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Abstract 
There is a growing interest in developing cool pavement strategies to mitigate 

pavement’s impact on the global warming in recent years. One of the mitigation 

strategies is by increasing the solar reflectance (or albedo) of the pavement surface, 

which directly contributes to global cooling by adjusting radiative forcing and 

potentially reduces the energy demand in the urban areas. In this paper, the radiative 

energy budgets in four urban areas are investigated based on the data derived from 

NASA satellite measurements. The radiative forcing (RF) due to the change of urban 

surface albedo as a result of reflective pavements is estimated using a simplified 

engineering model. The carbon dioxide (CO2) equivalence savings are also calculated 

with reference to the 100-year global warming potential of CO2. Results show that the 

implementation of reflective pavement has a great potential to reduce global warming. 

The CO2 reduction is significant in the urban areas but also affects the surrounding 

regions to some extent. In the end, we recommend using a climate model 

incorporating site-specific information that enables the visualization of the outputs 

through spatial maps. The results from this work would be useful for guiding the 

implementation of the cool pavement strategies. 
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Introduction 
Anthropogenic modifications to land surface properties due to land use change have 

the potential to change the climate. Urbanization (conversion of large areas of natural 

surfaces to man-made impervious land), as a result of population growth and 

economic development, is considered as one of the principal human activities 

influencing land surface characterization and the climate system.  

Albedo is a measure of surface reflectance defined as the ratio of solar 

radiation reflected by a body or surface to the amount incident upon it, ranging from 0 

(complete absorption) to 1 (complete reflection). Roofs and pavements, which 

constitute about 20-25% and 29-44% respectively of typical US urban surfaces (Rose 

et al. 2003), generally have lower albedos than their surrounding areas. These urban 

surfaces have to be changed and maintained regularly (e.g. pavements are typically 

resurfaced once in a decade and new roofs are installed or resurfaced every 2–3 

decades) (Akbari et al. 2012). Changes in the surface albedo directly affect the energy 

balance of the earth and its climate feedbacks, leading to global climate change. 

Radiative forcing, as a measure of the imbalance of the earth’s energy budget, is 

usually used to quantify such direct impacts and can be translated into global warming 

potential (GWP). In addition, energy absorbed by urban surfaces raises the air 

temperature (by 2 - 4 °C) in the urban area, causing a phenomenon known as an 

"urban heat island" (UHI) (Oke 1992). The higher temperature increases the demand 

for cooling energy in buildings in order to maintain comfort levels. Furthermore, 

increased electricity generation by power plants leads to higher emissions of 

greenhouse gases. These are the indirect impacts of changing surface albedo in the 

urban areas, which can also be measured in terms of GWP. 

One strategy proposed for mitigating global warming and UHI has been to 

increase the solar reflectance of roofs and pavements in urban areas, commonly 

referred to as cool roof and cool pavement strategies. Cool roofs have been mandated 

in many states and cities over the past decades. Cool pavements, however, have not 

been widely adopted as standard practice. They have a longer life and hence a lower 

life cycle cost, which could potentially decrease greenhouse gas (GHG) emissions 

because of lower energy requirements for installation and maintenance (Pomerantz & 

Akbari 1998). Many studies have assessed the impacts of implementing cool roofs 

using analytical models or numerical tools (Jo et al. 2010; Jacobson & Hoeve 2012; 

Li et al. 2014). Only a few studies could be found that quantify the potential impacts 

of cool pavements (Yaghoobian & Kleissl 2012; Santamouris et al. 2012). 

The goal of this study is to estimate the potential benefits of reflective 

pavements through a simplified engineering model, and demonstrate the dependency 

of the albedo impacts on some contextual factors. The paper first reviews the existing 

literatures on estimating the radiative forcing induced by changing surface albedo in 

general (regardless of roofs or pavements), and the estimated GWP savings associated 

with different cooling strategies. Next, an analytical method is developed to calculate 

the RFs and CO2 equivalence saving due to surface albedo change. The method is 

then applied in a case study to investigate the impacts of reflective pavements in four 

selected urban areas in the U.S., using the context-specific data from NASA.  

