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ABSTRACT.  

Through alignment of theoretical modeling with experimental measurements of oxygen surface 

exchange kinetics on (001)-oriented La2-xSrxMO4+δ (M= Co, Ni, Cu) thin films, we demonstrate, 

here, the capability of the theoretical bulk O 2p-band centers to correlate with oxygen surface 

exchange kinetics of the Ruddlesden-Popper oxide (RP214) (001)-oriented thin films. In addition, 

we demonstrate that the bulk O 2p-band centers can also correlate with the experimental 

activation energies for bulk oxygen transport and oxygen surface exchange of both the RP214 and 

the perovskite polycrystalline materials reported in the literature, indicating effectiveness of the 

bulk O 2p-band centers in describing the associated energetics and kinetics. We propose that the 

opposite slopes of the bulk O 2p-band center correlations between the RP214 and the perovskite 

materials is due to the intrinsic mechanistic differences of their oxygen surface exchange kinetics 

bulk anionic transport.	   
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Bulk O 2p band centers and kO
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Ruddlesden-Popper (RP) oxides such as A2-xA’xMO4+δ (A=La, Pr, Nd; A’=Ca, Sr, Ba; M= Co, 

Ni, Cu) are promising alternative cathode materials for intermediate temperature (between 

500~700 °C) solid oxide fuel cells (IT-SOFC).1-4 In contrast to perovskites where oxygen 

vacancies are generally the dominant anion defect, these RP214 oxides can switch between 

hypostoichiometric and hyperstoichiometric regimes, where the oxygen off-stoichiometry comes 

from their majority oxygen defects.5-6 Consequently, oxygen diffusion in the RP214 phases can 

potentially occur via mechanisms associated with either oxygen interstitials or oxygen vacancies, 

or both. Recent neutron scattering studies7 and molecular dynamic simulations8-10 indicate that 

oxygen diffusion in the hyperstoichiometric RP214 phases involves spontaneous migration of 

oxygen interstitials along with their neighboring apical oxygens from the rocksalt layers. Such an 

oxygen interstitialcy (push-pull) diffusion mechanism takes place anisotropically in the RP214 

structure, leading to significantly different oxygen ion transport along different orientations.11-12 

For example, the kinetics of oxygen transport parallel to the a-b planes in the A2NiO4+δ is 

considerably higher than that of the out-of-plane direction, by up to two orders of magnitude.12 

Strong coupling to lattice dynamics is further proposed to play a critical role in the oxygen 

transport in the RP214 phases at ambient/moderate temperatures, where presence of oxygen 

interstitial in the A2O2 rocksalt layers significantly activates A-site-atom and apical-O 

displacements along [110] directions, resulting in enhancement in the oxygen interstitialcy 

migration through phonon-assisted diffusion.13-14 Although the origin of the phonon-assisted 

diffusion is different from the classical push–pull mechanism activated at higher temperatures, 

both oxygen transport mechanisms are coupled to, or mediated by, oxygen interstitials in the 

undoped RP214 phases.13, 15 Similar to the oxygen diffusion properties, anisotropic oxygen surface 

exchange kinetics was also reported for the RP214 materials, where the in-plane surface exchange 
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kinetics can be about five times greater than that of the out-of-plane for A2NiO4+δ single 

crystals,11, 14 and the enhancement was shown to be even greater (up to two orders of magnitude) 

in epitaxial thin films.12 

Substitution of aliovalent cations such as Sr2+ or Ba2+ for La3+ in La-based RP214 phases can 

also dramatically influence the anisotropy in the oxygen transport and surface exchange kinetics. 

In particular, an enhancement on electronic conductivity can be obtained via aliovalent cation 

substitution and in contrast to the SOFC perovskites, the overall effect upon increasing Sr2+ or 

Ba2+ content to a high doping level in general leads to reduction of the oxygen diffusion 

coefficients.5, 16-19 Recently, we have reported that increase of Sr2+ doping content can lead to a 

change in the La2-xSrxNiO4±δ (0 ≤ x ≤ 1.0) film orientation from the (100) to the (001) direction, 

which is accompanied by reduction in the oxygen surface exchange coefficients (kO
q) by two 

orders of magnitude based on electrochemical impedance spectroscopy (EIS) measurements.20 

