar field, this is given by:

T̃µν = ∂µϕ∂νϕ−
1

2
gµν∂

ρϕ∂ρϕ− gµνV (ϕ) + (∇µ∇ν − gµν2)F (ϕ)

= P̃ϕgµν + (ρ̃ϕ + P̃ϕ)UµUν + (∇µ∇ν − gµν2)F (ϕ),
(3.21)

where P̃ϕ and ρ̃ϕ are the pressure and density of the scalar field fluid defined

by: ρ̃ϕ = 1
2
ϕ̇2 + V (ϕ),

P̃ϕ = 1
2
ϕ̇2 − V (ϕ).

(3.22)

where the dot denotes a derivative with respect to cosmic time. The last term

on the right hand side of Eq.(3.21) has not an equivalent in the standard

General Relativity. As can be seen, its presence makes the perfect fluid

approximation not valid for the energy-tensor of the scalar field.
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3.5 Klein-Gordon equation

The non-minimally coupled scalar field affects the equations of gravity,

but gravity in turn affects the equation for the evolution of the scalar field.

In fact, varying the action with respect to the scalar field we obtain the

Klein-Gordon equation1:

2ϕ+
1

2

∂F

∂ϕ
R− ∂V

∂ϕ
= 0. (3.23)

The non-minimally coupling term can be expressed as:

F = N2
pl + ξϕ2, (3.24)

where Npl is a constant with the dimension of a mass. For Npl = 0 we

recover the Induced Gravity case while if ξ = 0 the term reduces to the

minimal coupling. With this choice the Klein-Gordon equation reduces to:

2ϕ+ ξRϕ− ∂V

∂ϕ
= 0, (3.25)

which is the equation that we saw in section (3.3.1) with the addition of the

potential term. Taking the trace of Eq.(3.18) we can recover an expression

for the Ricci scalar:

R =
1

F

[
ρm − ϕ̇2 + 4V (ϕ)− 3(F̈ + 3HḞ )

]
, (3.26)

where ρm is the total matter density and we used the fact that matter can be

approximated to have zero pressure, while for radiation we have Pr = ρr/3.

Substituting this result in Eq.(3.25) we obtain:

ϕ̈ = −3Hϕ̇− F,ϕ
2F

(
ϕ̇2 − ρm + 3F̈ + 9HḞ

)
+

(
2F,ϕ
F

V − V,ϕ
)
,

= −3Hϕ̇+
ξϕ

F + 6ξ2ϕ2

[
ρm + 4V − FV,ϕ

ξϕ
− (1 + 6ξ)ϕ̇2

]
,

(3.27)

where we can see that the potential terms cancel out in the case of V ∝
F 2. Furthermore in the case of conformal coupling ξ = −1/6 the term

proportional to ϕ̇2 vanishes. In the Induced Gravity limit case we recover

the Eq. (2.4) of [8].

1Hereafter we consider F = F (ϕ) unless otherwise specified.
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3.6 The weak field approximation

In scalar-tensor theories the gravitational constant appearing in the La-

grangian is not the one which is governing the force between test particles. If

we want to recover an expression for the gravitational force we can consider

the weak field approximation. We start from the following Lagrangian in

which we neglect the potential term:

LNMC =
√
−g
(

1

2
FR− 1

2
gµν∂µϕ∂νϕ+ Lmatter

)
. (3.28)

Furthermore, as in the previous section, we consider the following coupling:

F = N2
pl + ξϕ2. (3.29)

Let us consider a particle moving slowly in a weak stationary gravitational

field. This field depends by a scalar and a tensor field. If the scalar field

is weak enough we know that the first term on the left hand side in the

Lagrangian should resemble the Einstein-Hilbert term. This means that the

scalar field has a ”zero” value ϕ0 for which:

M2
pl = N2

pl + ξϕ2
0. (3.30)

In units such that c = ~ = 8πG = 1 it is straightforward to see that ϕ0 can

be written as:

ϕ0 =

√
1−N2

pl

ξ
, (3.31)

Now we can express the weak and stationarity condition on the scalar field

as:

ϕ(t, ~x) = ϕ(~x) = ϕ0 + δϕ(~x), ϕ0 � δϕ(~x) ∀~x, (3.32)

where δϕ(~x) represents a little perturbation in the scalar field. Neglecting

all non-linear terms, the non-minimally coupling term becomes:

F = 1 + 2ξϕ0δϕ. (3.33)
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Taking the trace of the Einstein equations (3.18) it is possible to recover an

expression for the Ricci scalar R. Then substituting R into the Klein-Gordon

equation (3.23) and neglecting all higher order terms we obtain:

2F ' ξϕ02δϕ =
T

(2ω + 3)
, (3.34)

where ω is defined by:

ω =
F

F 2
,ϕ

=
ϕ0 + 2(ξϕ2

0 − 1)δϕ

4ξ2ϕ3
0

, (3.35)

and the comma as a subscript denotes a partial derivative. We can observe

that if Npl = 0 we have ω(ϕ) = ω = (4ξ)−1 = cost and it has the same

meaning as in Brans-Dicke theory, furthermore if ω → +∞ we have ξ = 0

and we recover the minimal coupling case. The test-particle is moving slowly

thus:

T = −ρ. (3.36)

Since δϕ is time-independent, Eq.(3.34) can be written as:

∇2δϕ = − ρ

(2ω + 3)ξϕ0

, (3.37)

which, at a distance r from the center of a spherical body of mass M , gives

the following solution:

δϕ(r) =
M

4πr

1

(2ω + 3)ξϕ0

. (3.38)

Now we consider the linearization with respect to the metric, we can write:

gµν = ηµν + hµν(~x). (3.39)

Let us substitute the linearization for the metric and for the non-minimally

coupling term in the modified Einstein equations (3.18), dropping all the

non-linear terms yields:

2hµν − ∂µ∂νhλν − ∂ν∂λhλµ + ∂µ∂νh

+ ηµν (∂ρ∂τh
ρτ −2h) + 2ξϕ0 (∂µ∂ν − ηµν2) δϕ = −2Tµν ,

(3.40)
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where h = hλλ and the indices are lowered and raised with ηµν . We can

simplify this expression introducing the field χµν defined as:

χµν = hµν −
1

2
ηµνh− ξϕ0ηµνδϕ, (3.41)

on which we impose the coordinate condition ∂λχ
λ
ν = 0. In terms of this field

the equation (3.40) becomes:

2χµν = −2Tµν . (3.42)

Therefore we have the following solution:

χ00(r) =
2M

4πr
. (3.43)

According to general relativity the gravitational potential which affects a

point mass with mass m in the low energy limit is given by [75]:

Φ = −1

2
h00. (3.44)

Inverting the definition of χµν (3.41) we obtain:

h00 = χ00 −
1

2
χη00 − ξϕ0δϕη00 =

1

2
χ00 + ξϕ0σ

=
M

4πr

(
2ω + 4

2ω + 3

)
,

(3.45)

where we have used the relation χ00 = −χ. This imply that the gravitational

potential can be expressed as:

Φ(r) = −G̃M
r

= − 1

8πM2
pl

(
2ω + 4

2ω + 3

)
M

r
(3.46)

and so the effective gravitational ”constant” can be written in function of

the non-minimal coupling as:

Geff =
1

8πF

(
2F + 4F 2

,ϕ

2F + 3F 2
,ϕ

)
. (3.47)
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3.7 The parametrized post-Newtonian approx-

imation

In order to compare different gravity theories it has been developed the

parametrized post-Newtonian approximation (PPN). It consists in a lin-

earization of the Einstein equations in terms of a set of parameters that

measure the deviations from the Newtonian gravity. The approximation is

done under the assumption of weak field and non relativistic velocities. Dif-

ferent theories of gravitation are related to different choices for the PPN

parameters. The line element can be expressed as:

ds2 = −(1 + 2Φ− 2βppnΦ2)dt2 + (1− 2γppnΦ)dx2, (3.48)

where Φ = −GM/r is the Newtonian potential. For standard general rela-

tivity we have γppn = βppn = 1. Considering the metric gµν = ηµν + hµν we

can express the PPN parameters in terms of the perturbation metric hµν :

h00 = −2Φ, (3.49)

hii = −2γppnΦ, (3.50)

from which we obtain:

γppn =
h00

hii
=
ω + 1

ω + 2
= 1−

F 2
,ϕ

F + 2F 2
,ϕ

, (3.51)

where we have used the results for the weak field previously computed. In

order to compute the parameter βppn one has to consider higher order terms

in the expansion. For the Brans-Dicke theory (ω = cost) one finds βppn = 1

[51]. However we are interested in non-minimally coupled theories in which

ω is a general function of the scalar field. We can proceed as we did for

the weak field approximation but in this case we keep terms up to second

order and, in particular, we look for the terms that involve derivatives of ω.

Eq.(3.34) becomes:

2F =
T

2ω + 3
− ω,ϕ

2ω + 3
∂µF∂νF, (3.52)



72 3. Scalar-tensor theories

that in the static spherically symmetric case for a point mass yields to:

F =
2ω + 4

2ω + 3
+

2

2ω + 3
Φ, (3.53)

with Φ = −GM/r. Considering Eq.(3.18) in free space and substituting R

obtained by the trace of Eq.(3.18) we have:

Rµν =
1

F

(
1

2
gµν∂αF∂

αF +∇µ∇νF +
ω,ϕ

4ω + 6
gµν∂αF∂

αF

)
, (3.54)

where the only new contribution come from the last term on the right hand

side. Thus we obtain:

δR00 = − ω,ϕ
(ω + 2)(2ω + 3)2

Φ2

r2
. (3.55)

But δR00 ' −∇2δg00/2 and so the solution is given by:

δg00 =
ω,ϕ

(ω + 2)(2ω + 3)2
Φ2, (3.56)

finally we obtain the coefficient βppn:

βppn = 1 +
ω,ϕ

(ω + 2)(2ω + 3)2
= 1 +

FF,ϕ
8F + 12F 2

,ϕ

dγppn
dϕ

. (3.57)

3.7.1 Tests on General Relativity

The bounds on the PPN parameters are tested with three main experi-

ments [77]:

• The deflection of light: a light ray that passes near the Sun at

distance d is deflected by an angle θ given by:

θ =
1

2
(1 + γppn)

4M�
d

1 + cos (φ)

2
, (3.58)

where M� is the mass of the Sun and φ is the angle between the in-

coming direction of the photon and the Earth-Sun line.
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• Shapiro time delay: a signal emitted at a distance rs from the Sun

and received by an antenna on the Earth at a distance re from the

source suffer a time delay δt given by:

δt = 2(1 + γppn)M� ln

(
(re + ~re · n̂)(rs + ~rs · n̂)

d2

)
, (3.59)

where d is the distance between the Sun and the Earth and n̂ is its

direction.

