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Generalized electromagnetism of subdimensional particles: A spin liquid story
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It has recently been shown that there exists a class of stable gapless spin liquids in 3+1 dimensions described by
higher-rank tensor U(1) gauge fields, giving rise to an emergent tensor electromagnetism. The tensor gauge field
of these theories couples naturally to subdimensional particles (such as fractons), which are restricted by gauge
invariance to move only along lower-dimensional subspaces of the system. Here we work out some of the basic
generalized electromagnetic properties of subdimensional particles coupled to tensor electromagnetism, such as
generalized electrostatic fields, potential formulations, Lorentz forces, Maxwell equations, and Biot-Savart laws.
Some concepts from conventional electromagnetism will carry over directly, while others require significant
modification.
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I. INTRODUCTION

Spin liquids are fascinating states of matter which exhibit
long-range entanglement in the ground state and an exotic
spectrum of emergent excitations [1]. As a simple example,
a conventional three-dimensional U(1) quantum spin liquid is
described by the familiar U(1) gauge theory of Maxwell elec-
tromagnetism. Such a system has an emergent gapless photon
(with the effective “speed of light” determined by microscopic
parameters), as well as emergent charged particles, coming
in both electric and magnetic varieties. The gaplessness
of the emergent photon is protected by gauge invariance,
which makes these phases stable against perturbations to the
Hamiltonian, without the need for symmetry protection.

This gauge structure of the theory gives rise to an emergent
electromagnetism in U(1) spin liquids. This quantum elec-
tromagnetic theory can be conveniently described in terms
of a vector potential �A, where the magnetic field is given by
�B = ∇ × �A. The electric field �E plays the role of the canonical

conjugate to �A, since �E = ∂LMax/∂ �̇A. Microscopically, this
gauge structure can be obtained by rewriting the fundamental
degrees of freedom, such as spins on a lattice, into a language
which maps a geometrically frustrating spin interaction (e.g.,
“spin-ice rules”) into a gauge constraint. The reader is referred
to Ref. [2] for a more thorough discussion of the U(1) quantum
spin liquid and its Hilbert space.

While the vector potential theory is most familiar, it has
recently been realized that there is a wide class of other spin
liquids described by emergent tensor gauge fields. In particular,
it has been shown that systems described by symmetric tensor
U(1) gauge fields exhibit a stable deconfined phase, making
these a new class of stable gapless spin liquids [3]. As in
the conventional U(1) spin liquid, these systems have robust
gaplessness without needing to rely on symmetry protection.
Furthermore, it has been shown that the particles carrying
the gauge charge in these theories obey extra conservation
laws which restrict their motion to lie on certain lower-
dimensional subspaces [4]. For example, certain theories have
particles carrying a vector charge, which can move only
along one-dimensional subspaces, in the direction of their
charge vector. In other models, the fundamental charges are
restricted to a zero-dimensional subspace, i.e., they cannot
move at all without the creation of additional particles. Other

types of subdimensional particles are also possible. This
subdimensional behavior makes these theories the natural U(1)
analog of the discrete “fracton” models constructed by Vijay
et al. [5,6]. The same sort of restricted mobility was also seen
in earlier work by Chamon and others [7–12]. Such fracton
phases have seen a flurry of recent activity [13–18].

Phases described by symmetric tensor U(1) gauge fields
also exhibit an emergent electromagnetism, but of a more
exotic form. The electric and magnetic fields are now tensor-
valued objects instead of vectors. We will see that even
currents in these theories must be promoted to tensor objects.
Furthermore, in each distinct higher-rank U(1) spin liquid
phase, there is a different set of generalized Maxwell equations.
This gives us many new types of generalized electromagnetism
to play with. As discussed in previous work, there are actually
an infinite number of such higher-rank U(1) theories, by
considering tensors of arbitrary rank. For the sake of finiteness,
here we shall work with the rank-2 symmetric tensor theories,
of which there are four known distinct spin liquid phases.
Any other higher-rank theory ought to be amenable to the
same sort of analysis. We will focus on generalizing some
of the basic concepts of undergraduate electromagnetism
to these higher-rank U(1) theories, such as electrostatic
fields, potential formulations, Lorentz forces, and Biot-Savart
laws. Our analysis will mainly focus on the macroscopic
picture, abstracting from any specific microscopic models.
For completeness, however, we will review the concrete lattice
models in Appendix D.

Before proceeding to the main analysis, we first quickly
recap the properties of the four types of rank-2 symmetric
tensor U(1) spin liquids, developed in Refs. [3] and [4]. In
all cases, the degrees of freedom are those of a symmetric
rank-2 compact U(1) tensor Aij , with a conjugate variable Eij

representing a generalized electric field. As discussed in these
references, each phase can be fully specified by the structure
of its Gauss’s law constraint, and the four types of rank-2
theories are distinguished by the different choices of Gauss’s
laws available. The different theories are as follows:

Vector charge theory

In this theory, the Gauss’s law takes the form ∂iE
ij = ρj ,

for vector-valued charge ρj . The charges of this theory obey

2469-9950/2017/96(3)/035119(16) 035119-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.035119


MICHAEL PRETKO PHYSICAL REVIEW B 96, 035119 (2017)

two constraints:∫
�ρ = const.,

∫
�x × �ρ = const., (1)

reflecting the conservation of both the charge and its angular
moment. In order to obey these conservation laws, the vector
charges are forced to become one-dimensional particles,
hopping only along the direction of their charge vector. The
gapless gauge mode for this theory has three independent
polarizations. This theory has a magnetic field tensor Bij which
is also symmetric and obeys a corresponding magnetic Gauss’s
law, ∂iB

ij = ρ̃j , for magnetic charge ρ̃j . The magnetic field
tensor has two spatial derivatives, leading to a quadratic
dispersion for the gauge mode. This theory possesses a self-
duality between the electric and magnetic tensors. We shall
therefore focus mainly on the case where only electric charges
and currents are present in the theory. Results for magnetic
charges and currents can be obtained straightforwardly by
duality.

Traceless vector charge theory

Here we have the same Gauss’s law from the previous
theory, ∂iE

ij = ρj , but also add in a tracelessness constraint,
Ei

i = 0. We are free to impose this constraint exactly on the
entire Hilbert space. Alternatively, one could consider allowing
the constraint to break by adding trace charges, Ei

i = ρtr.
This could be treated by similar methods, but would make the
analysis more cumbersome and does not change the results
qualitatively, so we focus on the case where tracelessness is
exact. This theory has both of the conservation laws of the
previous theory, plus two additional conservation laws related
to the tracelessness:∫

( �ρ · �x) = const.,
∫ [

(�x · �ρ)�x − 1

2
x2 �ρ

]
= const. (2)

These conservation laws restrict the fundamental charges from
moving at all, turning them into fractons (zero-dimensional
particles). The only mobile particles in this theory are bound
states, which will be discussed later. The gapless gauge mode
of this theory has two independent polarizations. The theory
has a symmetric traceless magnetic field tensor Bij , now with
three spatial derivatives, leading to a cubic dispersion for
the gauge mode. Once again, the theory exhibits self-duality,
swapping the role of the electric and magnetic field tensors.

Traceless scalar charge theory

We now consider a theory with a two-derivative Gauss’s
law, ∂i∂jE

ij = ρ, for scalar charge ρ. Let us also first suppose
the electric field tensor is traceless, Ei

i = 0, saving the traceful
analog for last. The theory has three constraints on the charge:∫

ρ = const.,
∫

�xρ = const.,
∫

x2ρ = const., (3)

reflecting the conservation of charge, dipole moment, and
one specific component of the quadrupole moment. The
fundamental charges are fractons, unable to hop in any
direction without the creation of additional charges. The
mobile excitations are dipolar bound states, which behave as
two-dimensional particles, only able to hop transversely to the

dipole moment. The gapless gauge mode has four independent
polarizations. The magnetic field tensor Bij is a symmetric
traceless tensor, just like Eij , leading once again to self-duality.
There is only one spatial derivative in Bij , leading to a linear
dispersion for the gauge mode.

Scalar charge theory

Lastly, we take the Gauss’s law to be the same as the
previous theory, ∂i∂jE

ij = ρ, but without imposing any
tracelessness constraint. In some sense, this is actually the
simplest of the theories. However, a few extra comments
are necessary since this theory does not have the self-duality
property of the previous theories; the issue with duality in this
model was first noticed by Vijay [19]. The electric charges of
the theory have two constraints:

∫
ρ = const.,

∫
�xρ = const., (4)

corresponding to the conservation of charge and dipole mo-
ment. Once again, the fundamental charges are fractons. The
dipolar bound states of this theory are fully mobile, possessing
both longitudinal and transverse motion. The gapless gauge
mode has five independent polarizations.

Unlike the previous theories, the appropriate magnetic
field tensor for this theory is actually a nonsymmetric (and
traceless) tensor Bij , with one spatial derivative, leading to
linear gauge mode dispersion. It can readily be checked that
the nonsymmetric traceless tensor Bij = εiab∂

aAb
j represents

the stable fixed point of the theory where all five polarizations
have the same dispersion. This nonsymmetric tensor obeys
a different Gauss’s law, ∂iB

ij = ρ̃j , with vector magnetic
charge. The magnetic charges obey two constraints:

∫
�̃ρ = const.,

∫
�̃ρ · �x = const., (5)

which makes the magnetic vector charges two-dimensional
particles, only hopping transversely to their charge vector.

