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ABSTRACT

Singularity expansion method (SEM) is a system identification approach with applications in solving inverse
scattering problems, electromagnetic interaction problems, remote sensing, and radars. In this approach, the
response of a system is represented in terms of its complex poles; therefore, this method not only extracts the
fundamental frequencies of the system from the signal, but also provides sufficient information about system’s
damping if its transient response is analyzed. There are various techniques in SEM among which the generalized
pencil-of-function (GPOF) is the computationally most stable and the least sensitive one to noise. However,
SEM methods, including GPOF, suffer from imposition of spurious poles on the expansion of signals due to
the lack of apriori information about the number of true poles. In this study we address this problem by
proposing sparse generalized pencil-of-function (SGPOF). The proposed method excludes the spurious poles
through sparsity-based regularization with `1-norm. This study is backed by numerical examples as well as an
application example which employs the proposed technique for structural health monitoring (SHM) and compares
the results with other signal processing methods.

Keywords: Singularity expansion method, generalized pencil of function, complex poles, regularization, sparsity,
lasso regression, energy leakage

1. INTRODUCTION

In signal processing domain, the Fourier transform (FT) is the most dominant technique for its simplicity and
high efficiency. Linearity and stationarity are the two main assumptions in FT which result in imposition of
spurious harmonics on the expansion of signals and hence, leakage of energy. Several techniques such as the
wavelet transform (WT) and the Hilber-Huang transform (HHT) have been proposed to overcome this issue for
analyzing non-stationary and/or nonlinear signals. WT is an efficient technique for characterizing non-stationary
signals, but the energy leakage is inevitable in this method due to the assumption of linearity. The HHT goes
one step further by providing the highest possible time-frequency resolution for frequency spectrum without any
assumption of linearity or stationarity.1 However, this method is computationally intensive due to the iterative
use of spline interpolations. Moreover, the results of HHT for a signal may considerably vary by changing the
algorithm’s tuning parameters as the HHT does not have a closed form mathematical formula. Besides the pros
and cons of these methods, none of them provide information about damping of the system being studied.

An alternative approach to the above mentioned ones is singularity expansion method (SEM) which charac-
terizes a system’s response in terms of the singularities in the complex-frequency plane.2,3 Such characterization
provides sufficient information about system damping when its transient response is analyzed. The main sub-
categories of SEM for extracting systems’ complex poles and their associated residues are Prony method,4 Jain’s
pencil-of-function (POF) method5,6 and its improved version,7 ESPRIT,8 and generalized pencil-of-function
(GPOF).9 Although method have made major impacts mainly on solving inverse scattering problems, they
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suffer from two issues: 1) they are generally sensitive to noise, and 2) the number of system’s complex poles
should be known apriori. The first issue has been solved to an extend in the GPOF. Moreover, this method is
computationally more stable and less demanding compared to that others listed above; however, it still requires
the system order to be known a priori. Underestimation and overestimation of the system order, respectively,
result in high errors in estimating the poles and imposition of spurious damped harmonics to the expansion of
signal and hence, energy leakage. The proposed solutions for estimating the number of poles9–14 usually require
information about the noise characteristics and none of them guarantees the best prediction for the number of
true poles as they hard threshold them. This motivates further investigations on developing robust system order
determination techniques to be used along with SEM methods.

In SEM, the complex poles, which represent the damped harmonic modes of the system, are extracted from
the signal and hence, the extracted modes are not orthogonal to the signal. Therefore, the least square (LS)
method, which is commonly used for computing the corresponding residues, never push any of them to hard zero.
In this study, we consider sparsity-based regularization with `1 norm as the basis for computing the residues. By
incorporating this technique into GPOF we propose sparse generalized pencil-of-function (SGPOF). With the `1-
norm regularization, the residues associated with the insignificant poles are pushed to zero and hence, the energy
leakage will be minimized due to the sparse property of SGPOF. This brings various additional applications for
this method such as system order determination and feature extraction for structural health monitoring (SHM).
The body of the paper starts with a review of GPOF and the description of the problem that is addressed in this
study. The SGPOF algorithm and its technicalities will be discussed in section 3 followed by section 4 which
proposes an algorithm for determining optimal parameters of SGPOF. Finally, various numerical and application
examples are presented in section 5 and the results are compared with other signal processing methods.

