
1

Deterministic-like model reduction for a class

of multi-scale stochastic differential equations

with application to biomolecular systems

(Extended Version)

Narmada Herath, Student Member, IEEE, Domitilla Del Vecchio, Senior

Member, IEEE

Abstract

In this paper, we consider the problem of model order reduction for a class of singularly perturbed

stochastic differential equations with linear drift terms. We present a reduced-order model that approx-

imates both slow and fast variable dynamics when the time-scale separation is large. Specifically, we

show that, on a finite time interval, the moments of all orders of the slow variables for the reduced-order

model become closer to those of the original system as time separation is increased. A similar result

holds for the first and second moments of the fast variable. Biomolecular systems with linear propensity

functions, modeled by the chemical Langevin equation fit the class of systems considered in this work.

Thus, as an application example, we analyze the trade-offs between noise and information transmission

in a typical gene regulatory network motif, for which, both slow and fast variables are required. 1

I. INTRODUCTION

The evolution of many dynamical systems takes place on multiple time-scales. Examples

include climate systems, electrical systems, and biological systems [4], [5], [6]. The dynamics
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of such systems can be described using a set of ordinary differential equations (ODE) or

stochastic differential equations (SDE) in the standard singular perturbation form, where the

system variables are separated into ‘slow’ and ‘fast’ categories and a small parameter ε is used

to represent the separation in the time-scales [7]. The analysis of such systems can be simplified

by obtaining a reduced-order model that approximates the dynamics of the original system. To

obtain a reduced-order model, one can appeal to the singular perturbation theory [7], [8] or to

the averaging principle [9].

In the deterministic setting, the derivation of a reduced-order system is mainly accomplished

using the Tikhonov’s theorem, where the reduced-order model is obtained by setting ε to zero

in the original system dynamics [8], [7]. This yields an algebraic equation that approximates the

fast variable, which is in turn substituted into the slow variables’ differential equation to obtain

a reduced-order model for the slow variables’ dynamics. The averaging principle can also be

used to obtain an approximation of the slow variables’ dynamics, in which, the fast dynamics

are eliminated by integration of the system functions [9].

In addition to deterministic systems, stochastic models have also gained a lot of interest in

many areas such as finance, population biology, and systems and synthetic biology [10], [11]. For

example, biomolecular systems are intrinsically stochastic due to the randomness in chemical

reactions and the chemical Langevin equation has been widely used to model the stochastic

nature of these systems in the form of a stochastic differential equation [12].

Several works have appeared on singular perturbation methods for stochastic differential

equations. However, these methods cannot be used when the diffusion terms of the fast variable

are state-dependent and are of the order
√
ε, which is the case in the chemical Langevin

equation. Therefore, these works cannot be applied to stochastic differential equation models

of biomolecular systems. In particular, the work by Kabanov and Pergamenshchikov provides

a stochastic version of the Tikhonov’s theorem for systems where the diffusion coefficient of

the fast variable is o(
√
ε/|
√

ln(ε)|) [13]. Their results show that when the time-scale separation

becomes large (ε becomes small), the reduced system converges in probability to the original

system, under suitable assumptions including the exponential stability of the slow manifold.

However, it is discussed that for the class of systems where the diffusion coefficient is O(
√
ε),

the fast variable may be oscillatory and may not converge in probability to the slow manifold.

A related study by Berglund and Gentz uses a sample-path approach to find the probability of

the solution being concentrated around a neighborhood of the slow manifold of the deterministic
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system [14]. This study includes the case where the diffusion coefficient is of O(
√
ε). However,

in this case, the analysis predicts that as ε decreases the probability of the trajectory of the fast

variable escaping a neighborhood of the slow manifold increases. Their study also provides an

approximation for the slow variable, but this approximation is defined for the time interval that

the fast variable is within a neighborhood of the slow manifold. Therefore, the length of the

time interval for which the slow variable approximation is valid decreases as ε decreases.

In [8], Kokotovic et al. developed a singular perturbation approach for linear stochastic systems

in which the diffusion coefficient is a constant term. Their analysis also includes systems where

the diffusion coefficient is scaled by the singular perturbation parameter ε. In both cases, they

obtained a reduced system that converges to the original system in the mean squared sense as ε

becomes small. However, this method cannot be applied to the case where the diffusion term is

a function of the state variables. Tang and Basar approached the problem of singularly perturbed

stochastic systems using the notion of stochastic input-to-state stability [15]. They obtained

stability results for the original system under the assumptions that the reduced fast and slow

subsystems are input-to-state stable. However, this method only quantifies the error for the fast

variable, and therefore, it cannot be used to approximate the slow variable dynamics.

Aside from singular perturbation based approaches, averaging methods have also been ex-

tended for stochastic differential equations. They mostly consider systems with diffusion terms

of order
√
ε [9]. In his pioneering work, R.Z. Khasminskii derived a reduced-order model where

it is shown that the slow variables of the original system converge in distribution to the variables

of the reduced-order system as the time-scale separation becomes large [16]. More recently, an

application of the averaging principle to chemical Langevin equations was presented in [17].

However, the averaging methods require the integration of the system’s vector field, which

may be undesirable for systems of high dimension. Furthermore, averaging methods obtain

approximations only for the slow variables, but do not provide any approximation for the fast

variables.

In many applications, it is necessary to approximate both slow and fast variables in order

to utilize the reduced-order model for analysis. Particularly, in biomolecular systems, chemical

species often participate in both slow and fast reactions and hence the corresponding concen-

trations are neither slow nor fast variables, but instead are mixed variables. In these systems, a

coordinate transformation can be employed to take the system to standard singular perturbation

form [18], in which fast and slow variables may not directly correspond to the physical variables
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of interest. We illustrate this point in the application example of this paper.

In this work, we consider a class of stochastic differential equations with linear drift and

nonlinear diffusion terms, including the case where the diffusion term of the fast variable is of

the order
√
ε. This class of systems is particularly common on biomolecular processes. We present

a reduced-order SDE and an algebraic equation that approximate both slow and fast dynamics,

respectively, following a similar approach to deterministic singular perturbation theory. We show

that the error between the moments of the original and the reduced-order systems are of O(ε), for

moments of all orders for the slow variable and for first and second order moments for the fast

variable. We then demonstrate the application of the results on a gene regulatory network motif,

where species dynamics typically consist of both slow and fast components. For this system, we

derive the reduced-order model and illustrate how both slow and fast variable approximations

can be used concurrently in analyzing trade-offs between noise and information transmission.

This paper is organized as follows. In Section II, we introduce the system model under study

together with the underlying assumptions. In Section III, we introduce the reduced-order system

and present the results on the quantification of the error between the original and reduced-order

models. Section IV and Section V include examples that demonstrate the application of the

results.

Notation: We use E[·] to denote the expected value of a random variable. Rn denotes the

n-dimensional Euclidean space. Z≥0 denotes the set of nonnegative integers and Z>0 denotes

the set of positive integers. Similarly, Zn≥0 and Zn>0 denote the sets of vectors of length n, with

nonnegative and positive integer elements, respectively.

II. SYSTEM MODEL

We consider the singularly perturbed stochastic differential equations

ẋ = fx(x, z, t) + σx(x, z, t)Γx, x(0) = x0, (1)

εż = fz(x, z, t, ε) +
√
εσz(x, z, t, ε)Γz, z(0) = z0, (2)

where x ∈ Dx ⊂ Rn is the slow variable and z ∈ Dz ⊂ Rm is the fast variable. Γx is a

dx-dimensional white noise process. Let Γf be a df -dimensional white noise process, while Γz

is a (dx + df )-dimensional white noise process. We assume that the system (1)–(2) satisfies the

following assumptions.
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Assumption 1. The functions fx(x, z, t) and fz(x, z, t, ε) are affine functions of the state variables

x and z, i.e., we can write fx(x, z, t) = A1x+A2z+A3(t), where A1 ∈ Rn×n, A2 ∈ Rn×m and

A3(t) ∈ Rn, fz(x, z, t, ε) = B1x + B2z + B3(t) + α(ε)(B4x + B5z + B6(t)), where B1, B4 ∈

Rm×n, B2, B5 ∈ Rm×m, B3(t), B6(t) ∈ Rm, A3(t) and B3(t) are continuously differentiable

functions, and α(ε) is a continuously differentiable function with α(0) = 0.

Assumption 2. Let Φ(x, z, t) = σx(x, z, t)σx(x, z, t)
T , Λ(x, z, t, ε) = σz(x, z, t, ε)σz(x, z, t, ε)

T ,

and Θ(x, z, t, ε) = σz(x, z, t, ε)[ σx(x, z, t) 0 ]T . Then, we assume that Φ(x, z, t), Λ(x, z, t, ε),

and Θ(x, z, t, ε) are affine functions of x and z, and that limε→0 Λ(x, z, t, ε) <∞ and

limε→0 Θ(x, z, t, ε) <∞ for all x, z and t. Furthermore, we assume that the functions Φ(x, z, t),

Λ(x, z, t, ε), and Θ(x, z, t, ε) are continuously differentiable in t and ε.

Assumption 3. Matrix B2 is Hurwitz.

We also assume that the system (1)–(2) admits a unique well-defined solution on a finite

time interval. Sufficient conditions for the existence and uniqueness of solutions of stochastic

differential equations are given by the Lipschitz continuity and bounded growth of system

functions [19]. However, the class of systems considered in this work includes systems of the

form where the diffusion term is a square-root function of the state variables, as Assumption 2

requires the squared diffusion terms to be linear functions of the state variables. Therefore, such

systems may not guarantee the Lipschitz continuity conditions for the diffusion coefficient. For

this type of systems, a set of sufficient conditions that guarantee the existence of solutions can

be found in [10].

In the next section, we introduce the reduced-order system and present the results on the error

quantification between the original and reduced-order systems.