• Precession of the perihelion of Mercury: the predicted advance

per orbit ∆ω̃ is given by:

∆ω̃ =
6πm

p

(
1

3
(2 + 2γppn − βppn) +

J2R
2

2mp

)
, (3.60)

where m = m1 + m2 is the total mass of the two-body system re-

spectively; p ≡ a(1− e2) is the semi-latus rectum of the orbit, with the

semi-major axis a and eccentricity e; R is the mean radius of the oblate

body; and J2 is a dimensionless measure of the quadrupole moment,

given by J2 = (C − A)/m1R
2, where C and A are the moments of

inertia about the body’s rotation and equatorial axes, respectively.

The actual strongest bound on γppn is due to the measure of the Shapiro time

delay from which it has been obtained γppn = 1 + (0.21 ± 2.43) · 10−5 [12].

Assuming this bound, the perihelion shift gives βppn = 1 + (−4.1± 7.8) · 10−5

[77].





Chapter 4

Dark Energy as a scalar field

non-minimally coupled to

gravity

In this chapter we study the background cosmology in the presence of

a scalar-tensor theory with a specific choice for the non-minimally coupling

term. Hereafter we consider F (ϕ) = N2
pl + ξϕ2. As we saw in the previous

chapter this term possesses as limits the minimal coupling case (ξ = 0, Npl =

Mpl) and the Induced Gravity case (Npl = 0) which can be reformulated as

the Brans-Dicke theory through a redefinition of the scalar field. We have

modified the publicly available Einstein-Boltzmann code CLASS1 to evolve

background and linear fluctuations within non-minimally coupling. For this

purpose we started from a previous implementation of Induced Gravity in

CLASS [71] [70] [8] and we have generalized it to our case .

1www.class-code.net

75



76 4. Dark Energy as a scalar field non-minimally coupled to gravity

4.1 Friedmann equations

From Eq.(3.18) and considering the Robertson-Walker metric we can de-

rive the modified Friedmann equations:

3H2F = ρtot +
ϕ̇2

2
+ V (ϕ)− 3HḞ , (4.1)

−2ḢF = ρtot + Ptot + ϕ̇2 + F̈ −HḞ , (4.2)

where we have assumed a flat universe, i.e. k = 0. The ρtot (Ptot) is the

total density (pressure) defined as the sum of the density (pressure) of all

the components except the scalar field.

4.2 Density parameter and the equation of

state

In an analogous way to that of the minimal coupling case we can de-

fine from the first Friedmann equation the critical density as ρcrit = 3H2F .

Therefore we would have:

ρcrit = 3H2F = ρtot +
ϕ̇2

2
+ V (ϕ)− 3HḞ , (4.3)

which would led us to the straightforward association:

ρϕ =
ϕ̇2

2
+ V (ϕ)− 3HḞ =

ϕ̇2

2
+ V (ϕ)− 6Hξϕϕ̇. (4.4)

This density definition is different from ρ̃ϕ defined in the previous chapter,

because ρϕ is not associated with a perfect fluid but contains the effects of

the non-minimal coupling. Now, following [26] we can define:

Ω̃i =
ρi

3H2F
, (4.5)

where the subscript i denotes the different components of the Universe. How-

ever this definition would allow Ω̃ϕ to have a negative value, which we could

interpret as a non-physical property. This effect can be avoided considering
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that the gravitational constant varies in these models. Usually the Ωi are

referred to their present values and so we can define a new critical density:

ρDEcrit = 3H2F0, (4.6)

where the superscript ”DE” (Dark Energy) is used to denote quantities re-

ferred to the present value of the gravitational constant and, as usual, the

subscript zero denotes values computed at the present time. We can define

the density parameters with respect to this new critical density as:

ΩDE
m ≡ Ω̃m

F

F0

, , (4.7)

ΩDE
r ≡ Ω̃r

F

F0

(4.8)

ΩDE
ϕ ≡ Ω̃ϕ + (Ω̃m + Ω̃r)

(
1− F

F0

)
, (4.9)

where the definition of ΩDE
ϕ follows by the constraint

∑
i Ω

DE
i = 1. We can

see that with this definition for the density parameters matter and radiation

contribute to the dark energy density fraction until the scalar field reaches

its present value. As we defined ρϕ we can now define Pϕ combining both

the Friedmann equations (4.1):

Pϕ = 2HḞ + F̈ +
ϕ̇2

2
− V, (4.10)

using the Klein-Gordon equation (3.27) this expression can be written as:

Pϕ =
ϕ̇2

2

[
F (1 + 4ξ) + 2ξ2ϕ2

F + 6ξ2ϕ2

]
−2Hξϕϕ̇+

2ξ2ϕ2

F + 6ξ2ϕ2

(
ρm + 4V − FV,ϕ

ξϕ

)
−V.

(4.11)

In order to derive the equation of state parameter wDE for the effective dark

energy we can define ρDE and PDE:

ρDE =
F0

F
ρϕ + (ρm + ρr)

(
F0

F
− 1

)
, (4.12)

PDE =
F0

F
Pϕ + Pr

(
F0

F
− 1

)
, (4.13)
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and in the end we can define the effective parameter of state wDE of the

scalar field as:

wDE =
PDE
ρDE

. (4.14)

4.3 Present value of the scalar field

In order to compute background quantities we have to choose an initial

value for the scalar field. We impose a boundary condition by requiring

that the effective gravitational constant at the present time leads to a value

compatible with those of Cavendish-like experiments. We perform a run over

different initial values and we choose the one that produces a present day

value of the scalar field as the required one. From equation (3.47) we have:

8πGeff(ϕ) =
1

F

(
F + 8ξ2ϕ2

F + 6ξ2ϕ2

)
=

1

N2
pl + ξϕ2

(
N2
pl + ξϕ2(1 + 8ξ)

N2
pl + ξϕ2(1 + 6ξ)

)
. (4.15)

For our boundary condition we must have Geff(ϕ0) = G where G is the gravi-

tational constant. It is useful to define the following adimensional quantities:

Ñpl =
Npl

Mpl

= Npl

√
8πG, (4.16)

ϕ̃ =
ϕ

Mpl

= ϕ
√

8πG. (4.17)

Considering the present value of the scalar field we can write equation (4.15)

as:

Ñ2
pl + ξϕ̃2

0 =
Ñ2
pl + ξϕ̃2

0(1 + 8ξ)

Ñ2
pl + ξϕ̃2

0(1 + 6ξ)
, (4.18)

we can consider the following limits:

• ξ → 0 which leads to Ñpl = 1 and which means that gravity is described

by General Relativity. In this case the present value of the scalar field

has no effect on the gravitational constant;

• Ñpl → 0 which is the Induced Gravity case. We obtain:

ϕ̃2
0 =

1

ξ

1 + 8ξ

1 + 6ξ
; (4.19)
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• ξ → −1
6

which is the conformal coupling case that leads to:

ϕ̃2
0 =

18Ñ2
pl(Ñ

2
pl − 1)

1 + 3Ñ2
pl

. (4.20)

Considering ξ 6= 0, ξ 6= −1/6 and Ñ2
pl > 0 the general solution of equation

(4.18) is given by:

ϕ̃2
0 =

1− 2Ñ2
pl + 2ξ(4− 3Ñ2

pl)±
√

1− 4ξ(5Ñ2
pl − 4) + 4ξ2(3Ñ2

pl − 4)2

2ξ(1 + 6ξ)
.

(4.21)

We impose the reality condition for the adimensional scalar field ϕ̃0 ≥ 0 and

that the coupling term has positive sign Ñpl + ξϕ̃2 ≥ 0. Considering the plus

solution we have that Ñpl > 1 requires ξ < 0 while for Ñpl < 1 we have ξ > 0.

Both solutions exist in the region where:
ξ ≥ 1

2
,

1 ≤ Ñpl ≤

√
5 + 24ξ − 2

√
4 + 24ξ

18ξ
,

(4.22)

where the equality refers to a vanishing discriminant. This is the only existing

region for the minus solution. Because this is an extremely high value for

the parameter ξ we neglect this case and consider only the plus solution with

the requirement of a positive ξ for values of Ñpl lower than 1 and vice versa.

Summarizing we can write:

• ∆Ñpl > 0 for ξ < 0,

• ∆Ñpl < 0 for ξ > 0,

where we have defined ∆Ñpl ≡ Ñpl − 1.
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4.4 Post-Newtonian parameters

Substituting explicitly the function F (ϕ) in equations (3.51) and (3.57)

we obtain the expression for the post-Newtonian parameters:

γppn = 1− 4ξ2ϕ2

N2
pl + ξϕ2(1 + 8ξ)

, (4.23)

βppn = 1−
2ξ3ϕ2(N2

pl + ξϕ2)N2
pl[

N2
pl + ξϕ2(1 + 6ξ)

] [
N2
pl + ξϕ2(1 + 8ξ)

]2 . (4.24)

For ξ = |ξ| it is easy to see that we have γppn ≤ 1 and βppn ≤ 1 for any choice

of Npl and for any value of the scalar field.

For Induced Gravity Npl = 0, γppn = (1 + 4ξ)/(1 + 8ξ) and βppn = 1.