This theory lacks any sense of self-duality between the
electric and magnetic sectors. Nevertheless, it remains stable
against confinement. It is interesting to note that there is a
duality between a traceful symmetric tensor description (with
one particle and five gauge mode degrees of freedom) and a
traceless nonsymmetric tensor description (with three particle
and five gauge mode degrees of freedom).

Some basic properties of the four phases are summarized
in Table I. In the following sections, we will go through each
of the four theories one by one. We will start with the scalar
charge theory since it turns out to be the simplest. The analysis
of this theory in Sec. II will lay the groundwork for discussing
the other rank-2 theories. Most of the important concepts
will be developed in this section and will be extended in
natural fashion in the following sections. The casual reader
may therefore wish to focus primarily on Sec. II.

We note that one might also consider theories with
“curl” constraints, such as εijk∂jE

�
k = ρi�. These theories

are slightly different, as they do not host point particles, and
they may have issues with stability. We therefore relegate a
discussion of such constraints to Appendix C.
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TABLE I. Summary of the rank-2 U(1) spin liquids.

Gauss’s law(s) Magnetic tensor, Bij Gauge dispersion Polarizations Self-Dual?

∂i∂jE
ij = ρ εiab∂

aAb
j ω ∝ k 5 No

∂i∂jE
ij = ρ, Ei

i = 0 1
2 (εiab∂

aAb
j + εjab∂

aAb
i) ω ∝ k 4 Yes

∂iE
ij = ρj εiabεjcd∂

a∂cAbd ω ∝ k2 3 Yes
∂iE

ij = ρj , Ei
i = 0 [see Eq. (88)] ω ∝ k3 2 Yes

II. SCALAR CHARGE THEORY

A. Electrostatic fields

The generalized Gauss’s law of this theory is given by

∂i∂jE
ij = ρ (6)

for scalar charge ρ. The fundamental charges in this theory are
fractons, unable to hop in any direction without the creation of
additional particles. When such a charge is isolated (a situation
which is possible to create), it will provide a δ-function source
for Gauss’s law:

∂i∂jE
ij = qδ(3)(r), (7)

where charges are quantized as multiples of q. We now wish
to know the expectation value of the electric field due to this
point source, 〈Eij 〉. To avoid clutter, we will omit brackets
throughout, simply writing Eij . Equivalently, the following
analysis can be taken to be applied to the classical limit of
the theory. Since, in the Coulomb phase, the particles can be
regarded as independent excitations and since the low-energy
effective theory for the gauge field is rotationally invariant,
the generalized electric field may only depend on rotationally
invariant quantities. Furthermore, by dimensional analysis, we
know that Eij must scale as q/r . The only such symmetric
rank-2 quantities are as follows:

Eij = q

(
α

δij

r
+ β

rirj

r3

)
. (8)

As a first condition, we must satisfy the Gauss’s law. We have

∂iE
ij = q(β − α)

rj

r3
,

(9)
∂i∂jE

ij = 4πq(β − α)δ(3)(r),

so we require β − α = 1/4π to satisfy Gauss’s law. The
electric field then becomes

Eij = q

[
α

δij

r
+

(
α + 1

4π

)
rirj

r3

]
. (10)

Note that unlike the case of conventional electromagnetism,
the Coulomb field of a static point charge has not been
uniquely specified by Gauss’s law and rotational symmetry. In
order to further constrain the electric field, we must resort to
another of the generalized Maxwell equations. For the traceful
scalar charge theory, the correct magnetic field tensor is the
(nonsymmetric) tensor,

Bij = εiab∂aA
j

b . (11)

The equation governing the evolution of the magnetic field is
then

∂tB
ij = εiab∂a∂tA

j

b = εiab∂aE
j

b , (12)

where we have used the fact that Eij is the canonical
momentum to Aij to derive a generalized Faraday’s equation.
For a magnetostatic solution, we will then require our Coulomb
field to satisfy

εiab∂aE
j

b = q(α + β)
εijara

r3
= 0, (13)

which means we need β = −α. When combined with our
earlier condition, β = α + 1/4π , we obtain α = − 1

8π
and β =

1
8π

, so the final result for the static Coulomb field of a point
charge (electric monopole) of strength q is

Eij
mono = q

8π

(
rirj

r3
− δij

r

)
. (14)

Since the differential equations involved have been linear, we
can then find the electric field of a general charge distribution
by taking superpositions. In particular, for a dipole of strength
and direction pi , the appropriate electric field is −pk∂kE

ij

q=1,
which is given by

E
ij

dip = − 1

8π

[
δij (p · r)

r3
+ (pirj + ripj )

r3
− 3

rirj (p · r)

r5

]
.

(15)

B. Potential formulation

There is actually a conceptually cleaner and simpler way to
derive these electric field solutions. In the spirit of normal
electromagnetism, we will seek a potential formulation to
mitigate the proliferation of indices. From our magnetostatic
constraint, εiab∂aE

j

b = 0, we can immediately conclude that
Eij = ∂iλj for some vector λj . However, by the symmetry
of Eij , we must have ∂iλj = ∂jλi . This implies that the curl
of λ vanishes, εijk∂jλk = 0, so λ will in turn be a derivative,
λj = ∂jφ, for some scalar potential φ. We then have

Eij = ∂i∂jφ. (16)

(Note that we have not introduced a negative sign, as one would
have done in conventional electromagnetism. The naturalness
of this sign convention will be seen shortly.) This scalar
potential significantly reduces the complexity of the problem.
In order to satisfy Gauss’s law for a point charge, we must
have

∂i∂jE
ij = (∂2)2φ = qδ(3)(r). (17)

By dimensional analysis, φ must scale as r . The only
possibility is φ = Cr for constant C (it can readily be checked
that possible logarithmic terms cannot solve the Gauss’s law
and can be ruled out). Differentiating yields (∂2)2(Cr) =
−8πCδ(3)(r), so we require C = −q/8π . Then, taking the
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appropriate derivatives, we immediately obtain Eq. (14) for
the Coulomb field, as expected. Again, due to the linearity of
the differential equations, we can then apply the superposition
principle to the potential, instead of to the field directly, which
is much simpler. For example, the potential due to a dipole pi

is given by φdip = −pi∂iCq=1r . The scalar potentials for the
electric monopoles and dipoles are

φmono = − qr

8π
, φdip = (p · r)

8πr
. (18)

This potential is not simply a convenient mathematical tool.
Just like in conventional electromagnetism, the potential plays
a direct physical role. Consider the energy stored in the electric
field of a static charge configuration:

ε = 1

2

∫
EijEij = 1

2

∫
Eij ∂i∂jφ

= 1

2

∫
∂i∂jE

ijφ = 1

2

∫
ρφ. (19)

This equation is exactly the same as is obtained in normal
electrostatics. (Note the importance of the sign convention
for the potential.) This tells us that the potential represents
the energy associated with a particle at a particular location.
Even though fractons do not possess a conventional sense of
forces or equations of motion, we see that fractons nevertheless
have a potential energy. Note that the factor of 1/2 prevents
overcounting between charge pairs. Interestingly, φ for a
point charge vanishes at the charge’s location, so there is no
“self-energy” contribution to the energy integral. All energy
can be viewed as arising from each particle interacting with
the potential of the other particles, but not its own. Since φ

for a point charge grows linearly, we see that separating a
group of fractons requires an energy linear in the separation,
as has been found in previous work. This large energy cost
naively would suggest that the particles are confined. However,
the immobile nature of fractons, coupled with the fact
that the energy density of the electric field is bounded,
stabilizes them against collapsing back into the vacuum once
the energy cost has been paid to create them. Thus, the
fractons are, in fact, well-defined excitations, albeit very
energetically costly, in a situation reminiscent of vortices in a
superfluid. (See Ref. [4] for a more detailed discussion of this
“electrostatic confinement” issue.)

C. Lorentz force

While the results of the previous sections are good to have
in hand, the knowledge of these electric fields and potentials
will not mean much unless we know how the charges of the
theory will respond to them. For isolated fundamental charges
of the theory, we already know the answer to this question:
they do not respond at all. The isolated electric monopoles
in this theory are fractons, so they cannot hop without a
huge input of energy to create extra particles. They therefore
have no equations of motion and do not respond at all to the
electromagnetic fields. However, the dipolar bound state of
a positive and negative charge will be freely propagating in
this theory, since dipole motion will preserve the global dipole
moment, as long as the dipole does not change orientation. A
dipole can therefore respond to the electromagnetic fields, but

it cannot change its orientation, except through interaction with
other particles. We can therefore effectively treat an isolated
dipole like a freely hopping point particle.