III. RESULTS

A. Reduced-order model

We introduce a reduced-order model by setting ε = 0 in the original system (1)–(2), as in

the case of deterministic singular perturbation theory. Under Assumption 2, ε = 0 leads to the

algebraic equation fz(x, z, t, 0) = B1x+B2z +B3(t) = 0, for which, Assumption 3 guarantees

the existence of a unique global solution z = γ(x, t), given by

γ(x, t) = −B−1
2 (B1x+B3(t)). (3)
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Upon substitution of z = γ(x, t) into (1), we obtain the reduced slow system

˙̄x = fx(x̄, γ(x̄, t), t) + σx(x̄, γ(x̄, t), t)Γx, x̄(0) = x0, (4)

which only depends on x̄.

We assume that system (4) has a unique well-defined solution on a finite time interval [0, t1].

Next, we define a candidate approximation for the fast variable dynamics in the form

z̄(t) = γ(x̄(t), t) + g(x̄(t), t)N, (5)

where N ∈ Rd is a random vector whose components are independent standard normal random

variables, and g(x̄(t), t) : Rn × R→ Rm×d is a function that satisfies the Lyapunov equation

g(x̄(t), t)g(x̄(t), t)TBT
2 +B2g(x̄(t), t)g(x̄(t), t)T

= −Λ(x̄, γ(x̄(t), t), t, 0). (6)

We call equation (5) the reduced fast system.

We now present the results on the error quantification between the original and reduced-

order systems. To this end, we first introduce the notation used to denote the moment dynamics

(notation adapted from [20], [21]). Consider the vectors x = [x1, . . . , xn]T and k = (k1, . . . , kn)

where xi, ki ∈ R for i = 1, . . . , n. Let x(k) = xk11 x
k2
2 . . . xknn . Then E[x(k)] denotes the moment of

x corresponding to the vector k, where the order of the moment is
∑n

i=1 ki. In order to denote the

P th order moments for all P ∈ Z≥0, we define the set GPr = {(c1, . . . , cr) ∈ Zr≥0|
∑r

i=1 ci ≤ P}.

Then, we have the following main result.

Theorem 1. Consider the original system in (1)–(2) and the reduced system in (4)–(5). Under

Assumptions 1 - 3 there exists ε∗ > 0, t1, tb > 0 with t1 > tb such that for ε < ε∗

‖E[x̄(k)]− E[x(k)]‖ = O(ε), ∀k ∈ GNn , N ∈ Z>0, t ∈ [0, t1], (7)

‖E[z̄(l)]− E[z(l)]‖ = O(ε), ∀l ∈ G2
m, t ∈ [tb, t1]. (8)

The proof of this theorem utilizes several intermediate results and is presented in Appendix

A. The outline of the proof is as follows. First, we show that the moment dynamics of the

original system are in the standard singular perturbation form, and that setting ε = 0 in the

original moment dynamics yields the moment dynamics of the reduced-order system. This holds

for moments of all orders for the slow variables and up to second order moments for the fast

variables. As the moment dynamics are deterministic, we then apply the Tikhonov’s theorem to
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demonstrate the convergence of the moments of the reduced-order system to the moments of

the original system, as ε decreases. The stability conditions of the slow manifold of the original

moment dynamics required for the application of the Tikhonov’s theorem are guaranteed by

Assumption 3.

From the reduced-order approximations given in equations (4)–(5), we note the similarity with

the reduced-order model obtained by singular perturbation theory for deterministic systems [7].

In particular, the slow variable’s dynamics are well approximated by substituting the expression

of the slow manifold given by z = γ(x, t) in equation (3) into the slow variable’s dynamics

given in equation (1). This implies that for this class of systems, the slow variable approximation

can be obtained in the same manner as in the deterministic singular perturbation method.

By contrast, from expression (5) we note that the fast variable approximation contains the term

g(x̄, t)N , which is in addition to the slow manifold expression γ(x̄, t) that would be obtained with

direct application of deterministic singular perturbation theory. This additional term is required

in order to account for the noise of the fast variables. In fact, considering the system in the fast

time-scale τ = t/ε, we see that the SDE of the fast variable is given by

dz

dτ
= fz(x, z, t, ε) + σz(x, z, t, ε)Γ̃z, (9)

where Γ̃z represents Γz in the fast-time scale, i.e, Γ̃z(τ) =
√
ε Γz(t) as shown in [22, p.173].

For the case where the diffusion term is of the order
√
ε, the term σz(x, z, t, ε) is independent

of ε and thus σz(x, z, t, 0) 6= 0. This shows that the fast variable is subject to noise, given by

the diffusion term σz(x, z, t, ε), and thus the expression γ(x, t) dose not provide an adequate

approximation for the noise on z.

The noise in the fast variable can be “neglected” in the slow variable approximation because

the slow subsystem “filters out” the noise from the fast variable. Such noise must instead

be considered to approximate the noise properties of the fast variable, as we illustrate in the

following example. Consider the system

ẋ = −a1x+ a2z + v1Γ1, (10)

εż = −z + v2

√
εΓ2, (11)

where a1, a2 > 0.

Setting ε = 0, we obtain the system:

˙̄x = −a1x̄+ v1Γ1, (12)
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z = γ(x̄, t) = 0. (13)

To analyze the error of this approximation, we can directly calculate the steady state moments

for both the original and reduced-order systems using their linearity. This yields

E[x2] =
a2

2v
2
2

2a1

ε

(1 + a1ε)
+

v2
1

2a1

, E[z2] =
v2

2

2
,

E[x̄2] =
v2

1

2a1

, E[γ(x̄, t)2] = 0.

It is seen that E[x2] converges to E[x̄2] as ε approaches zero, however, E[z2] remains constant

as ε goes to zero. That is, the reduced-order system (12)–(13) obtained by setting ε = 0 provides

a good approximation for the slow variable in terms of the second moment, but it is not a good

approximation for the fast variable dynamics. This is due to the fact that the x-subsystem is not

affected by the noise Γ2 as ε tends to zero, which can be explained by considering the power

spectra and frequency response of the x and z subsystems.

Using the frequency response from input Γ2 to the output z of the z-subsystem, given by

HzΓ(jω) = 1
jω+1/ε

we can calculate the power spectrum of z as Szz(ω) = (v2/
√
ε)2

(ω2+(1/ε)2)
, which is

illustrated in Fig. 1. It can be seen that as ε approaches zero, the magnitude of Szz(ω) decreases

at low frequencies but increases at high frequencies, in a way that the variance of z remains

constant. However, considering the frequency response from z to x of the x-subsystem, given by

Hxz(jω) = a2
jω+a1

, we see that the x-subsystem is a low-pass filter with a cut-off frequency of

a1 that is independent of ε (Fig. 1). Therefore, x only selects the low frequency components of

signal z, which decrease with ε, leading to a decrease in the variance of signal x as ε decreases.

Thus, the reduced-order system obtained by setting ε = 0 provides a good approximation for

the slow variable dynamics. However, as the variance of z remains constant as ε decreases, the

expression z̄ = γ(x̄, t) by itself does not provide a good approximation for the fast variable

stochastic dynamics.

In the next two sections, we consider the application of this theory to an academic example

first (Section IV) and then to a biomolecular system (Section V).

IV. ACADEMIC EXAMPLE

We consider the following system, which takes a similar form to the SDEs that appear in

affine term structure models in finance [10]:

ẋ = −2x+ z + 10 +
√

2z + 1 Γ1, (14)
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Fig. 1: Power spectrum of z (top). Frequency response from z to x (centre). Power spectrum of x (bottom). The

parameters used are a1 = 10, a2 = 2 and v1 = 1, v2 = 10.

εż = −z + 15 +
√
ε(2z + 1) Γ2. (15)

This system satisfies the Assumptions 1 - 3, and using the results of [10] it can be verified that

there exists a unique, well-defined solution. Setting ε = 0, we obtain the slow manifold z = 15.

This yields the following reduced-order model for the slow variable:

dx̄ = −2x̄+ 25 +
√

31 Γ1. (16)

Based on (5), the fast variable approximation for this system is of the form

z = 15 + g(x)N, (17)

where g(x)g(x)T (−1)+(−1)g(x)g(x)T = 31 and N is a standard normal random variable. After

solving for g(x), the fast variable approximation is given by

z̄ = 15 +
√

15.5N. (18)

Simulations of the original and the reduced-order systems were performed using the Euler-

Maruyama method [23] for stochastic differential equations and the sample means were calcu-

lated using 500,000 realizations. Fig. 2 illustrates the second and third order moments of the

slow variable and second order moments of the fast variable for the original and reduced-order
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systems. It can be seen that as ε decreases the moments of the original system tends to the

moments of the reduced-order system.

Fig. 2: Moments of the original and reduced systems. (a) Second moments of the slow variable.

(b) Third moments of the slow variable. (c) Second moments of the fast variable.

By virtue of Theorem 1, the reduced-order model (16) provides a good approximation of the

higher moments for the slow variable, as illustrated in Fig. 2. However, for the fast variable, only

the first and second moments are well approximated, and there is no guarantee that the higher

order moments are also approximated well, as we show by analyzing the third order moments

of the system considered in this section.

To calculate the third order moments, we represent the fast variable dynamics of the above

system (14)–(15) in the form

εdz = c1z + c2 +
√
ε(d1z + d2) Γ2.

Then, the third order moment dynamics are written as

ε
dE[z]

dt
= c1E[z] + c2,

ε
dE[z2]

dt
= 2c1E[z2] + 2c2E[z] + d1E[z] + d2,

ε
dE[z3]

dt
= 3c1E[z3] + 3c2E[z2] + 3d1E[z2] + 3d2E[z].