If we consider the case ξ = −|ξ|, F = N2
pl − |ξ|ϕ2: we can see that if

ϕ = ϕmax ≡
√
N2
pl/|ξ| we obtain F = 0 that leads to a vanishing effective

Planck mass. Thus, in order to avoid this case, for negative values of ξ

we consider the constraint ϕ < ϕmax. The post-Newtonian parameters for

ξ = −|ξ| written in terms of this maximum value are:

γppn = 1− 4|ξ|(
ϕ2
max

ϕ2 − 1
)

+ 8|ξ|
. (4.25)

βppn = 1 +
2|ξ|N2

pl

(
ϕ2
max

ϕ2 − 1
)

(
ϕ2
max

ϕ2 − 1 + 6|ξ|
)(

ϕ2
max

ϕ2 − 1 + 8|ξ|
)2 , (4.26)

where we can see that for negative couplings we have γppn ≤ 1 and βppn ≥ 1.

4.5 Initial conditions

Because we are considering post-inflation cosmology the initial condi-

tions are computed deep in the radiation era, furthermore we consider an

epoch well after the neutrino decoupling. We then expand the scale factor,

the Hubble parameter and the scalar field in power series of the conformal

time to the next-to-leading order. Using the Friedmann equations (4.1) and
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the Klein-Gordon equation (3.27) we obtain the following expansion for the

background quantities:

a(τ) =

√
ρr0
3Fi

τ

[
1 +

ω

4
τ − 5

16

ξ2ϕ2
i (1 + 6ξ)

Fi + 6ξ2ϕ2
i

ω2τ 2

]
, (4.27)

H(τ) =
1

τ

[
1 +

ω

4
τ − 1

16

Fi + 4ξ2ϕ2
i (4 + 15ξ)

Fi + 6ξ2ϕ2
i

ω2τ 2

]
, (4.28)

ϕ(τ) = ϕi

[
1 +

3

2
ξωτ − 2Fi(1− 3ξ) + 27ξ2ϕ2

i (1 + 2ξ)

8(Fi + 6ξ2ϕ2
i )

ω2τ 2

]
, (4.29)

where the subscripts i and zero denotes the initial and actual value respec-

tively. The parameter ω depends on the relativistic and non-relativistic

energy-density at present and is given by:

ω =
ρm0√
3ρr0

√
Fi

Fi + 6ξ2ϕ2
i

. (4.30)

For conformal coupling and Npl 6= 0 the terms in the expansion assume a

simpler form:

a(τ) =

√
ρr0
3Fi

τ
(

1 +
ω

4
τ
)
, (4.31)

H(τ) =
1

τ

(
1 +

ω

4
τ − ω2

16
τ 2

)
, (4.32)

ϕ(τ) = ϕi

(
1− ω

4
τ − 3

8
ω2τ 2

)
. (4.33)

In table (4.5) we show the set of parameters used to initialize the extended

code.

4.6 Effectively massless scalar field

In this section we consider a specific shape for the potential. As we

mentioned earlier the Klein-Gordon equation becomes effectively massless

once we choose V ∝ F 2. Thus we start considering a potential of the form

V = µF 2/4, where µ is a constant. Such choice of the potential is motivated

by studies of conformal attractors on inflation for ξ < 0 [38].
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Ωb,0 Ωcdm,0 H0[km s−1Mpc−1] TCMB[K]

0.049 0.265 67.26 2.725

ns As zreio

0.9652 2.1981 · 109 10.4

Table A: Set of cosmological parameters used to initialize the modified code:

present day density parameter of cold dark matter Ωcdm,0 and of baryons

Ωb,0, present day Hubble parameter H0, CMB temperature TCMB, spectral

index ns, amplitude of the matter power spectrum referred to curvature

perturbations As and the reionization redshift zreio.

However we are not restricting ourselves to a specific sign of the coupling

and we are going to consider the general case.

4.6.1 Conformal coupling

Evolution of the scalar field

For conformal coupling the Klein-Gordon equation becomes:

ϕ̈ = −3Hϕ̇− ρm
6N2

pl

ϕ, (4.34)

the first term on the right hand side acts like a damping term while the second

acts like a driving force. In order to be compatible with BBN nucleosynthesis

we do not consider the decaying mode. The field starts with a negligible

velocity and so the damping term is negligible. At early times the other

term forces the scalar field to the value ϕ = 0, however as the field velocity

increases the damping term starts to dominate slowing the variation of the

field and letting it to reach the equilibrium value without oscillations. In

figure I we show the evolution for different values of ∆Ñpl. We can see that

as ∆Ñpl → 0 the initial value of the scalar field decreases and is able to reach

values lower than Mpl for ∆Ñpl . 10−4.
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Figure I: Evolution of ϕ for different values of ∆Ñpl with conformal coupling.

A large difference ∆Ñpl requires a higher initial value for the scalar field. For

∆Ñpl ' 10−4 the initial value of the scalar field is sub-Planckian.

Density parameter and the equation of state

For this case the density and pressure of the scalar field are:

ρDE =
F0

F

(
ϕ̇2

2
+ V +Hϕϕ̇

)
+ (ρm + ρr)

(
F0

F
− 1

)
, (4.35)

PDE =
F0

F

[
1

3

(
ϕ̇2

2
+Hϕϕ̇+

ρm
6N2

pl

ϕ2

)
− V

]
+

1

3
ρr

(
F0

F
− 1

)
.

(4.36)

Deep in the radiation era ρm � ρr and the potential being proportional to

F = N2
pl − ϕ2/6 is negligible considering that ϕ grows in the past. At recent

times this last term becomes the more important thanks to the value of ϕ

that approaches zero. Thus the behaviour of the parameter of state can be

summarized by:

• z → +∞: we obtain wDE = 1/3;

• z → 0: we obtain: wDE = −1;
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In figure II we show the evolution of the parameter of state for different values

of ∆Ñpl. We can see that there is a transition period from the radiation-

like behaviour to the cosmological constant one of the present time. This

transition occurs when the potential starts to become comparable to the

other terms. For ∆Ñpl → 0 the potential becomes important at earlier times,

reaching earlier the cosmological constant behaviour. We can observe that

the transition from radiation to cosmological-like behaviour do not passes

through a matter-like period.
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Figure II: Evolution of wDE for different values of ∆Ñpl with conformal cou-

pling. We can see that as ∆Ñpl → 0 the transition from the radiation to

cosmological constant behaviour happens earlier.

In figure III we show the evolution for the density parameters for each

component and for different values of ∆Ñpl. We can see that the more ∆Ñpl

departs from zero the more the density of the scalar field is important in the

early times. For recent times the behaviour converge for all values to ΛCDM.

This feature is common to all potentials and ξ values and in particular, the

more ∆Ñpl and ξ departs from zero, the more radiation and matter contribute

to the dark energy density at early times.
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Figure III: Evolution of the density parameters for different values of ∆Ñpl

with conformal coupling. Green lines correspond to radiation, red to matter

and blue to effective dark energy. The ΛCDM case corresponds to ∆Ñpl = 0.

Post-Newtonian parameters

For conformal coupling the post-Newtonian parameters are given by:

γppn = 1− 2ϕ2

18N2
pl + ϕ2

, (4.37)

βppn = 1 +
(
ϕ2
max − ϕ2

) [
2

(
1 + 3

ϕ2
max

ϕ2

)2
]−1

, (4.38)

where ϕmax =
√

6N2
pl. In figure IV we plotted the behaviour of γppn and

βppn for different choices of the values ∆Ñpl. We refer to the Solar System

constraints γppn = 1 + (0.21± 2.43) · 10−5 and βppn = 1 + (−4.1± 7.8) · 10−5

[77] and we show with horizontal black lines the 1σ, 2σ and 3σ bounds. As

a general feature we can see that departures from General Relativity are

larger at early times and then they tend to disappear as we approach to the

present time. We can see that the constraints on γppn are satisfied at 1σ at

the present time for ∆Ñpl ' 10−5 whereas in order to satisfy the constraints

on βppn one needs a maximum of ∆Ñpl ' 10−4.

Effective gravitational constant

In figure V is shown the evolution of the relative effective gravitational

constant. We can see that the effective gravitational constant decreases in
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Figure IV: Evolution of γppn (left panels) and βppn (right panels) for different

values of ∆Ñpl with conformal coupling. The horizontal black lines corre-

sponds to the 1σ (solid), 2σ (dashed) and 3σ (dotted) bounds given by the

constraints γppn = 1 + (0.21± 2.43) · 10−5 and βppn = 1 + (−4.1± 7.8) · 10−5

[77].

time for all the choices of ∆Ñpl.
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Figure V: Evolution of the relative effective gravitational constant for differ-

ent values of ∆Ñpl with conformal coupling.

Summary

Here we summarize the background results obtained for conformal cou-

pling:
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• The scalar field decreases in time and for ∆Ñpl . 10−4 has a sub-

Planckian initial value.

• The effective dark energy has an equation of state as for radiation at

early times while it passes to a cosmological constant behaviour at late

times. This transition is not interspersed by a long lasting intermediate

behaviour.

• The post-Newtonian parameters satisfy the Solar System bounds for

values of ∆Ñpl . 10−5.

• The effective gravitational constant decreases in time for all the values

of ∆Ñpl.

4.6.2 General case

Evolution of the scalar field

The massless Klein-Gordon equation for a generic coupling is given by:

ϕ̈ = −3Hϕ̇+
ξϕ

N2
pl + ξϕ2(1 + 6ξ)

[
ρm + (1 + 6ξ)ϕ̇2

]
. (4.39)

There are two main differences with respect to the conformal coupling: the

extra-term proportional to ϕ̇2, and the shift in the value of the denominator.

For ξ > 0 the denominator slows the growth of the scalar field while the

term proportional to ϕ̇2 enhances it, the net effect depending on the value of

Ñpl. For ξ < 0 we have (6|ξ|2 − |ξ|), which is positive for |ξ| > 1/6, zero for

conformal coupling and negative otherwise. Thus the denominator and the

term proportional to ϕ̇2 lead both to an enhancement in the fall for ξ > −1/6

while they slow it for ξ < −1/6.

In figure VI we show the evolution of ϕ for different values of ξ and Ñpl.

