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The spin-independent and transversity generalized form factors (GFFs) of the ϕmeson are studied using
lattice QCD calculations with light quark masses corresponding to a pion mass mπ ∼ 450ð5Þ MeV. One
transversity and three spin-independent GFFs related to the lowest moments of leading-twist spin-
independent and transversity gluon distributions are obtained at six nonzero values of the momentum
transfer up to 1.2 GeV2. These quantities are compared with the analogous spin-independent quark GFFs
and the electromagnetic form factors determined on the same lattice ensemble. The results show
quantitative distinction between the spatial distribution of transversely polarized gluons, unpolarized
gluons, and quarks and point the way towards further investigations of the gluon structure of nucleons
and nuclei.
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I. INTRODUCTION

Understanding the quark and gluon structure of
hadrons and nuclei is a fundamental and compelling goal
of nuclear physics. Over the last 60 years, there has been
extraordinary progress in both experimental measurement
and theoretical understanding of the distributions of
quarks inside hadrons and nuclei. There are now precise
pictures of both the electromagnetic form factors and the
quark distributions of nucleons and nuclei. Determining
the gluonic structure of these objects to a similar level,
however, requires a new generation of experiments with
higher luminosity and better detectors. In particular, an
electron-ion collider (EIC) designed to fulfil these needs
is currently in the planning phase [1]. Such a machine will
provide access to a host of information about the gluonic
structure of hadrons and nuclei, including transverse-
momentum dependent distributions (TMDs) and gluon
generalized parton distributions (GPDs). While many
aspects of gluonic structure can be investigated, gener-
alized transversity gluon distributions are of particular
interest since they are purely gluonic; they do not mix
with quark distributions at leading twist. In addition, the
forward limit of these quantities are the double helicity
flip parton distributions introduced by Jaffe and Manohar
[2], which provide a clean signature of non-nucleonic
degrees of freedom in nuclei of spin ≥ 1. Away from the
forward limit, these distributions exist for targets of any
spin [3,4].
In this work the generalized gluon distributions

(gluon GPDs) of the spin-1 ϕ meson are investigated.
In particular, the generalized form factors (GFFs) corre-
sponding to the first Mellin moments of the unpolarized
and transversity gluon GPDs are determined for the first

time using lattice QCD (LQCD) calculations, albeit at
unphysical quark masses. The forward limits of these
form factors correspond to the gluon momentum fraction
and a transverse momentum asymmetry, respectively.
Since the transversity gluon GPD is nonzero in the
forward limit only in targets of spin ≥ 1, the ϕ meson,
which is the simplest spin-1 system, is chosen for this
exploratory study.
Because of the large number of both transversity and

unpolarized GFFs that contribute to the first Mellin
moments of the GPDs away from the forward limit,
only a subset can be cleanly determined within the
technical limitations of the LQCD calculation presented
here. Nevertheless, three of the seven unpolarized gluon
GFFs, and one of the eight transversity GFFs, are
extracted for six nonzero momentum transfers in the
range 0 < jΔ2j < 1.2 GeV2. The unpolarized gluon GFFs
are compared with the analogous quark GFFs, to which
they have a one-to-one correspondence. While there are
clear quantitative differences between the unpolarized
gluon and quark distributions, and also between these
and the gluon transversity distribution, interpreting
these differences is a challenging problem. Resolving
a full three-dimensional picture of the gluon structure
of the ϕ meson will require more precise calculations
that extend to more than the lowest moment of the
GPDs.
This work represents the first probe of detailed aspects

of the gluonic structure of a hadron using LQCD.
A number of technical aspects of the study are novel,
and the improvements presented here set the stage for
future studies that will map out the full gluonic structure
of the ϕ meson and other hadrons. Applied to nucleons

PHYSICAL REVIEW D 95, 114515 (2017)

2470-0010=2017=95(11)=114515(17) 114515-1 © 2017 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/85123557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1103/PhysRevD.95.114515
https://doi.org/10.1103/PhysRevD.95.114515
https://doi.org/10.1103/PhysRevD.95.114515
https://doi.org/10.1103/PhysRevD.95.114515


and nuclei, these techniques will set QCD benchmarks for
an EIC.

II. GLUON GFFs FOR SPIN-1 PARTICLES

GPDs encode the three-dimensional quark and gluon
structure of hadrons and nuclei. They encompass the
information carried by the parton distribution functions
and the elastic electromagnetic form factors, describing the
distribution of partons both in the transverse plane and in
the longitudinal direction [5]. Through the operator product
expansion, the towers of Bjorken-x (Mellin) moments of
the GPDs are related to matrix elements of towers of local
twist-two operators. These matrix elements, in turn, are
parametrized in terms of the GFFs which are the focus of
this work.
There are three towers of moments of twist-2 gluon

GPDs, encoding the spin-independent, spin-dependent and
transversity distributions. These moments are related to
matrix elements of the operators

Ōμνμ1…μn ¼ S½GμαiD
↔

μ1…iD
↔

μnGν
α�; ð1Þ

~Oμνμ1…μn ¼ S½ ~GμαiD
↔

μ1…iD
↔

μnGν
α�; ð2Þ

Oμνμ1…μn ¼ S½Gμμ1iD
↔

μ3…iD
↔

μnGνμ2 �; ð3Þ

respectively, where the gluon field strength tensor is Gμν,
the dual field-strength tensor is ~Gμν ¼ 1

2
ϵμναβGαβ, and

D
↔ ¼ 1

2
ðD⃗ − D⃖Þ. “S” denotes symmetrization and trace-

subtraction in all free indices for Eqs. (1) and (2), and

symmetrization in the μi and trace-subtraction in all indices
for Eq. (3). The matrix elements of these operators in spin-1
states, at lowest n, are the focus of this work.
The off-forward matrix elements of the twist-2 operators

defined above are described by GFFs. For spin-1 particles,
there are 7ð⌊n=2⌋þ 1Þ spin-independent gluon GFFs for
the nth operator in the tower. For the transversity operator,
there are 8ð⌊ðn − 2Þ=2⌋þ 1Þ gluon GFFs. The spin-
dependent gluon GFFs, which vanish at lowest-n through
operator symmetries, are not considered numerically in this
work but are enumerated in Appendix B. With the
polarization vectors of massive spin-1 particles defined
in Minkowski space as

Eμðp⃗; λÞ ¼
�
p⃗ · e⃗λ
m

; e⃗λ þ
p⃗ · e⃗λ

mðmþ EÞ p⃗
�
; ð4Þ

where λ ¼ fþ;−; 0g, m and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2

p
are the rest

mass and energy of the state, and

e⃗� ¼ ∓ 1ffiffiffi
2

p ð0; 1;�iÞ; ð5Þ

e⃗0 ¼ ð1; 0; 0Þ; ð6Þ

the spin-independent gluon GFFs are defined1 [6] through

hp0E0jS½GμαiD
↔

μ1…iD
↔

μnGν
α�jpEi ¼

Xn
m even
m¼0

�
Bðnþ2Þ
1;m ðΔ2ÞM2S½EμE0�

νΔμ1…ΔμmPμmþ1
…Pμn �

þ Bðnþ2Þ
2;m ðΔ2ÞS½ðE · E0�ÞPμPνΔμ1…ΔμmPμmþ1

…Pμn �
þ Bðnþ2Þ

3;m ðΔ2ÞS½ðE · E0�ÞΔμΔνΔμ1…ΔμmPμmþ1
…Pμn �

þ Bðnþ2Þ
4;m ðΔ2ÞS½ððE0� · PÞEμPν þ ðE · PÞE0�

μPνÞΔμ1…ΔμmPμmþ1
…Pμn �

þ Bðnþ2Þ
5;m ðΔ2ÞS½ððE0� · PÞEμΔν − ðE · PÞE0�

μΔνÞΔμ1…ΔμmPμmþ1
…Pμn �

þ Bðnþ2Þ
6;m ðΔ2Þ
M2

S½ðE · PÞðE0� · PÞPμPνΔμ1…ΔμmPμmþ1
…Pμn �

þ Bðnþ2Þ
7;m ðΔ2Þ
M2

S½ðE · PÞðE0� · PÞΔμΔνΔμ1…ΔμmPμmþ1
…Pμn �

�
: ð7Þ

Here, P ¼ ðpþ p0Þ=2 is the average momentum and the momentum transfer is defined as Δ ¼ p0 − p. ‘S’ denotes

symmetrization and trace-subtraction in all free indices. Of these GFFs, only BðnÞ
1;0ðΔ2Þ and BðnÞ

2;0ðΔ2Þ contribute to forward-
limit matrix elements. The renormalization scheme and scale-dependence of the GFFs is suppressed here.

