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Upon loading, atomic networks can feature delayed irreversible relaxation. However, the effect of
composition and structure on relaxation remains poorly understood. Herein, relying on accelerated
molecular dynamics simulations and topological constraint theory, we investigate the relationship between
atomic topology and stress-induced structural relaxation, by taking the example of creep deformations in
calcium silicate hydrates (C─S─H), the binding phase of concrete. Under constant shear stress, C─S─H is
found to feature delayed logarithmic shear deformations. We demonstrate that the propensity for relaxation
is minimum for isostatic atomic networks, which are characterized by the simultaneous absence of floppy
internal modes of relaxation and eigenstress. This suggests that topological nanoengineering could lead to
the discovery of nonaging materials.
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Out-of-equilibrium systems—e.g., quenched glasses or
jammed granular materials—tend to spontaneously relax
over time towardsmore stable equilibrium states. In terms of
energy landscape, such relaxation can be described as a
succession of “jumps” between energy basins (local energy
minima) through pathways (modes of relaxation) [1],
wherein the temperature and height of the energy barriers
define the relaxation kinetics [2]. On the other hand, starting
from a stable equilibrium state, external stress can deform
the energy landscape, place the system in an out-of-
equilibrium state, and, thereby, induce relaxation [3,4].
Relaxation can result in delayed variations of volume or

shape. This behavior is exemplified by creep, i.e., the
delayed time-dependent strain shown by a material under
constant load. Although creep can affect, among others,
metals, ceramics, or minerals [5], it is especially pro-
nounced in concrete, even at ambient temperature, and can
lead to the failure of structures [6]. In addition, glasses,
archetypical out-of-equilibrium systems, can feature long-
term volume relaxation after being quenched, a behavior
known as the “thermometer effect” [7,8].
Although the role of the composition and structure of

atomic networks in controlling the propensity for relaxation
remains poorly understood, specific glass compositions
have been reported to feature little, if any, relaxation over
time after quenching. This has been explained within the
framework of topological constraint theory (TCT) [9–12].
Following Maxwell’s study on the stability of mechanical

trusses [13], TCT describes the rigidity of atomic networks,
which can feature three distinct states: (1) flexible, having
internal degrees of freedom called floppy modes [14] that
allow for local deformations, (2) stressed rigid, being
locked by their high connectivity, and (3) isostatic, the
optimal intermediate state [see Fig. 3(a)]. The isostatic state
is achieved when the number of constraints per atom, nc,
comprising radial bond stretching and angular bond bend-
ing, equals 3, the number of degrees of freedom per atom.
Compositions characterized by an isostatic network have
been found to exist inside a window [15], located between
the flexible (nc < 3) and the stressed-rigid (nc > 3) com-
positions, known as the Boolchand intermediate phase,
and show some remarkable properties such as a stress-
free character [16,17], space-filling tendency [18], anoma-
lous dynamical and structural signatures [19,20], and
maximum resistance to fracture [21]. Interestingly, isostatic
networks have been shown to feature limited relaxation
phenomena [22].
Herein, relying on accelerated molecular dynamics (MD)

simulations and TCT, we investigate the creep deforma-
tions under constant shear stress of calcium silicate
hydrates (CaO─SiO2─H2O, or C─S─H), the phase that
binds and controls the properties of concrete [23]. We show
that, in analogy with glass relaxation, isostatic C─S─H
compositions feature a low propensity for relaxation. In
contrast, flexible and stressed-rigid networks show signifi-
cant creep deformations, on account of the presence of low
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energy floppy modes of deformation and eigenstress,
respectively.
C─S─H is a complex multiscale phase that forms upon