Setting ε = 0, we obtain

E[z] =
−c2

c1

, (19)

E[z2] =
2c2

2 + d1c2 − d2c1

2c2
1

, (20)
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E[z3] =
3c1c2d2 + c1d1d2 − 2c2

3 − 3c2
2d1 − c2d1

2

2c1
3

. (21)

The reduced fast system is given by z̄ = γ(x̄, t) + g(x̄, t)N(0, 1), where γ(x̄, t) = −c2
c1

and

g(x̄, t) = d1γ(x̄,t)+d2
−2c1

. Calculating the moment dynamics for the reduced fast system we obtain

E[z̄] = γ(E[x̄], t) =
−c2

c1

, (22)

E[z̄2] = E[γ(x̄, t)2] + E[g(x̄, t)2] =
2c2

2 + d1c2 − d2c1

2c2
1

, (23)

E[z̄3] = E[γ(x̄, t)3] + 3E[γ(x̄, t)g(x̄, t)2] =
c2(3c1d2 − 2c2

2 − 3c2d1)

2c3
1

. (24)

Considering the equations for the slow manifold in (19) - (21) and the moments of the reduced

fast system (22)–(24), we have that ‖E[z]− E[z̄]‖ = 0, ‖E[z2]− E[z̄3]‖ = 0, however, ‖E[z3]−

E[z̄3]‖ = d1(c1d2−c2d1)

2c31
, which is different from zero. Therefore, it follows that setting ε = 0 in the

third moments of the fast variable does not yield the third moment of the reduced fast system.

From the general form of the moments in (22)–(24) it follows that the terms γ(x, t) and g(x, t)

are not sufficient to approximate the third moment. This suggests that approximation of higher

order moments of the fast variable would require additional terms in the reduced fast system.

However, in many applications, particularly biomolecular systems, the commom measures of

noise are coefficient of variation and signal-to-noise ratio, which are functions of only the mean

and the variance. Thus, the first and second moments provide sufficient information for analysis

of these systems.

V. APPLICATION EXAMPLE

In this section, we demonstrate how the results obtained above can be used to characterize

stochastic properties of biological systems. The time-scale separation property has been widely

used for model order reduction in the analysis and design of biomolecular systems. More recently,

deterministic singular perturbation techniques have been used to quantify impedance-like effects

that arise in the design of biomolecular systems. These effects, termed retroactivity, arise at

the interconnection of biomolecular components and cause a perturbation in the output signal

of the upstream component, similar to loading effects in electrical circuits [24], [25]. Another

source of signal perturbation in biological systems is the intrinsic noise due to the randomness

in chemical reactions [26], [27]. Therefore, it is important to also account for stochastic effects

in the analysis and design of biomolecular systems.
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In this example, we consider the interconnection of transcriptional components, typically found

in gene regulatory networks appearing both in natural and synthetic biological systems [6].

We model the system dynamics using the chemical Langevin equation and obtain a reduced-

order model using the technique developed in this work. The reduced-order model is then used

to quantify the errors in the system due to retroactivity and stochasticity. We investigate the

interplay between each of these errors and identify trade-offs that arise in signal transmission in

biomolecular systems.

A. System Model

We consider the interconnection of two transcriptional components shown in Fig. 3. Each

transcriptional component [28] can be viewed as a system that takes as input a transcription

factor, that is, a protein that can activate or repress a target gene, and gives as output the target

gene’s protein product.

The interconnection of Fig. 3, in which transcription factor Y activates the expression of a

fluorescent protein G, is ubiquitous in synthetic genetic circuits as an indirect way of measuring

the concentration of a transcription factor of interest, Y in this case. In fact, it is reasonable to

think that the concentration of the fluorescent protein G should follow that of Y, possibly with

some lag due to the process of gene expression encapsulated by the measuring device.

Here, we study how well the concentration of G tracks that of Y in the presence of noise.

X

Y G

Measuring DeviceTranscriptional Component

p0 p

Fig. 3: Protein X acts as an input to the upstream transcriptional component, which produces the output protein

Y. The downstream transcriptional components takes protein Y as an input and produces protein G.

The chemical reactions for this system can be written as follows: X + p0
α1−⇀↽−
α2

C0,C0
β1−→

Y+C0,Y
δ1−→ φ, Y+p

α3−⇀↽−
α4

C,C
β2−→ G+C,G

δ2−→ φ [6], [28]. Protein X binds to promoter p0 and

produces complex C0 where α1 and α2 are the association and dissociation rate constants. β1

is the total production rate constant of protein Y considering both transcription and translation

rates. δ1 is the decay rate constant of protein Y, which includes both degradation and dilution of
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the protein. Similarly, α3 and α4 are the association and dissociation rate constants for protein

Y and the promoter p0, β2 is the total production rate constant of protein G and δ2 is the decay

rate constant of protein G. Since DNA does not dilute cell growth, the total amount of promoter

in the system is conserved giving pT0 = p0 + C0 and pT = p + C [6]. Denoting the system

volume by Ω, the chemical Langevin equations for the system are given by

dC0

dt
= α1X(pT0 − C0)− α2C0 +

√
α1X(pT0 − C0)

Ω
Γ1 −

√
α2C0

Ω
Γ2,

dY

dt
= β1C0 − δ1Y +

√
β1C0

Ω
Γ3 −

√
δ1Y

Ω
Γ4

−α3Y (pT − C) + α4C −
√
α3Y (pT − C)

Ω
Γ5 +

√
α4C

Ω
Γ6 ,

dC

dt
= α3Y (pT − C)− α4C +

√
α3Y (pT − C)

Ω
Γ5 −

√
α4C

Ω
Γ6,

dG

dt
= β2C − δ2G+

√
β2C

Ω
Γ7 −

√
δ2G

Ω
Γ8,

(25)

where Γi for i = 1, ..., 8 are independent Gaussian white noise processes. The binding of a

transcription factor to downstream promoter sites introduces an additional rate of change in the

dynamics of the transcription factor, which is represented by the boxed terms in equation (25)

for the transcription factor Y. This additional rate of change, known as ‘retroactivity’, causes a

change in the dynamics of the transcription factor’s concentration with respect to the isolated

case, that is, when the transcription factor is not binding [24], [29]. It was also shown in the

works of [24] and [29] that increasing the number of downstream binding sites pT increases the

effect of retroactivity on the transcription factors.

The nominal and perturbed trajectories for Y and G for different amounts of pT can be seen

in Fig. 4. The nominal system dynamics, without perturbation due to retroactivity or noise, are

obtained by simulating the ODE model obtained when Γi = 0 for i = 1, ..., 8 and the boxed

terms are zero in the system (25). The perturbed trajectories are obtained using Gillespie’s direct

method [30]. For lower values of pT the signal G closely follows the nominal signal, but the

signal is highly perturbed by noise. As pT increases the noise in the signal G decreases, however,

the signal is highly attenuated due to retroactivity. This observation is consistent with the fact that

using a high gene copy number (large pT ) is seen as a way of reducing noise in gene expression

and protein production [31], [32]. However, the downside of this is that increasing pT alters

the dynamics of the input transcription factor (i.e. the protein Y), as experimentally observed in
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[25]. For signal Y , by contrast, both retroactivity and noise increase as pT is increased. This is

consistent with prior observations in [33], where it was shown that increasing the copy number,

and consequently increasing retroactivity, leads to a lower signal-to-noise ratio of transcription

factors.

Fig. 4: Nominal and perturbed signals. G is obtained by simulating system (25) using the Gillespie algorithm

[30]. The parameter values are X = 2 + 1.5sin(ωt)nM, α1 = 1nM−1s−1, α2 = 20s−1, α3 = 1nM−1s−1, α4 =

100s−1, β1 = 0.01s−1, β2 = 0.1s−1, δ1 = δ2 = 0.01s−1, pT0 = 100nM and ω = 0.002 rad/s.

GR
YR

X r

GN
YNX Upstream

Component

G
Y

X r

ΓY ΓG

System 1 :

System 2 :

System 3 :

Retroactivity

Error

Noise

Error

Upstream

Component

Upstream

Component

Downstream

Component

Downstream

Component

Downstream

Component

Fig. 5: The signal ‘r’ denotes the retroactivity to the upstream system. System 1 represents the

nominal system in the absence of any perturbations. System 2 represents the system is perturbed

only with retroactivity. System 3 represents the system perturbed with both retroactivity and

intrinsic noise. ΓY encapsulates the noise in the upstream component given by Γi for i = 1, ..., 4

and ΓG encapsulates the noise in the downstream component given by Γi for i = 5, ..., 8.

In the sequel, we mathematically quantify the above trade-offs between retroactivity and noise

for proteins Y and G. To this end, we formally introduce System 1 as the nominal system,
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System 2 as an intermediate system perturbed only with retroactivity, and System 3 as the

perturbed system including both retroactivity and noise, given in Fig. 5. Next, we derive the

dynamics for each of these systems. The system (25) exhibits time-scale separation as the

binding/unbinding reactions between transcription factors and promoter sites are much faster

than protein production/decay [6]. Thus, we can represent the system dynamics in the standard

singular perturbation form by defining the small parameter ε = δ1/α2 � 1. Representing the

system variables by the non-dimensional quantities c0 = C0/pT0, y = Y/(β1pT0/δ1), c = C/pT ,

g = G/(β2pT/δ2), and t̄ = tδ1, and defining the dissociation constants kd1 = α2/α1 and

kd2 = α4/α3 with a = α4/α2, we can take the system to the standard singular perturbation

form using the change of variable v = y + pT δ1
β1pT0

c, which yields

ε
dc0

dt̄
=

X

kd1

− c0 +

√
ε

X

kd1pT0Ω
Γ̃1 −

√
ε
c0

pT0Ω
Γ̃2,

dv

dt̄
= c0 − (v − pT δ1

β1pT0

c) +

√
δ1c0

β1pT0Ω
Γ̃3 −

√
δ1(v − pT δ1

β1pT0
c)

β1pT0Ω
Γ̃4,

ε
dc

dt̄
=
aβ1pT0(v − pT δ1

β1pT0
c)

kd2δ1

− ac+

√
ε
aβ1pT0(v − pT δ1

β1pT0
c)

kd2δ1pTΩ
Γ̃5 −

√
ε
ac

pTΩ
Γ̃6,

dg

dt̄
=
δ2

δ1

c− δ2

δ1

g +

√
δ2

2

δ1β2pTΩ
cΓ̃7 −

√
δ2

2

δ1β2pTΩ
gΓ̃8,

(26)

where we have assumed that the binding between the proteins and promoter sites are weak,

giving C0 � pT0 and C � pT , and Γ̃i for i = 1, ..., 8 represent white noise processes in the

time-scale t̄.