 

Literature Review 
Reflective pavements. Albedo or solar reflectivity is an important thermal property of 

a pavement surface. As one of the cool pavement strategies to combat global warming 

and UHI, reflective pavements with high albedo can be achieved by using surfacing 

materials of light color (e.g. Pomerantz et al. 2000; Levinson & Akbari 2002; 
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Pomerantz et al. 2003), or applying light color coating on dark surfacing materials 

(e.g. Karlessi et al. 2011; Synnefa et al. 2011; Kolokotsa et al. 2012; Santamouris et 

al. 2012). Table 1 lists several techniques to increase the pavement surface 

reflectivity.  

TABLE 1 Existing techniques to increase the albedo of concrete and asphalt pavements 

Pavements Techniques Albedo Reference 

Concrete 

pavement 

Conventional 
0.35–0.40 (new) 

0.20–0.30 (weathered) 
(ACPA 2002) 

White concrete 
0.70–0.80 (new) 

0.40–0.60 (weathered) 
(ACPA 2002) 

Adding slag 
0.20-0.58 

(Boriboonsomsin & 

Reza 2007) 

0.36-0.69 
(Marceau & VanGeem 

2008) 

White-topping 0.34-0.40 (Sultana 2015) 

 Conventional 
0.05–0.10 (new) 

0.10–0.15 (weathered) 
(ACPA 2002) 

Asphalt 

pavements 

Chip seal 0.08-0.20 
(Bretz et al. 1992; 

Pomerantz et al. 2003) 

Light-colored aggregate 0.52 
(Anak Guntor et al. 

2014) 

Light-colored paint 0.40-0.60 (Wan & Hien 2012) 

 

Concrete pavements can be highly reflective if white cementitious materials 

and light-colored aggregates are present in the concrete mix. The albedo of concrete is 

predominately determined by the solar reflectance of the cement (Marceau & 

Vangeem 2007). The albedo increases when the portland cement hydration produces 

calcium hydroxide, and the albedo stabilizes after the hydration completes (Levinson 

& Akbari 2002). Adding fly ash in the concrete mix can reduce the albedo 

(Boriboonsomsin & Reza 2007), possibly because fly ash is darker than portland 

cement. Adding slag, on the contrary, increases the albedo because slag has high 

reflectance than fly ash (Marceau & VanGeem 2008). White-topping is a technique to 

resurface the distressed pavements with concrete overlay. Roller-compacted concrete 

pavements are constructed by using vibratory rollers to place dry, stiff portland 

concrete mix as compacted surface layers. Both of them have relatively high albedos 

due to their cementitious mixture (Qin 2015). 

Asphalt pavements typically have a lower albedo than concrete pavements due 

to the dark color of bitumen, but there are still ways to improve their reflectivities. 

The most commonly used techniques are chip seal and slurry seal with light-colored 

aggregates. In the construction of a sealed surface, the aggregates are partially 

exposed so the surface albedo is between the reflectance of the asphalt binder and of 

the aggregates. The albedo of these sealed pavements mainly depend on the color of 

the aggregates and the pavement’s age (Pomerantz et al. 2003). Other techniques such 

as painting with light-colored coatings or microsurfacing with light-colored materials 

also increase the reflectance of asphalt pavements substantially (Tran et al. 2009). 

The albedo of a pavement surface can be greatly affected by wetting, soiling, 

abrasion and weathering after exposure to traffic and pedestrian (Levinson & Akbari 

2002). As a pavement ages, the albedo becomes more dependent on the reflectance of 

the aggregate and the sand paste (Marceau & VanGeem 2008). A newly constructed 

gray-cement pavement has an albedo of 0.35–0.40. As concrete ages, it becomes dark 
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because of dirt and tire wear, so most aged concretes have an albedo of 0.20–0.30. 

Alchapar et al. (2013) found that the reflectance index of colored pedestrian 

pavements decreased about 20% after one-year exposure. 

 

Albedo-induced radiative forcing. The term “radiative forcing” (RF) is defined as the 

change in net (down minus up) irradiance (solar plus long-wave; in W/m2) at the 

tropopause or at the top of the atmosphere (TOA) due to an imposed change 

(Ramaswamy 2001). It describes any perturbation or imbalance in the radiative 

energy budget of the Earth-atmosphere system, which has the potential to lead to 

climate changes and thus results in a new equilibrium state of the climate system. A 

variety of forcing agents can cause such a perturbation including greenhouse gases, 

tropospheric aerosols, ozone, land-use change (surface albedo change), solar 

irradiance and aerosols from volcanic eruptions. RF is then used to estimate and 

compare the relative strength of different anthropogenic and natural forcing agents on 

climate change. Positive RFs represent global warming and negatives lead to global 

cooling. According to the fifth assessment report of the Intergovernmental Panel on 

Climate Change (IPCC AR5) (Myhre et al. 2013), surface albedo change, primarily 

due to deforestation, have induced an overall increased surface albedo and an RF of –

0.15 ± 0.10 W/m2. The uncertainty range associated with this estimate is large and the 

level of scientific understanding is medium-low as reported in IPCC AR5. Besides, 

albedo-induced RF has also been estimated by analytical models or monitored 

through climate simulations. Figure 1 presents the calculated RFs normalized to every 

0.01 (1%) increase in albedo from several existing studies.  