the hydration of cement [23]. In concrete, it is found as a
porous gel, made of polydisperse grains of around 5 nm
each [24–26]. Inside each grain, C─S─H takes the form of
a layered calcium-silicate atomic network that is poorly
crystalline and of variable stoichiometry, with a Ca=Si
molar ratio between around 1.0 and 2.0 [23]. In the present
work, we rely on the C─S─Hmodels developed by Pellenq
et al. [27,28]. The atomic models of C─S─H, with various
compositions (different Ca=Si molar ratios), were obtained
by introducing defects in an 11 Å tobermorite configuration
[29] following a combinatorial approach [28]. This initial
crystal consists of pseudo-octahedral calcium oxide sheets,
surrounded on each side by silicate chains. These neg-
atively charged calcium-silicate layers are separated from
each other by both dissociated and undissociated interlayer
water molecules and charge-balancing calcium cations.
Starting from this structure, the Ca=Si ratio is gradually
increased from 1.0 to 1.9 by randomly removing SiO2

groups. The introduced defects offer possible sites for the
adsorption of extra water molecules, which was performed
via the grand canonical Monte Carlo method, ensuring
equilibrium with bulk water at constant volume and room
temperature. Eventually, the ReaxFF potential [30], a
reactive potential, was used to account for the chemical
reaction of the interlayer water with the defective calcium-
silicate sheets. The use of a reactive potential allows us to
observe the dissociation of water molecules into hydroxyl
groups. The details of the methodology used for the
preparation of the models, as well as multiple validations
with respect to experimental data can be found in Ref. [28].
In particular, this model has been shown to offer an
excellent agreement with nanoindentation measurements
of modulus and hardness [28], which renders it attractive to
study creep. In this study, we rely on the ReaxFF potential,
using a time step of 0.25 fs [30]. The samples were
systematically relaxed to zero stress at 300 K before any
further characterization.
We now focus on the methodology used to simulate

creep. Traditional MD simulations are usually limited to a
few nanoseconds, which renders them unpractical to
describe long-term relaxation at low temperature. On the
other hand, kinetic Monte Carlo simulations offer an
attractive alternative to perform simulations up to a few
seconds, but their application to silicate hydrates is chal-
lenging, e.g., due to the high mobility of the water
molecules, which results in a huge number of small energy
barriers to compute. Since a direct simulation of the stress-
induced relaxation dynamics of C─S─H is, at this point,
unachievable, we applied a method that has recently been
introduced to study the relaxation of silicate glasses [31]. In
that method, the system is subjected to small, cyclic
perturbations of isostatic stress �Δσ. At each stress cycle,

a minimization of the energy is performed, with the
system having the ability to deform (shape and volume)
in order to reach the target stress. Note that the observed
relaxation does not depend on the choice of Δσ, provided
that this stress remains subyield (see Supplemental Material
[32]) [31].
This method mimics the artificial aging observed in

granular materials subjected to vibrations [33]. Indeed,
small vibrations induce a compaction of the material; that
is, they make the system artificially age. On the other hand,
large vibrations randomize the grain arrangements, which
decreases the overall compactness and, therefore, makes
the system rejuvenate. Similar ideas, relying on the energy
landscape approach [4], have been applied to amorphous
solids, based on the fact that small stresses deform the
energy landscape locally explored by the atoms. This can
result in the removal of some energy barriers existing at
zero stress, thus allowing atoms to jump over them in order
to relax to lower energy states. This transformation is
irreversible as, once the stress is removed, the system
remains in its aged state. In contrast, large stresses move the
system far from its initial state, which eventually leads to
rejuvenation, similar to thermal annealing [3]. Here, in
order to mimic deviatoric creep deformation, we add to the
previous method a constant shear stress τ0, such that Δσ <
τ0 (see the inset of Fig. 1).
As shown in Fig. 1, the application of stress cycles

results in the gradual increase and decrease of the shear
strain and potential energy, respectively. This confirms that,
upon creep, C─S─H relaxes towards lower energy states.
Note that, although the system is free to deform upon
relaxation, no significant variations of volume are
observed. This supports the fact that concrete creep is
mostly deviatoric. As shown in Fig. 2(a), we observe that,
when subjected to shear stresses τ0 of different intensities,
C─S─H presents a shear strain γ that increases logarithmi-
cally with the number of cyclesN. Such a logarithmic trend
is in agreement with experimental observations [34], which
suggests that the creep deformation can be expressed as
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FIG. 1. Shear strain (left axis) and potential energy per atom
(right axis) with respect to the number of loading or unloading
cycles. The inset shows the shape of the applied shear stress.
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γðNÞ ¼ ðτ0=CÞ logð1þ N=N0Þ; ð1Þ