It follows that the system (26) fits the structure of the original system in (1)–(2) with v and

g as the slow variables and c0 and c as the fast variables. We have that the drift terms and the

squared diffusion terms are linear in the state variables, satisfying Assumptions 1 - 2. The matrix

B2 defined in Assumption 2 is given by −1 0

0 −apT
kd2
− a

,
where we have that all the parameter constants are positive. Thus, the matrix B2 is Hurwitz,

satisfying Assumption 3. Therefore, the assumptions of Theorem 1 are satisfied.

We note that, due to the square-root form of the diffusion terms, the system (26) does not satisfy

the sufficient Lipschitz continuity conditions for the existence of a unique solution for SDEs.
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Furthermore, the system parameters do not satisfy the conditions for the existence of a unique

solution for affine SDEs in [10]. The existence of a solution for chemical Langevin equations

where the arguments of the square-root diffusion terms remain positive is an ongoing research

question [34], [35]. However, the validity of the chemical Langevin equation representation for

chemical kinetics is based on the assumption that the molecular counts are sufficiently large [12].

In line with this, the work in [36] considers several examples of one-dimensional systems and

show that the probability of molecular counts reaching zero decreases as the initial condition

increases. Considering higher dimensional models, in [37], we show that the minimum time

for the molecular counts to reach a lower bound starting from a given set of initial conditions

increases as the initial conditions become appropriately large (as defined in [37]), thereby keeping

the argument of the square-root positive for a longer time interval.

Next, setting ε = 0, we obtain the reduced-order system

dv

dt̄
=

X

kd1

− (1−R)v +

√
δ1

X
kd1

β1pT0Ω
Γ̃3 −

√
δ1(1−R)v

β1pT0Ω
Γ̃4, (27)

dg

dt̄
=

δ2β1pT0v

δ2
1(pT + kd2)

− δ2

δ1

g +

√
δ2

2β1pT0v

δ2
1β2pT (pT + kd2)Ω

Γ̃7 −

√
δ2

2

δ1β2pTΩ
gΓ̃8, (28)

c0 =
X

kd1

+

√
X

pT0kd1Ω
N1, (29)

c =
vβ1pT0

δ1(pT + kd2)
+

√
vβ1pT0kd2

δ1pTΩ(pT + kd2)2
N2, (30)

where R = pT
pT+kd2

, N1 and N2 are standard normal random variables. This system describes

the dynamics for the perturbed system denoted by System 3 in Fig. 5 where the dimensionless

concentration for protein Y is given by y = v− pT δ1
β1pT0

c. Next, the dynamics for System 2, which

only includes the error due to retroactivity can be found by taking Γi = 0 for i = 1, . . . , 8 in

(27)–(30), which yields

dvR
dt̄

=
X

kd1

− (1−R)vR,
dgR
dt̄

=
δ2β1pT0vR
δ2

1(pT + kd2)
− δ2

δ1

gR, (31)

cR0 =
X

kd1

, cR =
vRβ1pT0

δ1(pT + kd2)
. (32)

Then, we can use the fast variable approximation for cR given in (32) to rewrite the system

dynamics in the original variable yR = vR − cR, to obtain

System 2 : ẏR = (1−R)

(
X

kd1

− yR
)
, (33)



17

ġR =
δ2β1pT0yR
δ2

1kd2

− δ2

δ1

gR. (34)

Similarly, the reduced-order dynamics for the nominal system (i.e without the boxed terms

that represent retroactivity effects and with Γi = 0 for i = 1, . . . , 8) can be written as

System 1 : ẏN =
X

kd1

− yN , (35)

ġN =
δ2β1pT0yN
δ2

1kd2

− δ2

δ1

gN , (36)

Next, using the system definitions in Fig. 5, we define the error due to retroactivity in Y

and G as |∆yR||yN |
= |yR−yN |

|yN |
and |∆gR|

|gN |
= |gR−gN |

gN
, respectively. Similarly, the error due to noise

in the signals Y and G are can be defined as |∆yS ||yR|
= |y−yR|

|yR|
and |∆gS |

|gR|
= |g−gR|

|gR|
, respectively.

We consider the input X to be of the form X = k1 + k2sin(ω̄t̄) with k1 > k2 to mimic a

typical periodic signal from a clock [38]. As we are interested in the error in the temporal

dynamics, we analyze each of the errors arising due to the time-varying component of the input

X̃ = k2sin(ω̄t̄).

To quantify the error due to retroactivity, we take the ratio of amplitude of the signals ∆yR

and ∆gR to the amplitude of the nominal signals ∆yN and ∆gN , respectively. Therefore, the

error in y and g due to retroactivity is given by |∆yR(jω̄)|
|yN (jω̄)| and |∆gR(jω̄)|

|gN (jω̄)| , respectively.

To quantify the error due to noise we consider the coefficient of variation, which is a standard

measure of noise, defined as the ratio of standard deviation to the mean value of a signal. Since

the drift functions in the system (27)–(28) are linear, the mean signals of y and g are given by yR

and gR, respectively. Therefore, the terms E[(∆yS)2] and E[(∆gS)2] give the variances of signals

y and g. Then, to quantify the noise error in Y we take
√
|E[(∆yS)2](jω̄)|
|yR(jω̄)|

√
k2

, where |E[(∆yS)2](jω̄)|k2

gives the amplitude of the signal E[(∆yS)2] and |yR(jω̄)|k2 gives the amplitude of the signal yR

for the input X̃ = k2sin(ω̄t̄). Similarly, the noise error in G can be quantified by the expression√
|E[(∆gS)2](jω̄)|
|gR(jω̄)|

√
k2

.

B. Retroactivity Error

In order to find the retroactivity error, we consider the System 1 and System 2 in Fig. 5, for

which the dynamics are given by (35)–(36) and (33)–(34). We use the linearity of the system

(35)–(36) and (33)–(34) to directly evaluate the frequency response with a periodic input of the

form X̃ = k2sin(ω̄t̄) and calculate the error in Y and G as
|∆yR(jω̄)|
|yN(jω̄)|

=
Rω̄√

ω̄2 + (1−R)2
, (37)
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|∆gR(jω̄)|
|gN(jω̄)|

=
Rω̄√

ω̄2 + (1−R)2
. (38)

Since R =
pT

pT + kd1

monotonically increases with pT , it follows that the error due to retroactivity

in both Y and G increases as pT increases.

C. Noise Error

Next, we quantify the noise error in Y by considering the dynamics for System 2 and System

3 in Fig. 5. As the drift coefficients of the system (27) - (30) are linear, we have that E[y] =

E[v] − E[c] = yR. Therefore, the error E[(∆yS)2] is equivalent to the variance of y given by

E[(y − E[y])2]. Here, we note that the dynamics of the variable y consists of both slow and fast

components, and therefore we require both slow and fast variable approximations to represent

the dynamics of y using the reduced-order model.

Thus, we use the fast variable approximation for c given in (30) to derive the first and second

moment dynamics for the variable y as shown in Appendix B to obtain

dE[y]

dt̄
= (1−R)

(
X

kd1

− E[y]

)
, (39)

dE[y2]

dt̄
= (1−R)

[
2
X

kd1

E[y]− 2E
[
y2
]

+
δ1X

kd1β1pT0Ω
+

δ1E[y]

β1pT0Ω

]
. (40)

Then, using the first and second moment dynamics we find the dynamics for the variance of

y given by E[(y − E[y])2] = E[y2]− E[y]2, which yields

dE[(y − E[y])2]

dt̄
= (1−R)

[
δ1X

kd1β1pT0Ω
+

δ1E[y]

β1pT0Ω
− 2δE

[
(y − E[y])2

]]
, (41)

where R =
pT

pT + kd2

as defined in the derivation of the reduced system (27)–(30).

As system (41) is linear, we can directly evaluate its frequency response with the input X̃ =

k2sin(ω̄t̄) which, by normalizing by the average signal |yR(jω̄)|k2 = (1−R)k2

kd1
√

(ω̄2+(1−R)2)
, leads to√

|E[∆y2
S](jω̄)|

|yR(jω̄)|
√
k2

=

√
kd1δ1(ω̄2 + (1−R)2)(1/4)√

(1−R)β1pT0Ωk2

Since the function R monotonically increases with pT , the noise error in Y increases as pT

increases. Therefore, decreasing the downstream copy number pT minimizes both retroactivity

and noise errors in Y .

Next, we quantify the noise error in G by considering the dynamics for System 2 and System

3 in Fig. 5. Due to the linearity of the drift coefficients, the expression E[(∆gS)2], where gS
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was defined as gS = g − gR, gives the variance of the signal g. Thus, we use the dynamics

of the variances of signals v and g to quantify the noise error in G. To this end, denote the

variance of the signal v and the covariance between v and g by E[(∆v)2] = E[(v − E[v])2],

E[∆vg] = (E[vg]− E[g]E[v]), respectively. Then, using the moment dynamics of the system

(27) - (30), the dynamics for the variances are derived as

dE[v]

dτ
=

X

kd1

− (1−R)E[v], (42)

dE[g]

dτ
=
δ2β1pT0E[v]

δ2
1(pT + kd2)

− δ2

δ1

E[g], (43)

dE[(∆v)2]

dτ
= −2(1−R)E

[
(∆v)2

]
+

δ1
X
kd1

β1pT0Ω
+
δ1(1−R)E[v]

β1pT0Ω
,

dE[(∆vg)]

dτ
= −((1−R) +

δ2

δ1

)E[(∆vg)] +
δ2β1pT0E[(∆v)2]

δ2
1(pT + kd2)

,

dE[(∆g)2]

dτ
= 2

δ2β1pT0

δ2
1(pT + kd2)

E[(∆vg)]− 2
δ2

δ1

E
[
(∆g)2

]
+

δ2
2β1pT0E[v]

δ2
1β2pT (pT + kd2)Ω

+
δ2

2

δ1β2pTΩ
E[g],

(44)

Then, evaluating the frequency response for the system (42)–(44), we can quantify the noise

error in G as √
|E[∆g2

S](jω̄)|
|gR(jω̄)|

√
k2

=

√
δ2

2δ
2
1 + δ4

1ω̄
2

k2 Ω
4
√
A(pT , ω̄) (45)

where the function A(pT , ω̄) decreases with increasing pT for sufficiently small ω̄, as shown in

Appendix C. Therefore, as we consider an input of the form X̃ = k2sin(ωt), where ω = ω̄δ1,

the noise error in G decreases as pT increases when the input frequency ω is sufficiently smaller

than the bandwidth of the nominal system given by δ1. Thus, in contrast to the noise error in

Y , a higher value of pT should be used to decrease the noise in G. This is due to the fact that

increasing the amount of downstream copy number pT leads to an increase in the amount of

protein G, which in turn reduces the amount of relative fluctuations, as observed previously [31],

[32].