As shown in the figure, RFs calculated from different analytical and numerical 

models are comparable, ranging from -2.9 to -1.3 for a 0.01 increase in albedo. The 

variation in results from theoretical calculations mainly comes from the assumptions 

and estimations used for solar insolation and atmospheric transmittance, both varying 

with location and cloud cover. Myhre and Myhre (2003) have demonstrated that RF is 

not linear with surface albedo changes. In general, tropical regions have a stronger 

forcing than at higher latitudes for the same vegetation change or surface albedo 

change.  

Difference in the RFs simulated from numerical models is possibly a result of 

model resolutions and land surface characterizations. RFs simulated from using fully 

coupled climate models tend to be greater than those simulated using an uncoupled 

land-surface model, since atmospheric feedbacks from urban albedo changes can not 

only attenuate forcing changes but also amplify the changes in some regions 

(Millstein & Menon 2011). 
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Figure 1 Comparison of normalized RFs due to 0.01 increase in albedo from analytical 

and numerical models (in Menon et al (2010), dark red is for global land areas and light red 

is for the U.S. only; in Millstein & Menon (2011), dark red is annual average and light red is 

summer average) 

 

Most of the existing studies indicate a similar response of a reduction in RF or 

an increase in outgoing radiation due to an increase in surface albedo. The negative 

RF values can be further translated intp GWP or CO2 offsets that may be expected if 

urban albedos were increased. As shown in Table 2, the estimated annual GWP 

savings from a 0.01 increase in urban surface albedo could be up to 7 kg CO2 per 

square meter of urban area or cool surfaces. 

TABLE 2 GWP savings or CO2 offsets from urban surface modifications in existing 

studies 

Albedo increase 

(∆𝜶) 

GWP savings (kg 

CO2/m2) 

Normalized 

savings 
Reference 

0.01 2.55 2.55 (Akbari et al. 2009) 

0.01 3.26 3.26 (Menon et al. 2010) 

0.25 on roofs 175 7 (Millstein & Menon 2011) 

0.15 on pavement 125 8.33 (Millstein & Menon 2011) 

0.01 7 7 (Akbari et al. 2012) 

0.01 1.6 1.6 (Rossi et al. 2013) 

 

There is great uncertainty and spatial variability associated with the above 

estimates due to the characterization of land cover, exclusion of feedbacks, and the 

climate model used to simulate the energy balance. The relationship between the 

contextual factors and the albedo-induced RF has not been well characterized by 

analytical models. In addition, most of the existing works focus on the estimations of 

RF due to large-scale land cover changes such as forestation/deforestation and 

greenhouse agriculture. Only a few studies have quantified the direct radiative impact 

as a result of the modifications to urban surfaces. Therefore, research is needed to fill 

the gaps in understanding the impacts of reflective pavements on the urban energy 

budget, and how it is affected by contextual factors. 

 

Case Study 
To estimate the magnitude of the albedo impact of reflective pavements on radiative 

balance, four major cities in the U.S are selected in this case study, representing 

different climate conditions. The location and climate information are summarized in 



Xu, Gregory and Kirchain 

 

6 

 

Table 3. The latitude of the urban area is related to the intensity of the incoming solar 

radiation, and the climate condition can affect the amount of radiation reflected by to 

the space. Such information is necessary when calculating the albedo-induced 

radiative forcing, which will be described in the following section. 