where, N0 is a fitting parameter analogous to a relaxation
time and C is the creep modulus, which is the inverse
of the creep compliance S and can be determined by fitting
the computed shear strain with respect to the number of
stress cycles [see Fig. 2(a)]. Note that we are unable to
ensure that the accelerated microscopic evolution of the
system observed herein is fully equivalent to an unbiased
Newtonian evolution of the system. Hence, the stress
perturbation cycles cannot be mapped onto real time.
However, we expect average properties, e.g., strain and
potential energy, which are not very specific to the micro-
scopic details of the system, to follow a realistic evolution
(see Supplemental Material [32]).
Interestingly, we find that the computed shear strains are

proportional to the applied constant shear stress τ0 [see
Fig. 2(a)]. As such, C does not depend on the applied stress
and, thereby, appears to be an intrinsic property of the
material. We observe, however, that this holds only as long
as the applied stress remains lower than the yield stress of
the sample [36]. Note that, as our simulation does not
consider any porosity, the computed values of C can only
be compared with experimental values extrapolated to zero
porosity. As shown in the inset of Fig. 2(a), the obtained C
(∼450 GPa) is in very good agreement with nanoindenta-
tion data [34], extrapolated to a packing fraction of 1. To
the best of our knowledge, this is the first time that the creep
propensity (indicated by the creep modulus) of cementi-
tious, or other viscoelastic, materials has been successfully
reproduced by atomistic simulation. We note that such
relaxation does not involve the formation or breakage of

atomic bonds, but rather some structural reorganizations at
the medium-range order.
Further, to better understand the relationship between

composition and stress relaxation propensity, the same
approach was used for other C─S─H compositions. As
shown in Fig. 2(b), the computedC values show a nonlinear
evolutionwithCa=Si, whichmanifests in the formof a broad
maximum around Ca=Si ¼ 1.5, with a creep modulus
around 80% higher than that obtained for Ca=Si ¼ 1.7.
Note that the large error bars prevent us from clearly
determining if the maximum of C occurs within a composi-
tional window or at a given composition threshold. Such a
nonlinear behavior is very different from those of inden-
tation hardness and creepmodulus, as both of them decrease
monotonically with Ca=Si [28]. Once again, the obtained C
values are in excellent agreementwithmicroindentation data
extrapolated to zero porosity [35], which strongly suggests
that the present method offers a realistic description of the
creep of C─S─H at the atomic scale.
We now investigate how the atomic topology controls the

propensity for creep relaxation. As shown in Fig. 3(c),
C─S─H has been reported to feature a composition-
induced rigidity transition at Ca=Si ¼ 1.5 [37], being
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FIG. 2. (a) Delayed shear strain (for Ca=Si ¼ 1.7) under
constant shear stresses of 1, 2, and 3 GPa. The dashed lines
indicate logarithmic fits following Eq. (1). The inset shows the
creep modulus C with respect to the packing fraction ϕ obtained
from nanoindentation [34]. The values are fitted by a power law
C ¼ Aðϕ − 0.5Þα and extrapolated to ϕ ¼ 1 to be compared with
the value obtained by the present simulations. (b) Computed
creep modulus C with respect to the Ca=Si molar ratio. The
values are compared with experimental measurements obtained
by microindentation [35] and nanoindentation [34], extrapolated
to zero porosity. The grey area indicates the extent of the
compositional window in which a maximum resistance to creep
is observed.