Density functional theory (DFT) calculations further revealed that Sr2+ substitution can greatly 

weaken adsorption of molecular oxygen as well as stabilize the (001) surface relative to the (100) 

surface.20 These results indicate a potential convolution between Sr2+ doping level and change of 

relative surface stability of (100) termination vs. (001) termination of the La2-xSrxNiO4±δ thin 

films, both of which can result in reduction of oxygen surface exchange kinetics. Very recently, 

Chen et al.21 reported that Sr2+ concentration in the epitaxially grown La2-xSrxCoO4±δ thin films 

exhibits greater influence on their surface exchange kinetics than the orientation, which is 

attributed to reduction of oxygen interstitial capacity of the La2-xSrxCoO4±δ upon increasing the 

Sr2+ doping level, thereby making incorporation of oxygen from the surfaces to the lattice more 

difficult. Similar observation in oxygen vacancy dominated RP phases was also recently reported 

for (La,Sr)n+1(Co,Fe)nO3n+1-δ at different n (n=1, 2, and 3).22 The outer surfaces of 
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(La,Sr)n+1(Co,Fe)nO3n+1-δ were shown to exhibit similar chemical composition whereas their 

oxygen surface exchange kinetics are varied by 1~2 orders of magnitude. Tomkiewicz et al.22 

conclude that there exists a significant contribution of “bulk” transport rates within the 

measurement of the surface exchange rates, resulting in the empirical kO vs. DO correlations. 

Overall, these results indicate that despite structural similarity, much greater complexity occurs 

in the RP214 systems than the perovskite materials, due to coupling and interplay between 

material anisotropy, bulk defect chemistry, and lattice dynamics, which have either direct or 

indirect influences on their bulk oxygen transport and oxygen surface exchange kinetics. 

Therefore it is of significant interest to assess and distinguish how these intrinsic properties 

influence the surface exchange and oxygen reduction kinetics of the RP214 phases for SOFC 

cathode applications.   

As a first step toward understanding and predicting the complex behavior of the RP214 

materials associated with their oxygen surface exchange kinetics, in this work we demonstrate 

significant simplification of the many attributes that influence surface exchange to a small 

number of underlying factors, through systematic investigation of oxygen surface exchange 

kinetics for a series of (001)-oriented RP214 thin films. While the anisotropy effect may lead to 

distinct oxygen mobility and surface exchange rate for the RP214 phases, the kO
q values extracted 

from a series of (001)-oriented RP214 films provides data for constrained material systems where 

influences from material anisotropy are minimized, which allows one to reduce variables and 

elucidate the influence of intrinsic material factors.  

The (001)-oriented oriented epitaxial La2-xSrxMO4±δ (x = 0, 0.15, 0.4, 1 and M = Cu, Co, Ni) 

thin films on a (001)cubic-yttria-stabilized -zirconia (YSZ) substrate with a gadolinia-doped-ceria 

(GDC, with 20 mol% Gd) as the buffer layer were deposited using pulsed laser deposition 
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(PLD), as shown in Figure 1(a). Normal X-ray diffraction (XRD) data of all films, details of 

deposition on XRD, lattice parameters, and AFM images of the films are further provided in the 

Supporting Information (Figure S1~S3, and Table S1). The surface exchange kinetics was 

examined using EIS measurements conducted on patterned microelectrodes (~200 µm) 

fabricated by photolithography and acid etching23. Representative EIS data collected from the 

La2-xSrxMO4±δ films at 550 °C with an oxygen partial pressure (p(O)2) of 0.1 atm are shown in 

Figure 1(b), where all films exhibit nearly perfect predominant semicircle impedances. 

Considering the fact that all film thicknesses are much smaller than the critical thickness for bulk 

transport limitation (estimated to be ~3, ~87 and ~ 5000 µm for the bulk La2CuO4
24, La2NiO4

25, 

and La2CoO4
26, respectively), the ORR kinetics are limited by surface oxygen exchange but not 

by oxygen ion diffusion.27-28 The dominant role of surface exchange is further supported by the 

observed p(O2)-dependent impedance responses expected for a surface oxygen exchange kinetics 

limited electrode,29-30 as shown in Figure S4, Supporting Information. The kO
q values of all films 

grown with the c-axis perpendicular to the film surface are shown in Figure 1(c). The p(O2) 

dependence of kO
q (kO

q α p(O2)m) was found to be in the range from 0.59 to 0.89 of all the 

investigated La2-xSrxMO4±δ (Figure 1(c)), indicating the reaction rate-limiting step is a molecular 

oxygen absorption dissociation process rather than a charge transfer process.31-32  