TABLE 3 Location and climate information of the cities selected for the case study 

City  
Location  

(Latitude, Longitude) 
Climate zone* 

Los Angeles, CA (34.05°N, 118.25°W) 3 (warm-dry) 

Houston, TX (29.76°N, 95.38°W) 2 (hot-humid) 

Chicago, IL (41.84°N, 87.68°W) 5 (cool-humid) 

Boston, MA (42.36°N, 71.06°W) 5 (cool-humid) 

*Climate zone classified based on Briggs et al. (2002) 

 

The albedo of conventional concrete pavements ranges from 0.25 to 0.4. As 

indicated in Table 1, white-cement concrete has an albedo between 0.4 and 0.6 when 

aged. In this analysis, we assume a hypothetical conversion of a conventional concrete 

pavement to a white-cement concrete pavement, which increases the albedo by 0.15 

(the difference between albedos of average conventional concrete pavements and 

average aged reflective concrete pavement). Increased pavement albedo produces a 

climate “benefit” by creating a negative RF. We calculated both the RF and the CO2-

eq offset due to the 0.15 increase in pavement surface albedo (Δαs=0.15) over an 

analysis period of 50 years. The magnitude of this benefit for an urban area depends 

on the marginal increase in albedo, the intensity of the incoming solar insolation at the 

pavement surface, and the total area of pavement converted.  

Data  

Context-specific data on shortwave solar radiation are obtained from a NASA online 

database of satellite measurements (NASA 2015), for the four selected locations (Los 

Angeles, Houston, Chicago and Boston) according to their latitudes and longitudes. 

The NASA database consists of over 200 satellite-derived surface meteorology and 

solar energy parameters from 1983 to 2005. In specific, the parameters of our interest 

in this analysis are multiple years of daily averaged insolation on horizontal surface 

and the daily averaged top-of-atmosphere (TOA) insolation. The resolution of the 

dataset is 1-degree longitude by 1-degree latitude. The selected four cities are large 

enough to present in one or more grid cell. The functional unit is set as an overlay 

pavement section of 1 mile long and four lanes wide (two lanes in each direction). 

Each lane is 12 feet wide. Thus, the total pavement area is A = 1 mile * 5280 ft/mile * 

4 lane * 12 ft/lane = 253440 ft2 = 23545 m2. 

Method 

Radiative forcing (RF) calculation. To estimate the RF of a conversion from a 

conventional concrete pavement to a white-cement concrete pavement, the first step is 

to compute the unit effects (W/m2 net radiative forcing) for a standard albedo change. 

For comparison with the studies cited above, the calculations are based on a 

shortwave albedo increment of 0.01. Following the definition, the effective radiative 

forcing of the standard albedo change at the top of the atmosphere (TOA) in the unit 

of W/m2 is expressed as: 

𝑅𝐹𝑎𝑙𝑏 = −𝑅𝑇𝑂𝐴 ∙ 𝑓𝑎 ∙ ∆𝛼𝑠 𝑜𝑟 𝑅𝐹𝑇𝑂𝐴 = −𝑅𝑠 ∙ 𝑇𝑎 ∙ ∆𝛼𝑠                                            (1)                                 
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where 𝑅𝑇𝑂𝐴 is the downward solar radiation at TOA; 𝑓𝑎 is a parameter accounting for 

the absorption and reflection of solar radiation throughout the atmosphere, which is 

associated with solar zenith angel, total precipitable water and cloud cover (Li & 

Garand 1994); 𝑅𝑠  is the downward solar radiation at the Earth’s surface; 𝑇𝑎  is the 

atmospheric transmittance factor expressing the fraction of the radiation reflected 

from the surface that reaches the TOA; and ∆𝛼𝑠 is the change in surface albedo. The 

negative sign indicates that increasing albedo if a negative radiative forcing. The 

derivation of the equation could be found in (Muñoz et al. 2010; Bright et al. 2012). 

This model implicitly accounts for the effect of multiple scattering and absorption of 

radiation within the atmosphere. Local impact of changing albedo on radiative budget 

could be calculated if incident shortwave solar radiation data are available and 

location-specific transmittance factor 𝑇𝑎 is used.  

For the purposes of this analysis, the daily average radiation flux at the surface 

𝑅𝑠 for the latitude of each selected city is used. This is obtained from 10 year (1995-

2004) of daily mean surface insolation for each site from the NASA database. 𝑇𝑎 

reflects the energy transmitted by gases, particles, and clouds along the path from the 

ground to TOA. It can be computed using a detailed atmospheric radiation transfer 

model that can replicate weather, pollution, and their combined optical effects in three 

dimensions over the target location, or deriving it from routine in situ measurements. 

Since the output of interest is the long-term (multiple years) radiative forcing effect of 

a reflective pavement surface, it is computational expensive to run atmospheric 

simulation to assess 𝑇𝑎 . Therefore, a global average 𝑇𝑎  of 0.854 is used in the 

calculations (Muñoz et al. 2010). 