1This choice of basis is slightly different from that in Ref. [6], where the decomposition also includes a trace term.
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The transversity GFFs are defined through

hp0E0jS½Gμμ1iD
↔

μ3…iD
↔

μnGνμ2 �jpEi

¼
Xn
m even
m¼2

�
AðnÞ
1;m−2ðΔ2ÞS½ðPμEμ1 −EμPμ1ÞðPνE0�

μ2 −E0�
νPμ2ÞΔμ3…ΔμmPμmþ1

…Pμn �

þAðnÞ
2;m−2ðΔ2ÞS½ðΔμEμ1 −EμΔμ1ÞðΔνE0�

μ2 −E0�
νΔμ2ÞΔμ3…ΔμmPμmþ1

…Pμn �
þAðnÞ

3;m−2ðΔ2ÞS½ððΔμEμ1 −EμΔμ1ÞðPνE0�
μ2 −E0�

νPμ2Þ−ðΔμE0�
μ1 −E0�

μΔμ1ÞðPνEμ2 −EνPμ2ÞÞΔμ3…ΔμmPμmþ1
…Pμn �

þAðnÞ
4;m−2ðΔ2ÞS½ðEμE0�

μ1 −Eμ1E
0�
μÞðPνΔμ2 −Pμ2ΔνÞΔμ3…ΔμmPμmþ1

…Pμn �

þAðnÞ
5;m−2ðΔ2Þ
M2

S½ððE ·PÞðPμΔμ1 −ΔμPμ1ÞðΔνE0�
μ2 −E0�

νΔμ2Þ
þðE0� ·PÞðPμΔμ1 −ΔμPμ1ÞðΔνEμ2 −EνΔμ2ÞÞΔμ3…ΔμmPμmþ1

…Pμn �

þAðnÞ
6;m−2ðΔ2Þ
M2

S½ððE ·PÞðPμΔμ1 −ΔμPμ1ÞðPνE0�
μ2 −E0�

νPμ2Þ
−ðE0� ·PÞðPμΔμ1 −ΔμPμ1ÞðPνEμ2 −EνPμ2ÞÞΔμ3…ΔμmPμmþ1

…Pμn �

þAðnÞ
7;m−2ðΔ2Þ
M2

ðE0� ·EÞS½ðPμΔμ1 −ΔμPμ1ÞðPνΔμ2 −ΔνPμ2ÞΔμ3…Δμm−1
Pμm…Pμn �

þAðnÞ
8;m−2ðΔ2Þ
M4

ðE ·PÞðE0� ·PÞS½ðPμΔμ1 −ΔμPμ1ÞðPνΔμ2 −ΔνPμ2ÞΔμ3…ΔμmPμmþ1
…Pμn �

�
; ð8Þ

where the polarization vectors E and the momenta P and Δ
are as defined above. Here, ‘S’ denotes symmetrization in
the indices μi (the pairs fμ; μ1g and fν; μ2g are antisym-
metric), symmetrization of μ and ν, and trace-subtraction in
all free indices. The construction of this decomposition and
that of Eq. (7) follows from applying discrete symmetries
and demanding the correct Lorentz structure. Only

AðnÞ
1;0ðΔ2Þ contributes to forward-limit gluon transversity

matrix elements.

III. LATTICE QCD CALCULATION

In this work, a single ensemble of isotropic gauge-field
configurations is used to determine the matrix elements
discussed above at lowest n. The solutions of the systems of
equations generated by various choices of polarizations and
momenta in Eqs. (7) and (8) allow subsets of the GFFs to be
extracted, as will be discussed in detail below. Simulations
are performed with Nf ¼ 2þ 1 flavors of dynamical
quarks, with quark masses chosen such that2 mπ ∼
450ð5Þ MeV and mϕ ∼ 1040ð3Þ MeV. A clover-improved
quark action [7] and Lüscher-Weisz gauge action [8] are
used, with the clover coefficient set equal to its tree-level
tadpole-improved value. The lattices have dimensions

L3 × T ¼ 243 × 64, with lattice spacing a ¼
0.1167ð16Þ fm [9]. Details of this ensemble are given in
Table I [10].

A. Lattice operator construction

The lowest-n operators of the towers given in Eqs. (1)
and (3) are considered here. Symmetrized and trace-
subtracted, the Minkowski-space gluonic transversity oper-
ator for n ¼ 2 [Eq. (3)] does not mix with quark-bilinear
operators of the same or lower dimension under renorm-
alization. The spin-independent gluonic operator with
n ¼ 0 [Eq. (1)], however, mixes with the flavor singlet

quark operator
P

f¼fu;d;sg S½ψ̄fγμD
↔

νψf�, as discussed in
more detail below. Moreover, the discrete symmetries of a
hypercubic lattice reduce the Lorentz group to the hyper-
cubic group H(4), creating the possibility of further mixing.
Lattice operators with the appropriate continuum behavior
that do not have additional mixing with lower or same-
dimensional operators were constructed, for the cases
considered here, in Refs. [11,12].
For the gluon transversity operator in Eq. (3), operators

in two irreducible representations of H(4) that do not mix
with operators of same or lower dimension are investigated.
Lattice operators which define bases of these representa-
tions are given explicitly in Appendix A along with their
Minkowski-space analogues. These operators are con-
structed using the clover definition of the gluon field

2Throughout this work, the ϕ meson is assumed to have a
flavor content that is purely s̄s and annihilation contributions are
ignored in two and three-point correlation functions. Such terms
are suppressed by the Zweig rule.
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strength tensor, with gradient flow [13] applied to the links
in the lattice gluon operators. The results shown use
operators flowed to a total time of 1 in lattice units using
a step size of 0.01.
As discussed in Ref. [12], the transversity lattice oper-

ators are related to continuum Euclidean-space operators
through a finite multiplicative renormalization factor,

OðEÞ
l;m;n ¼ Zl;mOlatt

l;m;n; ð9Þ
where the subscript ðl; m; nÞ denotes the nth vector
from the mth representation of a lattice operator (where
such operators are identified by the subscript l), and
Zl;m ¼ 1þOðαsÞ. In this work the renormalization factors
are not computed, but it is expected based on studies of
similar gluonic operators [14] that they are Oð1Þ.
Lattice operators from two representations of H(4) are

considered for the spin-independent gluon operator defined
in Eq. (1), with explicit definitions given in Appendix A.
As noted above, these operators mix with the quark

operator
P

f S½ψ̄fγμD
↔

νψf�. With the lattice operators cor-
responding to this quark bilinear denoted by Q̄latt

l;m;n with
subscripts defined as above (where operators transforming
irreducibly under H(4) are constructed in the same way as
those for the corresponding gluonic operator), this mixing
under renormalization can be expressed as

ŌðEÞ
l;m;n ¼ Zgg

l;mŌ
latt
l;m;n þ Zgq

l;mQ̄
latt
l;m;n: ð10Þ

In Ref. [14] it is shown numerically that this mixing, i.e.,
the magnitude of Zqg

l;m, is at the few-percent level for a
similar action to the one used here, and that the renorm-
alization Zgg

l;m is approximately unity, with several levels of
stout smearing used on the operator. These small mixing
effects are neglected in the present calculation.