By controlling orientation of the epitaxial thin films and integrating with theoretical modeling, 

we demonstrate that the electronic structure descriptor of SOFC perovskites – the bulk O 2p-

band center33 – also correlates with the surface exchange kinetics of the (001)-oriented RP214 thin 

films, as well as the reported experimental activation energies of DO
* and kO

* of both the RP214 

and the perovskite materials in the literature. While caution is needed to make a direct 

comparison between theoretically modeled surfaces and the real surfaces under the operating 
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conditions, as surface structures can reconstruct or surface chemical composition can deviate 

from the bulk (such as changing the A-site and B-site ratio or having Sr2+ segregation or 

enrichment on the surfaces21, 34), these ideal surface models provide a theoretical platform to 

extract important energetics and to explore trends of various materials, which have already been 

shown to be valuable in developing fundamental understanding across various material systems33, 

35 and surface terminations.20, 36-37 Upon establishment of correlations between the bulk O 2p-

band centers and those of the simulated surfaces as well as the bulk/surface oxygen energetics 

across various RP214 materials, we then utilize its robustness to assess trends between the 

theoretical bulk O 2p-band centers and experimentally measured kinetics of oxygen surface 

exchange and bulk oxygen diffusion, including both the rates and activation barriers, which 

underpin the bulk O 2p-band center as a fundamental factor that govern surface catalytic 

activities of the complex oxides. 

Figure 2 shows the computed O 2p-band centers (relative to the Fermi level) of the top (001) 

AO surface layer, the second (001) BO2 surface layer, and the averaged top two surface layers vs. 

those of the stoichiometric bulk RP214 phases (La2NiO4, La2CuO4, LaSrCoO4, La1.5Sr0.5CuO4, and 

LaSrNiO4), and they all exhibit good linear correlations. These almost identical slopes of the 

correlations indicate that the averaged bulk O 2p-band centers correlate with, and can be used to 

describe, the surface O 2p-band centers.  To the extent which O 2p-band centers describe the 

physics of the local material this result suggests we can use bulk O 2p-band centers to describe 

surface properties within similar surface structures and terminations. This result is further 

supported by the correlations between the surface/bulk oxygen energetics and the computed bulk 

O 2p-band centers, as shown in Figure S8, Supporting Information.  
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By utilizing the capability of the bulk O 2p-band centers to consistently describe surface 

electronic structures and oxygen defect energetics in the bulk and on the surface across various 

RP214 materials, we can assess trends associated with kinetics of oxygen surface exchange and 

bulk oxygen diffusion of the RP214 materials. A comparison between experimentally obtained kO
q 

from our EIS measurements at T=550 °C and p(O2)=1 atm and our calculated bulk O 2p-band 

centers of the RP214 phases is performed and discussed below. As shown in Figure 3, our results 

reveal a good correlation exists between the experimentally measured surface exchange kO
q for 

the (001) oriented epitaxial La2-xSrxMO4 (M=Co, Ni, and Cu) films in this work and their 

computed bulk O 2p-band centers. In addition, the slope of the correlation was found to be 

negative while the slope of the surface exchange kO*/kO
q vs. O 2p-band center reported 

previously for the perovskite materials was positive33. The opposite kO*/kO
q vs. the O 2p-band 

slopes between the RP214 phases and the perovskite materials may be attributed to their distinct 

oxygen surface exchange and bulk oxygen transport mechanisms under the SOFC operating 

conditions. Specifically, we expect oxygen kinetics to be directly or indirectly mediated by 

oxygen interstitial related mechanisms in the RP214 materials and oxygen vacancy mediated 

mechanisms in the perovskites.  