But what is the effect of the fields on this effective particle?
We can draw our intuition from the lattice models for the
higher-rank spin liquids [3,20,21], discussed in Appendix D.
In these models, Aij represents the phase picked up by
hopping a −i-oriented dipole in the j direction, and also the
phase for hopping a −j -oriented dipole in the i direction.
Effectively, a dipole pj responds to the magnetic field tensor
just like a conventional charged particle would respond to
an ordinary electromagnetic field, with an effective vector
potential given by A

j

eff = −p̂iA
ij and effective magnetic field

Bi
eff = −εijk∂j p̂

�A�k = −Bij p̂j . (As a reminder, while A and
E are symmetric tensors, B is not symmetric, so the index
of contraction is quite important here.) The corresponding
effective electric field is E

j

eff = −p̂iE
ij . The generalized

Lorentz force on a dipole pi moving with velocity vi is then
given by

F j = −pi

(
Eij + εj�kv�B

i
k

)
. (20)

Let us now suppose that a dipole has been placed in an electric
field created by some static electric charge distribution, so that
Bij = 0. The corresponding electric force is given by

F j = −pi∂
i∂jφ, (21)

where φ is the scalar potential. Let us now calculate the work
necessary to move the dipole from point 1 to point 2 against
the field,

W = −
∫ 2

1
F jdxj =

∫ 2

1
dxj∂j (pi∂iφ)

= (pi∂iφ)2 − (pi∂iφ)1. (22)

We therefore see that the potential energy associated with
dipole pi is given by V = pi∂iφ, which we could have
predicted based on our previous discussion of the potential,
but it is nice to see this conclusion arise independently.

Note that the Lorentz force which we have found in this
section has a negative sign in front, which looks peculiar at first.
As a sanity check, let us calculate the electric force between
two identical dipoles pi . Making use of the electric field found
in Eq. (15), we have that the electric force on a dipole at
location ri due to an identical dipole at the origin is given by

F j = 1

8π

[
2pj (p · r)

r3
+ p2rj

r3
− 3

(p · r)2rj

r5

]
. (23)

The radial component of this force is

F j r̂j = 1

8π

[
− 2(p · r)2

r4
+ p2

r2

]
= p2

8πr2
(1 − cos2 θ )

= p2 sin2 θ

8πr2
, (24)

where θ is the angle between pi and ri . Note that the
radial force is always non-negative, indicating a repulsive
force between like charges. Flipping the direction of one
of the dipoles would result in an overall negative sign, so
two oppositely oriented dipoles will always attract, a state of
affairs which makes intuitive sense since they can recombine
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into the vacuum. Interestingly, the Lorentz force between two
dipoles vanishes when they line up along a line, such that
(p · r) = pr . This corresponds to a minimum of the potential
for like dipoles and a maximum of the potential for opposite
dipoles. Therefore, like dipoles energetically prefer to arrange
themselves end to end, whereas opposite dipoles prefer to be
side by side.

One last comment is in order regarding our Lorentz force on
dipoles. The force increases linearly with the dipole moment
pi . This seems to indicate that there is a larger force on two
charges separated by a large distance than two charges right
next to each other. This seems puzzling since we expect that
two well-separated charges should approach the behavior of
isolated fractons, which should not move at all. The resolution
comes from the fact that we have identified the force based
on the phases associated with hopping matrix elements, but
we have not yet accounted for the magnitude of the hopping
elements. In other words, we have not accounted for the
effective mass of the dipoles. The magnitude of hopping
matrix elements will be much smaller (and the effective mass
correspondingly much larger) for dipoles of large separation.
The effective mass of a dipole grows exponentially in the
particle separation, m(p) ∝ eαp, where α is determined by
microscopic parameters (via perturbation theory). Thus, while
well-separated dipoles experience an algebraically large force,
they have an exponentially large effective mass, resulting in
exponential suppression of typical velocities. In this manner,
well-separated dipoles will smoothly approach the limit of
fractonic behavior.

D. Currents and the Biot-Savart law

In addition to static charge distributions, we should also
think about how to handle steady current flows. The fundamen-
tal charges are fractons, which cannot freely hop and therefore
have no sense of current. The natural mobile objects of the
theory are the dipolar bound states. In order to keep track
of such dipole motion, one’s first instinct might be to define
a (nonsymmetric) current tensor Jij representing the current
of the i directed dipoles in the j direction. However, there
is a fundamental ambiguity in this definition. For example,
consider the close-packed charge configuration in Fig. 1. There
is not a unique way of defining either the dipole density or Jij

in such a case. Microscopically, an operator hopping an i dipole
in the j direction is the same operator hopping a j dipole in the
i direction, so the true microscopic current operator is actually
a symmetric tensor Jij . This can further be seen by noting that
a source term for the gauge field in the Hamiltonian, AijJij ,
would not be sensitive to any antisymmetric components.
We shall comment further on the meaning and fundamental
definition of the microscopic current Jij shortly.

In terms of the microscopic current, the Hamiltonian takes
the form∫ (

1

2
EijEij + 1

2
BijBij + AijJij

)

=
∫ (

1

2
EijEij + 1

2
Aij ε ab

i ∂aBbj + AijJij

)
. (25)

Noting that Aij is a symmetric tensor, we evaluate the equation
of motion for Eij to find the following generalized Ampere’s

equation relating the current to the fields:

1
2

(
εiab∂aB

j

b + εjab∂aB
i

b

) = −J ij − ∂tE
ij . (26)

We note that this generalized Ampere’s equation can actually
be used as the fundamental definition of the microscopic
current Jij . Just as the charge ρ can be defined as the violations
of ∂i∂jE

ij = 0 from the “pure” gauge theory, Jij essentially
represents the deviations of Ampere’s equation from the pure
gauge theory. In order to make connection between this
definition and the concept of rates of charge hopping processes,
we can use this equation to derive a continuity equation relating
the charge and current. Applying ∂i∂j to each side of Ampere’s
equation, we obtain

∂tρ + ∂i∂jJ
ij = 0 (27)

as the generalized continuity equation. The intuition of this
equation is that J ij inherently represents the rate of multibody
hopping processes, instead of the single-body motion captured
by a more conventional current vector. For example, dipole
motion is one sort of process contributing to J ij , as expected.
But other multibody processes, such as a fracton hopping while
emitting an extra dipole, also contribute. This intuition can
be directly confirmed in the lattice models [3,20,21], where
all such multibody processes act as sources for Ampere’s
equation.

To have a steady current, our continuity equation demands
∂i∂jJ

ij = 0. Assuming this to be the case, so that there are
steady currents and electric fields, we can drop the ∂tE

ij term.
We can then rearrange Ampere’s equation as

∂a

(
εabiB

j

b + εabjB i
b

) = −2J ij . (28)

We can obtain a general solution for the quantity in
parentheses as

εabiB
j

b + εabjB i
b =

[
− 1

2π

∫
dr ′J ij (r ′)

(r − r ′)a

|r − r ′|3
]

+ εa�k∂�λ
ij

k (29)

for arbitrary tensor λkij . Applying εadi to this equation yields

3B
j

d − Bi
iδ

j

d =
[

− 1

2π

∫
dr ′J ij (r ′)εadi

(r − r ′)a

|r − r ′|3
]

+ ∂dλ
ij

i − ∂iλ
ij

d . (30)

By its definition, we note that B is traceless, Bi
i = 0, so we

are left with

Bij =
[

− 1

6π

∫
dr ′J j

k(r ′)εik� (r − r ′)�
|r − r ′|3

]

+ 1

3

(
∂iλ

kj

k − ∂kλ
ikj

)
. (31)

This is the generic solution to our generalized Ampere’s
equation. However, we must now pick the solution that also
obeys the absence of magnetic charges, ∂iB

ij = 0. By good
fortune, we note that the choice λkij = 0 is the solution which
obeys this property. The final result for the magnetic field
generated by a steady current is

Bij = − 1

6π

∫
dr ′J j

k(r ′)εik� (r − r ′)�
|r − r ′|3 . (32)
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FIG. 1. When the dipoles are densely packed, the notion of separate species of dipoles breaks down. As seen in the top row, this configuration
of charges could be regarded as closely packed y-oriented dipoles. But, as seen in the bottom row, the same configuration of charge could
be regarded as closely packed x-oriented dipoles. If this charge configuration were set in motion, there would be a fundamental ambiguity in
defining a “dipole current.” This ambiguity is connected with the fact that the current tensor of this theory must be a symmetric tensor.

This equation serves as the generalized Biot-Savart law for
this theory. For an arbitrary steady current configuration, we
can use this equation to calculate the resulting magnetic field
tensor. Note that the Biot-Savart law obeys the same scaling
as in conventional electromagnetism. Thus, for example,
the magnetic field of a current-carrying wire will fall off
as 1/r with distance r away from the wire, just like a
conventional current. Whereas electric fields of static charges
were abnormally energetically costly in this theory, magnetic
fields of steady currents are much more in line with standard
electromagnetism.