Furthermore, since the noise error in Y increases with pT in contrast to that of G, and Y is an

input to the downstream component that produces G, we consider how the noise in Y propagates

downstream to the signal noise in G. To this end, we observe from Fig. 4 that increasing pT

causes an increase in the high frequency noise of signal Y . However, the downstream component

with the output signal G acts as a low-pass filter, which suggests that increasing high frequency

noise content in Y will have a minimal effect on the noise of G.
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Comparing the results obtained in this section for the noise error in G with the retroactivity

error in G given by equation (38) demonstrates a trade-off between stochastic and deterministic

perturbation in signal G. Fig. 6, illustrates this trade-off for pT in the range 1: 1000 nM. Similarly,

the expressions for the retroactivity error in (38) and the noise error in (45) can be used to quantify

this trade-off for different parameter values and find an optimal value of pT that would minimize

the combined perturbation when designing biological circuits.

Fig. 6: Trade-off between retroactivity and noise in signal G for pT in the range 1:1000 nM (obtained using the

equations (38) and (45)). The parameter values are as in Figure 4.

VI. CONCLUSION

In this work, we have considered the problem of model order reduction for a class of stochastic

differential equations in singular perturbation form. We introduced a reduced-order model that

approximates both the slow and fast dynamics of the original system and can be obtained by

solving two algebraic equations. For the slow variable approximation, it was shown that the

error between the moments of the reduced system and moments of the original system are of

O(ε). For the fast variable approximation, it was shown that the first and the second moments

of the reduced system are within an O(ε)-neighborhood of the first and second moments of the

original system, respectively.

We then illustrated the application of our results with several examples. First, we considered

an academic example and demonstrated the derivation of the reduced-order model and verified

the results of error convergence through numerical simulations. We then considered an example

of a biomolecular system that is typically encountered in both natural and synthetic genetic

networks. The system dynamics were modeled using chemical Langevin equations and, by using
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the reduced-order model of Theorem 1, we analyzed and quantified trade-offs that arise in the

design of genetic circuits. In particular, through this example, we demonstrate how both fast and

slow variables approximations are required to quantify the noise properties of physical variables,

which typically are mixed, i.e., neither slow nor fast. In future work, we will extend these results

to systems with non-linear drift terms, which will allow us to consider biomolecular systems

with multi-molecular reactions.

APPENDIX A

Here, we provide the proof of Theorem 1. We begin by presenting the set of intermediate

results that will be used in the proof. In Claim 1, we prove that the moment dynamics of

the original system can be written in the standard singular perturbation form. In Claim 2, we

derive the moment dynamics of the reduced-order system for moments of all orders for the slow

variable approximation and for first and second order moments of the fast variable approximation.

In Claim 3, we derive the set of reduced-order moment equations obtained by setting ε = 0 in

the moments of the original system. The above results are used in Lemma 1 to prove that setting

ε = 0 in the moment dynamics of the original system yields the moment dynamics of the

reduced-order system, for all moments of the slow variable and up to second order moments for

the fast variable.

In order to derive the moment dynamics, we first define the set KPr = {(k1, . . . , kr) ∈

Zr≥0|
∑r

i=1 ki = P}. Then, considering the original system in (1)–(2), denote the state vectors

by x = [x1, . . . , xn]T and z = [z1, . . . , zm]T . We then have the following claim.

Claim 1. Under Assumption 1 - 2, the moment dynamics of the original system in (1)–(2) can

be written in the singular perturbation form:

dE[x(k)]

dt
=
∑
i∈GP

n

C1i(t)E[x(i)] +
∑
l∈G1

m

∑
j∈GP−1

n

C2jl(t)E[z(l)x(j)],∀k ∈ KPn (46)

ε
dE[z(g)]

dt
=
∑
a∈GP

m

D1a(t, ε)E[z(i)] +
∑
c∈G1

n

∑
b∈GP−1

m

D2bc(t, ε)E[x(l)z(j)],∀g ∈ KPm (47)

ε
dE[z(kz)x(kx)]

dt
=
∑
u∈GP

n

F1u(t, ε)E[x(u)] +
∑
a∈GP

m

F2a(t, ε)E[z(i)]

+

P∑
q=2

q∑
r=1

∑
k∈Gr

m

∑
s∈Gq−r

m

F3qrks(t, ε)E[z(k)x(s)], (48)
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for kx ∈ KQxn and kz ∈ KQzm , where Qx + Qz = P , and for appropriate continuous functions

C1i(t), C2jl(t) and continuously differentiable functions D1a(t), D2bc(t), F2a(t, ε), F1u(t, ε) ,

F3qrks(t, ε), for i ∈ GPn , l ∈ G1
m and j ∈ GP−1

n , a ∈ GPm , c ∈ G1
n, b ∈ GP−1

m , u ∈ GPn , q = 2, . . . , P ,

r = 1, . . . , q, k ∈ Grm, s ∈ Gq−rn , P = {1, . . . ,N} where N ∈ Z>0.

Proof. In order to derive the dynamics of E[x(k)], consider the drift and diffusion terms of the

slow variable dynamics of the original system (1)–(2), which can be denoted as fx(x, z, t) =

[fx1(x, z, t), . . . , fxn(x, z, t)]T and σx(x, z, t) = [σijx (x, z, t), t)] for i = 1, . . . , n and j = 1, . . . , dx.

Then, using the Ito formula as in [20, p. 86] the moment dynamics of x(k) for each k =

(k1, . . . , kn) ∈ KPn can be derived as

dE[x(k)]

dt
=

n∑
i=1

kiE[fxi(x, z, t)x̄
k1
1 . . . xki−1

i . . . xknn ]

+
1

2

n∑
p=1

kp(kp − 1)E[φpp(x, z, t)x
k1
1 . . . xkp−2

p . . . xknn ]

+

n∑
l=2

l−1∑
j=1

klkjE[φjl(x, z, t)x̄
k1
1 . . . x

kj−1
j . . . xkl−1

l . . . xknn ], (49)

where φij(x, z, t) for i, j = 1, . . . , n are the elements of the matrix Φ(x, z, t) defined in As-

sumption 2. From Assumptions 1 − 2, we have that the functions fxi(x, z, t) and φij(x, z, t)

are affine in x and z. Hence, it follows that the dynamics of P th order moments will depend

only on moments of order up to P . Under Assumption 1, we also have that A3(t) and B3(t)

are continuous functions. Therefore, for appropriate continuous functions C1i(t) and C2jl(t) for

i ∈ GPn , l ∈ G1
m and j ∈ GP−1

n , the moment dynamics in (49) can be written in the form given

in (52).

In order to derive the dynamics of E[z(g)], we consider the drift and diffusion terms of the

fast variable dynamics of the original system (1)–(2), which can be denoted as (1/ε)fz(x, z, t) =

(1/ε)[fz1(x, z, t, ε), . . . , fzm(x, z, t, ε)]T and (1/
√
ε)σz(x, z, t, ε) = (1/

√
ε)[σijz (x, z, t, ε)] for i =

1, . . . , n and j = 1, . . . , (dx + df ). Then, as in [20, p. 86] the moment dynamics of z(g) for each

g = (g1, . . . , gm) ∈ KPm can be written as

dE[z(g)]

dt
=

m∑
i=1

giE
[

1

ε
fzi(x, z, t, ε)z

g1
1 . . . zgi−1

i . . . zgmm

]

+
1

2

m∑
p=1

gp(gp − 1)E
[

1

ε
λpp(x, z, t, ε)z

g1
1 . . . zgp−2

p . . . zgmm

]

+

m∑
l=2

l−1∑
p=1

glgpE
[

1

ε
λpl(x, z, t, ε)z

g1
1 . . . zgp−1

p . . . zgl−1
l . . . zgmm

]
, (50)
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λij(x, z, t, ε) for i, j = 1, . . . ,m are the elements of the matrix Λ(x, z, t, ε) defined in Assumption

2. Under Assumptions 1−2, we have that the functions fzi(x, z, t, ε) and λij(x, z, t, ε) are affine

in x and z and are continuously differentiable in their arguments. Thus, it follows that the

dynamics of the moments of order P will depend only on moments of order less than or equal

to P . Then, multiplying both sides of the equation (50) by ε, we can represent the moments

E[z(g)] for each g ∈ KPm as in (47) for appropriate continuously differentiable functions D1a(t)

and D2bc(t) for a ∈ GPm , c ∈ G1
n, b ∈ GP−1

m .