 An attempt was made to extend the correlation observed in Figure 3 between the calculated 

bulk O 2p-band centers and the kO
q/kO

* values of the RP214 materials under a similar operating 

condition from the literature (Figure S9, Supporting Information). Unfortunately, the large 

scattering of the data reported in the literature even for a single system such as La2NiO4+δ
38 did 

not provide a clear statistical trend, in part due to the convoluted material properties and 

chemistry which impair reproducible experimental results for a direct comparison between 

different measurements on the same system synthesized/fabricated through different routes. 
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Therefore, we instead look into the reported activation barriers of bulk oxygen transport and 

oxygen surface exchange in the literature5, 26, 38 vs. the computed bulk O 2p-band centers, as we 

believe these energetic quantities might be more reproducible between different studies. In 

addition, these experimental activation energies are expected to be more directly associated with 

the bulk electronic structure descriptor of the RP214 phases than the total DO* and kO* values, 

which may couple to intrinsic materials properties such as orientation, microstructure, and small 

changes in defect concentrations. The experimentally extracted activation barriers of DO* and 

kO* of the polycrystalline RP214 reported in the literature5, 26, 38 vs. the computed bulk O 2p-band 

centers are shown in Figure 4(a), in which a good linear correlation is observed. The emergence 

of such correlations indicates the RP214 bulk O 2p-band centers indeed govern the kinetics of DO* 

and kO*, and further suggests the need for improved data quality for experimental DO* and kO* 

of various bulk RP214 systems to establish such relationships. The same analysis was also 

performed on the SOFC perovskite materials, and the overall results are shown in Figure 4(b), 

where good linear correlations are also observed between the calculated bulk O 2p-band centers 

vs. the activation barriers of DO* and kO* of the perovskite materials, except that the activation 

barrier of kO* of Ba0.5Sr0.5Co0.8Fe0.2O3-δ, adopted in Ref. 2 is found to be an outlier of the 

correlation. Interestingly, the slopes of the activation barriers vs. bulk O 2p-band correlations of 

the RP214 and the perovskite materials are again opposite (as in Figure 3), supporting the distinct 

mechanisms of oxygen surface exchange and bulk oxygen transport between the two different 

material systems. Overall, our results demonstrate the effectiveness of the electronic structure 

descriptor – the bulk O 2p-band centers – in describing surface exchange and oxygen diffusion 

rates through the correlations to not only the key energetics of the bulk oxygen transport and 

surface exchange kinetics, but also the experimentally extracted activation barriers. Our results 
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suggest search and design of the active RP214 phases with direct or indirect oxygen interstitial 

mediated mechanisms should seek for good surface exchange and bulk transport in the materials 

with lower bulk O 2p-band centers relative to the Fermi level, in contrast to the active SOFC 

perovskite materials, where the higher surface-exchange-coefficient materials have the higher O 

2p-band centers relative to the Fermi level.33   

In summary, although significantly greater complexity exists in the RP214 phases than the 

perovskite materials due to the coupling among material anisotropy, oxygen defect chemistry, 

and lattice dynamics, by aligning the epitaxial thin films with DFT modeling on the bulk and 

surfaces, trends were revealed between the bulk electronic structure descriptor, the O 2p-band 

center, and the experimentally measured kO
qs of the (001)-oriented RP214 epitaxial thin films. 

Such a correlation between the experimental kO
qs vs. the computed bulk O 2p-band centers of the 

investigated RP214 materials is different from that obtained in the perovskite systems due to their 

opposite slopes, which are likely associated with their distinct active oxygen defects for bulk 

oxygen transport and surface exchange kinetics (oxygen interstitials for the RP214 phases and 

oxygen vacancies for the perovskites). In fact, these opposite slopes can be taken as strong 

support for the dominant role of interstitial over vacancy mediated kinetics in the RP214 materials. 

In addition, the bulk O 2p-band centers further capture trends in the activation energies of bulk 

oxygen transport and surface oxygen exchange coefficients of both the RP214 and perovskite 

phases reported in the literature, supporting the effectiveness of the bulk O 2p-band centers in 

describing the associated kinetics. On the other hand, the already close to zero activation 

energies extracted from the experimental Arrhenius plots for bulk oxygen transport and oxygen 

surface exchange of La2CoO4+δ indicate a potential material instability issue for search and 

development of active RP214 materials with the bulk O 2p-band centers lower than that of 
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La2CoO4+δ. Our combined theoretical and experimental study on well-defined surfaces of the 