E. Magnetic particles

The theory considered in this section, alone of the rank-2
theories, is not self-dual. The electric particles of this theory
are scalars, but the magnetic charges are vectors, ∂iB

ij = ρ̃j ,
which behave as two-dimensional particles. Whereas the fields
associated with the magnetic particles could be easily obtained
for a self-dual theory, for this theory the magnetic results are
not automatic. The calculation of these fields is similar to
other calculations in this paper and would distract from the
main line of development, so we relegate the calculations to
Appendix A. Here we simply state the results. The magnetic
field corresponding to a magnetic charge ∂iB

ij = pjδ(3)(r) is

Bij = − 1

16π

[
−5

pj ri

r3
− pirj

r3
+ (p · r)δij

r3

+ 3
(p · r)rirj

r5

]
. (33)

The Lorentz force on a magnetic particle is

F i = pj (P ikBkj − εik�vkp̂�p̂
nEjn), (34)

where P ik is the projector into the plane transverse to pj .
The current of magnetic particles takes the form of a traceless
nonsymmetric tensor J̃ij , obeying a continuity equation,

∂t ρ̃
j + ∂i J̃

ij = 0. (35)

The generalized Faraday’s equation is

εiab∂aE
j

b = ∂tB
ij + J̃ ij . (36)

For a steady magnetic current configuration, the dual Biot-
Savart law is

Eij = 1

8π

∫
dr ′[J̃ j

k (r ′)εk�i + J̃ i
k (r ′)εk�j

] (r − r ′)�
|r − r ′|3 . (37)

F. Summary of Maxwell equations

Our task complete, we now take a moment to collect the
generalized Maxwell equations, from which all of the other
results follow. For the scalar charge theory, these equations
take the following form:

∂i∂jE
ij = ρ,

∂iB
ij = ρ̃j ,

εiab∂aE
j

b = ∂tB
ij + J̃ ij ,

1
2

(
εiab∂aB

j

b + εjab∂aB
i

b

) = −∂tE
ij − J ij , (38)

where ρ and J ij are the charge and current of electric particles,
and ρ̃j and J̃ ij are the charge and current of magnetic particles.

III. TRACELESS SCALAR CHARGE THEORY

A. Electrostatic fields

Let us now consider a different rank-2 theory, where we
will take the same Gauss’s law, ∂i∂jE

ij = ρ, but will also
impose the condition that the electric field tensor is traceless,
Ei

i = 0. As discussed in Ref. [4], we are free to impose
this constraint identically on the entire Hilbert space, without
charges. One could take trace charges into account, but the
analysis would become more tedious, without qualitatively
affecting the results, so we shall avoid such a discussion here.
As before, the fundamental charges in this theory are fractonic,
i.e., totally unable to move. However, the dipolar bound states,
which were formerly fully mobile, are now two-dimensional
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particles in this theory since they can only hop transversely
while obeying the conservation laws.

Once again, we wish to first calculate the electric field of
an isolated point charge. Particle independence and rotational
symmetry dictate that the electric field tensor must take the
form of Eq. (8). In order to satisfy Gauss’s law, we must
have β = α + 1/4π , as before. However, the magnetostatic
constraint is different in this case. For this theory, the
appropriate magnetic tensor is the symmetric tensor Bij =
1
2 (εiab∂aA

j

b + εjab∂aA
i

b ). The magnetostatic condition is

then ∂tB
ij = 1

2 (εiab∂aE
j

b + εjab∂aE
i

b ) = 0. However, in this
case, we find that this constraint is no constraint at all. The
electric field tensor of Eq. (8) will satisfy this constraint for
any values of α and β, so this constraint is of no use to us.
In order to fully determine the electric field, we must then
resort to the tracelessness condition, Ei

i = 0, which gives the
following:

Ei
i = q

(
α

δi
i

r
+ β

riri

r3

)
= q

3α + β

r
= 0. (39)

Our two conditions are then 3α + β = 0 and β = α + 1/4π ,
which has the solution α = − 1

16π
and β = 3

16π
. The electric

field of an electric monopole for this theory is then

Eij
mono = q

16π

(
3rirj

r3
− δij

r

)
. (40)

The corresponding dipole field is −pk∂kE
ij

q=1, which yields

E
ij

dipole = − 1

16π

[
δij (r · p)

r3
+ 3

(pirj + ripj )

r3

− 9
rirj (r · p)

r5

]
. (41)

B. Potential formulation

Once again, it is desirable to obtain a potential formula-
tion for this theory. However, the magnetostatic constraint,
1
2 (εiab∂aE

j

b + εjab∂aE
i

b ) = 0, is a bit more complicated in
this case, and it is not obvious at first glance what potential
formulation to construct. However, we can take our inspiration
from the previous case and start with ∂i∂jφ. In general, this is
not a traceless tensor, so we remove the trace component and
try a potential ansatz of the form

Eij = ∂i∂jφ − 1
3δij ∂

2φ. (42)

If this potential formulation is to work, then by the same
rotational symmetry arguments as before, the form φ = Cr

for some constant C must yield the correct field upon
solving Gauss’s law. This equation gives ∂i∂jE

ij = 2
3 (∂2)2φ =

− 2
3 8πCδ(3)(r) = qδ(3)(r), so we require C = −3q/16π .

Upon taking the appropriate derivatives, we find that this
potential yields the correct electric field of a point charge.
While we have not derived the form of the potential directly
from the magnetostatic condition, this is actually not necessary
to demonstrate its correctness. This potential formulation
(obtained via educated guess) works for the point charge.
Then, by linearity of all equations involved, we can superpose
potentials to get the correct electric field for an arbitrary

electrostatic configuration of charges. Thus, the potential
formulation of Eq. (42) is rigorously correct for all electrostatic
problems. The potentials for the electric monopole and dipole
are given as follows:

φmono = − 3qr

16π
, φdip = 3(p · r)

16πr
. (43)

As before, the potential is of direct physical significance. The
energy stored in the electric field of an arbitrary electrostatic
configuration is given by

ε = 1

2

∫
EijEij = 1

2

∫
Eij

(
∂i∂jφ − 1

3
δij ∂

2φ

)

= 1

2

∫
∂i∂jE

ijφ = 1

2

∫
ρφ, (44)

where we have made use of the tracelessness condition. As
in the previous case, we see that the potential is a direct
measure of the energy associated with a particle being at a
particular location. Once again, there are no “self-energy”
contributions and the factor of 1/2 serves to eliminate double
counting of particle pairs. Note that the coefficient of the
monopole potential in this case, 3/16π , is larger than that in the
previous traceful case, 1/8π . Therefore, the traceless theory
has stronger interactions between particles than its traceful
cousin.

C. Lorentz force

As in the traceful theory, the fundamental particles are
fractons and cannot respond directly to the electromagnetic
fields. However, we still have mobile dipolar bound states,
which in this theory are two-dimensional particles, hopping
only in the transverse direction. The phases picked up upon
hopping will still be of the form −pjA

ji , but the longitudinal
component will not be felt, so we should project into the
transverse plane, obtaining the effective vector potential as

Ai
eff = −P ikp̂jAjk, (45)

where we have defined the projection operator P ik = (δik −
p̂i p̂k), which projects onto the transverse plane. The effective
magnetic field is then the out-of-plane component of the curl
of this vector potential,

Bi
eff = p̂i p̂j εjk�∂kA

eff
� = −p̂i p̂j p̂mε k�

j ∂kA�m

= −p̂i p̂j p̂kBjk. (46)

The corresponding effective electric field is Ei
eff = ∂tA

i
eff =

−P ikp̂jEjk , which lies in the plane, as appropriate. The
generalized Lorentz force on a dipole p in this theory is then

F i = −pj (P ikEjk + εik�vkp̂�p̂
nBjn). (47)

Note that since the velocity and the effective E lie in the
plane, and the effective B is perpendicular to the plane,
the Lorentz force always lies in the plane, consistent with
the two-dimensional nature of the dipoles.

Let us now take the electromagnetic fields to be generated
by some electrostatic configuration of charges, so that B

vanishes and we may use our earlier potential formulation.
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The force law then simplifies to

F i = −pjP ik
(
∂j ∂kφ − 1

3δjk∂
2φ

)
. (48)

The work done to move a dipole against the field from point 1
to point 2 in the plane of its motion is then the line integral of
the force against the field. Since the path lies in the plane, we
may drop the projection operator in the above equation, as the
transverse component will be picked out anyway:

W = −
∫ 2

1
dxiF

i =
∫ 2

1
dxipj

(
∂j ∂iφ − 1

3
δji∂

2φ

)
. (49)

The second term will not contribute since pidxi = 0 for
motion in the plane, leaving us with

W =
∫ 2

1
dxi∂i(p

j∂jφ) = (pj∂jφ)2 − (pj∂jφ)1. (50)

We see that, once again, the potential energy of a dipole p

is given by V = pj∂jφ, as it should be, based on the earlier
discussion of the potential.

In order to get a fully mobile charge in this theory, one must
consider a bound state which is not only neutral, but also has no
net dipole. Such quadrupolar bound states would couple only
weakly to the gauge field, via derivatives of A instead of A

itself. Furthermore, not all such quadrupolar bound states are
stable. Certain quadrupoles can decay directly to the vacuum,
releasing their energy into the gapless gauge mode. The only
stable quadrupoles are those with a nonzero value of

∫
ρx2,

which prevents decay by the quadrupolar conservation law. We
shall not further investigate the properties of such quadrupolar
bound states.