B. Determination of matrix elements

Matrix elements of the operators discussed in the
previous section in the ϕ meson can be extracted from
ratios of two and three-point correlation functions. With
ηjðp⃗; tÞ denoting the vector of ϕ interpolating operators and
where ϵj are Euclidean polarization vectors related to the
Minkowski expression in Eq. (4) by ϵjðp⃗; λÞ ¼ Ejðp⃗; λÞ,
such that3

h0jηjðp⃗Þjp⃗; λi ¼ Zϕðp⃗Þϵjðp⃗; λÞ; ð11Þ

where p⃗ is the momentum of a state and λ labels its
polarization, the two-point function can be expressed as

C2pt
jk ðp⃗; tÞ ¼ hηkðp⃗; tÞη†jðp⃗; 0Þi

¼ jZϕðp⃗Þj2ðe−Et þ e−EðT−tÞÞ
X
λ

ϵkðp⃗; λÞϵ�jðp⃗; λÞ:

ð12Þ

Contributions from excited states (which are exponentially
suppressed) are omitted from this expression. In analysis,
care is taken to restrict to time ranges where such
contamination is negligible.
Three-point correlation functions are constructed by tak-

ing the correlated product, configuration-by-configuration
and source-location–by–source-location, of these two-point
functions4 with the gluonic operators calculated as described
in the previous section. While the only case for which
the vacuum expectation value hηkðp⃗0; tÞη†jðp⃗; 0Þi×
hOðp⃗0 − p⃗; τÞi is nonzero is where p⃗ ¼ p⃗0 and O is a
spin-independent gluon operator, a vacuum subtraction is
performed for every operator and all momenta in this
calculation. This correlated subtraction of zero improves
the signal-to-noise ratio significantly. Inserting complete sets
of states, the subtracted three-point correlators can thus be
expressed as

C3pt
jk ðp⃗; p⃗0; t; τ;OÞ≡ hηkðp⃗; tÞOðp⃗0 − p⃗; τÞη†jðp⃗0; 0Þi

− hηkðp⃗; tÞη†jðp⃗0; 0ÞihOðp⃗0 − p⃗; τÞi
¼ Z†

ϕðp⃗ÞZϕðp⃗0Þe−Et
X
λλ0

ϵkðp⃗; λÞϵ�j

× ðp⃗0; λ0Þhp⃗; λjOjp⃗0; λ0i ð13Þ

for 0 ≪ τ ≪ t ≪ T (where T denotes the time extent of the
lattice). For the case 0 ≪ t ≪ τ ≪ T, t is replaced by (T − t)
in the final line of the above expression and there is an
additional multiplicative factor of ð−1Þn4 , where n4 is the
number of temporal indices in the operator.

TABLE I. LQCD simulation details. The gauge configurations have dimensions L3 × T, lattice spacing a, and bare quark masses amq
(in lattice units). A total of Nmeas light-quark sources were used to perform measurements across Ncfg configurations.

L=a T=a β aml ams a (fm) L (fm) T (fm) mπ (MeV) mK (MeV) mϕ (MeV) mπL mπT Ncfg Nmeas

24 64 6.1 −0.2800 −0.2450 0.1167(16) 2.801(29) 7.469(77) 450(5) 596(6) 1040(3) 6.390 17.04 1042 105

3Note that cubic symmetry guarantees the polarization-
independence of Zϕðp⃗Þ.

4For three-point functions with off-diagonal polarizations in
the helicity basis, the two-point functions used are zero when an
ensemble average is taken, but signals emerge through their
correlation with the gluonic operators. The gluon transversity
operators considered here are themselves zero on ensemble
average.
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The two- and three-point correlation functions were
constructed from propagators computed using a bare quark
mass m ¼ −0.2450 and 5 iterations of gauge-invariant
Gaussian smearing in the spatial directions at both source
and sink, with interpolating operators of the form ηjðxÞ ¼
ψ̄ðxÞγiψðxÞ in terms of smeared quark fields. On each of
1042 configurations, spaced by 10 trajectories, 96 source
locations were used, and measurements were averaged over
these source locations before a bootstrap analysis was
performed to assess statistical uncertainties.
The leading exponential time dependence in Eq. (13),

as well as factors of Zϕ, can be eliminated by forming
the ratio,

Rjkðp⃗; p⃗0; t;τ;OÞ

¼C3pt
jk ðp⃗; p⃗0; t;τ;OÞ
C2pt
kk ðp⃗0; tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2pt
jj ðp⃗; t− τÞC2pt

kk ðp⃗0; tÞC2pt
kk ðp⃗0;τÞ

C2pt
kk ðp⃗0; t− τÞC2pt

jj ðp⃗; tÞC2pt
jj ðp⃗;τÞ

vuut ;

ð14Þ

which is proportional, through factors of mϕ and momen-
tum components, to the matrix elements of interest,
hp⃗0; λ0jOjp⃗; λi. For each lattice operator O, this ratio was
constructed for all diagonal and off-diagonal polarization
combinations jk, and for momenta up to p⃗2 ¼ 4 and
p⃗02 ¼ 4, taken in all combinations that give a resultant
momentum transfer up to jΔ⃗j2 ¼ ðp⃗0 − p⃗Þ2 ¼ 6. Ratios for
the cases with τ ≪ t and t ≪ τ are averaged, with the
appropriate signs included as discussed following Eq. (13).

C. Extraction of GFFs

The Euclidean operators used here are given explicitly in
Appendix A and discussed in Sec. III A. Matrix elements of
these operators, encoded in the ratios Rjkðp⃗; p⃗0; t; τ;OÞ
described in the previous section, are matched to GFFs by
applying Eqs. (7) and (8) to the corresponding Minkowski-
space operator expressions (also made explicit in
Appendix A). For each basis of operators, at each value
of the momentum transfer, this generates systems of

equations for the GFFs, Bð2Þ
i;mðΔ2Þ or Að2Þ

i;mðΔ2Þ depending
on the operator, where each equation corresponds to one
choice of operator in the basis and one set of momentum
and polarization vectors. In general, these systems are large,
the relation between the GFFs and the matrix elements is
not simply invertible, and the systems can not be solved for
all GFFs simultaneously. This is discussed in detail below.
The extraction of the GFFs proceeds in four steps:
1. Construct averages of the ratios Rjkðp⃗; p⃗0; t; τ;OÞ

for equivalent choices of polarization, momenta, and
operators in a given basis;

2. Fit constants to the averaged ratios in their plateau
regions;

3. Determine the GFFs which are dominant in the
analysis for each operator;

4. Solve the (possibly over- or underdetermined)
system for the dominant GFFs at each Δ2;

each of which will be described in detail.
For each operator under consideration, the numerical

values of the ratios Rjkðp⃗; p⃗0; t; τ;OÞ are averaged, at the
bootstrap level, over all choices of momentum and polari-
zation that give the same linear combination of GFFs up to
a sign (by Eq. (7) or (8) as appropriate). This procedure
defines a reduced set of unique, but not linearly indepen-
dent, linear equations for each operator and momentum
transfer.
For each averaged ratio R̄ðt; τÞ, the maximal connected

plateau region in t–τ space is determined, where this is
defined as the region where the bootstrap-level differences
between all pairs of adjacent points are consistent with
zero. If this maximal plateau region for an averaged ratio
consists of less than 10 ðt; τÞ pairs, that ratio is discarded
from the analysis (typical fits include many more points in
the plateau region). Given this maximal plateau region, the
variation in central values of fits to all subregions is taken as
a measure of the fitting uncertainty, while the bootstrap-
level fit of a constant over the maximal region gives the
central value and statistical uncertainty of the fit. These
uncertainties are propagated into the subsequent analysis as
described below. In this analysis, all ðt; τÞ combinations are
available, so a comprehensive elimination of excited states
can be achieved; this aspect of the calculation is better
controlled than for studies of quark operators where each τ
(or t) value requires additional computation and so typi-
cally only a few values can be used. Figure 1 shows an
example of such a plateau fit to an averaged ratio in the
t–τ plane.
Because of the large number of GFFs that contribute to the

off-forward matrix elements, not all can be determined from
the LQCD calculations presented here. A complete extrac-
tion would require precise data from many different sets of
initial and final momenta giving the same momentum
transfer. This could be achieved either with new techniques
allowing high-precision data to be obtained at largemomenta
[15–17], or with very large lattices having allowed values of
momentum transfer that are sufficiently closely spaced in
physical units to allow binning. Given the sets of momenta
availablewith good precision in these calculations, the linear
systems generated by the matching of the LQCD results to
the corresponding matrix elements in terms of GFFs do not
contain enough independent equations to constrain all GFFs
for some operators at some momentum transfers. In other
cases, the contributions from a number of the GFFs are
suppressed by several orders of magnitude relative to others,
again making the extraction of these quantities impossible
with the current statistical precision. Moreover, for some
bases of operators, symmetries relate the coefficients of
two or more GFFs for every choice of momentum and
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polarization, meaning that those GFFs can not be separated
by any fit, regardless of the precision of the results or the
number of momenta available.
For each basis of operators, a subset of the GFFs can,

however, be extracted. This set of dominantGFFs is found by
inspection of the relative weights of each GFF in the system
of linear equations to be solved. For example, for all gluon
transversity basis operators considered, at all momentum
transfers, the majority of equations in the linear systems have
the coefficient of Að2Þ