The annual and monthly averaged 𝑅𝐹𝑎𝑙𝑏  values are both computed by 

averaging the 10 years of daily 𝑅𝐹𝑎𝑙𝑏 for each site. The resulting estimated forcing due 

to installing a reflective pavement (expected albedo increase of 0.15) was computed 

by scaling the unit effects for albedo increment of 0.01 to the case specific albedo 

increment (i.e. multiplying by 15). 

Global warming potential (GWP) calculation. Besides direct measure of changes in 

radiative energy balance as a result of surface albedo change, emission metrics such 

as GWP are also widely used to quantify and compare the relative and absolute 

contributions to climate change of different forcing agents. GWP is defined as the 

cumulative radiative forcing effect of a forcing agent over a specified time horizon 

relative to a pulse emission of carbon dioxide (CO2) (Forster et al. 2007). Using the 

Equation (1) for 𝑹𝑭𝒂𝒍𝒃, the GWP of changing surface albedo can be calculated as: 

𝐺𝑊𝑃𝑎𝑙𝑏 =
∫ 𝑅𝐹𝑎𝑙𝑏𝑑𝑡

𝑇𝐻

0

∫ 𝑅𝐹𝐶𝑂2
𝑑𝑡

𝑇𝐻

0

=
∫ − 𝐴 𝐴𝑒𝑎𝑟𝑡ℎ ∙⁄ 𝑅𝑠 ∙ 𝑇𝑎 ∙ ∆𝛼𝑠 𝑑𝑡

𝑇𝐻

0

∫ 𝑅𝐹𝐶𝑂2
𝑑𝑡

𝑇𝐻

0

                                                (2) 

where 𝐴 𝐴𝑒𝑎𝑟𝑡ℎ⁄  converts the RF due to a local albedo change on a unit of area into a 

effective global forcing by dividing the functional area affected by the area of Earth's 

surface; 𝑅𝐹𝐶𝑂2
 represents the marginal RF of CO2 emissions at the current 

atmospheric concentration. There are two possible approaches to compute 𝑅𝐹𝐶𝑂2
: one 

based on CO2 emissions (Akbari et al. 2009; Menon et al. 2010) and the other based 

on ambient CO2 concentration (Hansen et al. 2005; Shindell et al. 2009) (see these 

papers for a full discussion of the calculations). The emission approach estimates a 

marginal RF value of 0.908 W/kg and the ambient concentration approach results in 

1.08 W/kg. Neither is “more correct” than the other; rather, they present different 

viewpoints on the best way to compare radiation effects with GHGs (VanCuren 
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2011). In this analysis, we use 0.908 W/kg as the effective radiative forcing of CO2 

emissions. The integral of 𝑅𝐹𝐶𝑂2
 over a given time horizon is also called the absolute 

GWP (AGWP) values for CO2. The AGWP values for CO2 for 20, 100, and 500 year 

time horizons from IPCC AR5 are 2.47×10–14, 8.69×10–14, and 28.6×10–14 W ∙ m-2 ∙ yr ∙ 

(kg CO2)
–1, respectively (Myhre et al. 2013). 

The installation of a reflective pavement induces a one-time step change in the 

radiation balance of the earth. To simplify the integration in Equation (2), we 

intentionally assume that the radiative effect imposed by albedo change remains 

constant given reasonable material durability and proper maintenance once initial 

aging reaches equilibrium under soiling, weathering, maintenance, etc., and ends 

when the pavement is demolished assuming 50-year of design life.  

Results and discussion 

Table 4 summarized the results of averaged RFs and CO2 offsets due to changes in 

pavement surface albedo, following the method described above. Site-specific 𝑅𝐹𝑎𝑙𝑏 

for a 0.01 albedo increase varies from -1.93 to -1.33 W/m2, which falls within the 

range of RF estimated by other studies (-2.9 ~ -1.3 W/m2 from Figure 1). The 

difference between this analysis and the previously work may be due to the spatial 

scale of the radiation calculations and the approach used to convert the albedo change 

to CO2 savings.  