D. Currents and the Biot-Savart law

We also wish to characterize steady current distributions
in this theory. As in the traceful theory, the fundamental
microscopic current tensor is a symmetric tensor Jij . However,
in this case, Jij must be a traceless tensor, J i

i = 0, since the
trace component represents the rate of processes which violate
the trace constraint on the electric field. In terms of this current,
the Hamiltonian takes the form∫ [

1

2
EijEij + 1

4

(
εiab∂aA

j

b + εjab∂aA
i

b

)
Bij + AijJij

]

=
∫ (

1

2
EijEij + 1

2
Aij ε ab

i ∂aBbj + AijJij

)
. (51)

The corresponding Ampere’s equation for the time evolution
of Eij is

1
2

(
ε ab
i ∂aBbj + ε ab

j ∂aBbi

) = −Jij − ∂tE
ij . (52)

Once again, this current tensor will obey a continuity equation,

∂tρ + ∂i∂jJ
ij = 0, (53)

so a steady current requires ∂i∂jJ
ij = 0. For steady currents,

we drop the electric field term in the Ampere’s equation.
Ampere’s equation is actually formally the same as that
obtained in the traceful theory, so we expect the Biot-Savart
laws to be almost identical. The only differences are that
Bij is now constrained to be symmetric, and the condition
for the absence of magnetic charge is different (∂i∂jB

ij = 0

in the present case versus ∂iB
ij = 0 in the previous case).

Nevertheless, the generic form of Eq. (31), in terms of arbitrary
tensor λkij , is still valid. Noting that the final result must be
symmetric, we guess the form:

λkij = − 1

2π

∫
dr ′J k

�(r ′)εj�i 1

|r − r ′| . (54)

This is automatically a solution of the generalized Ampere’s
equation. The resulting magnetic field tensor is

Bij = − 1

6π

∫
dr ′[J j

k(r ′)εik� + J i
k(r ′)εjk�

] (r − r ′)�
|r − r ′|3 , (55)

which is manifestly symmetric. It also satisfies the equation
∂i∂jB

ij = 0. This is therefore the correct generalized Biot-
Savart law for this theory. From this equation, we can construct
the magnetic field tensor for an arbitrary steady current
configuration.

E. Summary of Maxwell equations

The generalized Maxwell equations for the traceless scalar
charge theory take the following form:

∂i∂jE
ij = ρ,

∂i∂jB
ij = ρ̃,

1
2

(
εiab∂

aEb
j + εjab∂

aEb
i

) = ∂tBij + J̃ij ,
(56)

1
2

(
ε ab
i ∂aBbj + ε ab

j ∂aBbi

) = −∂tE
ij − Jij ,

Ei
i = 0,

Bi
i = 0.

We have included the tracelessness constraint alongside the
other Maxwell equations. But note that the time evolution
equation for E ensures that as long as the initial condition
for E is traceless, it will automatically remain traceless under
time evolution. We have also written out the tracelessness of B

for symmetry purposes. Note that unlike the previous theory,
the Maxwell equations here have a nice symmetry between
electric and magnetic quantities, reflecting the self-duality of
the theory.

IV. VECTOR CHARGE THEORY

A. Electrostatic fields

We will now switch gears and move to a theory with a
different Gauss’s law altogether. Our degrees of freedom will
still be that of a rank-2 symmetric U(1) tensor Aij , but we will
now take our Gauss’s law to be ∂iE

ij = ρj , with vector charge
ρj . An isolated charge will provide a δ-function source for this
Gauss’s law,

∂iE
ij = pjδ(3)(r), (57)

for some charge vector pj . The solution to this equation must
be a symmetric rank-2 tensor, must depend only on rj and pj ,
must be linear in pj , and by dimensional analysis must scale
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as 1/r2. The possible terms are then

Eij = α
(pirj + ripj )

r3
+ β

(p · r)δij

r3
+ γ

(p · r)rirj

r5

+μ
(εik�rkp�r

j + εjk�rkp�r
i)

r4
. (58)

We can then take a derivative, being careful about δ functions
at the origin (making use of some useful formulas from
Appendix B). The result is

∂iE
ij = (α + β)

[
pj

r3
− 3(p · r)rj

r5

]
+ μ

(
εjk�rkp�

r4

)

+ 4π

3
(4α + β + γ )pjδ(3)(r). (59)

In order to solve Gauss’s law, we therefore need β = −α,μ =
0, and γ = 3

4π
− 3α. This takes us from four unknown

coefficients down to one, α. We must then resort to the
magnetostatic condition. For this theory, the magnetic field
tensor is given by Bij = εiabεjcd∂

a∂cAbd . The magnetostatic
condition on the electric field is then εiabεjcd∂

a∂cEbd = 0.
To start, let us simply look at the trace component of this
constraint,

εiabεicd∂
a∂cEbd = ∂2Ei

i − ∂i∂jE
ij

= ∂2Ei
i − ∂iρ

i = 0, (60)

where we have made use of the Gauss’s law. Taking the
trace of our general formula, given by Eq. (58), yields
Ei

i = (2α + 3β + γ )(p · r)/r3, which (up to a constant) is
formally equivalent to the potential energy of an ordinary
electromagnetic dipole. We can then take ∂2 of this quantity
by appealing to the ordinary Poisson equation and the charge
distribution of an ordinary dipole. (Directly differentiating this
potential is actually quite subtle, for distributional reasons, but
a direct calculation yields the same results [22].) The result is

∂2Ei
i = 4π (2α + 3β + γ )pj∂j δ

(3)(r). (61)

In order to satisfy Eq. (60), we must therefore have (2α +
3β + γ ) = 1/4π . When combined with our earlier results,
β = −α and γ = 3

4π
− 3α, we obtain α = 1

8π
, β = − 1

8π
, γ =

3
8π

. We have now checked that this form satisfies the trace
magnetostatic condition, but it can also be verified that the full
magnetostatic condition is satisfied. The electrostatic field for
a point charge pj then takes the final form:

Eij = 1

8π

[
(pirj + ripj )

r3
− (p · r)δij

r3
+ 3

(p · r)rirj

r5

]
.

(62)

B. Potential formulation

Once again, it will be advantageous to seek a potential
formulation for the theory. From our magnetostatic condition,
εiabεjcd∂

a∂cEbd , we can see that either the first or second
index of Eij should have a derivative in it, so Eij should have
the form Eij = ∂iφj + ∂jψi for vectors φi and ψi . In order to
satisfy index symmetry, we set these vectors to be equal. We
also add in a factor of −1/2 for later convenience, writing the

electric field as

Eij = − 1
2 (∂iφj + ∂jφi). (63)

The most general form for φi is

φj = α′ (p · r)rj

r3
+ β ′ p

j

r
+ γ ′ ε

jk�pkr�

r2
. (64)

Taking derivatives yields

Eij = (β ′ − α′)
2

(pirj + ripj )

r3
− α′ (p · r)δij

r3

+ 3α′ (p · r)rirj

r5
+ γ ′ (ε

jk�pkr�r
i + εik�pkr�r

j )

r4
. (65)

The magnetostatic condition is automatic, but we must check
the Gauss’s law. Following the logic of Eq. (59), we obtain
that γ ′ = 0, α′ = 1/8π , and β ′ = 3/8π , which correctly
reproduces the desired electric field for a point charge. The
final result for the potential of a point charge is

φj = 1

8π

[
(p · r)rj

r3
+ 3

pj

r

]
. (66)

Note that unlike the previous two cases, there is no scalar
potential formulation, but rather a vector potential. (It can be
explicitly checked that no derivatives of any scalar potential
can solve the Gauss’s law.) This makes some intuitive sense,
since now the Gauss’s law is a three-component equation,
corresponding to three particle degrees of freedom. Any
potential formulation must at least capture these three degrees
of freedom, so a vector potential is the best we can do.
But this is still a significant simplification over the original
tensor formulation, and the potential of an arbitrary charge
distribution can be built up by superposing the point charge
potential given above.

In order to give a physical interpretation to the potential,
let us look at the energy stored in the electric field of a static
charge configuration,

ε = 1

2

∫
EijEij = −1

4

∫
Eij (∂iφj + ∂jφi)

= 1

2

∫
∂iE

ijφj = 1

2

∫
ρjφj , (67)

which is very similar in fashion to the previous sections. The
potential φj represents the potential energy of charge species
pj . One key difference from the previous theories is that
the potential φj of a point charge blows up at the charge’s
location, like in conventional electromagnetism, so there are
“self-energy” contributions to the integral which should be
handled with care.