We can see that a negative value for ξ leads to a decreasing behaviour for

the scalar field until it stabilizes to an equilibrium value, similarly to the

conformal coupling case. For ξ > 0 the behaviour is the opposite with the

scalar field increasing its value over time. The field evolves slowly so that
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Figure VI: Evolution of ϕ/ϕi for ξ = 10−2 (upper left panel), ξ = −10−2

(upper right panel) for different values Ñpl in function of the scale factor with

V = µF 2/4. In the lower panels we show the same evolution for Ñpl = 0.98

(lower left panel) and Ñpl = 1.02 (lower right panel) for different values of ξ.

the most important effect is due to the matter density. When the density

of matter becomes less important the damping term slows the field resulting

in a constant behaviour for later times. In figure VII we fit the increasing

behaviour with a line of equation y = ϕi(1 + 2ξ(log a + 8)) where ϕi is the

initial value of ϕ and z is the redshift.

The increasing or decreasing behaviour is given by the sign of ξ, which

is related to the slope of the fitting line. This means that we can infer an

estimated initial value for ϕ given by2:

ϕi '
ϕ0

1 + 16ξ
. (4.40)

2this is true for low values of the coupling, |ξ| . 10−1. For greater values, such as

conformal coupling, this relation leads to ϕi > ϕmax depending on the value of Ñpl. This

is not a problem for ∆Ñpl . 10−2 for which ϕi ' ϕ0/(1+5.78ξ) with a good approximation.
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Figure VII: Evolution of ϕ weighted on Npl (blue line) in function of the

redfshift with Ñpl = 0.5 and ξ = 10−2. The yellow line is a constant value ϕi

while the purple line is given by the equation y = ϕi(1 + 2ξ(log a+ 8)).

Density parameter and the equation of state

The evolution of the parameter wDE is similar to the conformal coupling

case, although there is some difference. As for conformal coupling at early

times the scalar field has an equation of state radiation-like with wDE = 1/3,

while at late times the potential becomes comparable to the other terms

causing a decrease and then to stabilize wDE = −1 when the potential be-

comes dominant. As for conformal coupling for ∆Ñpl → 0 the decrease starts

earlier.

In figure VIII we show the evolution of wDE for different choices of positive

and negative couplings respectively. We can see that a weaker coupling allows

the potential to dominate earlier. We can see that there is a difference with

respect to the conformal coupling case. In fact the transition from radiation-

like to cosmological constant behaviour is preceded by a slight decrease and

a plateau for which wDE ≈ 0.

In figure IX is shown the evolution of the density parameter. As a general

feature we can see that the more Ñpl is different from unity and ξ from zero

the more the scalar field contributes to the total energy density at early

times.
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Figure VIII: Evolution of wDE in function of the scale factor for Ñpl = 0.98

(left panel) and Ñpl = 1.02 (right panel) for different values of ξ. A lower cou-

pling shift the transition from radiation to cosmological constant behaviour

at earlier times.
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Ñpl=1.5

ξ=−10−2

Figure IX: Evolution of the density parameters in function of the scale factor

for ξ = 10−2 (left panel) and ξ = −10−2 (right panel) for different values of

Ñpl. Green lines correspond to radiation, red to matter and blue to effective

dark energy. The ΛCDM case corresponds to Ñpl = 1.

Post-Newtonian parameters

In figure X we show the evolution of γppn and βppn for different values

of ∆Ñpl and ξ. We can see that for ξ > 0, the difference from unity for

both parameters grows with time, and therefore the departures from General

Relativity should be very little at early times. For ξ < 0 we observe the

opposite behaviour, as we have seen for the case of conformal coupling the

difference from unity of both parameters tend to decrease with time allowing

greater deviations. In general, weaker couplings and lower ∆Ñpl make the
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parameters closer to unity.

Effective gravitational constant

In figure XI is shown the evolution of the relative effective gravitational

constant. We can see that, as for conformal coupling, the effective gravi-

tational constant decreases for all values of Ñpl, furthermore this happens

independently by the sign of the coupling.

Summary

Here we summarize the results obtained for the background in the effec-

tively massless case:

• The scalar field grows in time for positive couplings while it decreases

for negative ones.

• The effective dark energy has an equation of state as for radiation at

early times while it passes to a cosmological constant behaviour at late

times. Contrary to conformal coupling, during the transition there is a

plateau in which wDE ≈ 0.

• The post-Newtonian parameters satisfy the Solar System bounds for

|ξ| = 10−2 with |∆Ñpl| . 10−4 or for |∆Ñpl| = 0.02 with |ξ| . 10−4.

• The effective gravitational constant decreases with time for both sign

of the coupling and for all the choices of Ñpl.

4.7 Scalar field with quartic potential

In this section we consider another shape of the potential V (ϕ) = λϕ4/4.

This potential con be assimilated to V ∝ F 2 case if λ = µξ2 and Npl = 0,

i.e. for Induced Gravity 3.

3with this potential we did not consider the case of a conformal coupling mainly due

to the fact that the solving code leads to problems for values of Ñpl near to unity, which
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∆Ñpl=−10−4

1σ

2σ

3σ

10-6 10-5 10-4 10-3 10-2 10-1 100

a

10-8

10-7

10-6

10-5

10-4

10-3

1−
β
p
p
n

ξ=10−2

10-6 10-5 10-4 10-3 10-2 10-1 100

a

10-5

10-4

10-3

10-2

10-1

100

1−
γ
p
p
n
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Figure X: Evolution of γppn and βppn in function of the scale factor for different

values of Ñpl and ξ with V = µF 2/4.
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Evolution of the scalar field

In this case the evolution of ϕ contains a term depending on the potential:

ϕ̈ = −3Hϕ̇+
ξϕ

F + 6ξ2ϕ2

[
ρm −

λϕ2

ξ
N2
pl − (1 + 6ξ)ϕ̇2

]
. (4.41)

This new term is proportional to N2
pl and, for ϕ > 0, is always negative

independently of the sign of the coupling. At early times the matter density

still drives the scalar field to an increasing (ξ > 0) or decreasing (ξ < 0)

behaviour but at late times the term depending on the potential may become

dominant. If this is the case, independently of the sign of ξ it causes a drop

of the scalar field value that rapidly falls toward zero. At a certain point the

damping term becomes dominant and the field oscillates losing amplitude

after each oscillation only to reach the equilibrium value in the future as can

be seen in figure XIII. Therefore this choice of potential leads to a transient

dark energy. In figure XII it is shown the evolution of the scalar field for

different values of Ñpl.

We can see that the potential dominates earlier and causes a steeper fall

as much as Ñpl is close to unity.

is the preferred region for a high module value of the coupling such as conformal coupling.
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Figure XII: Evolution of ϕ/ϕi in function of the scale factor with ξ = 10−2

(left panel) and ξ = −10−2 (right panel) for different values of Ñpl with

V = λϕ4/4.

Figure XIII: Evolution of ϕ weighted on Npl for Ñpl = 0.98 with ξ = 10−2

and V = λϕ4/4.

This potential leads to a series of difficulties with respect to the effective

massless case. Here we summarize these problems:

• Initial value: the regions with |∆Ñpl| & 10−1 can still be approximated

with the line used for V ∝ F 2. When this is not the case the potential

dominates and the Klein Gordon equation becomes:

ϕ̈ ' −Aϕ3, (4.42)

where A is a constant. The solution of this equation is an elliptical

integral and thus recovering the initial value is a non-trivial task. We
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model this behaviour with an equation of the form:

y = ϕi

[
1 + 2ξ(log a+ 8)− 4ξ(log a+ 8)λ9

(
1− Ñ2

pl

Ñ2
pl

)
e2 log a

]
,

(4.43)

where λ9 = λ · 109. This shape gives a satisfactory value for 10−2 .

|∆Ñpl| . 10−1 and ξ . 10−2 but it does not provide the correct value

for ∆Ñpl . 10−2.

• Present value: this problem is related to the architecture of the code.

In fact the solving code starts finding the value of λ which makes all

densities to sum up to one, then it finds the initial value of the scalar

field that produces the correct present day value. At last it re-tunes

λ in order to obtain the correct value of the density. However, in this

case, the evolution of the scalar field is influenced by the potential and

so this last step produces an error in the present day value of the scalar

field.

• Potential value: usually the value of λ is recovered assuming that, at

present time, the derivative of the field can be neglected which is not

valid for ∆Ñpl . 10−1.

For all these reasons, here we consider just few cases that had been solved

with a good accuracy choosing the initial value ”manually” in order to obtain

some good examples for this potential.

Density parameter and the equation of state

In figure XIV we show the evolution of wDE. The general behaviour

resembles the one seen with the case V ∝ F 2, however there are some differ-

ences. We note that when the potential term dominates in the Klein-Gordon

equation we have a singularity. This is because the energy density of the

scalar field becomes negative due to the term proportional to the coupling

and this happens when there is a maximum in the scalar field evolution. We
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note that there is nothing pathological since ΩDE is not positive defined.

Furthermore we can see that wDE at the present time reaches values strongly

different from −1, differentiating substantially from the cosmological con-

stant behaviour. This effect is stronger for Ñpl close to unity, in fact in this

case the kinetic term of the scalar field plays a major role.
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ξ=  10−2  Ñpl=0.1

ξ=−10−2  Ñpl=1.5
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Figure XIV: Evolution of wDE in function of the scale factor for ξ = 10−2

and ξ = −10−2 for different values of Ñpl with V = λϕ4/4.

In figure XV we plotted the evolution of the density parameters for posi-

tive and negative ξ. We can see that the behaviour is similar to the V ∝ F 2

case. However we note that for Ñpl = 0.9 and ξ = 10−2 the scalar field den-

sity (blue line) becomes negative for a ' 10−1 while the matter density (red

line) surpasses unity. This is precisely the effect that leads to the singularity

in wDE for Ñpl = 0.9. In figure XVI we plotted the expected evolution of the

density parameters for Ñpl = 0.98 , we can see that in the future the matter

density returns to dominate and thus this model describes a transient dark

energy.