1;0ðΔ2Þ significantly larger than the
coefficients of the other GFFs (see Appendix C). For this

reason, Að2Þ
1;0ðΔ2Þ is considered to be the dominant GFF, and

its extraction is the focus of thiswork. Similar arguments lead

to three GFFs, namely Bð2Þ
1;0ðΔ2Þ, Bð2Þ

2;0ðΔ2Þ and Bð2Þ
4;0ðΔ2Þ,

being targeted in the spin-independent case. More GFFs are
resolvable at some particular momenta, but the aim of this
work is to obtain a subset of the GFFs that can be determined
consistently at all momenta, as described below.
To achieve this, least-χ2 fits at the bootstrap level are

performed to the systems of equations for each basis of

operators, with fitting uncertainties assigned to each aver-
aged ratio R̄ as described above. Such fits are performed
multiple times, fitting to every subset of the GFFs that
includes those classed as dominant, with the GFFs which
are not fit set to 0 and assigned an uncertainty of 10 in the
χ2 fit.5 There are thus 16 sets of fits for the unpolarized
operator and 128 sets of fits for the transversity operator.
The variation in central values over the fits to different
subsets with acceptable values of χ2 is included in quad-
rature as a second fitting systematic uncertainty on the final
results, while the central values and statistical and plateau
fitting uncertainties are taken from the bootstrap fits over
the minimal set of dominant GFFs.
Precisely, for a fit to the subset of GFFs fi∈S;j, where S

denotes the set of GFFs which are fit over and the subscript
j labels the discrete values of the momentum transfer Δ2,
the first contribution to the χ2 function can be expressed as

χ2Aðb; fi∈S;jÞ ¼
X
R̄

ðMR̄ðfi∈S;jÞjðfi∉S;j¼0Þ − R̄ðbÞÞ2
ΔR̄2 þ Δ̂ðR̄Þ2 : ð15Þ

Here R̄ðbÞ denotes the set of averaged plateau values
extracted from the ratios discussed previously, for a given
bootstrap, and ΔR̄ represents the statistical and fitting
uncertainties on these quantities, determined as described
earlier. The label b indicates that this χ2 is formed for each
bootstrap. MR̄ represents the expectations, from Eq. (7) or
(8), for the averaged ratio R̄, in terms of the GFFs, where
those GFFs not in the subset S are set to zero. The quantity Δ̂
assigns an uncertainty of 10 to those GFFs which are not
fit to:

Δ̂ðR̄Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k∉S

ðMR̄ðfi;jÞjðfk;j¼10Þ−MR̄ðfi;jÞjðfk;j¼0ÞÞ2
s

: ð16Þ

Choosing an uncertainty of 100 gives entirely consistent
results, albeit with larger uncertainties.
In the fits that are performed, an additional contribution

is added to the χ2 function, representing a dipole function
fit to each of the dominant GFFs as a whole. This addition
has the effect of correlating the solutions of the systems
of overdetermined equations at different values of Δ2,
which results in GFFs that are somewhat more smoothly
behaved and reduces the uncertainty on the jΔ2j ¼ f2; 3g
(in lattice units) points in particular. The particular Δ2

points that see improvement, fit alone, are less well con-
strained than others as there are less combinations of

FIG. 1. Example of a plateau fit to an averaged ratio R̄ðt; τÞ.
Each section of the figure (separated by horizontal lines) shows
R̄ðt; τÞ plotted against operator insertion time τ at a fixed value of
the sink time t, which is denoted by the red star on each plot. The
result of a fit to the (two-dimensional) plateau region, determined
as described in the text, is shown on each cross section as a green
horizontal band.

5While there are no current bounds on the magnitudes of the
GFFs to support this choice, an order of magnitude variation would
be surprising. Moreover, as fits to all subsets of GFFs are included
in the analysis, significant contributions outside of this bound from
a subdominant GFF would become apparent from inconsistencies
between fits to different subsets. This is not observed.
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polarizations/momenta available. Precisely, this additional
contribution to the total χ2 can be expressed as

χ2Bðb; fi;j; μi; aiÞ ¼
X
i∈S;j

�
μi

ð1þaiΔ2Þ2 − fi;j
�
2

ð1
2

∂2χ2A∂f2i;jÞ
2

; ð17Þ

where μi and ai are the parameters of the dipole fits to the
GFF labeled by i. Note that χ2A is a quadratic function of the
GFFs fi;j, so the denominator weights each term by how
well the relevant GFF is determined. A correlation matrix is
not used, since χ2A does not include cross terms between
different momenta.
Results are obtained by minimization of the total,

χ2totðb; fi;j; μi; aiÞ ¼ χ2Aðb; fi;jÞ þ χ2Bðb; fi;j; μi; aiÞ; ð18Þ

to determine the dominant GFFs at each momentum
transfer. The mean and standard deviation over the GFFs
determined on each bootstrap are used as the central value
and first uncertainty on the quoted results. In addition, the
uncertainties on the GFFs determined by minimizingP

bχ
2
totðb; fi;j; μi; aiÞ are included in quadrature. In most

cases, where the bootstrap uncertainties accurately reflect
the fitting uncertainties, this addition has little effect. In the
few cases where subdominant form factors are significant at
certain momenta (and setting them to be centered around 0
distorts the bootstrap fits), this addition inflates the fitting
uncertainties considerably. Figure 2 illustrates one of the
critical aspects of the fitting procedure, namely solving the
linear system of constraints. The results in Figs. 3 and 4 are
shown both with and without the additional smoothing
constraint discussed above.

D. Results: Gluon GFFs

The procedure described in the previous section allows
the determination of the Δ2-dependence of one of the eight
gluon transversity GFFs, and three of the seven unpolarized
gluon GFFs. At some momentum transfers, additional
GFFs (or linear combinations thereof) can be determined.
This study is, however, focused on determining the
Δ2-dependence of GFFs as a whole.
The single gluon transversity GFF that can be deter-

mined, which is also the only transversity GFF that
contributes in the forward limit, is shown in Fig. 3. The
forward limit of this quantity defines a transverse momen-
tum asymmetry, which was previously determined on the
same gauge ensemble as used here [12]. While the results
labeled basis 1 are more precise than those for basis 2, as
there are fewer momentum and polarization combinations
that give nonzero matrix elements of basis-2 operators, they
agree within uncertainties.
Results for the three spin-independent gluon GFFs that

can be determined are shown in Fig. 4. Again, the results

(a)

(b)

(c)

FIG. 2. Cross sections of the multidimensional system of linear
equations for the matrix elements of spin-independent gluonic
operators in the τð3Þ1 (blue) and τð6Þ3 (orange) representations (see
AppendixA), at the lowest nonzeromomentum transfer. Each band
shows the central value and uncertainty, defined as described in the
text, corresponding to one linear equation in the system,with values
oftheGFFsBð2Þ

i;0 ðΔ2Þwith i≠f1;2;4gset to0�10,projectedintothe
planes of the dominantGFFs. Bandswithmuch larger uncertainties
in this particular projection are omitted for clarity. In the infinite-
statistics limit, all bands should intersect at a single point in the
multidimensionalspace.Theellipsesshowtheresultsobtainedfrom
the fits to the multidimensional systems as described in the text.
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from the two distinct bases are broadly consistent at the 1σ
level, with comparable precision achieved in both data sets.
While the spin-independent gluon GFFs are clearly quan-
titatively different from the gluon transversity GFF, this
difference is as yet hard to interpret meaningfully, given the
limited subset of GFFs which are determined. Within the
uncertainties of this calculation, the effects of renormaliza-
tion, which have been neglected, are not significant [14].