C. Lorentz force

A vector point charge pj can only hop along the p̂j

direction. The phases picked up upon completing such hops
are p̂i p̂jA

ij . Therefore, these one-dimensional particles only
feel a one-dimensional effective electric field, given by Ei

eff =
(p̂j p̂kE

jk)p̂i . These particles do not feel any effects from the
magnetic field, since their one-dimensional trajectories cannot
enclose any flux. The Lorentz force law takes the particularly
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simple form

F i = (p̂j p̂kE
jk)pi. (68)

For an electrostatic configuration, Eij = − 1
2 (∂iφj + ∂jφi),

we have F i = −(p̂j p̂k∂
jφk)pi . The effective force is just the

projection of −pk∂
iφk along the p̂i direction. We now wish to

calculate the work done in moving a particle along the line of
its motion against the force of a field. For this purpose, we are
free to use the unprojected force, since the other components
will not contribute anyway,

W = −
∫ 2

1
dxiF

i =
∫ 2

1
dxi∂

i(pkφ
k)

= (pkφ
k)2 − (pkφ

k)1. (69)

We therefore have that the potential energy for charge pj is
given by V = pjφ

j , as we already found.
In addition to the one-dimensional particles, one can

construct a fully mobile, yet still topologically nontrivial
excitation by looking at a bound state with zero net charge pj

but a nonzero charge angular moment. This bound state is fully
mobile, yet cannot be created locally (due to its charge angular
moment) and is therefore stable against decay into the vacuum.
We refer to such a nontrivial excitation, carrying zero charge
but nonzero charge angular moment, as a “chiron.” In the lattice
models [3,20,21], one can verify that the phase picked up by a
chiron carrying angular moment Lj hopping in the i direction
is εjk�Lj∂kA�i . This quantity then serves as the effective
chiron vector potential, Aeff

i = εjk�Lj∂kA�i . The effective
chiron magnetic field is Bi

eff = εijkε�mnL�∂j ∂mAnk = LjB
ij .

The Lorentz force on a chiron is therefore

F i = Lj (εjk�∂
kE�i + εik�vkB�j ). (70)

Note that the chirons will respond to a uniform magnetic field,
but only to derivatives of the electric field. In a sense, the
one-dimensional particles represent the fundamental unit of
response to a uniform electric field, while the chirons represent
the fundamental unit of response to a uniform magnetic field.

D. Currents and the Biot-Savart law

As in the previous theories, the microscopic current opera-
tor in this theory will be a symmetric tensor Jij representing the
rate of allowed hopping processes, including free longitudinal
motion and also multibody transverse motion. In terms of the
current operator, the Hamiltonian of the theory is given by∫ (

1

2
EijEij + 1

2
εiabεjcd∂a∂cAbdBij + AijJij

)

=
∫ (

1

2
EijEij + 1

2
Aij ε

iabεjcd∂a∂cBbd + AijJij

)
. (71)

The time-evolution equation for the electric field is then

εiabεjcd∂a∂cBbd = −J ij − ∂tE
ij . (72)

Taking a derivative, we find that the charge and current are
related by the continuity equation

∂tρ
j + ∂iJ

ij = 0, (73)

so a steady current configuration requires ∂iJ
ij = 0. Taking

such a steady current configuration, we can rewrite our

Ampere’s equation as

∂a∂c(εiabεjcdBbd ) = −J ij . (74)

From our earlier work on the electric field corresponding to
∂i∂jE

ij = δ(3)(r), we can write a generic solution as

εiabεjcdBbd = −
∫

dr ′J ij (r ′)

×
[
α

δac

|r − r ′| + β
(r − r ′)a(r − r ′)c

|r − r ′|3
]
, (75)

subject to the constraint 4π (β − α) = 1. (We could also have
added in a solution to the homogeneous equation, but it will
turn out that we do not need it in this case.) Applying 1

4εiakεjc�

to both sides of the equation above and relabeling some indices
yields

Bij = −
∫

dr ′J k�(r ′)εikaεj�c

×
[
α

δac

|r − r ′| + β
(r − r ′)a(r − r ′)c

|r − r ′|3
]
. (76)

We also need the constraint that ∂iB
ij = 0 (and, equivalently,

∂jB
ij = 0). This can be easily taken care of if the quantity in

brackets has the form ∂a∂cφ for some scalar φ. This means that
the appropriate choices of α and β are exactly those appropriate
to the electric field of a point charge in the traceful scalar charge
theory. The resulting magnetic field tensor is

Bij = 1

8π

∫
dr ′J k�(r ′)εikaεj�c

×
[

δac

|r − r ′| − (r − r ′)a(r − r ′)c

|r − r ′|3
]
. (77)

The above equation serves as the generalized Biot-Savart law
for this theory and allows us to construct the magnetic field
for an arbitrary steady current distribution. Note that this
Biot-Savart law is stronger by one power than the conventional
electromagnetic one. The integrand falls off as 1/r instead of
1/r2. This will cause currents in this theory to be extremely
energetically costly. For example, whereas the field of a
current-carrying wire falls off as 1/r in normal electromag-
netism, here we expect the field of such a wire to asymptote
to a constant (or perhaps grow logarithmically). Thus, even
though the particles in this theory are free to move along their
appropriate one-dimensional subspace, it will be much harder
to set these particles into motion than conventional charges,
leading to large inductance associated with currents.

E. Summary of Maxwell equations

The generalized Maxwell equations for the vector charge
theory take the form

∂iE
ij = ρj ,

∂iB
ij = ρ̃j ,

(78)
εiabεjcd∂

a∂cEbd = ∂tBij + J̃ij ,

εiabεjcd∂
a∂cBbd = −∂tEij − Jij .

Once again, note the nice symmetry between electric and
magnetic quantities, reflecting the self-duality of the theory.
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V. TRACELESS VECTOR CHARGE THEORY

A. Electrostatic field

Let us now move to the last of the rank-2 theories, which
has the same Gauss’s law as the previous case, ∂iE

ij = ρj ,
but now with an extra trace condition, Ei

i = 0. We start with
a point source, ∂iE

ij = ρjδ(3)(r). The corresponding electric
field must once again take the form of Eq. (58). The Gauss’s
law will lead to the same constraints as before, simplifying our
electric field down to

Eij = α
(pirj + ripj )

r3
− α

(p · r)δij

r3

+
(

3

4π
− 3α

)
(p · r)rirj

r5
. (79)

We must also impose the tracelessness condition, Ei
i =

(−4α + 3
4π

)(p · r)/r3 = 0, which tells us that α = 3/16π , so
the electric field of a point charge has the form

Eij = 3

16π

[
(pirj + ripj )

r3
− (p · r)δij

r3
+ (p · r)rirj

r5

]
.

(80)

Even before proceeding to the magnetostatic constraint, the
electrostatic field of a point charge is already uniquely
constrained in this theory (though one can check that the
magnetostatic constraint is obeyed as well).

B. Potential formulation

As always, we now seek some potential formulation for our
electrostatic field. Just as in the scalar charge traceless case, we
shall not derive the potential directly from the magnetostatic
condition, but rather will make an ansatz for the potential and
then verify that it is the correct one. We start with the potential
formulation for the previous case, Eij = − 1

2 (∂iφj + ∂jφi), and
add in an appropriate term to make the electric field traceless,

Eij = − 1
2 (∂iφj + ∂jφi) + 1

3δij (∂kφ
k). (81)

Assuming the same general form for the potential as in
Eq. (64), we find that Gauss’s law is only satisfied if γ ′ =
0, α′ = 1

16π
, and β = 7

16π
, giving a potential,

φj = 1

16π

[
(p · r)rj

r3
+ 7

pj

r

]
. (82)

The resulting electric field exactly matches what we found
in Eq. (80). Since the potential formulation works for the
point charge, by linearity it will work for an arbitrary charge
distribution. Thus, this is the correct potential formulation,
even though it has not been derived directly from the
magnetostatic constraint.

The energy stored in the electric field of a static charge
configuration is given by

ε = 1

2

∫
EijEij

= 1

2

∫
Eij

[
−1

2
(∂iφj + ∂jφi) + 1

3
δij (∂kφ

k)

]

= 1

2

∫
ρjφj , (83)

where we have integrated by parts and made use of Gauss’s
law and tracelessness. Just as in the traceful theory, we find that
φj can quite legitimately be regarded as the potential energy
for charges ρj .

C. Lorentz force

The fundamental vector charges in this theory are all
fractonic and will have no sense of Lorentz forces. Like
the traceful vector charge theory, this theory will also
have chiron bound states, carrying zero charge but nonzero
charge angular moment Lj . However, whereas the chirons in
the traceful theory were fully mobile, in the present case
the extra conservation laws restrict the chirons to be one-
dimensional particles, constrained to move only along the
direction of their charge angular moment vector. Projecting
from the previous theory onto the appropriate one-dimensional
subspace, the Lorentz force on a chiron becomes

F i = LiL̂nL̂j εjk�∂
kE�n. (84)

D. Currents and the Biot-Savart law

As in the traceless scalar charge theory, the microscopic
current operator will take the form of a traceless symmetric
tensor Jij , representing the rate of hopping processes. For this
theory, the magnetic field tensor takes the following form:

Bij = ε k�
i ∂k

(
B̃j� − 1

2δj�B̃
n
n

)
, (85)

where B̃ij = ε ab
i ε cd

j ∂a∂cAbd is the magnetic tensor from the
traceful theory. It is readily verified that this magnetic tensor is
traceless, Bi

i = 0. Also, this tensor does not look symmetric
at first glance. Nevertheless, we find

εijaBij = (δkj δa� − δkaδj�)∂k

(
B̃j� − 1

2δj�B̃
n
n

)
= ∂j B̃j� − 1

2∂aB̃
i
i + 1

2∂aB̃
i
i = 0, (86)

where we have made use of ∂j B̃j� = 0. This tells us that the
antisymmetric component of Bij actually vanishes, so it is
a symmetric traceless tensor, thereby allowing this theory to
have a self-duality. We can then write the magnetic tensor in
manifestly symmetric form as

Bij = 1
2

(
ε k�
i ∂kB̃j� + ε k�

j ∂kB̃i�

)
. (87)
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In terms of the microscopic variable Aij , we have the following
difficult equation:

Bij = 1
2 [εjab(∂a∂k∂iAbk − ∂a∂

2Abi)

+ εiab(∂a∂k∂jAbk − ∂a∂
2Abj )]. (88)

The Hamiltonian has the standard form∫ (
1

2
EijEij + 1

2
BijBij + J ijAij

)
. (89)

Plugging in the form for B and making use of index symmetry,
we obtain∫ [

1

2
EijEij + 1

2
εjab(∂a∂k∂iAbk−∂a∂

2Abi)B
ij+J ijAij

]

=
∫ [

1

2
EijEij−1

2
Aij εkai∂a(∂j ∂bB

bk−∂2Bjk)+J ijAij

]
.