RP214 phases underpins the bulk O 2p-band center as a key fundamental material factor that 

governs surface catalytic activities of complex oxides. However, efforts are still needed to obtain 

detailed mechanistic understanding, including the role of factors such as material anisotropy, 

lattice dynamics etc., for the oxygen kinetics of the RP214 phases. Such understandings, combined 

with the O 2p-band center descriptor, offer exciting opportunities for targeted search and 

development of RP214 materials for SOFC cathodes. 
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Figure 1. (a) Schematic of a c-axis oriented Ruddlesden-Popper (RP) oxide thin films epitaxially grown 
on a YSZ (001) substrate with a GDC buffer layer. (b) Nyquist plot and (c) oxygen partial pressure 
dependency of the surface exchange coefficients of La2CuO4+δ (light blue), LaSrCoO4±δ, (green), 
La1.85Sr0.4CuO4±δ (blue), La1.6Sr0.4CuO4±δ (deep blue) and LaSrNiO4±δ (red) thin films calculated from EIS 
spectra collected at 550 °C. Three microelectrodes from each sample were measured at the same oxygen 
partial pressure. The m values of La2CuO4+δ, LaSrCoO4±δ, La1.6Sr0.4CuO4±δ, La1.85Sr0.15CuO4±δ, and 
LaSrNiO4±δ epitaxial thin films were approximately 0.79, 0.59, 0.86, 0.89 and 0.86, respectively. 
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Figure 2. The computed DFT surface O 2p-band centers (relative to the Fermi level, EFermi) of the top 
surface layer (blue), the second surface layer (red), and the top two surface layers (green) vs. the bulk O 
2p-band centers for La2NiO4, La2CuO4, LaSrCoO4, La1.5Sr0.5CuO4 and LaSrNiO4. The slopes of the 
correlation are provided in the legend and a schematic of the (001) slab of the simulated La2-xSrxMO4 (La: 
green circles, Sr: blue circles and M-O octahedra: grey) is also provided on the right-hand-side of the 
figure. The empty rectangles highlight the surface layers where the O 2p-band centers were computed. 
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Figure 3. The oxygen surface exchange coefficients obtained from the EIS results of La2CuO4 (light 
blue), LaSrCoO4 (green), La1.85Sr0.15CuO4 (blue), La1.6Sr0.4CuO4 (deep blue) and LaSrNiO4 (red) films with 
(001) orientations measured at 550 OC vs. the computed DFT bulk O 2p-band centers (relative to the 
Fermi level, EFermi). Due to the coarser composition grid of the DFT model, the bulk O 2p-band centers of 
La1.75Sr0.25CuO4, La1.5Sr0.5CuO4 and La1.75Sr0.25NiO4 were used for representing the kO

q’s of La1.85Sr0.15CuO4, 
La1.6Sr0.4CuO4 and La1.8Sr0.2NiO4 in the figure. The grey dashed lines represents the correlation between 
experimental oxygen surface exchange coefficients and the computed bulk O 2p-band centers for a series 
of SOFC perovskites,33 reproduced from Ref. 33 © 2011 with permission from the Royal Society of 
Chemistry.  
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Figure 4. (a) The activation barriers (ΔEa) for bulk oxygen transport (DO*, blue filled circles) and oxygen 
surface exchange (kO*, red empty circles) for La2CoO4+δ, 

26 La2NiO4+δ,38 La2CuO4+δ,5 and 
La1.85Sr0.15CuO4+δ,5 vs. the computed bulk O 2p-band centers; (b) the activation barriers (ΔEa) for DO* 
(blue filled diamonds) and kO* (red empty diamonds) summarized in Table 1 of Ref. 2 for 
La0.8Sr0.2MnO3+δ (LSM82), La0.8Sr0.2CoO3-δ (LSC82), La0.5Sr0.5CoO3+δ (LSC55), GdBaCo2O6-δ (GBCO), 
PrBaCo2O6-δ (PBCO), and Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) vs. the computed bulk O 2p-band centers 
collected from the previous works33, 39 (LSC55 from Ref. 39).  For La0.6Sr0.4Co0.2Fe0.8O3-δ, both activation 
barriers of kO* and DO* (symbols with double lines) were taken from Ref. 40 instead of Ref. 2 (where the 
measurements were performed with GDC electrolyte instead of YSZ). Furthermore, additional data of the 
activation barrier of the BSCF surface exchange coefficients from Ref. 41 (empty purple diamond) show 
the large difference between the results of Ref. 2 vs. Ref. 41. Overall, excluding the outlier of the ΔEa for 
the BSCF kO* from Ref. 2, a clear correlation is observed for both ΔEas of the kO* and DO* vs. the 
calculated bulk O 2p-band centers.  The source of the large discrepancy between this correlation and the 
outlier activation barrier of kO* of BSCF in Ref. 2 is not clear at present.   
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