Post-Newtonian parameters

The evolution of the post-Newtonian parameters is shown in figure XVII.

Due to the fact that we did not explored regions with |∆Ñpl| < 10−2 no choice

of parameters produces a γppn compatible to the Solar System bounds. We

can observe that as Ñpl → 0 we have βppn → 1 which is the Induced Gravity

result. Differently from the case V ∝ F 2 we observe a steeper decrease of the
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Figure XV: Evolution of the density parameters in function of the scale factor

for ξ = 10−2 (left panel) and ξ = −10−2 (right panel) for different values of

Ñpl with V = λϕ4/4. Radiation is shown in green, matter in red and effective

dark energy in blue.

Figure XVI: Evolution of Ωr (yellow line), Ωm (purple line) and ΩDE (blue

line) for Ñpl = 0.98 with ξ = 10−2 and V = λϕ4/4. It can be seen that this

model leads to a transient dark energy.

departure from unity of the parameters for recent times, due to the presence

of the potential term. This decrease is present also for ξ > 0 contrary to the

effective massless case.

Effective gravitational constant

In figure XVIII is shown the evolution of the effective gravitational con-

stant weighted on its actual value. We can see that evolution differs from the

case V ∝ F 2, for all the values there is a decrease of the effective gravita-

tional constant until the potential becomes dominant. When this happens we
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Figure XVII: Evolution of γppn (left panels) and βppn (right panels) for ξ =

10−2 (upper panels) and ξ = −10−2 (lower panels) for different values of Ñpl.

observe an enhancement of the decrease for negative couplings while for pos-

itive couplings the effective gravitational constant increases. We can observe

that for Ñpl = 0.98 it is always lower than the actual value.

Summary

Here we summarize the results obtained for the background in the quartic

potential case:

• The scalar field grows in time for positive couplings while it decreases

for negative ones. If Ñpl is sufficiently close to unity the potential term

lead to a fast decrease of the scalar field that oscillates losing amplitude

to reach the zero value in the future.

• The effective dark energy evolution mimics the case V ∝ F 2 with two
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Figure XVIII: Evolution of Geff for different values of Ñpl with V = λϕ4/4.

main differences for values of Ñpl sufficiently close to unity :

1. there is a singularity during the radiation and cosmological constant-

like behaviour.

2. the present day value of wDE is significantly different from wΛ =

−1 due to the high value of the kinetic term.

• For values of Ñpl near to unity we have a transient dark energy density

parameter.

• The effective gravitational constant decreases for both signs of the cou-

pling and for all the values of Ñpl but when the potential dominates

there is an increase for positive couplings while for negative ones the

decrease is enhanced.





Chapter 5

Cosmological effects of a scalar

field non-minimally coupled to

gravity

In this chapter we study the consequences of a scalar field non-minimally

coupled to gravity on the anisotropies of the CMB and the structure forma-

tion. As in the previous chapter we consider F (ϕ) = N2
pl + ξϕ2. We perform

computation in the synchronous gauge which was previously introduced in

section (2.4). Furthermore we use the modified public code CLASS to study

the evolution of linear fluctuations in the framework of non-minimally cou-

pling.

101
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gravity

5.1 Cosmological perturbations in non-minimally

coupling

Perturbing the modified Einstein equations (3.18) one obtains:

k2

a2
η − 1

2
Hḣ = − δ̃ρ

2F
, (5.1)

k2

a
η̇ =

(ρ̃+ P̃ )

2F
θ̃, (5.2)

ḧ+ 3Hḣ− 2
k2

a2
η = −3 ˜δP

F
, (5.3)

ḧ+ 6η̈ + 3H(ḣ+ 6η̇)− 2
k2

a2
η = −3(ρ̃+ P̃ )

F
σ̃, (5.4)

where a tilde denotes the effective perturbations defined as:

δρ̃ ≡ δρtot + ϕ̇δϕ̇+ V,ϕδϕ−
F,ϕ
F

(
ρtot +

ϕ̇2

2
+ V − 3HḞ

)
δϕ

−k
2

a2
δF − 3HδḞ − 1

2
ḣḞ , (5.5)

(ρ̃+ P̃ )θ̃ ≡ Σi(ρi + Pi)θi + k2
(
ϕ̇δϕ+ δḞ −HδF

)
, (5.6)

δP̃ ≡ δPtot + ϕ̇δϕ̇− V,ϕδϕ−
F,ϕ
F

(
Ptot +

ϕ̇2

2
− V + F̈ (5.7)

+2HḞ
)
δϕ+

2

3

k2

a2
δF + δF̈ + 2HδḞ +

1

3
ḣḞ ,

(ρ̃+ P̃ )σ̃ ≡ Σi(ρi + Pi)σi +
2

3

k2

a2
δF +

Ḟ

3
(ḣ+ 6η̇). (5.8)

We can see that for F = cost we recover the perturbed Einstein equations

with the addition of a scalar field described by a perfect fluid. The presence

of F = F (ϕ) makes the scalar field deviate from the perfect fluid behaviour as

can be seen by the presence of the effective anisotropic stress as the last two

terms on the right hand side of equation (5.8). For F = ξϕ2 the equations

reduce to the Induced Gravity case previously studied in [71] and [8].

Perturbing the Klein-Gordon equation (3.27) we obtain the following evo-

lution for the perturbed scalar field:
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δϕ̈ = −δϕ̇
[
3H +

2(1 + 6ξ)ξϕϕ̇

F + 6ξ2ϕ2

]
−δϕ

{
k2

a2
+

FV,ϕ,ϕ
F + 6ξ2ϕ2

− 2ξϕV,ϕ
F + 6ξ2ϕ2

[
1 +

F (1 + 6ξ)

F + 6ξ2ϕ2

]
+

ξ

F + 6ξ2ϕ2

[
1− 2(1 + 6ξ)ξϕ2

F + 6ξ2ϕ2

] [
(1 + 6ξ)ϕ̇2 − 4V + (3Ptot − ρtot)

]}
−(3δPtot − δρtot)ξϕ

F + 6ξ2ϕ2
− 1

2
ḣϕ̇. (5.9)

As for the unperturbed Klein-Gordon equation if we choose V ∝ F 2 we

obtain an effective massless equation.

5.2 Initial conditions

The set of equations shown in the previous section describes the evolu-

tion of the perturbations in the framework of non-minimally coupling. In

order to solve the Einstein-Boltzmann equations we need to specify the ini-

tial conditions. We start from the results obtained for the background and

consider the fluid equations (2.66), (2.69), (2.70),(2.71), (2.74), (2.77), (2.82),

(2.83) which are unchanged for the non-minimally coupling case and the per-

turbed Einstein (5.1)-(5.4) and Klein-Gordon equations (5.9). As we did for

the background we expand the power series to the next-to-leading order in
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conformal time, obtaining:

δγ(k, τ) = δν(k, τ) =
4

3
δb(k, τ) =

4

3
δc(k, τ)

= −1

3
k2τ 2

(
1− ω

5
τ
)
, (5.10)

θγ(k, τ) = θb(k, τ)

= −k
4τ 3

36

[
1− 3

20

Fi(1−Rν + 5Rb) + 30ξ2ϕ2
i

(1−Rν)Fi
ωτ

]
, (5.11)

θc(k, τ) = 0, (5.12)

θν(k, τ) = −k
4τ 3

36

[
23 + 4Rν

15 + 4Rν

−3(275 + 50Rν + 8R2
ν)Fi − 180(−5 + 4Rν)ξ

2ϕ2
i

20(15 + 2Rν)(15 + 4Rν)Fi
ωτ

]
, (5.13)

σν(k, τ) =
2k2τ 2

3(15 + 4Rν)

[
1 +

(−5 + 4Rν)(Fi + 6ξ2ϕ2
i )

4(15 + 2Rν)Fi
ωτ

]
, (5.14)

η(k, τ) = 1− k2τ 2

12

[
5 + 4Rν

15 + 4Rν

(5.15)

−150(−5 + 4Rν)ξ
2ϕ2

i + (325 + 280Rν + 16R2
ν)Fi

10(15 + 4Rν)(15 + 2Rν)Fi
ωτ

]
, (5.16)

h(k, τ) =
k2τ 2

2

(
1− ωτ

5

)
, (5.17)

δϕ(k, τ) = −1

8
k2τ 3ξωϕi

[
1− 2ξ2ϕ2

i (24 + 45ξ) + (4− 9ξ)Fi
10 (Fi + 6ξ2ϕ2

i )
ωτ

]
, (5.18)

where we remind:

ω =
ρm0√
3ρr0

√
Fi

Fi + 6ξ2ϕ2
i

(5.19)

Rν =
ρν0

ρr0
, (5.20)

Rb =
ρb0
ρm0

. (5.21)

5.3 Gauge invariant perturbations

In order to obtain gauge-independent results we have to transform our

perturbations in a gauge-invariant formulation.
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Metric perturbations

The metric perturbations in the synchronous gauge are obviously gauge

dependent, furthermore they have no simple physical interpretation. Thus

we refer to the Bardeen potentials Φ and Ψ which can be interpreted as

the gravitational potential and a curvature potential respectively. These are

related to the synchronous metric perturbations by the following relations

[49]:

Φ =
a2

2k2

[
ḧ+ 6η̈ +H(ḣ+ 6η̇)

]
, (5.22)

Ψ = η − a2

2k2
H(ḣ+ 6η̇). (5.23)

As previously described in section (2.3.1), the Bardeen potentials are gauge

invariant and thus they assume the same value in each gauge. In function of

these perturbations equation (5.4) can be written as:

k2(Φ−Ψ) = −3(ρ̃+ P̃ )

2F
σ̃, (5.24)

where can be seen that the difference of the Bardeen potentials is a measure

of the anisotropic stress.

Density perturbations

Density perturbations are invariant in the comoving gauge [35][34]. We

get to this gauge assuming a null velocity perturbation: B = θ = 0. Thus,

the gauge invariant matter perturbation is given by:

δ → δ − aρ̇
ρ

(θ −B)

k2
= δS + 3H

a(1 + w)

k2
θS, (5.25)

where with the superscript S we denote quantities computed in the syn-

chronous gauge.