(90)

Noting that Aij is symmetric, the time-evolution equation for
E is given by

1
2

[
εkai∂

a
(
∂j ∂bB

bk − ∂2B k
j

) + εkaj ∂
a
(
∂i∂bB

bk − ∂2B k
i

)]
= Jij + ∂tEij . (91)

This Ampere’s equation has an unusual feature, in that some
of the terms on the left contain direct contractions between
derivatives and the magnetic tensor, which can then be written
in terms of the magnetic charge, ∂iB

ij = ρ̃j , as follows:

1

2

[
εkai∂

a
(
∂j ρ̃

k − ∂2B k
j

) + εkaj ∂
a
(
∂i ρ̃

k − ∂2B k
i

)]

= Jij + ∂tEij . (92)

It seems rather unusual at first to have magnetic charge
appear in Ampere’s equation, but there is nothing logically
inconsistent about it. (Actually, if we carefully examined
Ampere’s equation from the traceful vector charge theory,
we would see magnetic charge appearing there as well.) In
particular, after taking a derivative, the magnetic charge terms
are eliminated, and we still obtain the expected continuity
equation for the electric charges,

∂tρ
j + ∂iJ

ij = 0. (93)

In the absence of magnetic charge, and assuming a steady
current configuration, we can drop some terms from Ampere’s
equation, which then simplifies to

∂a∂
2(εkaiB

j

k + εkajBi
k

) = −2J ij . (94)

We can write a solution as

εkaiB
j

k + εkajBi
k =

[
1

4π

∫
dr ′J ij (r ′)

(r − r ′)a

|r − r ′|
]

+ εabc∂bλ
ij

c . (95)

Inverting for Bij gives

Bij =
[

1

12π

∫
dr ′J ik(r ′)εj�k (r − r ′)�

|r − r ′|
]

+ 1

3
(∂�λ

i�j − ∂iλ
�j

� ). (96)

The first term by itself is not symmetric. However, we can
choose

λi�j = 1

4π

∫
dr ′J jk(r ′)εi�k|r − r ′|. (97)

The resulting magnetic field tensor is

Bij = 1

12π

∫
dr ′(J ik(r ′)εj�k + J jk(r ′)εi�k)

(r − r ′)�

|r − r ′| . (98)

This equation is manifestly traceless and symmetric. It also
satisfies ∂iB

ij = 0 (making use of ∂iJ
ij = 0 for a steady

current), which indicates the absence of magnetic charge. We
have therefore found the correct Biot-Savart law for this theory,
which can then be used to obtain the magnetic field tensor for
an arbitrary steady current configuration. Note that like in
the previous theory, the Biot-Savart law falls off very slowly,
leading to large inductances in this theory.

E. Summary of Maxwell equations

The generalized Maxwell equations for the traceless vector
charge theory take the following form:

∂iE
ij = ρj ,

∂iB
ij = ρ̃j ,

1
2

[
εiak∂

a
(
∂j ρ̃

k−∂2B k
j

)+ εjak∂
a
(
∂i ρ̃

k−∂2B k
i

)]=−∂tEij−Jij ,

1
2

[
εiak∂

a
(
∂jρ

k−∂2E k
j

)+ εjak∂
a
(
∂iρ

k−∂2E k
i

)]=∂tBij+J̃ij ,

Ei
i = 0,

Bi
i = 0. (99)

Once again, the equations have a nice electric-magnetic
symmetry, reflecting the self-duality of the theory.

VI. CONCLUSION

In this work, we have generalized some of the basic
notions of electromagnetism to systems with tensor U(1) gauge
fields, instead of the conventional U(1) vector gauge theory.
The topics treated here have included electrostatic fields,
potential formulations, Maxwell equations, Lorentz forces,
and Biot-Savart laws. There is much that carries over quite
naturally, while some concepts have interesting modifications.
While we have laid the groundwork here, there is plenty
more that could be done. Obviously one could work out the
electromagnetic properties of rank-3 and higher theories. But
also, electromagnetism is a much broader subject than just
the topics treated here. In principle, one could pull out their
favorite electromagnetism textbook and generalize everything
chapter by chapter to the higher-rank analog. One could
work out the theory of higher-rank radiation, higher rank
circuits, higher rank waveguides, and so on. It is a brand new
playground.
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APPENDIX A: MAGNETIC PARTICLES IN THE SCALAR
CHARGE THEORY

As mentioned in the text, the scalar charge theory (without
trace condition) is not self-dual. Therefore, we cannot simply
read off the fields for magnetic particles from the correspond-
ing electric ones, and they must be calculated separately.
While the electric charges of this theory were scalars, the
magnetic charges are vectors, ∂iB

ij = ρj . For an electrostatic
configuration, in the absence of electric currents, we must
also have

εiab∂aB
j

b + εjab∂aB
i

b = 0. (A1)

Recall that Bij in this theory is traceless, but not symmetric.
For brevity, we will be direct and take a potential formulation,

Bij = ∂iφ̃j − 1
3δij (∂kφ̃

k), (A2)

which can be verified to solve the electrostatic constraint. We
now force this magnetic field to satisfy the magnetic Gauss’s
law for a point source,

∂iB
ij = ∂2φ̃j − 1

3∂j (∂kφ̃
k) = pjδ(3)(r). (A3)

As an educated guess, we will take an ansatz of the form

φ̃j = α
pj

r
+ β

(p · r)rj

r3
. (A4)

We have

∂2φ̃j = −4π

3
(3α + β)pjδ(3)(r) + 2β

[
pj

r3
− 3

(p · r)rj

r5

]
,

(A5)

∂j (∂kφ̃
k) = (β − α)

[
pj

r3
− 3

(p · r)rj

r5
+ 4π

3
pjδ(3)(r)

]
,

(A6)

∂iB
ij = −4π

9
(8α + 4β)pjδ(3)(r)

+ 1

3
(5β + α)

[
pj

r3
− 3

(p · r)rj

r5

]
. (A7)

To solve the magnetic Gauss’s law, we need α = −5β and
16πβ = 1, which has the solution α = − 5

16π
and β = 1

16π
.

Our potential then has the form

φ̃j = − 1

16π

[
5
pj

r
− (p · r)rj

r3

]
(A8)

and the magnetic field takes the form

Bij = − 1

16π

[
−5

pj ri

r3
− pirj

r3
+ (p · r)δij

r3
+ 3

(p · r)rirj

r5

]
.

(A9)

We can also consider a traceless (nonsymmetric) tensor current
J̃ ij for the magnetic particles. In the presence of this magnetic

current, the time evolution equation for Bij is modified to

εiab∂aE
j

b = ∂tB
ij + J̃ ij . (A10)

Like in the electric case, this equation can be used as the
fundamental definition of the current tensor J̃ ij . Taking a
derivative yields the continuity equation

∂t ρ̃
j + ∂i J̃

ij = 0. (A11)

A steady magnetic current will generate a time-independent
electric field, which must satisfy

∂a

(
εiabE

j

b

) = J̃ ij , (A12)

which we can solve via

εiabE
j

b =
[

1

4π

∫
dr ′J̃ ij (r ′)

(r − r ′)a

|r − r ′|3
]

+ εabc∂bλcji ,

(A13)

Eij = 1

8π

∫
dr ′J̃ j

k (r ′)εk�i (r − r ′)�
|r − r ′|3 + 1

2

(
∂jλ� i

� − ∂�λ
j i

�

)
.

(A14)

We then choose

λj�i = − 1

4π

∫
dr ′J̃ i

k (r ′)εk�j 1

|r − r ′| . (A15)

The resulting electric field is

Eij = 1

8π

∫
dr ′[J̃ j

k (r ′)εk�i + J̃ i
k (r ′)εk�j

] (r − r ′)�
|r − r ′|3 . (A16)

This electric field is symmetric and also satisfies ∂i∂jE
ij = 0,

indicating the absence of electric charge. We have therefore
found the correct dual Biot-Savart law for this theory. From
this formula, we can construct the electric field tensor corre-
sponding to an arbitrary steady current of magnetic particles.

