
Irreversible Thermodynamic Bound for the Efficiency of Light-Emitting Diodes

Jin Xue, Zheng Li, and Rajeev J. Ram
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA
(Received 26 July 2016; revised manuscript received 18 April 2017; published 20 July 2017)

A thermodynamic model for light-emitting diodes (LEDs) is developed by considering energy and
entropy flows in the system. Thermodynamic constraints have previously been considered separately for
the reversible process of electroluminescence in LEDs and for light extraction and collimation in other
optical systems. By considering both processes in the LED model, an irreversible upper bound for the
conversion of electrical energy to optical energy is derived and shown to be higher than unity, but tighter
and more realistic than the reversible case. We also model a LED as an endoreversible heat engine where
the carrier-transport processes can be directly connected to the elements of a thermodynamic cycle.
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I. INTRODUCTION

The wall-plug efficiency (WPE) of modern light-
emitting diodes (LEDs), which is defined as the ratio of
optical output power to the electrical input power, has far
surpassed all other forms of lighting and is expected to
improve further as the lifetime cost of energy consumption
exceeds the manufacturing cost of the devices. For instance,
a recent report demonstrates WPE exceeding 80% for a
gallium-nitride-based LED [1], which inevitably leads to
questions about further enhancement towards the conven-
tional limit of unity efficiency. Nevertheless, theory and
experiments suggested that for light-producing devices
such as LEDs, the WPEmay exceed unity in practice [2–13]
since the incoherent electroluminescent radiation emitted
has finite entropy. Therefore, according to the second law
of thermodynamics, LEDs can absorb net heat from the
lattice and convert this energy to photons as long as the total
entropy in the system does not decrease during steady-state
operation. In this manner, the electrical part of the input
power may be lower than the output optical power, and such
LEDs can indeed work as a light-producing refrigerator.
Similar to the etendue conservation of ideal optical

systems and Shockley-Queisser limit of photovoltaic cells
[14,15], the efficiency limit of LEDs has been mainly
studied in terms of thermodynamic and statistical analysis
[3–8]. Planck [16] first calculated the entropy content of
an ideal Bose gas in thermal equilibrium and introduced
the temperature definition of quantum resonators occupied
by bosons more than a century ago. Later, Landsberg [17]
extended the application of this entropy calculation of a
Bose gas to the near-equilibrium case. Landau [18] studied
the limitations of photoluminescence imposed by thermo-
dynamics and found that the luminescent output power may
exceed the photoexcitation input. A similar investigation
zof the case of electroluminescence was reported by
Weinstein [3] in 1960 and the accompanying cooling effect
by Dousmanis et al. [4] in 1964. Then in 1968, an extended

discussion was finally brought up by Landsberg and Evans
[5] to address the efficiency limit specifically for LEDs.
Other researchers have investigated the thermodynamic

bound of energy-conversion efficiency for photolumines-
cence and electroluminescence in the reversible limit
[3–8,18]. Here, we propose a tighter bound of the efficiency
by considering a thermodynamic irreversibility associated
with optical extraction, which is already known as etendue
and radiance constraints in the context of passive optical
systems [14]. If we consider the steady-state photon-
extraction process from within the LED to the far field
of the LED being a passive optical system, we show that the
temperature of the internal radiation field within the LED
is higher than that in the far field. This higher temperature
demands more work to be done by the power supply to
sustain the electroluminescence and, hence, lowers theWPE
compared to the ideal reversible case. In the present paper,
an irreversible thermodynamic model for energy conversion
in a LED is constructed by considering the entropy and
temperature of the internal and far-field radiation fields.

II. THEORY

In the following, basic rate equations for energy and
entropy change are presented first for the LED internal
radiation field and then separately for the electronic system
in order to derive an upper bound of WPE in the reversible
limit. After converting the upper bound to a form associated
with the temperature of far-field radiation, we see that an
ideal forward-biased LED can be interpreted as a reversed
Carnot engine. Then, through an analysis revealing the
imbalance of the temperatures for the radiation field inside
and outside a LED, an irreversible thermodynamic model
is further developed for a LED in steady-state operation, as
well as a tighter bound of the WPE.
Consider a LED die with a planar top-emitting structure.