FIG. 3. (a) The three rigidity states of an atomic network.
(b) Schematics of the corresponding energy landscapes. (c) Num-
ber of topological constraints per atom nc in C─S─Hwith respect
to Ca=Si [37]. The dashed line is a guide for the eye. The grey
area indicates the extent of the compositional window in which a
maximum resistance to creep is observed [see Fig. 2(b)], also
corresponding to the range of isostatic compositions (nc ≃ 3),
effectively separating the flexible (nc < 3) from the stressed-rigid
domains (nc > 3). (d) Creep compliance S, the inverse of the
creep modulus C, and fraction of unrecovered volume after
loading and unloading with respect to nc. The grey area indicates
the extent of the isostatic compositional window (see above). The
line is a guide for the eye.
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stressed rigid (nc > 3) at lower Ca=Si and flexible (nc < 3)
at higher Ca=Si. As such, as shown in Fig. 3(d),
isostatic compositions (nc ≃ 3) feature the lowest propen-
sity for creep, that is, the lowest creep compliance. To the
best of our knowledge, these results constitute the first
quantitative evidence of a link between atomic topology
(hence composition) and resistance to stress relaxation. Our
results also suggest that the compositional window
(1.3 < Ca=Si < 1.53) is analogous to a rigid but free of
eigenstress Boolchand intermediate phase [18], although
the large error bars prevent us from ensuring that this
isostatic state is achieved within a compositional window or
at a single threshold.
Interestingly, isostatic glassy networks have been shown

to behave largely reversibly with stress, that is, to show
nearly complete elastic recovery after compression [38]. As
such, to further demonstrate the analogy between isostatic
C─S─H composition and glasses belonging to a
Boolchand intermediate phase, the C─S─H samples were
hydrostatically compressed under 10 GPa during 1 ns and
subsequently relaxed at zero pressure to assess the extent of
loading-induced permanent densification. As shown in
Fig. 3(d), we observe that isostatic C─S─H compositions
indeed show the lowest unrecovered volume after loading/
unloading. This feature can be explained as follows.
(1) Thanks to their internal floppy modes, flexible systems
can easily undergo irreversible deformations during load-
ing. This enables irreversible structural deformations upon
loading. (2) In contrast, stressed-rigid systems are com-
pletely locked. Once compressed, the high connectivity
prevents the full relaxation of the accumulated internal
stress, so that the network remains permanently densified
after unloading. (3) Eventually, isostatic systems, i.e., rigid
but free of eigenstress, simply adapt with pressure in a
reversible way.
Our results can be understood within the energy land-

scape framework. The energy landscape of an atomic
network is determined by the densities of bond and floppy
mode, wherein the bond density tends to induce the
creation of energy basins, whereas the floppy mode density
leads to the formation of channels between the basins.
(1) On account of their internal floppy modes, flexible
atomic networks feature some low energy modes of internal
reorganization to relax any loading-induced internal stress.
Such floppy modes extend the number of energy channels,
thereby enhancing the propensity for creep. (2) In contrast,
stressed-rigid atomic networks show some internal eigen-
stress [16,17] as all constraints cannot be simultaneously
satisfied. This eigenstress induces an instability of the
network and, therefore, acts as a driving force for phase
separation or devitrification in glasses [11]. Such a driving
force facilitates jumps between the basins, which, again,
extends the possibilities of creep relaxation. In addition, the
simulation method of creep implemented herein suggests
that creep can be seen as a succession of small cycles of

stress. Hence, the fact that both flexible and stressed-rigid
networks feature low elastic recovery after loading explains
their gradual deformation during creep. (3) Finally, isostatic
networks, which are free of both internal modes of
deformation and eigenstress, simultaneously do not feature
any barrierless channel between energy basins or eigen-
stress-induced driving force for relaxation. As such, such
optimally constrained networks feature the lowest propen-
sity for stress relaxation and creep.
Altogether, these results highlight the strong relationship

between atomic topology and propensity for relaxation and
suggest that the relaxation of C─S─H is similar to that of
structural glasses. Indeed, we observe a striking similarity
of the creep compliance data reported herein to temper-
ature- and pressure-induced relaxation in Ge–Se glasses
[16,39]. This suggests that C─S─H features a Boolchand
intermediate phase that is free of floppy modes and
eigenstress. These isostatic phases are therefore expected
to show weak aging (at constant porosity). Beyond concrete
creep, being able to understand, predict, and control the
relaxation and aging of materials could improve the under-
standing of memory encoded materials [40] or protein
folding [41]. This also suggests that topological nano-
engineering is a valuable tool to explore new compositional
spaces, for the discovery of new materials featuring unusual
properties.
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