Scalar field perturbations

A gauge-invariant formulation for the scalar field perturbation can be

recovered considering the uniform-curvature gauge [35][34]. The curvature
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perturbation transforms like ψ → ψ + aHξ0 which means that we go to the

uniform-curvature gauge with the choice ξ0 = −(aH)−1ψ. From the first

equation of (2.18) we have that the gauge-invariant scalar field perturbation

is given by:

δϕ→ δϕ+
ϕ̇

H
ψ = δϕS +

ϕ̇

H
η. (5.26)

5.4 Effective massless scalar field

We present the results that we obtained for the anisotropies of the CMB,

matter and scalar field perturbations and linear matter power spectrum with

the modified CLASS code. As for the background we start considering the

potential V (ϕ) = µF (ϕ)2/4 which leads to an effective massless perturbed

Klein-Gordon equation.

5.4.1 Conformal coupling

We first consider the conformal coupling case.

Matter and field perturbations

In the left panel of figure I we show the evolution of CDM matter per-

turbations for k = 0.01Mpc−1 with conformal coupling. We can see that the

presence of the coupling changes the time of horizon crossing for a given k

mode , specifically a given mode enters the horizon later for greater values of

∆Ñpl. In Induced Gravity this behaviour is expected due to the fact that the

coupling changes the size of the horizon at the matter-radiation equivalence

[44].

In the right panel of figure I we show the evolution of the relative difference

between the Bardeen potentials. We can see that this difference tend to

disappear later for larger departures from Ñpl = 1.

In figure II we show the linear matter power spectrum and the relative

difference with respect to ΛCDM. We can see that as Ñpl departs from unity
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Figure I: Evolution of the k-mode gauge-invariant matter perturbation of

CDM (left panel) and relative difference of the Bardeen potentials (right

panel) for k = 0.01Mpc−1 with conformal coupling.

the cut-off in the linear matter power spectrum shifts to higher k values. This

is related to the later horizon entry of given k modes in the non-minimally

coupling case. Furthermore we can see that on very large scales the coupling

makes the linear matter power spectrum lower than the P (k) ∝ k case.
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Figure II: Linear matter power spectrum (left panel) for different values of

∆Ñpl with conformal coupling. In the right panel we show the relative differ-

ence of the linear matter power spectrum with the reference ΛCDM model.

In the right panel of figure III we show the evolution of the relative gauge-

invariant scalar field perturbation for k = 0.01Mpc−1. The perturbation

starts from a negative value and then oscillates losing amplitude and reaching

a positive value at present times. We can see that the amplitude of the
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relative perturbation is higher for low values of ∆Ñpl. In the left panel of

the same figure we plot the gauge-invariant scalar field perturbation for the

same wave-number.
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∆Ñpl=10−3
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Figure III: Evolution of the gauge-invariant scalar field perturbation (left

panel) and its relative value (right panel) for k = 0.01Mpc−1 with conformal

coupling for different values of ∆Ñpl.

CMB anisotropies

In the left panels of figure IV are shown the power spectra of the CMB

temperature, E-mode polarization and their cross-correlation with conformal

coupling. We can see that the presence of the coupling changes the amplitude

of the peaks and shifts them to higher l values. Thus a departure from Ñpl = 1

leads to a smaller horizon at decoupling.

In the right panels of figure IV we show the relative difference with respect

to the reference ΛCDM model for ∆Ñpl = 10−5 and ∆Ñpl = 10−6 which are

the values that lead to compatible PPN parameters with the Solar System

bounds, as can be seen in figure IV. We can see that at high multipoles the

difference with respect to ΛCDM for ∆Ñpl = 10−5 are at the level of 2% for

the CTT
l and CTE

l spectra while they reach 4% for CEE
l . We can see that

this difference approaches zero in correspondence of a peak or a throat, it is

positive passing from the former to the latter and vice-versa.

In the left panel of figure V we show the power spectra of the lensing
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Figure IV: To the left, from the upper to the lower panel respectively, CMB

TT, EE, TE power spectra for different values of ∆Ñpl with conformal cou-

pling. In the right panels we show the relative difference with respect to

a reference ΛCDM model for ∆Ñpl = 10−5, 10−6. We normalized ∆CTE
l to√

CTT
l CEE

l .

potential φ and the lensing-temperature cross-correlation for different values

of ∆Ñpl while in the right panel we show their relative difference with respect

to the reference ΛCDM model for ∆Ñpl = 10−5 − 10−6. We can see that

for ∆Ñpl = 10−5 we observe a difference of the order of 1% for the Cφφ
l

while the difference in the lensing-temperature cross-correlation is an order

of magnitude smaller.
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Figure V: To the left, from the upper to the lower panel respectively, lensing

potential and temperature-lensing cross-correlation power spectra for differ-

ent values of ∆Ñpl with conformal coupling. In the right panels we show the

relative difference with respect to a reference ΛCDM model. We normalized

∆CTφ
l to

√
CTT
l Cφφ

l .

In figure VI are shown the relative differences of the CMB TT , EE and

TE power spectra for low l (left panels) and high l (right panels) for different

values of ∆Ñpl. We can see that at very large scales the temperature power

spectrum is always higher with respect to ΛCDM, with differences around

the percent level for ∆Ñpl = 10−2.

In figure VIII we plotted the relative difference of the lensing potential

and the lensing-temperature cross-correlation with respect to the reference

ΛCDM model for different values of ∆Ñpl for low l’s (left panel) and high l’s

(right panel) .

In figure VIII we plotted the ratio of the lensed and the unlensed CTT
l for

different values of ∆Ñpl.



5.4 Effective massless scalar field 111

101 102

l

0.20

0.15

0.10

0.05

0.00

0.05

∆
C
T
T

l
/C

T
T

l

ΛCDM
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Figure VI: To the left, from the upper to the lower panel respectively, CMB

TT, EE, TE relative difference power spectra to a reference ΛCDM model

for l < 200 with conformal coupling. In the right panels we show the same

plots for 200 < l < 3000.

Summary

We summarize here the results obtained for conformal coupling:

• The presence of the coupling makes the horizon at matter-radiation

equivalence and decoupling to be smaller producing a shift towards

higher k values in the matter power spectrum and towards higher l

values in the temperature anisotropies power spectrum.
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∆Ñpl=10−3
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Figure VII: To the left, from the upper to the lower panel respectively, lensing

potential and temperature-lensing cross-correlation relative difference power

spectra to a reference ΛCDM model for l < 200 with conformal coupling. In

the right panels we show the same plots in the range 200 < l < 3000.

• The relative difference for high l values in the CTT
l with respect to the

ΛCDM reference model are at the percent level for values of ∆Ñpl which

leads to PPN parameters compatibles with the Solar System bounds.

• The relative difference in the lensing part in the temperature aniso-

tropies power spectrum with respect to the ΛCDM reference model

reaches values slightly smaller than 1% for ∆Ñpl = 10−5 with l > 2000.

• The relative scalar field perturbation oscillates with an amplitude which

is related to ∆Ñpl and is larger for Ñpl that approaches unity.

• The difference between the two Bardeen potentials is higher than ΛCDM

but this difference tends to attenuate with time.
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Figure VIII: Ratio of the lensed and the unlensed CTT
l for different values of

∆Ñpl with conformal coupling.

5.4.2 General case

We now consider the general case.

Matter and scalar field perturbations

In the left panels of figure IX we show the evolution of CDM matter

perturbations with k = 0.01Mpc−1 for different values of Ñpl (upper left-

panel) with |ξ| = 10−2 and for different values of the coupling (lower left-

panel) with |∆Ñpl| = 0.02. As for the conformal coupling we can see that the

presence of a general coupling changes the time of horizon crossing for a given

k mode , specifically a given mode enters the horizon later for greater values

of ∆Ñpl and |ξ|. The dependence on ξ seems to be stronger for negative

values of the coupling.

In the right panels of figure IX we show the evolution of the difference

of the Bardeen potentials with k = 0.01Mpc−1 for different values of Ñpl

(upper-right panel) with |ξ| = 10−2 and for different values of the coupling

(lower right-panel) with |∆Ñpl| = 0.02. From the latter we can see that the

difference of the Bardeen potentials tends to increase with time for positive
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Figure IX: Evolution of the k-mode gauge-invariant matter perturbation of

CDM (left panel) and of the relative difference of the Bardeen potentials

(right panel) for k = 0.01Mpc−1 with |ξ| = 10−2 and V = µF 2/4.

couplings while, as for the conformal coupling, it tends to disappear for

negative couplings.

In figure X we show the linear matter power spectrum and the relative

difference with respect to ΛCDM. The later horizon-entry of the same k mode

makes the cut-off in the linear matter power spectrum to shift at higher k

values. We can see that at large angular scales ∆P (k) starts greater than

zero independently of the sign of the coupling.

In the right panels of figure XI we show the evolution of the relative gauge-

invariant scalar field perturbation for different values of Ñpl (upper panel)

with |ξ| = 10−2 and for different values of the coupling (lower panel) with

|∆Ñpl| = 0.02. The perturbation starts from a positive (negative) value for

positive (negative) couplings and then oscillates losing amplitude and reach-

ing a negative (positive) value at the present time. We can see that a high
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Figure X: Linear matter power spectrum (left panel) for different values of

∆Ñpl with |∆Ñpl| = 0.02 and V = µF 2/4. In the right panel we show the

relative difference of the linear matter power spectrum with the reference

ΛCDM model.

value of |ξ| makes the perturbation to oscillate around a value that departs

significantly from zero, as we previously saw in the conformal coupling case.

However the amplitude of the oscillations seems to have a weak dependence

on Ñpl, contrary to what observed for conformal coupling. In the left panels

of the same figure we show the gauge-invariant scalar field perturbation.