E. Quark GFFs

To interpret the gluonic observables obtained in this study,
it is interesting to compare them with the analogous quark
GFFs and the electromagnetic form factors.As this first lattice
determination of the gluon GFFs is performed at a single
unphysical value of the quarkmasses, and no extrapolation to
the physical point is performed, it is natural to compare gluon
and quark GFFs at the same unphysical parameters. While
the transversity gluon GFFs have no direct quark analogues,
the spin-independent gluon GFFs have a one-to-one corre-
spondence with the spin-independent quark GFFs. These
quantities, as well as the quark electromagnetic form factors,
are calculated using the same lattice setup and analysis
procedures described previously, with minor differences as
detailed below.
For the spin-independent strange quark GFFs and the

electromagnetic form factors of the ϕ meson, the relevant
three-point functions, C3pt

jk [Eq. (13)], are determined using
the quark bilinear operators,

Qμν ¼ S½ψ̄γμiD
↔

νψ �; ð19Þ

Qμ ¼ ψ̄γμψ ; ð20Þ

respectively. The calculations omit the disconnected cou-
plings of the sea quarks to the currents, and OðαÞ mixing
with the gluonic operators is ignored. In addition, a single
contraction is considered, so the system under consider-
ation should be thought of as an s̄s0 meson.
Matrix elements of the spin-independent quark operators

have precisely the same form as those of the spin-
independent gluon operators, given explicitly in Eq. (7).
The GFFs BqðnÞ

i;m are given the additional superscript ‘q’ to
identify them as the quark analogues. The decomposition of
the electromagnetic current matrix elements, which have no
gluonic analogues, into form factors for spin-1 particles is
[18,19]

hp0E0jψ̄γμψ jpEi ¼
E0�αEβ

2
ffiffiffiffiffiffiffi
EE0p ð−2G1ðΔ2ÞgαβPμ

−G2ðΔ2ÞðΔβgμα − ΔαgμβÞ

þ 1

M2
G3ðΔ2ÞΔαΔβPμÞ; ð21Þ

where, as before, P ¼ ðpþ p0Þ=2 is the average momen-
tum, and the momentum transfer is defined as Δ ¼ p0 − p.
The initial and final-state energies are E and E0 (and the
polarizations, as before, are E and E0).
The three-point functions needed for the LQCD determi-

nation of these matrix elements are constructed using
sequential propagators with fixed sink momentum p⃗0 ¼ 0,
since each additional momentum used carries additional
computational cost. As a result, there is less information
(in the form of fewer independent equations in the system that
determines the GFFs or FFs) than in the gluonic study
discussed above. Moreover, unlike in the gluon case, the
construction of three-point functionswith different sink times

(a) (b)

FIG. 3. The gluon transversity GFF extracted from this analysis as described in Sec. III. Subfigures (a) and (b) show results obtained
using lattice operators from the two different irreducible representations considered. The solid blue and orange points denote the results
of the full analysis, while the faded green and purple points (offset on the horizontal axis for clarity) show the analysis repeated without
the smoothness constraint discussed at the end of in Sec. III C. The bands are dipole fits to the results of the full analysis against jΔ2j,
shown to guide the eye.
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requires separate sequential propagator computation. Three
sink times, tsink ∈ f12; 14; 16g in lattice units, are used here.
The statistical behavior of these matrix elements is, however,
less noisy than that of the gluon operator correlators.

As was discussed previously for the gluon case, calcu-
lations are performed using lattice operatorswhich transform
irreducibly under the hypercubic group H(4). The vector
current is implemented using the naive local current, related

(a) (b)

(c)

(e) (f)

(d)

FIG. 4. Spin-independent gluon GFFs determined through the analysis described in Sec. III. Subfigures (a), (c) and (e) show results
obtained using lattice operators from the first irreducible representation considered, while the other subfigures show results from the
second. As in Fig. 3, the solid blue and orange points denote the results of the full analysis, while the faded green and purple points
(offset on the horizontal axis for clarity) show the analysis repeated without the smoothness constraint discussed at the end of Sec. III C.
The bands are dipole fits to the results of the full analysis against jΔ2j, shown to guide the eye.
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(a)

(b)

(c)

FIG. 5. Spin-independent quark GFFs determined as de-
scribed in the text. As in Figs. 3 and 4, the solid red points
denote the results of the full analysis, while the faded orange
points (offset on the horizontal axis for clarity) show results
obtained without the smoothness condition discussed at the end
of Sec. III C. The bands are dipole fits to the results of the full
analysis against jΔ2j.

(a)

(b)

(c)

FIG. 6. Quark electromagnetic form factors determined
as described in the text. As in Figs. 3 and 4, the solid red
points denote the results of the full analysis, while the faded
orange points (offset on the horizontal axis for clarity)
show results obtained without application of the smoothness
condition discussed at the end of Sec. III C. The bands are
dipole fits to the results of the full analysis against jΔ2j.
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to the continuum current by a renormalization factor ZV that
is determined by demanding unit charge. This transforms in
the τð4Þ1 representation. For the spin-independent quark
operator in Eq. (19), the irreducible representations have
exactly the same form as those for the spin-independent
gluon operator, which are given explicitly in Appendix A.
A single lattice representation of the spin-independent quark
operator is used, namely Q̄E

2;14, analogous to the gluon
quantity labeled as ŌE

2;14 in Appendix A.
Given the three point functions constructed as

described above, the analysis to extract the spin-
independent quark GFFs proceeds in the same way as
was detailed for the spin-independent gluon GFFs above.
The only modification is that, with only three sink times
available, identified plateaus in the (t–τ) plane are
considered acceptable if they include a minimum of five
time slices. For the electromagnetic form factors, where a
complete extraction of all FFs is possible, both this
method (with all three FFs considered “dominant”) and
a separate analysis, in which ratios of two- and three-
point functions are combined to give direct extractions of
the individual FFs, are used. This second method is
discussed in detail in Appendix D and gives results
consistent with the more general method that must be
used in the cases where larger numbers of form factors
contribute. This comparison also gives confidence that
this latter method is reliable.
This procedure allows the determination of the Δ2-

dependence of three of the seven unpolarized quark GFFs.
These three quantities are the direct analogues of the three
spin-independent gluon GFFs that were determined as
described in the previous sections and can therefore be
compared with these one-to-one. The results are shown in

Fig. 5. The forward-limit quantities Bqð2Þ
1;0 ð0Þ and Bqð2Þ

2;0 ð0Þ
satisfy the Soffer-type bounds derived on their relation in
Ref. [20]. These quantities were previous calculated for a
heavy ρ meson in a quenched calculation [21]. Translating
the results presented here to the notation in that work, the

linear combination of Bqð2Þ
1;0 ð0Þ and Bqð2Þ

2;0 ð0Þ named a1 has a
comparable value, but the combinationd1 has a different sign
and magnitude, possibly due to the effects of unquenching.
The results for the form factors of the vector current are
shown in Fig. 6 (andwith a different choice of decomposition
in Fig. 8). As discussed above, in this case all three form
factors can be determined.

IV. DISCUSSION

While many observables related to the quark structure of
hadrons and nuclei have now been both measured exper-
imentally and calculated at some level from QCD, includ-
ing electromagnetic form factors and quark momentum
distributions, the gluon structure of these particles remains
far more mysterious. One question of fundamental interest

is the spatial distributions of gluons relative to that of
quarks; is the “gluonic radius” of a hadron larger, smaller,
or of a similar size to the corresponding quark radius. This,
while interesting, is a somewhat nebulous question. The
observables considered in this work, namely the spin-
independent and transversity gluon GFFs, each define a
gluonic radius, each of which could, in principle, be
different, and there is no unique basis for the GFF
decomposition. The spin-independent gluon GFFs have
direct quark analogues and can be compared with these on a
one-to-one basis. While there are clear quantitative
differences between each of the quark and gluon GFFs
in the three matched pairs that were studied here, these
differences vary (i.e., the spin-independent quark and gluon
GFFs are not universally related by an approximate scaling
or sign change, as shown in Fig. 7). The gluon transversity
distribution is, again, quantitatively different, but this
difference is hard to interpret in a physical sense.
Resolving a full three-dimensional picture of the gluon
structure of the ϕ meson will require more precise
calculations that are able to resolve the entire basis of
GFFs for the first moments of the gluon distributions, and
also extend to higher moments.
An EIC will, for the first time, allow experimental

measurements of gluon GFFs in nucleons and nuclei.
The present work represents a demonstration that QCD
predictions of gluonic structure quantities can be obtained
using LQCD. Future LQCD studies of nucleons and nuclei
with fully controlled uncertainties will inform the design
and targets of an EIC experimental program, guide the
interpretation of first measurements, and, for some quan-
tities, act as theory benchmarks for the EIC.