In order to find the dynamics of E[z(kz)x(kx)], we consider the vector [z1, . . . , zm, x1, . . . , xn]T ,

for which the drift and the diffusion terms can be represented by the vector [fz1(x, z, t, ε)/ε, . . . ,

fzm(x, z, t, ε)/ε, fx1(x, z, t) . . . fxn(x, z, t)]T and matrix [(1/
√
ε)σijz (x, z, t, ε); [σx(x, z, t) 0]kj] re-

spectively, for i = 1, . . . ,m, j = 1, . . . , (dx + df ), k = 1, . . . , n, in which [σx(x, z, t) 0]

denotes a matrix-valued function Rn × Rm × R → Rn×(dx+df ) and [σx(x, z, t) 0]kj denotes

the elements of the matrix. Then, from [20, p. 86], the moment dynamics of z(kz)x(kx) for

kz = (c1, . . . , cm) ∈ KPzm and kx = (k1, . . . , km) ∈ KPxn can be written as

E[z(kz)x(kx)]

dt
=

m∑
i=1

ciE
[

1

ε
fzi(x, z, t, ε)z

c1
1 . . . zci−1

i . . . zcmm xk11 . . . xknn

]

+

n∑
i=1

kiE
[
fxi

(x, z, t)zc11 . . . zcmm xk11 . . . xki−1
i . . . xknn

]
+

1

2

m∑
i=1

ci(ci − 1)

[
λii(x, z, t, ε)

ε
zc11 . . . zci−2

i . . . zcmm xk11 . . . xknn

]

+
1

2

n∑
i=1

ki(ki − 1)
[
φii(x, z, t, ε)z

c1
1 . . . zcmm xk11 . . . xki−2

i . . . xknn

]

+

m∑
i=2

i−1∑
j=1

cicjE
[
λzji(x, z, t, ε)

ε
zc11 . . . z

cj−1
j . . . zci−1

i . . . zcmm xk11

. . . xknn

]
+

n∑
i=1

m∑
j=1

kicjE
[
θji(x, z, t, ε)√

ε
zc11 . . . z

cj−1
j . . . zcmm xk11 . . . xki−1

i

. . . xknn

]

+

n∑
i=2

i−1∑
j=1

kikjE
[
φji(x, z, t)z

c1
1 . . . zcmm xk11 . . . xki−1

i . . . x
kj−1
j

. . . xknn

]
. (51)



24

where λij(x, z, t, ε), φlk(x, z, t) and θik(x, z, t, ε) for i, j = 1, . . .m , l, k = 1, . . . n are the

elements of the matrices Λ(x, z, t, ε), Φ(x, z, t) and Θ(x, z, t, ε) defined in Assumption 2, re-

spectively. We have that the functions fzi(x, z, t, ε), fxi(x, z, t), λij(x, z, t, ε), φlk(x, z, t) and

θik(x, z, t, ε) are affine in x and z and are continuously differentiable in their arguments due to

Assumption 1 - 2. Thus, for appropriate functions F2a(t, ε), F1u(t, ε) , F3qrks(t, ε), for a ∈ GPm,

u ∈ GPn , q = 2, . . . , P , r = 1, . . . , q, k ∈ Grm, s ∈ Gq−rn the dynamics of E[z(kz)x(kx)] can be

written in the form of (48).

Next, we derive the moment dynamics of the reduced-order system (4)–(5). For this, de-

note the state vector of the reduced slow system by x̄ = [x̄1, . . . , x̄n]T and let γ(x̄, t) =

[γ1(x̄, t), . . . , γm(x̄, t)], g(x̄, t) = [g·1(x̄, t), . . . , g·(dx+df )(x̄, t)] where g·i(x̄, t) denotes the ith

column of g(x̄, t). Then, we have the following claim.

Claim 2. Under Assumptions 1 - 2, the moment dynamics of the reduced slow system in (4) are

given by

dE[x̄(k)]

dt
=
∑
i∈GP

n

C1i(t)E[x̄(i)] +
∑
l∈G1

m

∑
j∈GP−1

n

C2jl(t)E[γ(x̄, t)(l)x̄(j)], ∀k ∈ KPx
n , (52)

and the dynamics of the first and second moments of the reduced fast system in (5) are given by

E[z̄(h)] = E[γ(x̄, t)(h)] + (Pz − 1)E[

dx+df∑
l=1

g·l(x̄, t)(h)], ∀h ∈ KPz
m , (53)

where the functions C1i(t) : R → R and C2jl(t) : R → R satisfies equation (46) in Claim 1,

Px = {1, . . . ,N} where N ∈ Z>0 and Pz = {1, 2}.

Proof. To find the moment dynamics E[x̄(k)], note that the reduced slow system (4) is obtained

by taking z = γ(x, t) in (1). Thus, the dynamics for E[x̄(k)] for all k = (k1, . . . , kn) ∈ KPn can be

obtained by following the proof of Claim 1 with x = x̄ and z = γ(x̄, t), which yields equation

(52).

Next, to derive the moment dynamics of the reduced fast system in (5), we take the expectation

of equation (5), which yields

E[z̄] = E[γ(x̄, t) + g(x̄, t)N ]. (54)

From the definition of the reduced fast system, we have that N is a vector of standard normal

random variables independent of the random vector x̄. Thus, we have that E[N ] = 0 and as the
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expectation operator is linear, we obtain E[z̄] = E[γ(x̄, t)], which yields equation (53) for the

case where Pz = 1.

Next, considering the second moment of the reduced fast system we have that

E[zizj ] = E

(γi(x̄, t) +

dx+df∑
l=1

gil(x̄, t)Nl)(γj(x̄, t) +

dx+df∑
l=1

gjl(x, t)Nl)

.
Expanding further, we obtain

E[zizj ] = E[γi(x̄, t)γj(x, t)] + E

γi(x̄, t) dx+df∑
l=1

gjl(x̄, t)Nl

+ E

dx+df∑
l=1

gil(x̄, t)Nlγj(x̄, t)


+ E

(

dx+df∑
l=1

gil(x̄, t)Nl)(

dx+df∑
l=1

gjl(x̄, t)Nl))

.
Since the elements of the vector N are independent standard normal random variables, we have

that E[Ni] = 0 for all i, and E[NiNj] = 0 for i 6= j and E[NiNj] = 1 for i = j. Therefore, we

obtain E[zizj] = E[γi(x̄, t)γj(x̄, t)] + E
[∑dx+df

l=1 gil(x̄, t)gjl(x̄, t)
]
, which can be written in the

form of equation (53) for the case where Pz = 2.

Next, we analyze the set of moment equations obtained by setting ε = 0 in the moment

dynamics of the original system given in Claim 1.

Claim 3. Setting ε = 0 in the moment dynamics of the original system in (46)–(48) yields the

following reduced-order system for all moments of the slow variable and up to second order

moments of the fast variable:

dE[x(k)]

dt
=
∑
i∈GP

n

C1i(t)E[x(i)] +
∑
l∈G1

m

∑
j∈GP−1

n

C2jl(t)E[γ(x, t)(l)x(j)], ∀k ∈ KPx
n , (55)

E[z(h)] = E[γ(x, t)(h)] + (Pz − 1)E[

dx+df∑
l=1

g·l(x̄, t)(h)], ∀h ∈ KPz
m , (56)

where the functions C1i(t) : R → R and C2jl(t) : R → R satisfies equation (46) in Claim 1,

Px = {1, . . . ,N} where N ∈ Z>0 and Pz = {1, 2}.

Proof. From Claim 1, we note that the fast variables that appear in the slow variable dynamics

in (46) are of the form E[zix
(j)] for j = (k1, . . . , kn) ∈ GP−1

n and i = 1, . . . ,m. Thus, we first

consider setting ε = 0 in the dynamics of E[zix
(j)]. The dynamics of E[zix

(j)] can be obtained

from the derivation of (48) in the proof of Claim 1, with kz = (c1, . . . , cm) ∈ K1
m which gives

ci = 1 and cl = 0 for l 6= i for each i = 1, . . . ,m. Then, we have
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ε
dE[zix

(j)]

dt
= E

[
fzi(x, z, t, ε)x

(j)
]

+ ε

n∑
l=1

klE[fxl
(x, z, t)zix

k1
1 . . . xkl−1

l . . . xknn ]

+ ε
1

2

n∑
p=1

kp(kp − 1)E[φpp(x, z, t)zix
k1
1 . . . xkp−2

p . . . xknn ]

+
√
ε

n∑
m=1

kmE
[
θim(x, z, t, ε)xk11 . . . xkm−1

m . . . xknn

]

+ ε

n∑
l=2

l−1∑
p=1

klkpE[φpl(x, z, t)zix
k1
1 . . . xkp−1

p . . . xkl−1
l . . . xknn ], (57)

where φlk(x, z, t) and θil(x, z, t, ε) are the elements of the matrices Φ(x, z, t) and Θ(x, z, t, ε)

defined in Assumption 2, where we have that limε→0 θij(x, z, t, 0) < ∞ for i = 1, . . . ,m and

j = 1, . . . , n. Thus, setting ε = 0 in the dynamics of the vector E[zx(j)] yields

E[fz(x, z, t, 0)x(j)] = 0. (58)

Under Assumption 2 - 3, there exist a unique solution to equation (58), which is given by

E[zx(j)] = −B−1
2 (B1E[xx(j)] +B3(t)E[x(j)]). Considering the expression for γ(x, t) in equation

(3), it follows that E[γ(x, t)x(j)] = E[−B−1
2 (B1x+ B3(t))x(j)] = E[zx(j)]. Thus, it can be seen

that setting ε = 0 in (57), we obtain

E[zix
(j)] = E[γi(x, t)x

(j)], i ∈ {1, . . . ,m}, j = (k1, . . . , kn) ∈ GP−1
n . (59)

Then, substituting (59) in (46) yields the set of equations (57) for the moments of the slow

variable x.

Considering the equation (59) with P = 1, we also obtain that E[zi] = E[γi(x, t)], which

results in the equation (56) for the case where Pz = 1.

Next, we consider setting ε = 0 in the second order moment dynamics of z in (47) given

by the case where g ∈ K2
m. We denote these moments by E[zizj] for i, j = 1, . . . ,m, for

which, the dynamics can be obtained from the derivation of (47) in the proof of Claim 1, taking

g = (g1, . . . , gm) ∈ K2
m with gi = 1, gj = 1 and gl = 0 for all l 6= i, j. Then, representing the

second moments of z in matrix form we have

ε
dE[zzT ]

dt
= E[zfz(x, z, t, ε)

T ] + E[fz(x, z, t, ε)z
T ] + E[σz(x, z, t, ε)σz(x, z, t, ε)

T ]. (60)

Then, setting ε = 0 in the equation (60) together with Assumptions 1 - 2, yields
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E[zxT ]BT1 + E[zzT ]BT2 + E[z]B3(t)T +B1E[xzT ]

+B2E[zzT ] +B3(t)E[zT ] + Λ(E[x],E[z], t, 0) = 0. (61)

From equation (59), we can write E[z] = E[γ(x, t)] and E
[
zxT

]
= E

[
γ(x, t)xT

]
for the case

where P = 1 and P = 2, which can then be used in (61) to obtain

E[zzT ]BT2 +B2E[zzT ] = −E
[
γ(x, t)xT

]
BT1 − E[γ(x, t)]B3(t)T

−B1E
[
γ(x, t)xT

]T −B3(t)E[γ(x, t)]
T − Λ(E[x],E[γ(x, t)], t, 0). (62)

The equation (62) is in the form of the Lyapunov equation

ATP + PA = −Q,

with

P = E[zzT ],

Q = −E
[
γ(x, t)xT

]
BT1 − E[γ(x, t)]B3(t)T −B1E

[
γ(x, t)xT

]T
−B3(t)E[γ(x, t)]

T − Λ(E[x],E[γ(x, t)], t, 0),

A = BT2 .