TABLE 4 Computed 10-year averaged 𝑹𝑭𝒂𝒍𝒃 and equivalent CO2 savings for a 0.01 

albedo increase and for the installation of reflective pavement (0.15 albedo increase) for 

the four selected cities 

City  
Site specific unit 

𝑅𝐹𝑎𝑙𝑏 (W/m2) 

𝑅𝐹𝑎𝑙𝑏 for reflective 

pavement (W/m2) 

Equivalent CO2 

savings (kg/m2) 

Los Angeles, CA -1.93 -28.95 33.27 

Houston, TX -1.60 -24.00 27.61 

Chicago, IL -1.36 -20.40 23.41 

Boston, MA -1.33 -19.95 22.96 

The simplified analytical model explicitly treats the atmosphere as unchanged, 

ignoring the interactions between the atmosphere and the surface. Therefore, 

differences between this approach and other model-based estimates exist, which 

provides some insights into the problem of extrapolating or interpolating the results 

when predicting the radiative forcing effects of albedo changes. 

Figure 2 shows the plot of monthly CO2-eq savings from 1-mile of reflective 

pavement section with 0.15 increase in surface albedo at each of the four selected 

cities. The cumulative annual GWP savings are calculated for each city based on the 

area of 1-mile pavement section (~23545 m2) and the 0.15 albedo increment for 

average reflective pavements, as shown in the legend. It is obvious that the GWP 

impact of changing surface albedo varies by time and location. As shown in Figure 2, 

this effect is more pronounced in the summer than in the winter.  The calculated effect 

of albedo change on radiative forcing, and thus the magnitude of the GWP savings, 

varies widely from city to city, as climates and the strength of solar insolation vary 

across the U.S. While all four locations benefit due to a change in albedo, Los 

Angeles presents a greater opportunity for global warming mitigation through 

installations of reflective surface materials. The spatial and temporal variations 

suggest that full understanding of the climate effects of reflective pavements requires 

understanding the range of conditions at the urban level, and possibly even at the 
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facility level. 

 
Figure 2 Monthly and cumulative GWP savings from 0.15 increase in albedo at four 

locations over 50 years 

 

Conclusions 
While the exact magnitude of albedo effects requires further validations, this analysis 

provides some insight into the local-scale variation of albedo-induced RF by allowing 

comparison across the U.S. and offering a computational approach that can be applied 

to any geographic area. The spatial variation also suggests that local variables may 

play an important role in promoting or hindering widespread adoption of reflective 

pavement as a climate mitigation strategy. Nonetheless, the site-specific evaluation 

presented here would provide guidance on valuing the reflective pavement strategy at 

the urban or the facility level.  

The analytical model used in this study provides an easy way to approximate 

the impacts of changing surface albedo in terms of RF and GWP. It is a complement 

to the sophisticated climate model studies, with context-specific measurement-based 

calculations of the direct radiation balance impacts of increasing the reflectivity of 

pavements. 

There are, however, challenges and limitations when applying this analytical 

model. First of all, location-specific data on 𝑇𝑎 or 𝑓𝑎 are not readily available. While 

incident shortwave solar radiation at TOA (𝑅𝑇𝑂𝐴) and at the surface (𝑅𝑠 ) can be 

obtained from historical satellite measurements or climate simulations, atmospheric 

transmittance factor 𝑇𝑎  and 𝑓𝑎  are not typical parameters tracked by satellite 

observations. Location-specific 𝑇𝑎 and 𝑓𝑎 depend on a number of contextual factors, 

including solar zenith angle, total precipitable water, and cloud cover. Local cooling 

effect of reflective pavements could be estimated more accurately if these location-

specific data were used instead of global average value. 

In addition, data on the evolution of surface albedo, particularly pavement 

albedo, is not available currently. Surface albedo varies from year to year. For 

example, as pavement ages, concrete surface tend to get darker so the albedo gets 

smaller, while asphalt surface gradually gets brighter so the albedo of asphalt 

becomes greater. Pavement albedo could also vary seasonally due to snow, rain and 

even the traffic on the pavement. Long-term measurements of albedo have been 

carried out by some researchers in order to better characterize the changes of albedo 

(∆𝛼𝑠). 

Furthermore, the analytical model described above does not account for the 

shadings of trees and the multiple reflections by adjacent buildings. The effect of 

reflective pavements on building energy consumption at the urban-scale has not been 

quantified analytically by models.  
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Last but not least, the analytical model relies primarily on radiative and 

climate data, which come from measurements or numerical simulations. There are 

inevitably large measurement uncertainty or model uncertainty. The model must be 

validated and calibrated using different measured and simulated datasets. 
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