FIG. 7. Ratio of gluon to quark spin-independent GFFs,
determined from the full analysis described in the text. The
blue (middle), orange (top) and green (bottom) sets of results
correspond to i ¼ f1; 2; 4g, respectively. The bottom data set,

for the ratio Bgð2Þ
4;0 ð0Þ=Bqð2Þ

4;0 , is rescaled by a factor of 1=10.
The bands are dipole fits to the results of the full analysis
against jΔ2j.
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APPENDIX A: EXPLICIT EXPRESSIONS
FOR LATTICE OPERATORS

Bases of Euclidean operators that transform irreducibly
under the hypercubic group H(4) are defined, for different
symmetry classes of operators, in Ref. [11]. The same
notation as in that work is used here, with irreducible
representations labeled by τðnÞi where n denotes the dimen-
sion of the representation and i enumerates representations.

The Euclidean analogue of the transversity operator
defined in Eq. (3), for n ¼ 2, is built from the quantity

OðEÞ
μνμ1μ2 ¼ GðEÞ

μμ1G
ðEÞ
νμ2 ; ðA1Þ

where the clover definition of the gluon field strength tensor

is used forGðEÞ
μν in the numerical calculations.While there are

three irreducible representations that are safe from mixing
with lower or same-dimensional quark bilinear operators,

namely τð2Þ1 , τð6Þ2 and τð2Þ2 [12], only a subset of the basis
operators of these representations,whichprovide the cleanest
signals, are considered here. In particular, three of the six

basis operators from τð6Þ2 , and both basis operators from τð2Þ2 ,
have vanishing matrix elements in states that have small
momenta in lattice units (for example, with zero momentum
transfer, these operators only have nonvanishing matrix
elements for boosts with p⃗2 ≥ 3 [12]). The five remaining

operators from representations τð2Þ1 and τð6Þ2 are nonvanishing
in a larger number of external states, and so provide the most
information. These are considered in this work.

(a) (b)

(c)

FIG. 8. Quark electromagnetic form factors determined as described in the text. As in Figs. 3 and 4, the solid red points denote the
results of the full analysis, while the faded orange points (offset on the horizontal axis for clarity) show results obtained without the
smoothness condition discussed at the end of Sec. III C. The bands are dipole fits to the results of the full analysis against jΔ2j.
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For τð2Þ1 , the basis vectors are [11,12]

OðEÞ
1;1 ¼ 1

8
ffiffiffi
3

p ð−2OðEÞ
1122 þOðEÞ

1133 þOðEÞ
1144

þOðEÞ
2233 þOðEÞ

2244 − 2OðEÞ
3344Þ; ðA2Þ

OðEÞ
1;2 ¼ 1

8
ðOðEÞ

1144 þOðEÞ
2233 −OðEÞ

1133 −OðEÞ
2244Þ: ðA3Þ

The τð6Þ2 vectors which are used here are

OðEÞ
2;2 ¼ 1

4
ðOðEÞ

1124 þOðEÞ
2334Þ; ðA4Þ

OðEÞ
2;4 ¼ 1

4
ðOðEÞ

1224 −OðEÞ
1334Þ; ðA5Þ

OðEÞ
2;5 ¼ 1

4
ðOðEÞ

1134 −OðEÞ
2234Þ: ðA6Þ

The Euclidean analogue of the spin-independent gluonic
operator in Eq. (1), for n ¼ 0, is constructed from

ŌðEÞ
μ1μ2 ¼ GðEÞ

μ1αG
ðEÞ
μ2α: ðA7Þ

Basis operators from two irreducible representations are

considered here. A basis of operators for the τð3Þ1 repre-
sentation is

ŌðEÞ
1;1 ¼ 1

2
ðŌðEÞ

11 þ ŌðEÞ
22 − ŌðEÞ

33 − ŌðEÞ
44 Þ; ðA8Þ

ŌðEÞ
1;2 ¼ 1ffiffiffi

2
p ðŌðEÞ

33 − ŌðEÞ
44 Þ; ðA9Þ

ŌðEÞ
1;3 ¼ 1ffiffiffi

2
p ðŌðEÞ

11 − ŌðEÞ
22 Þ: ðA10Þ

For τð6Þ3 , the vectors are

ŌðEÞ
2;μν ¼

1ffiffiffi
2

p ðŌðEÞ
μν þ ŌðEÞ

νμ Þ; 1 ≤ μ < ν ≤ 4; ðA11Þ

where only the operators with ν ¼ 4 are used here, as they
provide the cleanest signals at most momenta.
The Minkowski-space analogue of each basis operator is

determined by applying the relations

GðEÞ
ij ¼ Gij if i; j ∈ f1; 2; 3g; ðA12Þ

GðEÞ
4j ¼ ð−iÞG0j; ðA13Þ

to the Euclidean-space form. These Minkowski operators
are used, as described in Sec. III B, to match the numerical
LQCD results for the matrix elements of operators to the
expressions for these quantities in terms of GFFs.
Explicit expressions for the Euclidean and Minkowski-

space quark operators are given in Ref. [23]. The structure
of H(4) irreducible representations constructed from the
Euclidean operators is identical to that given in Eqs. (A8)
through (A11) for the gluon case.

APPENDIX B: GFFS OF THE SPIN-DEPENDENT
GLUON OPERATOR IN SPIN-1 STATES

Although the spin-dependent gluon distributions are not
studied numerically in this work, the GFF decomposition of
matrix elements of the spin-dependent gluon operator in
Eq. (2) is derived here. It can be expressed as

hp0E0jS½ ~GμαiD
↔

μ1…iD
↔

μnGν
α�jpEi

¼
Xn
m even
m¼0

�
~Bðnþ2Þ
1;m ðΔ2ÞS½ϵμαβγEαE0�βPγΔνΔμ1…ΔμmPμmþ1

…Pμn �

þ ~Bðnþ2Þ
2;m ðΔ2ÞS½ϵμαβγEαE0�βΔγPνΔμ1…ΔμmPμmþ1

…Pμn �
þ ~Bðnþ2Þ

3;m ðΔ2ÞS½ðϵμαβγEαPβΔγE0�
ν − ϵμαβγE0�αPβΔγEνÞΔμ1…ΔμmPμmþ1

…Pμn �

þ
~Bðnþ2Þ
4;m ðΔ2Þ
M2

S½ϵαβγδEαE0�βPγΔδPμPνΔμ1…ΔμmPμmþ1
…Pμn �

þ
~Bðnþ2Þ
5;m ðΔ2Þ
M2

S½ϵαβγδEαE0�βPγΔδΔμΔνΔμ1…ΔμmPμmþ1
…Pμn �

þ
~Bðnþ2Þ
6;m ðΔ2Þ
M2

S½ðϵμαβγEαPβΔγðE0� · PÞPν − ϵμαβγE0�αPβΔγðE · PÞPνÞΔμ1…ΔμmPμmþ1
…Pμn �

þ
~Bðnþ2Þ
7;m ðΔ2Þ
M2

S½ðϵμαβγEαPβΔγðE0� · PÞΔν þ ϵμαβγE0�αPβΔγðE · PÞΔνÞΔμ1…ΔμmPμmþ1
…Pμn �

�
:

HereS denotes symmetrization and trace-subtraction in all free indices. The averagemomentum is defined asP ¼ ðpþ p0Þ=2,
and the momentum transfer is Δ ¼ p0 − p. Note that, because of the symmetries of the operator, ~Bð2Þ

i;0 ðΔ2Þ ¼ 0 for all

i ∈ f1…7g. Furthermore, none of the GFFs ~BðnÞ
i;mðΔ2Þ contribute to forward-limit matrix elements, which must vanish.
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APPENDIX C: EXAMPLE OF A SYSTEM OF
LINEAR EQUATIONS FOR THE GFFs

This section gives an explicit example of the systems of
equations that are solved to extract the GFFs as described in
Sec. III C. The case shown is for the gluon transversity
operator in the first basis (τð2Þ1 ), at the first nonzero
momentum transfer. This is the simplest case at nonzero
momentum, as this basis includes only two operators.
Matching plateau-fits to the ratios Rjkðp⃗; p⃗0; t; τ;OÞ

[Eq. (14)] to linear combinations of the GFFs Að2Þ
i;0 ðΔ2¼ 1Þ

as described in Sec. III C, for all choices of polarization and
momenta (up to p⃗2 ¼ 4 and p⃗02 ¼ 4) that give Δ2 ¼ 1 in

lattice units and for all transversity operators in basis 1 (τð2Þ1 ),
defines 154 linear equations. This system is reduced to 39
equations by averaging the ratios (before fitting in t and τ) over
all choices of momentum and polarization that give the same
linear combination ofGFFs up to a sign. The polarizations and
momenta defining one member of each reduced set are given
in Table II.