We investigate an open system consisting of the electrons
within the device. In forward-biased steady-state operation,

PHYSICAL REVIEW APPLIED 8, 014017 (2017)

2331-7019=17=8(1)=014017(7) 014017-1 © 2017 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/85123621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1103/PhysRevApplied.8.014017
https://doi.org/10.1103/PhysRevApplied.8.014017
https://doi.org/10.1103/PhysRevApplied.8.014017
https://doi.org/10.1103/PhysRevApplied.8.014017


the system is electrically pumped by entropy-free input
work at the rate J-V per unit area (where J is the current
density and V is the bias voltage) and emits electromagnetic
energy through spontaneous radiative recombination at
the net rate (per unit area) Rsp from the active region to
the surrounding region, where the radiation is assumed to
be distributed isotropically within the LED, as shown in
Fig. 1(a). We further assume there is no internal loss; thus,
the net radiation power leaving the LED from its internal
radiation field through the top emitting surface (per unit
area) denoted as Ir must equal hν̄Rsp in the steady state, i.e.,

1

A
dEr;i

dt
¼ hν̄Rsp − Ir ¼ 0; ð1Þ

where h is Plank’s constant, ν̄ is the mean photon
frequency, A is the emitting area of the LED die, and
Er;i is the total energy of the internal radiation field.
However, according to the second law of thermodynamics,

the net rate of entropy leaving the electronic system carried
by hν̄Rsp denoted as Φsp must be less than or equal to that
leaving the LED from the internal radiation field denoted as
Φr, i.e., in the steady state,

1

A
dSr;i
dt

¼ Φsp þ ΔΦi −Φr ¼ 0; ð2Þ

where Sr;i is the total entropy of the internal radiation field,
and ΔΦi is a non-negative entropy generation rate of the
internal radiation field (per unit projected area) correspond-
ing to any irreversible processes, which can arise from
disordered scattering due to interactions with defect centers
or a roughened backside mirror. In such a configuration, if
ignoring all boundary effects between the LED emitting
surface and the ambient, the far-field radiation pattern from
the LED will be Lambertian, and the optical intensity scales
with the inverse square law as the distance increases from
the observer to the LED. In the analysis presented here,
all the radiation power and associated entropy refer to the
electroluminescence only. Effects from the background
thermal radiation of the LED are negligible due to detailed
balance with the ambient.
Along with the process of minority-carrier injection, the

electronic system also absorbs heat from the lattice at the
net rate Q per unit area due to the Peltier effect near
the diode junction. This heat-transfer process is related to
the restoration of the carrier distribution and is assumed to
take place sufficiently close to the quasineutral regions of
the LED, where carrier temperature can be considered the
same as that of the lattice due to fast electron-phonon
scattering processes. The energy-band diagram for a typical
single-quantum-well LED depicting this process is shown
in Fig. 1(b). The LED lattice serves as a phonon reservoir
with temperature Tl. Thus, the net entropy transfer rate
into the electronic system carried by Q is approximately
Q=Tejinj ≈Q=Tl, where Tejinj is the electron temperature
during the injection process. We can write two rate
equations in the steady state for the Eel and Sel be the
total internal energy and entropy of the electronic system
described above,

1

A
dEel

dt
¼ J-V þQ − hν̄Rsp ¼ 0; ð3Þ

1

A
dSel
dt

¼ Q
Tl

þ ΔΦ −Φsp ¼ 0; ð4Þ

where ΔΦ is the internal entropy generation rate (per unit
area) in the electronic system, which is also non-negative
due to irreversible processes associated with nonideal LED
operation such as nonradiative recombination, Joule heating,
etc. Combining Eq. (1) with Eq. (4) with the second law of
thermodynamics, we arrive at the following inequality:

FIG. 1. (a) Block diagram showing the irreversible thermody-
namic model of a LED. (b) Energy-band structure of a typical
single-quantum-well LED under forward bias. The color scheme
adopted for different types of energy input or output processes is
consistent in (a) and (b).
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ΔΦþ ΔΦi ¼ Φr − Ir − J-V
Tl

≥ 0. ð5Þ

Thus, the WPE of a LED denoted as ηWP must satisfy

ηWP ¼
Ir
J-V

≤
Ir

Ir − TlΦr
: ð6Þ

According to Eq. (6), the WPE of a LED has an upper
bound that is dependent on the specific operating condition,
and the bound is always greater than unity. This result is
because the incoherent electroluminescence of LEDs con-
tains finite entropy, but the input electrical work does not.
The second law of thermodynamics then allows the LED
electronic system to absorb some heat (with entropy
accompanied) from the lattice. In the extreme case in
which the entropy influx carried by the heat absorbed
exactly balances the quota imposed by that of the output
electroluminescence, the upper bound of WPE is achieved.
A calculation of Φr is required to determine this bound

for a given Ir. Assume fiðνÞ to be the mean value of photon
occupancy per mode at frequency ν for the internal
radiation field. The distribution of fi over the frequency
range of interest depends on the LED emission spectrum
and the total radiation power leaving the LED,

Ir ¼
c
4n

Z
hνfiðνÞgiðνÞdν; ð7Þ

where giðνÞ is the density of optical modes per unit volume
for the internal radiation field, c is the vacuum light speed,
and n is the refractive index of relevant material. Since the
internal radiation field is assumed isotropic, the coefficient
1=4 is introduced from an integration related to the
apparent area of emitting surface viewed by optical modes
in different directions, similar to the case of poking a hole
on the cavity of an ideal radiator. This coefficient is subject
to change if there is an index difference across the emitting
interface, in which case, the light escape cone shrinks.
Then, given the entropy formula of an ideal Bose gas
[16,17], the net rate of entropy leaving the LED carried by
Ir can be written as

Φr ¼
c
4n

Z
kBf½fiðνÞ þ 1� ln½fiðνÞ þ 1�

− fiðνÞ ln½fiðνÞ�ggiðνÞdν; ð8Þ
where kB is the Boltzmann constant. Combining Eqs. (7) and
(8), Φr can be obtained for any given Ir and its spectral
information. It is notable that the above construction of Φr
assumes that all photons in a small frequency interval are
uniformly distributed among all the optical modes available;
i.e., all photons (of the same frequency) have the same
probability to occupy any of themodes despite the number of
photons already in that mode. This assumption is similar to
the thermal equilibrium condition of the internal radiation

field within each small frequency interval; thus Φr is
maximized for a given Ir together with its relative intensity
spectrum. This assumptionmay be further extended such that
the total incoherent electroluminescence produced by a LED
has an intensity distribution of IrðνÞ over a certain spectral
interval close to that of a blackbody radiation. Given the
above assumptions, a temperature definition for the electro-
luminescent radiation field naturally arises.
Assigning a temperature to the external radiation field

(i.e., far field) of the LED has engendered much discussion
in the literature [3,5,7]. Unlike the internal field, the
external field itself is comprised of a ballistic ensemble
of photons moving away from the device and is not in
quasiequilibrium with the electrons and holes in the LED
active region. Several authors have introduced a temper-
ature definition for this external radiation field by consid-
ering the ratio between the energy and entropy flux leaving
the LED, which is physically more like a characterization
of heat transfer (i.e., the radiation close to the LED emitting
surface) rather than a direct description of a thermal
equilibrium system:

TfðνÞ ¼
IrðνÞ
ΦrðνÞ

: ð9Þ

For convenience, we can define a collective temperature
to cover the entire spectrum of the far field in a similar way,
denoted as Tr,