2. REVIEW OF GPOF AND PROBLEM DESCRIPTION

2.1 Review of GPOF

Considering Ts as the sampling period and k = 0, 1, · · · , N − 1, a discrete signal y(kTs) can be expanded in term
of damped sinosoids , i.e.,

y(kTs) ≈
M∑
m=1

Rme
smkTs =

M∑
m=1

Rmz
k
m (1)

where M is the number of poles, Rm are the residues, and sm = αm + jΩm are the complex poles. The
pencil-of-function method considers L+ 1 number of linearly independent vectors {y0,y1, · · · ,yL} where ym =

[y(m), y(m+ 1), · · · , y(m+N − L− 1)]
T

and the superscript T denotes matrix transpose. By arranging these
vectors, known as ”information” vectors,6 the following matrices are defined9

Y1 = [y0,y1, · · · ,yL−1] (2)

Y2 = [y1,y2, · · · ,yL] (3)

It has been proven that the poles are the generalized eigenvalues of of the matrix pencil9 , Y2 − zY1, which
implies that the parameters zm can be obtained by solving the followig generalized eigenvalue problem

Y1
+Y2 − zI (4)

where the superscript + denotes the Moore-Penrose pseudo-inverse. The proposed approach in standard GPOF
for excluding the spurious poles is to keep only the first M largest eigenvalues of (4) and form the vector z0 as

z0 = [z1, z2, · · · , zM ] (5)

The corresponding residues for the poles in z0 are determined through LS as9
y(1)
y(2)

...
y(N − 1)

 =


1 1 · · · 1
z1 z2 · · · zM
z21 z21 · · · z2M
...

...
...

zN−1
1 zN−1

2 · · · zN−1
M



R1

R2

...
RM

 (6)
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which can be rewritten as
y = Z ·R (7)

2.2 Problem description

In addition to the number of poles, the GPOF method makes use of another free parameter L which controls
the shape of information matrices. The advantage of GPOF over POF method6 is a result of this parameter and
in the case of L = M the two methods become the same. The accuracy of GPOF depends highly on the right
choice of L and based on some numerical analysis, it was shown9 that GPOF works best when L is around N/2.
This result is based on a first order perturbation analysis that assumes the corresponding residues for all entries
of z0 is non-zero. This assumption can be violated when sparsity-based regularization is used instead of LS and
hence, the optimal L may no longer be around N/2. To solve this problem, we will first establish a technique to
distinguish the true poles from the spurious ones. Secondly, a method is proposed for finding the optimal shape
parameter, L, using the Akaike information criterion (AIC).

3. SPARSE GENERALIZED PENCIL-OF-FUNCTION

For the moment, assume that the parameter L is given. Instead of hard-thresholding, the spurous poles can be
excluded via regularized least square (RLS) with `1-norm. For that, the LS in (6) and (7) can be replaced by
the following optimization problem

arg min
R⊂CM

‖Z ·R− y‖22 + λc ‖R‖1 (8)

where C is the domain of complex numbers. ‖·‖1 is the `1-norm operator and λc is the regularization parameter
for optimization in complex domain. There is no need to threshold the eigen values of the matrix pencil and all
singular values obtained from (4) are included in (8). Both Z and R in (8) are complex valued matrices; thus, the
solution of this optimization problem is not as straightforward as in real-valued lasso. Several methods have been
proposed for complex lasso15–17 ; however, they generally suffer from the computational intensity and/or lack
of considering the physics of the problem. One such physical phenomena is that the poles of a physical system
appear in complex conjugate pairs11,12,14 . Using this fact, one can change the complex-valued optimization of
(8) into a real-valued lasso. To do that, assume there are m̃ number of poles that appear as complex conjugate
pairs in z0. By excluding the poles without complex conjugate from z0, the vector z̃0 is defined as

z̃0 =
{
z̃l = zm ∈ z0|zHm ∈ z0 ; m = 1, · · · ,M

}
(9)

where l = 1, · · · , m̃. Note that the entries of z̃0 are sorted based on their magnitude and hence, the indices of
the complex conjugate pairs are different by one, i.e., z̃2i = z̃H2i−1 with i = 1, · · · , m̃/2. By considering z̃0 instead
of z0, (8) is converted to

arg min
R̃⊂Cm̃

∥∥∥Z̃ · R̃− y
∥∥∥2
2

+ λ̃c

∥∥∥R̃∥∥∥
1

(10)

where

Z̃ =


1 1 · · · 1
z̃1 z̃2 · · · z̃m̃
z̃21 z̃21 · · · z̃2m̃
...