TABLE II. One choice of the initial and final three-momenta (in lattice units) and polarizations (in a cartesian basis)
fp⃗; p⃗0; E; E0g contributing to each reduced set of averaged ratios R̄. The ordering of the rows here is the same as
in Eq. (C1).

p⃗ p⃗0 E E0

[1, 0, 0] [1, −1, 0] 3 3
[0, 1, 0] [0, 1, −1] 3 3
[0, 0, 0] [0, −1, 0] 3 3
[0, 0, 1] [0, −1, 1] 3 3
[0, 0, 0] [0, 0, −1] 3 3
[1, 0, 0] [1, −1, 0] 2 2
[0, 1, 0] [0, 1, −1] 1 1
[0, 0, 1] [0, −1, 1] 1 1
[0, 0, 0] [0, −1, 0] 1 1
[1, 0, 0] [1, −1, 0] 1 1
[0, 0, 1] [0, −1, 1] 2 2
[0, 0, 0] [0, −1, 0] 2 2
[0, 1, 0] [0, 1, −1] 2 2
[0, 0, 0] [0, 0, −1] 2 2
[1, 0, 0] [1, −1, 0] 2 1
[0, 0, 1] [0, −1, 1] 2 3
[0, 1, 0] [0, 1, −1] 2 3
[0, 0, 1] [0, −1, 1] 3 2
[1, 0, 0] [1, −1, 0] 1 2
[0, 1, 0] [0, 1, −1] 3 2

p⃗ p⃗0 E E0

[0, 0, 1] [0, −1, 1] 1 1
[0, 0, 1] [0, −1, 1] 2 2
[0, 1, 0] [0, 1, −1] 1 1
[1, 0, 0] [1, −1, 0] 2 2
[0, 0, 0] [0, 0, −1] 2 2
[0, 1, 0] [0, 1, −1] 2 2
[0, 0, 0] [0, −1, 0] 1 1
[0, 0, 0] [0, −1, 0] 2 2
[1, 0, 0] [1, −1, 0] 1 1
[0, 1, 0] [0, 1, −1] 3 2
[0, 1, 0] [0, 1, −1] 3 3
[1, 0, 0] [1, −1, 0] 3 3
[0, 0, 1] [0, −1, 1] 2 3
[1, 0, 0] [1, −1, 0] 2 1
[1, 0, 0] [1, −1, 0] 1 2
[0, 0, 1] [0, −1, 1] 3 2
[0, 0, 0] [0, −1, 0] 3 3
[0, 0, 1] [0, −1, 1] 3 3
[0, 1, 0] [0, 1, −1] 2 3
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The system of equations determining Að2Þ
i;0 ðΔ2 ¼ 1Þ for this basis, at this momentum, can be expressed as

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0.604 0.0424 0 0 0 0 0.0588 0

0.592 −2.45 × 10−3 0.0785 −0.0785 6.58 × 10−3 −0.0992 −0.103 −4.15 × 10−3

0.485 0.0429 0 0 0 0 0.0379 0

0.481 0.0431 −3.02 × 10−5 3.02 × 10−5 −2.53 × 10−6 −4.03 × 10−7 0.0374 −1.69 × 10−8

0.475 −3.29 × 10−3 0.0791 −0.0791 6.59 × 10−3 −0.0791 −0.0824 −3.29 × 10−3

0.353 −7.97 × 10−4 0.0385 −0.0385 3.28 × 10−3 −0.0598 −0.0631 −2.54 × 10−3

0.347 −0.0382 0 0 0 0 0.0962 0

0.258 0.0806 0 0 0 0 −0.0374 0

0.258 0.0808 0 0 0 0 −0.0379 0

0.253 0.101 −8.60 × 10−4 8.60 × 10−4 −7.20 × 10−5 6.32 × 10−7 −0.0588 2.65 × 10−8

0.239 −1.66 × 10−3 0.0401 −0.0401 3.29 × 10−3 −0.0393 −0.0402 −1.61 × 10−3

0.238 −1.65 × 10−3 0.0396 −0.0396 3.29 × 10−3 −0.0396 −0.0412 −1.65 × 10−3

0.228 −0.0581 8.30 × 10−4 −8.30 × 10−4 6.94 × 10−5 −1.04 × 10−6 0.0962 −4.33 × 10−8

0.228 −0.0379 0 0 0 0 0.0758 0

0.0590 −0.0109 0.139 −0.139 0.0112 −4.97 × 10−3 −3.94 × 10−4 −8.24 × 10−6

0.0578 −2.56 × 10−4 9.42 × 10−3 −9.42 × 10−3 3.89 × 10−4 −4.65 × 10−3 2.51 × 10−4 5.25 × 10−6

0.0338 1.59 × 10−3 −0.128 0.128 −0.0107 3.18 × 10−4 0.0154 1.33 × 10−5

0.0183 6.36 × 10−3 −1.29 × 10−4 1.29 × 10−4 3.84 × 10−4 4.84 × 10−3 5.99 × 10−3 5.18 × 10−6

0.0155 −4.78 × 10−3 −0.128 0.128 −0.0111 −4.52 × 10−3 9.41 × 10−3 8.14 × 10−6

1.19 × 10−3 −0.0106 0.129 −0.129 0.0108 −3.22 × 10−4 −6.45 × 10−4 −1.35 × 10−5

0.549 2.44 × 10−3 0 0 0 0 0.0895 0

0.546 −1.88 × 10−3 0.0676 −0.0676 5.69 × 10−3 −0.0918 −0.0960 −3.86 × 10−3

0.498 0.0710 0 0 0 0 0.0123 0

0.480 −2.37 × 10−3 0.0685 −0.0685 5.70 × 10−3 −0.0799 −0.0828 −3.33 × 10−3

0.429 0.0714 0 0 0 0 0 0

0.424 0.0834 −5.14 × 10−4 5.14 × 10−4 −4.30 × 10−5 1.33 × 10−7 −0.0123 5.55 × 10−9

0.412 2.85 × 10−3 0 0 0 0 0.0657 0

0.412 −2.85 × 10−3 0.0685 −0.0685 5.70 × 10−3 −0.0685 −0.0714 −2.85 × 10−3

0.409 −8.65 × 10−3 4.61 × 10−4 −4.61 × 10−4 3.86 × 10−5 −8.30 × 10−7 0.0771 −3.47 × 10−8

0.0674 −6.43 × 10−3 0.0856 −0.0856 6.70 × 10−3 −5.55 × 10−3 −8.26 × 10−5 −1.73 × 10−6

0.0656 4.96 × 10−4 −9.21 × 10−4 9.21 × 10−4 −6.37 × 10−6 −0.0119 −0.0132 −5.32 × 10−4

0.0514 −0.0685 0 0 0 0 0.0771 0

0.0347 −0.0124 0.155 −0.155 0.0127 −3.05 × 10−3 −6.00 × 10−4 −1.26 × 10−5

0.0327 5.99 × 10−3 −0.0692 0.0692 −6.03 × 10−3 −2.50 × 10−3 5.17 × 10−4 1.08 × 10−5