Tr ¼
Ir
Φr

: ð10Þ

This collective far-field temperature does not necessarily
equal the result in Eq. (9) for each small frequency interval.
In fact, the ratio in such a form is commonly used in
entropy balance equations for open systems to describe the
temperature at the point of a heat flow [19]. In the literature
studying thermodynamics of light, it was also referred to
as “effective temperature” [3] or “flux temperature” [7].
Weinstein [3] argued that IrðνÞ=ΦrðνÞ is very nearly equal
to the temperature of a blackbody which would have the
same emission power in the band and physically interpreted
it as a “brightness temperature”.
Applying the definition (10) to Eq. (6), we have

ηWP ≤
Tr

Tr − Tl
; ð11Þ

which is consistent with the result previously published
by Weinstein [3]. In addition, we find the inequality in
Eq. (11) matches the expression of the coefficient of
performance for a classical heat pump operating between
a cold and a hot reservoir with temperature Tl and Tr,
respectively. Therefore, in the thermodynamic perspective,
a forward-biased LED operating in the reversible limit
can be considered equivalently as a reversed Carnot engine
with its electronic system being the working fluid, lattice

IRREVERSIBLE THERMODYNAMIC BOUND FOR THE … PHYS. REV. APPLIED 8, 014017 (2017)

014017-3



structure (i.e., the phonon field) being the low-temperature
reservoir, and far-field radiation (i.e., the photon field
described above) being the high-temperature reservoir.
The four-step reversed Carnot cycle leads to a net effect
by which charged carriers consume external electrical work
to pump heat from the LED lattice and release electrolu-
minescence to the ambient.
So far, we have constructed and inspected the reversible

thermodynamic model for a LED in the steady state.
However, we have to be cautious and check whether
the reversible limit is theoretically achievable, which
requires (quasi) thermal equilibrium between the internal

and external radiation fields, since the LED electronic
system directly interacts only with the internal field rather
than the far field [i.e., the internal field should serve as an
intermediate photon reservoir bridging the LED electronic
system and the far field for them to interact reversibly at the
temperature TfðνÞ]. And even if it is valid, we still need to
check whether a practical LED far field truly has a temper-
ature given in Eq. (10), as it was previously proposed in the
literature.
The following is an examination of the spectral temper-

ature of the internal radiation field, which is denoted as
TiðνÞ and defined by

TiðνÞ ¼
d½uðνÞ�
d½sðνÞ� ¼

d½hνfiðνÞgiðνÞΔν�
d(kBf½fiðνÞ þ 1� ln½fiðνÞ þ 1� − fiðνÞ ln½fiðνÞ�ggiðνÞΔν)

¼ dIrðνÞ
dΦrðνÞ

; ð12Þ

where uðνÞ and sðνÞ are the spectral energy and entropy
density of the internal radiation field, respectively. Alter-
natively, TiðνÞ can be directly calculated from fiðνÞ by the
Bose-Einstein distribution (with zero chemical potential) as
well, which is equivalent to Eq. (12). The convexity of the
entropy function of radiation indicates that TiðνÞ from
Eq. (12) is always larger than TfðνÞ from Eq. (9) for the
same frequency, and the ratio between them increases with
increasing IrðνÞ. A simple way to think about this mecha-
nism is that for the internal radiation field, only photons
contained in modes directed towards the emitting surface
can escape from the LED cavity and become distributed in
the far field. Therefore, together with the increased density
of optical modes and conserved photon flux after the
emission, the mean photon occupancy in the far field
of the LED is always smaller than that inside. If also
considering the ballistic transport nature of the external
radiation flux (i.e., similar to the case of heat transfer), the far
field can, thus, be assigned a lower temperature as defined in
Eq. (10). On the other hand, the photon redistribution
induced by the increasing of density of the quantum modes
in an unconfined space (i.e., the ambient) justifies the
entropy generation (or entropy maximization) during the
optical extraction process, which may be caused by ran-
domized scattering due to interactions with an imperfect
dielectric interface. Hence, the etendue of the radiation can
increase after being extracted from the LED, and, thus, the
output radiance reduces, which matches the argument of
temperature reduction in the far field.More important, in this
situation the exact physical correspondence of IrðνÞ=ΦrðνÞ
to a (effective) temperature or how a practical LED far
field reaches this temperature no longer matters, since the