CMB anisotropies

In figure XII are shown the relative differences of the power spectra of

the CMB temperature, E-mode polarization and their cross-correlation with

respect to the ΛCDM reference model with |ξ| = 10−2 for different values of

Ñpl. In figure XIV we plot the same power spectra with |∆Ñpl| = 0.02 for

different values of ξ. As for the conformal coupling, the presence of a generic

non-minimally coupling shifts the peaks to higher l values and they change

their amplitude. We can see that the difference with respect to the ΛCDM

model is greater for high multipoles while at very low l values we can see that

the temperature anisotropies power spectrum is always higher than ΛCDM.

In figure XIII are shown the relative difference of the power spectra of

the lensing potential and its temperature cross-correlation with respect to



116
5. Cosmological effects of a scalar field non-minimally coupled to

gravity

10-4 10-3 10-2 10-1 100

a

0.10

0.05

0.00

0.05

0.10

δϕ

IG
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Figure XI: Evolution of the gauge-invariant scalar field perturbation (left

panels) and of its relative value (right panels) for k = 0.01Mpc−1 with

|∆Ñpl| = 0.02 and V = µF 2/4 for different values of ξ (lower panels) and

with |ξ| = 10−2 for different values of ∆Ñpl (upper panels).

the ΛCDM reference model with |ξ| = 10−2 for different values of Ñpl. In

figure XV we plot the same power spectra with |∆Ñpl| = 0.02 for different

values of ξ.

In figure XVI we plotted the ratio of the lensed and the unlensed temper-

ature anisotropies power spectrum for different values of Ñpl with |ξ| = 10−2.

Summary

Here we summarize the results for the effective massless scalar field for

generic coupling:

• As for conformal coupling the presence of the coupling makes the hori-

zon at matter-equivalence and decoupling to be smaller producing a
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Figure XII: To the left, from the upper to the lower panel respectively, CMB

TT, EE, TE relative difference power spectra to a reference ΛCDM model

for l < 200 with |ξ| = 10−2 and V = µF 2/4. In the right panels we show the

same plots for 200 < l < 3000.

shift to higher k values in the matter power spectrum and to higher l

values in the temperature anisotropies power spectrum. However we

do not know if this feature is due to our particular choice of the pa-

rameters.

• The relative difference for high l values in the CTT
l with respect to the

reference ΛCDM model is much smaller than for conformal coupling for
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Figure XIII: To the left, from the upper to the lower panel respectively,

lensing potential and temperature-lensing cross-correlation relative difference

power spectra to a reference ΛCDM model for l < 200 with |ξ| = 10−2

and V = µF 2/4. In the right panels we show the same plots in the range

200 < l < 3000.

the values of ξ that we have considered. As an example for |ξ| = 10−2

and |∆Ñpl| = 10−4 the difference is of the order of 0.01%.

• The difference in the Bardeen potentials grows in time for positive

couplings implying a growing anisotropic stress. Negative couplings

tend to decrease this difference with time.

• Contrary to what observed in the conformal coupling case the am-

plitude of the relative scalar field perturbation seems to have little

dependence on Ñpl.



5.5 Scalar field with quartic potential 119

101 102

l

0.008

0.006

0.004

0.002

0.000

0.002

∆
C
T
T

l
/C

T
T

l

ΛCDM
ξ=10−2

ξ=10−3

ξ=10−4

ξ=−10−2

ξ=−10−3

ξ=−10−4

500 1000 1500 2000 2500 3000
l

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

∆
C
T
T

l
/C

T
T

l

101 102

l

0.04

0.02

0.00

0.02

0.04

∆
C
E
E

l
/C

E
E

l

500 1000 1500 2000 2500 3000
l

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

∆
C
E
E

l
/C

E
E

l

101 102

l

1.0

0.5

0.0

0.5

1.0

∆
C
T
E

l
/√ C

T
T

l
C
E
E

l

1e 13

500 1000 1500 2000 2500 3000
l

0.10

0.05

0.00

0.05

0.10

∆
C
T
E

l
/√ C

T
T

l
C
E
E

l

V(ϕ) =µF(ϕ)2 /4 ; |∆Ñpl|=0.02

Figure XIV: To the left, from the upper to the lower panel respectively, CMB

TT, EE, TE relative difference power spectra to a reference ΛCDM model

for l < 200 with |∆Ñpl| = 10−2 and V = µF 2/4. In the right panels we show

the same plots in the range 200 < l < 3000.

5.5 Scalar field with quartic potential

We end by considering the perturbations for a quartic potential: V =

λϕ4/4. As we saw in the previous chapter this potential leads to a transient

dark energy for values of Ñpl near to unity. For this reason in this section we

are going to consider only those values of Ñpl that lead to this feature with

|ξ| = 10−2. Other Ñpl values produce a behaviour similar to the V ∝ F 2
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Figure XV: To the left, from the upper to the lower panel respectively, lensing

potential and temperature-lensing cross-correlation relative difference power

spectra to a reference ΛCDM model for l < 200 with |∆Ñpl| = 10−2 and

V = µF 2/4. In the right panels we show the same plots in the range 200 <

l < 3000.

case.

Matter and scalar field perturbations

In the left panel of figure XVII we show the evolution of the CDM density

perturbation. Due to the fact that we are not considering great departures

from Ñpl nor great values of |ξ| we do not see any effect on the horizon entry

for the CDM density perturbation.

In the right panel of figure XVII we show the evolution of the difference

between the Bardeen potentials. As for V ∝ F 2 the difference grows for

positive couplings while it decreases for negative ones.

In figure XVIII we show the linear matter power spectrum and the dif-
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Figure XVI: Ratio of the lensed and the unlensed CTT
l with |ξ| = 10−2 for

different values of ∆Ñpl.
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Figure XVII: Evolution of the k-mode gauge-invariant matter perturbation

of CDM (left panel) and relative difference of the Bardeen potentials (right

panel) for k = 0.01Mpc−1 with |ξ| = 10−2 and V = λϕ4/4.

ference with respect to the reference ΛCDM. The position of the peak is

≈ 1.7hMpc−1 for all the considered cases. For Ñpl = 0.95 there is a weak

shift to higher scales while the other values produce a shift to lower scales.

At large angular scales ∆P (k) starts lower than zero independently of the

sign of the coupling and for |∆Ñpl| . 0.05 the power spectrum is always

lower than respect to ΛCDM.

In the right panel of figure XIX we show the evolution of the relative
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Figure XVIII: Linear matter power spectrum (left panel) for different values

of ∆Ñpl with |ξ| = 10−2 and V = λϕ4/4. In the right panel we show the

relative difference of the linear matter power spectrum with respect to the

reference ΛCDM model.

scalar field perturbation. The behaviour is similar to the V ∝ F 2 case,

however in this case the potential term drives the perturbation to negative

values independently of the sign of the coupling. In the left panel we show

the evolution of δϕ.
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Figure XIX: Evolution of the k-mode gauge-invariant scalar field perturba-

tion (left panel) and of its relative value (right panel) for k = 0.01Mpc−1

with |ξ| = 10−2 and V = λϕ4/4 for different values of ∆Ñpl.
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CMB anisotropies

In figure XXI is shown the power spectra of the CMB temperature. As

for V ∝ F 2 the peaks shift to lower scales and enhance their amplitude.

However for Ñpl = 0.98 and Ñpl = 1.02 we observe a shift to lower l values

with the greater departure for the latter.
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Figure XX: CMB TT power spectrum with |ξ| = 10−2 and V = λϕ4/4 for

different values of Ñpl.

In figure XXI are shown the differences of the power spectra of the CMB

temperature, E-mode polarization and their cross-correlation with respect to

the ΛCDM reference model. We can see that at low multipoles the behaviour

is different respect to the V ∝ F 2 case, in fact here we can obtain ∆CTT
l < 0

for Ñpl ≈ 0.9 at very low l’s. It is interesting to observe that the intermediate

cases that we have considered (∆Ñpl = ±0.05) have smaller departures in all

the considered CMB power spectra.

In figure XXIII we plotted the ratio of the lensed and the unlensed temper-

ature anisotropies power spectrum for different values of Ñpl with |ξ| = 10−2

(left panel). It is clearly visible how for Ñpl = 0.98 and Ñpl = 1.02 the peaks

are shifted to lower l while the other values shift the peaks to higher l.
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Figure XXI: To the left, from the upper to the lower panel respectively, CMB

TT, EE, TE relative difference power spectra to a reference ΛCDM model

for l < 200 with |ξ| = 10−2 and V = λϕ4/4. In the right panels we show the

same plots in the range 200 < l < 3000.

Summary

Here we summarize the results obtained for V = λϕ4/4:

• The position of the first peak in the temperature anisotropies power

spectrum generally shifts to higher l values as for V ∝ F 2, however for

values of Ñpl sufficiently close to unity we found that this peak can be

shifted to higher scales, suggesting that the horizon at decoupling is
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Ñpl=0.95
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Figure XXII: To the left, from the upper to the lower panel respectively, CMB

φφ and Tφ relative difference power spectra to a reference ΛCDM model for

l < 200 with |ξ| = 10−2 and V = λϕ4/4. In the right panels we show the

same plots in the range 200 < l < 3000.

greater than ΛCDM in this cases.

• The position of the peak in the matter power spectrum does not follow

the behaviour of the first peak in the temperature anisotropies power

spectrum. We found that the peak shifts towards higher k values for all

the choices of parameters that we have considered except for Ñpl = 0.95

for which the shift is to lower k.

• As for V ∝ F 2 the amplitude of the relative scalar field perturbations

weakly depends by the value of Ñpl. However a value of Ñpl close to

unity leads to a major role of the potential term that drives the relative

scalar field perturbation to high negative values at recent time.
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Conclusions

One of the greatest scientific discovery of the recent era is the accelerated

expansion of the Universe. This led to the appearance in the cosmological

scenario of a new component: dark energy. The most surprising thing is that

this mysterious component contributes, at the present time, to ≈ 70% of the

energy content of the Universe. This component in the ΛCDM concordance

model is described by the cosmological constant Λ. Despite the good agree-

ment of this model with a host of cosmological measurements, such as Planck

[59], it is important to investigate the possibility of alternatives explanations

for the accelerated Universe. One possibility is to consider a dynamical vac-

uum energy, known as quintessence, to be responsible for the acceleration of

the Universe thanks to its negative pressure [61].