0.0301 4.59 × 10−3 −0.0738 0.0738 −5.95 × 10−3 2.98 × 10−3 0.0123 1.07 × 10−5

0.0285 −1.84 × 10−3 −0.147 0.147 −0.0126 −2.43 × 10−3 0.0143 1.24 × 10−5

0.0171 0.0685 0 0 0 0 −0.0657 0

0.0146 0.0920 −9.75 × 10−4 9.75 × 10−4 −8.17 × 10−5 9.63 × 10−7 −0.0895 4.03 × 10−8

1.59 × 10−3 6.43 × 10−3 0.0736 −0.0736 6.61 × 10−3 5.40 × 10−3 −1.97 × 10−3 −1.71 × 10−6

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBB@

Að2Þ
1;0ð1Þ

Að2Þ
2;0ð1Þ

Að2Þ
3;0ð1Þ

Að2Þ
4;0ð1Þ

Að2Þ
5;0ð1Þ

Að2Þ
6;0ð1Þ

Að2Þ
7;0ð1Þ

Að2Þ
8;0ð1Þ

1
CCCCCCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0.179ð36Þ
0.150ð38Þ
0.152ð30Þ
0.154ð37Þ
0.129ð32Þ
0.056ð31Þ
0.067ð41Þ
0.056ð35Þ
0.069ð21Þ
0.093ð36Þ
0.028ð32Þ
0.041ð27Þ
0.012ð33Þ
0.029ð30Þ
0.024ð11Þ
−0.005ð21Þ
−0.0056ð96Þ
−0.002ð11Þ
0.009ð16Þ
0.0162ð91Þ
0.086ð26Þ
0.131ð31Þ
0.155ð33Þ
0.086ð33Þ
0.098ð16Þ
0.094ð17Þ
0.088ð27Þ
0.114ð25Þ
0.075ð27Þ
0.034ð25Þ
−0.006ð22Þ
−0.001ð31Þ
0.022ð11Þ
0.014ð16Þ
0.0010ð16Þ
0.0008ð85Þ
0.018ð23Þ
0.001ð29Þ
0.005ð18Þ

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
ðC1Þ

where the numbers and uncertainties on the right hand side of the equation come from the plateau fits to averaged ratios obtained as
described in the main text. The ordering of the rows is as in Table II.
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APPENDIX D: DIRECT SOLUTION OF THE
FORM FACTOR DECOMPOSITION FOR

ELECTROMAGNETIC CURRENT

Since only three form factors contribute to matrix
elements of the electromagnetic current, a direct solution
of the constraint equations relating ratios of three-point and
two-point functions to the form factors is straightforward
[18,19]. This extraction is performed as a check on the
more general method discussed in Sec. III.
For each momentum transfer, Δ2, three ratios of two-

point and three-point functions are required to extract the
form factors at that momentum. At zero momentum
transfer, only the G1 form factor can be determined. In
terms of the ratios,

Ri
jkðΔ⃗Þ ¼ Rjkðp⃗ ¼ Δ⃗; p⃗0 ¼ 0⃗; t; τ; JiÞ; ðD1Þ

for the currents Ji ¼ ψ̄γiψ , where Rjkðp⃗; p⃗0; t; τ;OÞ is
defined in Eq. (14) and dependence on the current and
sink times is suppressed, the generic form of the solution
for the FFs can be expressed as

GXðΔ2Þ ¼ MX

X
f¼a;b;c

NX;fRX;f: ðD2Þ

Here X ¼ C,M,Q labels the Sachs form factors, which are
related to the basis used in Eq. (21) by

GQðΔ2Þ ¼ G1ðΔ2Þ −G2ðΔ2Þ þ ð1þ ηÞG3ðQ2Þ;
GMðΔ2Þ ¼ G2ðΔ2Þ;

GCðΔ2Þ ¼ G1ðΔ2Þ þ 2

3
ηGQðΔ2Þ: ðD3Þ

One choice of the combinations NX;f for each momentum
used, given that only zero sink momentum sequential
propagators were computed, is given in Table III.

TABLE III. One choice of ratios of two- and three-point functions that allow extraction of the electromagnetic form factors. Here,
E ¼ EðΔ2Þ and p denotes one unit of momentum in lattice units. For each RX;a, rotationally equivalent contributions are averaged.

Δ⃗=p X MX NX;a RX;a NX;b RX;b NX;c RX;c

(0,0,0) C 1=3 1 R4
11

1 R4
22

1 R4
33

M � � � � � � � � � � � � � � � � � � � � �
Q � � � � � � � � � � � � � � � � � � � � �

(1,0,0) C 2
ffiffiffiffiffi
Em

p
3ðEþmÞ

1 R4
11

2 R4
22

� � � � � �
M − 2

ffiffiffiffi
E3

p
p

ffiffiffi
m

p � � � � � � � � � � � � 1 R2
12

Q 2
ffiffiffiffiffiffiffi
Em3

p
p2

1 R4
11

−1 R4
22

� � � � � �

(1,1,0) C 2
ffiffiffi
m

p
3
ffiffiffi
E

p ðEþmÞ
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þm2

p
R4

11
ð2E −mÞ R4

33
� � � � � �

M − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðE2þm2Þ

p
p

ffiffiffi
m

p � � � � � � � � � � � � 1 R3
13

Q
ffiffiffiffiffi
m3

p
p2

ffiffiffi
E

p
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þm2

p
R4

11
−ðEþmÞ R4

33
� � � � � �

(1,1,1) C 2
ffiffiffiffiffiffiffiffiffiffiffiffi
E2þ2m2

p
3
ffiffiffiffiffi
Em

p ðEþmÞ

ffiffi
3

p ð2EþmÞ
3

R4
11 − 4

ffiffi
3

p
pðEþ2mÞ

3ðEþmÞ
R1

12 − 4
ffiffi
3

p
pð2EþmÞ

3ðEþmÞ
R2

12

M 2
ffiffiffiffiffi
Em

p ffiffiffiffiffiffiffiffiffiffiffiffi
2m2þE2

pffiffi
3

p
pðEþmÞ

� � � � � � 1 R1
12

−1 R2
12

Q 2
ffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffi
E2þ2m2

p
3p2

ffiffiffiffi
3E

p (m − E) R4
11

ðEþ2mÞ2
3p

R1
12

ðEþ2mÞð2EþmÞ
6p

R2
12

(2,0,0) C 2
ffiffiffiffiffi
Em

p
3ðEþmÞ

1 R4
11

2 R4
22

� � � � � �
M −

ffiffiffiffi
E3

p
p

ffiffiffi
m

p � � � � � � � � � � � � 1 R2
12

Q
ffiffiffiffiffiffiffi
Em3

p
2p2

1 R4
11

−1 R4
22

� � � � � �

(1,2,0) C 2
ffiffiffi
m

p
3
ffiffiffi
E

p ðEþmÞ
ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 4m2

p
R4

11
2ðE − 2mÞ R4

33
� � � � � �

M − 2
ffiffiffi
E

p ffiffiffiffiffiffiffiffiffiffiffiffi
E2þ4m2

p
p

ffiffiffiffiffi
5m

p � � � � � � � � � � � � 1 R3
13

Q 2
ffiffiffiffiffi
m3

p
5p2

ffiffiffi
E

p
ffiffiffi
5

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 4m2

p
R4

11
−ðEþ 4mÞ R4

33
� � � � � �

(2,1,1) C 2
ffiffiffiffiffiffiffiffiffiffiffiffi
2E2þm2

p
9
ffiffiffiffiffiffiffi
3Em

p ðEþmÞ
ð5m − 2EÞ R4

11

ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
E2þ5m2

p
ð4E−mÞffiffiffiffiffiffiffiffiffiffiffiffi

2E2þm2
p R4

22
� � � � � �

M ffiffiffiffiffiffiffi
2Em

p ffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2E2

p
ðEþmÞðEþ5mÞ

2
ffiffi
6

p
3

R4
11 − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
5m2þE2

pffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2E2

p R4
22 −

ffiffi
6

p ðEþmÞ
p

R1
12Þ

Q ffiffiffi
m

p ffiffiffiffiffiffiffiffiffiffiffiffi
2E2þm2

p
9
ffiffiffiffi
3E

p
p2

ðEþ 5mÞ R4
11 −

ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
E2þ5m2

p
ð2EþmÞffiffiffiffiffiffiffiffiffiffiffiffi

2E2þm2
p R4

22
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