intermediate photon reservoir—the internal radiation field—
has a higher occupancy (temperature) and is better approxi-
mated as a system inquasiequilibriumwith thedistributionof
electrons and holes in the LED’s active region (more details
can be found in Appendix A).
Since TfðνÞ ≠ TiðνÞ for any frequency, the reversible

limit and the efficiency bound in Eq. (11) cannot be
achieved. As a result, similar to the treatment of an
endoreversible heat engine (Novikov engine or Curzon-
Ahlborn engine, to be more specific) [20–22], the elec-
tronic system of the LED must operate against TiðνÞ rather
than TfðνÞ during the radiative recombination process,
which is interpreted as the introduction of an irreversibility
into the ideal reversible model. In other words, this semi-
ideal thermodynamic configuration still consists of a fully
reversible Carnot-like cycle in which the LED electronic
system pumps heat from the lattice temperature (low) to
the temperature of the internal field (high). With the LED
emitting surface being an effective heat exchanger, the
internal field is then coupled irreversibly with the far
field of lower temperature to achieve a finite radiation
power. This interpretation is reasonable, as any useful LED
must have a finite output, and its electronic system should
directly interact with the internal radiation field, not any far
field. In addition, higher LED output intensity Ir always
corresponds to (or is driven by) a larger temperature
difference between the internal and the external radiation
fields, which can be viewed as a stronger irreversibility.
This observation is consistent with the basic characteristics
of endoreversible engines. Therefore, a collective temper-
ature definition covering the entire spectrum for the internal
radiation field is defined as

Ti ¼
d½R uðνÞdν�
d½R sðνÞdν� ¼

d½R hνfiðνÞgiðνÞdν�
d(

R
kBf½fiðνÞ þ 1� ln½fiðνÞ þ 1� − fiðνÞ ln½fiðνÞ�ggiðνÞdν)

¼ dIr
dΦr

: ð13Þ
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Substituting for the temperature of hot reservoir in
Eq. (11), now we have

η0WP ¼
Ir
J-V

≤
Ti

Ti − Tl
: ð14Þ

Since Ti > Tr, Eq. (14) provides a tighter and also more
realistic bound than that in Eq. (11). It is notable that
different from a typical Curzon-Ahlborn efficiency, which
is obtained from a similar thermodynamic configuration
(heat engine rather than the heat-pump model in this case)
but specifically corresponds to a system condition of
maximum output power, here η0WP does not carry this
meaning, as Ti is determined by the actual rate of heat
transfer (i.e., Ir andΦr) rather than being optimally chosen.
In this case, different LED outputs yield different η0WP
according to Eq. (14). In addition, we can plot a temper-
ature-entropy (T-S) diagram for the above irreversible LED
model to identify each thermodynamic process it imple-
ments, which we further discuss in Appendix B.
Although we use the collective temperature as defined in

Eq. (10), we can obtain a similar limit by considering the
temperature of the far field for each frequency component,
TfðνÞ. The reversible limit of WPE can be derived for each
small frequency interval within the spectral range of
interest through the monochromatic version of Eq. (11).
If we replace TfðνÞ with TiðνÞ in the equation, the
irreversible limits at those frequencies are obtained, whose
weighted average by the LED spectral profile leads to an
overall upper bound of the WPE similar to Eq. (14).
Therefore, given the radiation flux density of a LED
(i.e., Ir) being properly measured for a 2π solid angle
close to the emitting surface, the irreversible limit calcu-
lated by Eq. (14) should serve as a good approximation for
the upper bound of WPE. Also, the initial isotropic
assumption of the internal radiation field, which allows
us to assume a maximum entropy for the electrolumines-
cent radiation, justifies the definition of the temperature.
However, the key part of the arguments should still remain
valid without this assumption as long as the gradient of
photon occupancy exists between the optical modes of the
internal and far-field radiation fields. For the special cases
of anisotropic internal radiation fields, such as LEDs with
a strong Purcell effect or of small dimension compared to
the photon wavelength, the total entropy of the output
electroluminescence will be overestimated by this model,
as will the upper bound of WPE. In principle, Eq. (6) is
universally applicable as long as the rate of total radiation
entropy can be properly estimated.