From Assumption 3, we have that the matrix B2 is Hurwitz, and therefore, there exists a unique

solution for E
[
zzT
]

in the equation (62). Thus, to prove that the solution to (62) is in the form

of

E[zzT ] = E
[
γ(x, t)γ(x, t)T + g(x, t)g(x, t)T

]
(63)

given by (56) for the case where Pz = 2 we substitute (63) in (62), which yields

E[γ(x, t)γ(x, t)T ]BT2 + E[g(x, t)g(x, t)T ]BT2

+B2E[γ(x, t)γ(x, t)T ] +B2E[g(x, t)g(x, t)T ] =

− E
[
γ(x, t)xT

]
BT1 − E[γ(x, t)]B3(t)T −B1E

[
γ(x, t)xT

]T
−B3(t)E[γ(x, t)]

T − Λ(E[x],E[γ(x, t)], t, 0).

Simplifying further using the linearity of the expectation operator and the function γ(x, t), and

noting that B1x + B3(t) = −B2γ(x, t) from the expression for γ(x, t) in equation (3),we have

that
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E[γ(x, t)γ(x, t)T ]BT2 + E[g(x, t)g(x̄, t)T ]BT2

+B2E[γ(x, t)γ(x, t)T ] +B2E[g(x, t)g(x, t)T ] =

E
[
γ(x, t)γ(x, t)T

]
BT2 +B2E

[
γ(x, t)γ(x, t)T

]
− Λ(E[x], γ(E[x], t), t, 0).

Canceling the common terms on both sides yields the expression

E[g(x, t)g(x, t)T ]BT2 +B2E[g(x, t)g(x, t)T ] = −Λ(E[x], γ(E[x], t), t, 0),

which is satisfied by the definition of the function g(x, t) in (6). Thus, we have that setting ε = 0

in the moments of the original system yields the equation (56) for Pz = 2, i.e. for the second

order moments of z.

Lemma 1. Consider the original system in (1)–(2), the reduced system in (4)–(5) , the moment

dynamics of the original system in (46)–(48) and the moment dynamics of the reduced system

in (52). We have that, under Assumptions 1 - 3, the commutative diagram in Fig. 7 holds.

Proof. Proof follows from Claim 1, Claim 2 and Claim 3.

Original System

ẋ = fx(x, z, t) + σx(x, z, t) Γx

εż = fz(x, z, t, ε) +
√
εσz(x, z, t, ε) Γz

˙̄x = fx(x̄, γ1(x̄, t), t) + σx(x̄, γ1(x̄, t), t) Γx

z̄ = γ1(x̄, t) + g(x̄, t)N

See Claim 2.See Claim 1.

Moments of the Original System Moments of the Reduced System

Reduced System

ε→ 0

ε→ 0

Fig. 7: Setting ε = 0 in the moment dynamics of the original system yields the moment dynamics of

the reduced system.

Proof of Theorem 1: From the commutative diagram in Lemma 1, it follows that setting ε = 0

in the moment dynamics of the original system yields the moment dynamics of the reduced-order

system for up to second order moments of the fast variable and for all moments of the slow

variable. Therefore, we can apply Tikhonov’s theorem to the moment dynamics of the original

system in (46)–(48) to obtain the result (7)–(8).
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We first prove that the assumptions of the Tikhonov’s theorem are satisfied. To this end,

we begin by considering the assumption on the global exponential stability of the boundary

layer dynamics of the system (46)–(48). From equation (46), it follows that the fast vari-

ables that appear in (46) are of the form E[zix
(j)] for j ∈ GP−1

n . Thus, we define the vector

bj = [b1j, . . . , bmj]
T for the boundary layer variable for E[zix

(j)] where bij = E[zix
(j)] −

E[γi(x, t)x
(j)] for j ∈ GP−1

n and i = 1, . . . ,m. Furthermore, in Theorem 1, we only consider

up to the second order moments of the fast variable. Thus, we define the matrix V as the

boundary layer variable for E[zlzk] where the elements of V are given by vlk = E[zlzk] −

E
[
γl(x, t)γk(x, t) +

∑dx+df
h=1 g(x, t)lhg(x, t)kh

]
, for l, k = 1, . . . ,m. Then the dynamics of the

variable bij and vlk are given by

dbij
dt

=
dE[zix

(j)]

dt
− dE[γi(x, t)x

(j)]

dt
,

dvlk
dt

=
dE[zlzk]

dt
−
dE
[
γl(x, t)γk(x, t) +

∑dx+df
h=1 g(x, t)lhg(x, t)kh

]
dt

.

Let τ = t/ε be the time variable in the fast time-scale. Then we have that

dbij
dτ

= ε
dE[zix

(j)]

dt
− εdE[γi(x, t)x

(j)]

dt
,

dvlk
dτ

= ε
dE[zlzk]

dt
− ε

dE
[
γl(x, t)γk(x, t) +

∑dx+df
h=1 g(x, t)lhg(x, t)kh

]
dt

.

Since from (3) we have that γi(x, t) is a linear function of x, and since j ∈ GP−1
n we have that

x(j) contains moments of order up to P −1. Therefore, it follows that γi(x, t)x(j) can be written

in terms of P th or lower order moments of x and γl(x, t)γk(x, t) consists of up to second order

moments of x . Furthermore, from (6) we have that g(x, t)g(x, t)T is a matrix whose elements

are linear functions of x. Therefore, for appropriate functions Qk(t) for k ∈ GPn , Zr(t) for r ∈ G2
n

and employing the linearity of the differential operator, we can write

dbij
dτ

= ε
dE[zix

(j)]

dt
− ε

∑
k∈GP

n

Qk(t)
dE[x(k)]

dt
,

ε
dvlk
dt

= ε
dE[zlzk]

dt
− ε

∑
r∈G2

Zr(t)
dE[x(r)]

dt
.

Substituting from (46) and using the expansions of dE[zix
(j)]/dt, dE[zkzk]/dt, (see proof of

Claim 3), yields

dbij
dτ

= E
[
fzi(x, z, t, ε)x

(j)
]
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+ ε

n∑
l=1

jlE[fxl
(x, z, t)zix

j1
1 . . . xjl−1

l . . . xjnn ]

+ ε
1

2

n∑
p=1

jp(jp − 1)E[φpp(x, z, t)zix
j1
1 . . . xjp−2

p . . . xjnn ]

+
√
ε

n∑
m=1

jmE
[
θim(x, z, t, ε)xj11 . . . xjm−1

m . . . xjnn

]

+ ε

n∑
m=2

m−1∑
p=1

jmjpE[φpm(x, z, t)zix
j1
1 . . . xjp−1

p . . . xjm−1
m

. . . xjnn ]

− ε
P∑
s=0

∑
k∈Ks

Qk(t)

( ∑
i∈NP

C1i(t)E[x̄(i)]

+
∑
l∈C1

∑
j∈NP−1

C2jl(t)E[γ(x̄, t)(l)x̄(j)]

)
, (64)

dvlk
dt

= E[zlfzk(x, z, t, ε)] + E[zkfzl(x, z, t, ε)] + E[λlk(x, z, t, ε)]

− ε
∑
r∈N 2

Zr(t)
dE[x(r)]

dt
. (65)

where φij(x, z, t), θlj(x, z, t, ε), λlk(x, z, t, ε) for i, j = 1, . . . n and l, k = 1, . . . ,m are the

elements of the matrices Φ(x, z, t), Θ(x, z, t, ε) and Λ(x, z, t, ε) given in Assumption 2.

We obtain the boundary layer system for the vector bj , by setting ε = 0 in the equation

(64), with E[zx(j)] = bj + E[γ(x, t)x(j)]. Under Assumptions 1 - 2, the functions fx(x, z, t),

fz(x, z, t, ε), φij(x, z, t), θlj(x, z, t, ε), Qk(t), C1i(t), C2jl(t) are continuous and therefore are

bounded on any compact interval t = [0, t1]. We also have that θlj(x, z, t, 0) <∞, from Assump-

tion 2. Additionally, as the system (46)–(48) is linear, the solutions E[x(i)] and E[γ(x, t)(l)x(j)]

exist and are bounded on any compact interval t = [0, t1]. Therefore, the boundary layer dynamics

bj are given by dbj
dτ

= E
[
fz(x, z, t, 0)x(j)

]∣∣∣
E[zx(j)]=bj+E[γ(x,t)x(j)]

. Together with Assumption 1 and

the definition of γ(x, t) in equation (3), we then obtain

dbj
dτ

= B1E[xx(j)] +B2(bj + E[γ(x, t)x(j)]) +B3(t)E[x(j)]

= B2bj . (66)

In order to obtain the boundary layer dynamics for V , we first represent the elements of bj

where j = (k1, . . . , kn) ∈ GP−1
n for the case P = 1 as a vector d = E[z]−E[γ(x, t)] and for the

case P = 2 as a matrix E = E
[
zxT

]
−E[γ(x, t)xT ]. Then, the boundary layer dynamics for the

matrix V can be obtained by setting ε = 0 in (65) and taking E[zxT ] = E + E[γ(x, t)xT ] and

E[z] = d+ E[γ(x, t)], which yields
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dV

dτ
= V BT2 +B2V

T + EBT1 +B1E
T +B3(t)dT + dB3(t)T . (67)

Under Assumption 3, we have that the origin is a globally exponential stable equilibrium point

of the boundary layer dynamics bj in (66). Next, to determine the stability of the boundary layer

dynamics V , we consider the solution of (67) for V given by [39]

V (τ) =eB2τV (0)eB
T
2 τ +

∫ τ

0

eB2(τ−v)(E(v)BT1 +B1E(v)T

+B3(t)d(v)T + d(v)B3(t)T )(eB2(τ−v))T dv.