In order to derive the Lorentz force for the magnetic
particles, it is useful to formulate in terms of the dual gauge
variable Ãij , which is canonically conjugate to Bij . Note that
Ãij is nonsymmetric. From the Ampere’s equation of this
theory, in the absence of electric currents, we can reverse
engineer the following expression for Eij in terms of the dual
potential:

Eij = − 1
2

(
εiab∂aÃ

j

b + εjab∂aÃ
i

b

)
. (A17)

We note that Ãij represents the phase associated with a
j -oriented charge hopping in the i direction. Therefore, the
effective dual vector potential for a charge pj is given by
Ãeff

i = pj Ãij . The role of the “magnetic field” for this particle
(in the sense of the conventional Lorentz force) will be played
by pip̂j (p̂kεjnm∂nÃmk) = −pi(p̂j p̂kE

jk). The Lorentz force
then takes the form

F i = pj (P ikBkj − εik�vkp̂�p̂mEjm), (A18)

where P ik is the projector into the plane transverse to pj .
We note that this force always lies in the transverse plane,
consistent with the two-dimensional nature of the particles.
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APPENDIX B: USEFUL FORMULAS

As is well known, the divergence of the electric field of a
point charge is given by

∂i

ri

r3
= 4πδ(3)(r). (B1)

This can be derived by performing an integral over a ball S of
radius R centered at the origin,∫

S

∂i

ri

r3
=

∫
∂S

1

R2
= 4π. (B2)

Since this must be true for arbitrary R, we can conclude that
there must be a δ-function contribution at the origin. We will
list below some further useful formulas, derived via the same
technique, which are useful for the manipulations performed
in the main text:

∂i r
j

r3
= 4π

3
δij δ(3)(r) + δij

r3
− 3

rirj

r5
, (B3)

∂k

rirj rk

r5
= 4π

3
δij δ(3)(r), (B4)

∂�

rirj rk

r5
= 4π

15
(δij δk� + δikδj� + δi�δjk)δ(3)(r)

+ δ�irj rk + δ�j rirk + δ�krirj

r5
− 5

rirj rkr�

r7
,

(B5)

∂k rirj

r3
= δikrj + δjkri

r3
− 3

rirj rk

r5
, (B6)

∂2 rirj

r3
= −4π

3
δij δ(3)(r) + 2

(
δij

r3
− 3

rirj

r5

)
, (B7)

∂i∂k

rkrj

r3
= 4π

3
δij δ(3)(r) + δij

r3
− 3

rirj

r5
= ∂i r

j

r3
. (B8)

APPENDIX C: GENERALIZED CURL CONSTRAINTS

In the text, we have considered different forms of Gauss’s
laws. These were all either generalized divergences or trace
conditions. One might also consider generalized curl con-
straints, such as εijk∂jE

�
k = ρi�. To see why we have not

analyzed this type of theory, we first examine the rank-1
analog, �∇ × �E = �ρ. Whereas the divergence constraint gave
rise to point particles, such a curl constraint naturally gives
rise to stringlike excitations, due to the fact that

∂iρ
i = εijk∂i∂jEk = 0. (C1)

This constraint on the vector charges automatically forces them
to form closed loops, a constraint which cannot be broken
within the Hilbert space. Another way to understand this is to
note that we can rewrite the gauge constraint as

ρi = ∂j ε
ijkEk = ∂j Ẽ

ij , (C2)

where we have defined the antisymmetric tensor Ẽij = εijkEk ,
which captures all the information of the original vector. We
therefore see that a curl constraint on Ei actually gives us
a dual formulation of an antisymmetric U(1) tensor gauge
field (the standard Kalb-Ramond theory). The generalized

electromagnetism of this phase is therefore inherently more
complicated, since one must think in terms of a closed string
theory instead of a theory of point particles. For the purposes
of describing three-dimensional spin liquids, the analysis is
a moot point anyway, as Kalb-Ramond theory is unstable
to confinement in three spatial dimensions due to instanton
effects [23–25]. This theory therefore does not exist as a stable
phase of matter.

Similarly, if we take a “curl” gauge constraint on our tensor
gauge field, say εijk∂jE

�
k = ρi�, the charges would obey the

constraint

∂iρ
i� = 0. (C3)

This forces the tensor charges to line up along one-dimensional
stringlike structures. Similar stories hold for other curl con-
straints. Therefore, the charges of all of these theories are
extended objects, not point particles, which makes the analysis
of the generalized electromagnetism much more complicated.
Furthermore, such putative phases may be destabilized by
instantons, so it is not clear whether these correspond to stable
phases of matter at all. We therefore defer a more detailed
analysis of such theories to future work.

APPENDIX D: MICROSCOPIC MODELS

In the main text, we have mostly abstracted from the micro-
scopic behavior of the higher-rank U(1) spin liquids, instead
relying on a more macroscopic field-theoretic approach. This
is a useful point of view since most of the essential physics is
independent of the microscopics, with a few small exceptions
(such as the precise quantization of dipole moments in the
scalar charge theory). Nevertheless, it is useful to keep the
microscopic theories in mind since they often offer important
clues in elucidating the physical principles of generalized
electromagnetism. We will therefore review here some of the
basic principles of the previously discovered lattice models
which are known to exhibit the behavior of higher-rank U(1)
spin liquids [3,20,21].

For normal vector gauge theories, constructing lattice
models is a simple matter of letting the gauge field live on links
of the lattice, with Ax living on x-directed links, Ay living on
y-directed links, and so on. It is less obvious how one should
put the six components of a rank-2 tensor Aij on the lattice.
The key piece of intuition is to look at the simplest rank-2
tensor: a second derivative ∂i∂jα of a scalar α. If we choose α

to live on the sites of the lattice, then diagonals such as ∂x∂xα

will also live on sites, while off-diagonals such as ∂x∂yα will
live on plaquettes in the appropriate plane. We therefore can
construct simple cubic lattice models for rank-2 theories by
allowing Axx,Ayy , and Azz to live on the sites of the lattice,
while Axy,Axz, and Ayz live on the appropriate plaquettes (Axy

in the xy plane, and so on). This is illustrated in Fig. 2. Similar
stories will hold for theories of even higher rank. We also
generically allow the gauge field to be compact, identifying
Aij ∼ Aij + 2π , making each component of the tensor a
quantum rotor. The corresponding electric tensor components
Eij then become the angular momenta of these rotors.

All of the U(1) theories of a given rank can be constructed
from the same basic lattice degrees of freedom. They are
distinguished, however, by their gauge constraint structure,
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FIG. 2. The microscopic model takes the form of a lattice rotor
model, where each independent component of the tensor corresponds
to a separate rotor. Diagonal components of the tensor live on each
site of a cubic lattice (a two-dimensional cross section of which is
pictured above). Off-diagonal components live on the appropriate
plaquettes of the lattice, with Axy on plaquettes in the xy plane, for
example.

as determined by the Hamiltonian of the system. For example,
let us work through a lattice model of the scalar charge theory.
Microscopic models for the other higher-rank theories are a
straightforward generalization.

The most important term in the Hamiltonian of the system is
a “U” term, which energetically imposes the gauge constraint.
For the scalar charge theory, this takes the form

HU = U (∂i∂jE
ij )2, (D1)

where the indices run over {x,y,z} and U is a large positive
number. This corresponds to a generalized type of “spin-ice
rule,” constraining how the rotor momenta line up relative
to their neighbors. In the low-energy sector, states will obey
∂i∂jE

ij = 0, which then implies gauge invariance under the
following transformations:

Aij → Aij + ∂i∂jα, (D2)

for gauge parameter α with arbitrary spatial dependence.

Our low-energy Hamiltonian should also feature the most
relevant terms which are consistent with this gauge trans-
formation (i.e., commute with the gauge constraint). It is
straightforward to check that the resulting Hamiltonian takes
the form

H = 1
2 (gEijEij + BijBij ) + U (∂i∂jE

ij )2, (D3)

where g is a numerical coefficient. (The coefficient of the B

term is normalized to 1 for convenience.) The magnetic tensor
Bij takes the form Bij = εiab∂

aAb
j . All other possible terms

in the Hamiltonian have larger numbers of derivatives and are
irrelevant to the low-energy physics.

At slightly higher energies, there are also states in the
Hilbert space which do not obey the gauge constraint,
∂i∂jE

ij 
= 0. In this case, we define a charge density as

ρ = ∂i∂jE
ij , (D4)

which lives on the sites of the lattice. These charges obey both
conservation of charge,

∑
sites

ρ = const., (D5)

and conservation of dipole moment,
∑
sites

ρ �x = const. (D6)

These lattice conservation laws imply that the charges in this
lattice model are fractons, as discussed in the main text.

Note that an individual rotor operator eiAij , which raises Eij

of the rotor by 1, does not commute with the gauge constraint
and will therefore create and/or move particles. Any such
operator must respect both conservation of charge and dipole
moment. It can therefore only create charges in quadrupolar
configurations or, equivalently, jointly move dipolar bound
states. It can easily be checked that eiAij will move an i-directed
dipole in the j direction, as discussed in the main text.

The basic principles discussed here easily transfer over
to writing microscopic models for any of the higher-rank
U(1) spin liquids. One first writes the appropriate “U” term
enforcing a gauge constraint. Then one writes the most relevant
terms which commute with this gauge constraint. In general,
the Hamiltonian will schematically have an “E2 + B2” form
and will correspond to a stable phase of matter in (3 + 1)
dimensions [3].
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