III. RESULTS AND DISCUSSION

Finally, let us examine the thermodynamic bound of
WPE for typical LEDs operating with useful output
powers. Here, the steady-state electroluminescence pro-
duced by LEDs is assumed to have a Gaussian spectral

profile regardless of the exact LED operating condition,
which is close to the actual case. For any given (or
measured) optical intensity Ir with a Gaussian spectrum,
we can first use Eq. (7) to retrieve the occupancy function
fiðνÞ for the internal radiation field and then put it into
Eq. (8) to calculate the associated entropy flux Φr of the
total output. By applying Eqs. (10) and (11), a correspond-
ing reversible bound of WPE is, thus, obtained, and the
same for the irreversible bound by applying Eqs. (13)
and (14). In Fig. 2, the upper bound of WPE for LEDs of
different spectral profiles is plotted against a wide range
of optical intensities, as it is a major dependence of the
LED efficiency both empirically and theoretically. This plot
indicates that LEDs can be much more efficient at lower
optical intensity or longer emission wavelength, since
the corresponding electroluminescence contains more
entropy per unit optical power, allowing a higher ratio
of heat influx to participate in carrier excitation. This trend
has an exception at extremely high brightness. In addition,
the maximum of WPE is unbounded when the intensity
diminishes. For typical visible or infrared LEDs, the WPE
in the reversible case can be as high as 130% to 250% at
moderate brightness close to the indoor lighting condition,
which is significantly higher than the conventional effi-
ciency limit of unity. Even in the extremely high-power
condition near 100 W=cm2, the output intensity can still
nontrivially surpass the electrical input power by more than
5%, with the remaining energy drawn from the LED lattice.
More important, the irreversible limit, as expected from
our model, is always lower than the reversible one of the
same condition. This correction to the theoretical upper
bound of WPE becomes increasingly more conspicuous
and necessary at longer wavelength.

FIG. 2. The upper bound of WPE (at 300 K) for LEDs of
555-nm central wavelength with 20-nm full width at half
maximum (FWHM), 850-nm central wavelength with 40-nm
FWHM, and 1550-nm central wavelength with 100-nm FWHM
are shown in green, red, and blue, respectively, with dotted lines
representing the reversible limit from Eq. (11) and solid lines for
irreversible limit from Eq. (14).
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At last, we clarify that by indicating the internal radiation
field, we are referring to the electromagnetic field distrib-
uted within the entire solid structure of the LED die. If any
packaging material (e.g., solid immersion lens) is attached
to the LED die, it can also be counted towards the internal
volume, but in this case, the photon field within the
packaging material is characterized by the same internal
temperature Ti according to the model. Otherwise, if the
LED package has very different structure or material
properties, another intermediate radiation field may be
further introduced accordingly, so as another irreversible
process of photon coupling. By indicating the far field, we
are referring to the ambient, which is typically vacuum
or air.
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APPENDIX A: ALTERNATIVE MANIFESTATION
FOR THE QUASIEQUILIBRIUM CONDITION

IN A LED

Suppose that the electron and hole density in the LED
active region under bias voltage V and current density J is n
and p, respectively, as shown in Fig. 1(b). Instead of
treating the LED being electrically pumped to achieve
high carrier density, if these hot carriers are imagined to be
solely thermally excited by a high junction temperature Tj,
we have

np ¼ NCNV exp

�
−EC − ðEi þ 1

2
qVÞ

kBTl

�

×

�
− ðEi − 1

2
qVÞ − EV

kBTl

�

¼ NCNV exp

�
−EC − Ei

kBTj

�
exp

�
−Ei − EV

kBTj

�
; ðA1Þ

where NC and NV are the effective density of states at the
conduction- and valence-band edge, respectively.EC andEV
are the energy levels of the conduction- and valence-band
edge, respectively.Ei is the intrinsic Fermi level, and q is the
electron charge. Equation (A1) assumes an undoped active
region of the LED, which is a common case. Solving
Eq. (A1) with relation EC − Ei ¼ Ei − EV ¼ 1