Then, considering the solutions for E and d, which can be obtained from (66), and are in the

form E(τ) = E(0)eB2τ and d(τ) = d(0)eB2τ , and using that B2 is Hurwitz under Assumption

3, it follows that there exists positive constants C1 and r1 such that ‖V (τ)‖F ≤ C1(‖d(0)‖F +

‖E(0)‖F+‖V (0)‖F )e−r1τ , where ‖.‖F denotes the Frobenius norm. Then, taking Y = [d | E | V ],

and considering the exponential stability of E and d, we can write ‖Y (τ)‖F ≤ C‖Y (0)‖F e−rτ

for positive constants C and r. Thus, we have that the origin is a globally exponentially stable

equilibrium point of the boundary layer dynamics V .

Furthermore, we ensure that the additional assumptions of the Tikhonov’s theorem also hold.

We have that C1i(t), C2lj(t) are continuous functions with respect to time and that the functions

D1a(t, ε), D2bc(t, ε), F1i(t, ε), F2a(t, ε), F3qrks(t, ε) in (46)–(48) and their partial derivatives with

respect to t and ε are continuous, from Claim 1. Due to the linearity of the function γ(x, t)

and g(x, t)g(x, t)T , we have that the function E[γ(x, t)x(j)] for j ∈ GP−1
n has continuous

first partial derivatives with respect to its arguments E[x(k)] for k ∈ GPn and the function

E
[
γ(x, t)γ(x, t)T + g(x, t)g(x, t)T

]
has continuous first partial derivatives with respect to its

arguments E[x(k)] for k ∈ G2
n. Furthermore, we have that the system (52) has a unique solution on

a compact time interval t ∈ [0, t1], due to its linearity. Hence, the assumptions of the Tikhonov’s

theorem on a finite time interval are satisfied and applying the theorem to the moment dynamics

of the original system in (46)–(48), yields the desired result in (7)–(8).

APPENDIX B

Here, we show the derivation on the moment dynamics of the variable y using the slow

and fast variable approximations. First, we derive the first and second moment dynamics of the

variables v and c of the reduced system in (27)–(30) as
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dE[v]

dt̄
=

X

kd1
− (1−R)E[v], (68)

E[c] =
E[v]β1pT0

δ1(pT + kd2)
, (69)

dE
[
v2
]

dt̄
= 2

X

kd1
E[v]− 2(1−R)E

[
v2
]

+
δ1

X
kd1

β1pT0Ω
+
δ1(1−R)E[v]

β1pT0Ω
, (70)

E[c2] =
E
[
v2
]
β2

1p
2
T0

δ2
1(pT + kd2)2

+
E[v]β1pT0kd2

δ1pTΩ(pT + kd2)2
, (71)

E[vc] =
E
[
v2
]
β1pT0

δ1(pT + kd2)
. (72)

Since y = v − pT δ1
β1pT0

c, we can write the dynamics for the first moment of y as dE[y]
dt̄

=

dE[v]
dt̄
− pT δ1

β1pT0

dE[c]
dt̄
. Then, using the chain rule we obtain dE[y]

dt̄
=
(

1− pT δ1
β1pT0

dE[c]
dE[v]

)
dE[v]
dt̄
, and with

dE[c]
dE[v]

= β1pT0

δ1(pT+kd2)
from (69), we can write

dE[y]

dt̄
=

(
1− pT

(pT + kd2)

)
dE[v]

dt̄
. (73)

Considering the dynamics for the second moment of y, we have dE[y2]
dt̄

=
dE[(v− pT δ1

β1pT0
c)2]

dt̄
.

Substituting the fast variable approximation in (30) we obtain

dE[y2]

dt̄
=

dE
[(
v − vpT

(pT +kd2) +
√

vδ1pT kd2
β1pT0Ω(pT +kd2)2N2

)2
]

dt̄
.

Since N2 is a normal random variable independent of y with E[N2] = 0 and E[N2
2 ] = 1, we

have that

dE[y2]

dt̄
=

k2
d2

(pT + kd2)2

dE
[
v2
]

dt̄
+

δ1pT kd2

β1pT0Ω(pT + kd2)2

dE[v]

dt̄
. (74)

Substituting in (73) and (74) the expressions for the dynamics of E[v] and E[v2] given in (68)

and (70), yields the first and second moment dynamics of y as

dE[y]

dt̄
=

(
1− pT

(pT + kd2)

)(
X

kd1
− (1−R)E[v]

)
, (75)

dE[y2]

dt̄
=

k2
d2

(pT + kd2)2

(
2
X

kd1
E[v]− 2(1−R)E

[
v2
]

+
δ1

X
kd1

β1pT0Ω

+
δ1(1−R)E[v]

β1pT0Ω

)
+

δ1pT kd2

β1pT0Ω(pT + kd2)2

(
X

kd1
− (1−R)E[v]

)
. (76)

Next, in order to write the equations (75)–(76) in terms of E[y] and E[y2], we use the moments

of the fast variable approximation in (69) and (72) to express E[v] and E[v2] in terms of E[y]

and E[y2]. Towards this end, first consider E[v] = E[y] + pT δ1
β1pT0

E[c]. Using the expression for

E[c] from (69) we have
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E[v] =
(kd2 + pT )

kd2
E[y]. (77)

Considering the second moments, we obtain

E
[
v2
]

= E
[
(y +

pT δ1
β1pT0

c)2

]
= E

[
y2
]

+ 2
pT δ1
β1pT0

E[yc] +
p2
T δ

2
1

β2
1p

2
T0

E
[
c2
]
, (78)

E[vc] = E
[
(y +

pT δ1
β1pT0

c)c

]
= E[yc] +

pT δ1
β1pT0

E
[
c2
]
. (79)

Using E[yc] = E[vc]− pT δ1
β1pT0

E[c2] from (79) in (78) we obtain E[v2] = E[y2] + 2 pT δ1
β1pT0

E[vc]−
p2T δ

2
1

β2
1p

2
T0
E[c2]. Then, substituting for E[vc] and E[c2] from (71)–(72), yields E[v2] = E[y2] +

2
E[v2]pT

(pT+kd2)
− E[v2]p2T

(pT+kd2)2
− E[v]δ1pT kd2

Ωβ1pT0(pT+kd2)2
. Simplifying further and using the expression for E[v]

from (77) yields

E
[
v2
]

=
(kd2 + pT )2

k2
d2

E
[
y2
]
− δ1(kd2 + pT )pTE[y]

k2
d2Ωβ1pT0

. (80)

Then, substituting (77) and (80) in (75)–(76) and simplifying further yields the moment

dynamics of the mixed variable given in (39)–(40).

APPENDIX C

Evaluating the magnitude of the frequency response of the system (42) - (44), we find that√
|E[∆g2

S ](jω̄)|
|gR(jω̄)|

√
k2

=

√
δ2
2δ

2
1 + δ4

1ω̄
2

k2 Ω
4
√
A(pT , ω̄), (81)

where the function A(pT , ω̄) is in the form

A(pT , ω̄) =

(
(1−R)2 + ω̄2

)
(N1 +N2 +N3 +N4)

(β1pT0/kd1)2β2
2δ

2
1p

2
TD1D2

, (82)

with

N1 =− 2δ3
1(R− 1)ω̄2(kd2 + pT )(2β2pT + δ2(kd2 + pT )),

N2 =δ2
1

(
4β2

2p
2
T ω̄

2 + 8β2δ2pT ω̄
2(kd2 + pT )

)
+ δ2

1

(
δ2
2(kd2 + pT )2

(
4R2 − 8R+ 5ω̄2 + 4

))
,

N3 =− 8δ1δ
2
2(R− 1)(kd2 + pT )(β2pT + δ2(kd2 + pT )),

N4 =4δ2
2(β2pT + δ2(kd2 + pT ))2 + δ4

1ω̄
2(kd2 + pT )2

(
R2 − 2R+ ω̄2 + 1

)
,

D1 =
(
δ4
1ω̄

4 + 5δ2
1δ

2
2ω̄

2 + 4δ4
2

)
,

D2 =
(
δ2
1

(
R2 − 2R+ ω̄2 + 1

)
− 2δ1δ2(R− 1) + δ2

2

)
.
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To identify the change in A(pT , ω̄) with pT , we consider the derivative of A(pT , ω̄) with

respect to pT . Evaluating the derivative at ω̄ = 0, yields

∂A(pT , ω̄)

∂pT

∣∣∣∣
ω̄=0

= −
2k2
d2

(
Nd1 +Nd2 +Nd3 + δ3

1k
3
d2

)
(β1pT0/kd1)2β2

2δ
2
1δ

2
2p

3
T (δ1kd2 + δ2(kd2 + pT ))3

,

where

Nd1 = δ2
(
β2

2p
3
T + β2δ2pT

(
k2
d2 + 3kd2pT + 2p2

T

)
+ δ2

2(kd2 + pT )3
)
,

Nd2 = δ2
1k

2
d2(β2pT + 3δ2(kd2 + pT )),

Nd3 = δ1δ2kd2

(
β2pT (2kd2 + 3pT ) + 3δ2(kd2 + pT )2

)
.

Thus, it can be see that the derivative is negative for all parameter conditions. We note that

the function A(pT , ω̄) is a rational polynomial function in pT and is continuous with respect to

ω̄. Thus, we have that ∂A(pT ,ω̄)
∂pT

is continuous with respect to ω̄ and thus will remain negative in

a neighborhood of ω̄ = 0. Therefore, the function A(pT , ω̄) is decreasing with pT for sufficiently

small ω̄.
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[15] C. Tang and T. Başar. Stochastic stability of singularly perturbed nonlinear systems. In Proc. of the 40th IEEE Conf. on

Decis. and Control, volume 1, pages 399–404, 2001.
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