A different approach is to consider the possibility of modifications of General

Relativity on large scales. This leads to a class of models known as Modified

Gravity among which we find Scalar-Tensor theories in which gravitation is

affected by both a scalar and a tensor field. The scalar field ϕ couples non-

minimally to gravity at the Lagrangian level through a function F (ϕ) which

multiplies the Ricci scalar.

In this thesis we considered F (ϕ) = N2
pl + ξϕ2 where Npl and ξ are funda-

mentals parameters of the theory. The dynamical behaviour of the coupling

function leads to a dynamical gravitational constant which modifies the over-

all evolution of the Universe.

After deriving the basic equations of the model we extended the public code

CLASS [42] in order to investigate the cosmological consequences at the
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background and linear perturbation level. In addition we posed a boundary

condition on the value of the scalar field: we imposed that the present day

value of ϕ produces a Geff compatible with Cavendish-like experiments.

We considered two choices for the potential: V ∝ F 2 and V ∝ ϕ4. The for-

mer leads to an effectively massless scalar field while the latter is motivated

by the fact that it is a viable potential for the chaotic inflation in supercon-

formal theory [37]. For the massless scalar field we focused our attention on

the conformal coupling ξ = −1/6 which is the expected coupling in order to

preserve conformal invariance.

We summarize the results obtained for the different cases that we had con-

sidered:

Effectively massless scalar field (general case)

• The contribution of the field to the energy density becomes important

at recent time although for choices of the parameters sufficiently far

from the minimal coupling case (Ñpl = 1 and ξ = 0) the contribution

can be dominant for all the evolution.

• The effective parameter of state for dark energy wDE starts from a

radiation-like to a cosmological-like behaviour with an intermediate

phase with wDE ' 0.

• The Solar System constraints can be satisfied for opportune choices

of the parameters. However positive couplings require a value of Ñpl

closer to unity with respect to negative couplings, this because the

latter tend to decrease the difference in the PPN parameters with time.

For large negative couplings it is possible to have larger deviations in

the past satisfying at the same time the Solar System constraints if Ñpl

is sufficiently close to unity.

• The effective gravitational constant decreases with time independently

from the choice of the parameters.
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• The first peak in the CMB temperature anisotropies power spectrum

shifts towards higher l’s with respect to ΛCDM for both negative and

positive couplings.

• The presence of the coupling makes the horizon at matter-radiation

equivalence smaller than ΛCDM producing a shift to higher k values

in the cut-off of the matter power spectrum. This happens for both

negative and positive couplings.

• Linear perturbations approach ΛCDM for ξ → 0 and Induced Gravity

for Ñpl → 0.

Effectively massless scalar field (conformal coupling)

• The scalar field is always sub-Planckian for ∆Ñpl . 10−4 and it satisfies

the Solar System constraints at 1σ for ∆Ñpl . 10−5.

• The effective parameter of state wDE passes from a radiation-like to a

cosmological-like behaviour without stable intermediate phases.

• The relative difference in the temperature anisotropies power spectrum

with respect to the ΛCDM reference model at high multipoles are 2%

for ∆Ñpl = 10−5 and of 4% in the TE cross-correlation power spectrum.

Scalar field with quartic potential (|ξ| = 10−2)

• The evolution of the energy density is similar as for V ∝ F 2 but if

Ñpl is sufficiently close to unity it drops in the near future leading to a

transient dark energy.

• The parameter of state wDE follows the behaviour of V ∝ F 2 but it has

some differences: it passes through a singularity for positive couplings

and Ñpl sufficiently close to unity. This happens when the potential

dominates the evolution of the scalar field and turns the growth into

a fast decrease. Furthermore the high velocity of the field leads to a
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present day value wDE which can be significantly different from wΛ =

−1.

• For Ñpl sufficiently close to unity the potential affects the evolution

of the PPN parameters at recent times, reducing their difference from

unity.

• The effective gravitational constant decreases for all couplings until the

potential term starts to dominate at a . 10−1 and then it decreases

faster for negative couplings while it grows for positive ones. For Ñpl =

0.98 and ξ = 10−2 we found that the effective gravitational constant is

always lower in the past than its present value.

• The first peak in the CMB temperature anisotropies power spectrum

shifts to higher l’s with respect to ΛCDM except for ∆Ñpl = ±0.02

and ξ = ±10−2 for which it shifts to lower l’s.

• Contrary to the V ∝ F 2 case we have that as Ñpl → 1 the differences

respect to the ΛCDM model grows. This is due to the major role of

the potential as Ñpl approaches unity.

Although the great successes of General Relativity and the concordance

ΛCDM model one has to take seriously the possibility that gravity behaves

differently on very large scales. A scalar field non-minimally coupled to

gravity can provide a viable candidate for dark energy [?] and future mea-

surements are expected to constraint the parameters of the theory.

Different potentials lead to different behaviour for the scalar field and con-

sequentially to the cosmological evolution. For this reason as a future devel-

opment we plan to study the case V = cost, which should differ from the

effective massless case because of the non-vanishing potential in the Klein-

Gordon equation and from the quartic potential for its different dependence

by the value of the scalar field. We also plan to constrain the models with

the most recent cosmological data as already been done in [71] for Induced

Gravity.



Riassunto in Italiano

La costante cosmologica non rappresenta l’unica alternativa nella de-

scrizione dell’attuale fase accelerata dell’Universo. Una possibilità consiste

nel ricercarne la causa in un differente comportamento dell’interazione grav-

itazionale attraverso una modifica delle equazioni di Einstein. Nelle teorie

scalari tensoriali l’azione della gravità è influenzata sia da un campo ten-

soriale, come nella relatività generale, sia da un campo scalare ϕ. Questo

campo scalare viene introdotto attraverso una funzione F (ϕ) che moltiplica

lo scalare di Ricci nella Lagrangiana rendendo cos̀ı l’accoppiamento con la

gravità non minimale. Questi modelli sono caratterizzati dalla presenza di

una costante gravitazionale variabile ma anche dalla differenza fra la G che

compare nella Lagrangiana e quella che governa le interazioni gravitazionali:

la costante gravitazionale efficace. In questa tesi consideriamo una speci-

fica forma per la funzione di accoppiamento F (ϕ) = N2
pl + ξϕ2 dove Npl e

ξ sono due parametri fondamentali della teoria. Questo accoppiamento è

abbastanza generico in quanto si riduce al caso di accoppiamento minimale

per ξ = 0 e al caso di gravità indotta (Brans-Dicke con una ridefinizione del

campo scalare) per Npl = 0. Dopo aver ricavato le equazioni fondamentali e

le condizioni iniziali per il background e le perturbazioni abbiamo deciso di

considerare due potenziali: V ∝ F 2 e V ∝ ϕ4. Il primo è stato scelto in modo

da rendere l’equazione del moto del campo scalare e delle sue fluttuazioni in-

dipendenti dal potenziale. Il secondo possiede la stessa proprietà del primo

per il caso di gravità indotta ma nel caso non minimale, per certe scelte

dei parametri, può produrre delle differenze che si traducono in un’energia
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oscura che domina il contenuto di energia dell’Universo per un periodo lim-

itato. In questo caso, infatti, il campo scalare decade riportando l’Universo

in un periodo dominato dalla materia. Per il caso V ∝ F 2 abbiamo consider-

ato anche la scelta specifica di accoppiamento conforme, dato da ξ = −1/6.

Per studiare l’evoluzione del background e delle perturbazioni lineari abbi-

amo modificato il codice CLASS, un codice Einstein-Boltzmann pubblico, in

modo da renderlo compatibile con il caso di accoppiamento non minimale.

Per fare questo siamo partiti da una precedente versione modificata in cui è

stato implementato il caso di gravità indotta [70] [71] [8].

Al fine di ricavare il valore iniziale per il campo scalare abbiamo posto come

condizione di bordo che il valore attuale della costante gravitazionale efficace

sia compatibile con esperimenti di tipo Cavendish. Nei capitoli 4 e 5 sono

presentati i risultati ottenuti con il codice modificato. Per il caso V ∝ ϕ4 ab-

biamo considerato solo il caso ξ = ±0.01. Riassumiamo per punti i risultati

ottenuti per i diversi casi considerati:

• Per il caso di accoppiamento conforme il parametro wDE evolve da uno

stato iniziale simile alla radiazione ad uno stato finale del tipo costante

cosmologica senza periodi intermedi stabili. Per il caso generico e per

entrambi i potenziali fra la fase di tipo radiativo e quella di tipo costante

cosmologica vi è una fase intermedia con wDE ≈ 0.

• L’energia oscura diventa dominante solo a tempi recenti e per il caso

V ∝ ϕ4 produce un transiente per valori di Ñpl sufficientemente vicini

a 1.

• La costante gravitazionale efficace diminuisce nel tempo per ogni scelta

dei parametri Npl e ξ per V ∝ F 2 mentre per V ∝ ϕ4 è possibile avere

un andamento opposto per tempi recenti nel caso di ξ positivo e Ñpl

sufficientemente vicino a 1.

• Il picco dello spettro di potenza della materia si sposta a scale più

piccole suggerendo che l’orizzonte al tempo dell’equivalenza radiazione-
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materia sia più piccolo tanto più Ñpl è diverso da uno e ξ da zero. Per

il caso V ∝ ϕ4 non si osserva questo comportamento.

• La posizione del primo picco dello spettro in temperatura della CMB

si sposta a scale angolari più piccole ma per V ∝ ϕ4 abbiamo uno

spostamento verso scale angolari più grandi per ∆Ñpl = ±0.02 con

ξ = ∓10−2.

• Le differenze in ampiezza a piccole scale angolari nello spettro della

CMB in temperatura sono 2% e 4% in TE per il caso di accoppiamento

conforme e ∆Ñpl = 10−5 che produce dei parametri post-Newtoniani

compatibili ad 1σ con i vincoli del Sistema Solare.
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