2
hν̄, where

ν̄ is the mean frequency of emitted photons, we have an
expression of the LED bias voltage,

V ¼ hν̄
q

�
1 − Tl

Tj

�
: ðA2Þ

Combining Eq. (A2) with current density J ¼ qIr=ðhν̄Þ, the
wall-plug efficiency of the LED can be calculated by its

definition in this alternative manner and is found to reduce to
the exact same form as in Eq. (14) if Tj ¼ Ti. This condition
is not unreasonable since the hot carriers in the LED active
region interact directly with the internal radiation field rather
than the far field. This result manifests that the quasiequili-
briumstatus can bemaintained between the internal radiation
field and the injected carriers of a certain density [determined
by the LED bias as in Eq. (A2)] and also justifies the
isothermal process (step 3) described in Appendix B.

APPENDIX B: THERMODYNAMIC CYCLE AND
T-S DIAGRAM OF TYPICAL LED OPERATION

A toy model for the thermodynamic cycle associated
with a LED is presented below. We can plot a T-S diagram
for the irreversible LED model to identify and associate
each thermodynamic process roughly with an appropriate
carrier-transport counterpart, which is shown in Fig. 3.
In this scenario, step 1 can be considered an isothermal

heat-absorption process based on the Peltier effect,
which corresponds to the local thermalization (energy-
redistribution) process of the electrons at quasineutral
regions sufficiently close to the LED junction. This event
is considered isothermal at lattice temperature Tl due to the
fast electron-phonon scattering process relative to the speed
of transport. Step 2 is a separate isentropic process without
heat exchange, specifically describing electrons being
excited and injected into the LED active region via
electrical pumping. In this process, the external bias
effectively reduces the potential barrier near the LED
junction, resulting in a change of local electron distribution.
This change of electron distribution can alternatively be
reflected by assuming a higher junction temperature in a
quasiequilibrium state, as described in Appendix A.
Therefore, carrier temperature in the active region rises
from Tl to Ti in this step (note, to characterize the excited

FIG. 3. T-S diagram illustrating the thermodynamic cycle
implemented by the irreversible LED model. In step 3, an extra
dotted line is plotted in parallel to indicate the irreversibility
introduced by the temperature difference between the LED
internal radiation field (Ti) and the far field (Tr). The color
scheme adopted here for different thermodynamic processes is
consistent with those in Figs. 1(a) and 1(b).
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state of carriers at Ti, the term “carrier temperature” was
sometimes specified as “apparent radiant temperature” in
the literature [8]). As electron-electron scattering tends to
be faster than electron-phonon scattering, it may be
reasonable to assume such a redistribution of electrons
occurs after the injection. Step 3 is the other (approx-
imately) isothermal process solely describing the radiative
recombination event of injected electrons taking place in
the LED active region that releases all the energy and
entropy input from steps 1 and 2. This process is considered
as isothermal at the hypothetically elevated junction tem-
perature Ti since the electrons in the LED active region
are in quasiequilibrium with the internal radiation field.
As the last step, step 4 is the other isentropic process
characterizing the temperature drop of some specific
electrons from Ti back to Tl following the photon emission
event. Therefore, it also implies a change of local electron
distribution, which can be considered as a diffusive carrier-
transport process leaving the LED junction for the other
side of the quasineutral region after the interband transition
(so they do not count towards leakage current). In this toy
model, this step requires no net heat (entropy) exchange,
thus, being approximated as an isentropic process. It also
fulfills the current continuity requirement for the device.
As a whole, the four parallel implementing processes as
depicted (with solid lines) in the T-S diagram form a
reversible thermodynamic cycle of the electronic system,
with an additional heat-exchange process represented by a
dotted line indicating the irreversibility introduced to the
LED model due to the temperature difference between the
internal and external radiation fields.
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