...
...

z̃N−1
1 z̃N−1

2 · · · z̃N−1
m̃

 and R̃ =

 R̃1

...

R̃m̃

 (11)

where λ̃c is the regularization parameter for the new complex-valued optimization of (10). Recaling the main
idea of SEM, represented in (1), y can be expanded in terms of exponentially damped harmonics of the form

Aie
ζit sin(ωit+ θi) (12)

ωi and ζi are respectively the frequency and damping associated with z̃2i−1 and its complex conjugate, z̃2i;
i.e. for discrete signals ωi = | ln(z̃2i−1/Ts)| = | ln(z̃2i/Ts)| and ζi = − cos(∠ ln(z̃2i−1)) = − cos(∠ ln(z̃2i)). Ai
and θi, the amplitude and phase of the damped harmonic modes, depend on the complex residue R̃i which
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should be estimated by solving the RLS problem of (10). The harmonic function of the form (12) is a linear
combination of sin(ωit) and cos(ωit) based on the simple trigonometric equation that Aie

ζit sin(ωit + θi) =

Aie
ζit [cos(θi) sin(ωit) + sin(θi) cos(ωit)]. Thus, Z̃ in (10) can be equivalently replaced by a real-valued matrix S

which is
S = Sk,l (13)

where

Sk,l =

{
eζikTs sin(ωikTs) if l = 2i− 1
eζikTs cos(ωikTs) if l = 2i

(14)

where k = 1, · · · , N − 1. Using S, the RLS in (10) can be converted into an equivalent real-valued optimization
as

arg min
B⊂Rm̃

‖S ·B− y‖22 + λr ‖B‖1 (15)

where B, the vector of unknown coefficients, is

B =


A1 cos(θ1)
A1 sin(θ1)

...
Am̃/2 cos(θm̃/2)
Am̃/2 sin(θm̃/2)


m̃×1

(16)

and λr is the regularization parameter for the real-valued lasso. The corresponding residues of the poles in z̃0
can be determined by applying the Euler’s formulafrom to the entries of B.

4. FINDING THE OPTIMAL SHAPE PARAMETER L

The problem of optimizing L is coupled with the minimization problem of (15) and hence, solving both problems
simultaneously is not straightforward. Therefore, a simple grid search method is used for finding the optimal
value of L. For each value in the grid, the corresponding poles and residues are determined as described in the
previous section. Then, the best model is chosen by the Akaike Information Criterion (AIC) which is18

AIC = N ln
(
σ̂2
mle

)
+ 2p (17)

where σ̂2
mle is the maximum likelihood estimate of the residual error variance, S ·B− y, and p is the number of

true poles for each model. If the residual error is normally distributed, (17) can be modified for finite dimensional
problem as19

AICf = AIC +
2p(p+ 1)

N − p− 1
(18)

The model with the lowest information criterion has the optimal parameter L. In practice, the model with AIC
about one standard deviation larger than the best model is selected.

5. APPLICATION EXAMPLES

Apart from determination of system fundamental frequencies and damping in the case of analyzing its transient
response, the sparse property of SGPOF brings a wide range of applications for this method. System order
determination and providing damping spectrum are two such applications of SGPOF. In this section, some
application examples of SGPOF for system identification and SHM are presented and the results are compared
with other methods.
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5.1 Two sinusoidal waves with a spike

Similar to short-time FFT, one can define short-time SGPOF by windowing signals. This examples shows the
efficacy of short-time SGPOF in detecting the discontinuities either in amplitude or frequency of signals. Let
y1(t) to be

y1(t) =

{
sin(2πf1t) ; t 6= 0.1875

1.5 ; x = 0.1875
; f1 =

{
500 ; t < 0.125

1000 ; t ≥ 0.125
(19)

where f1 is frequency in Hz. The signal is shown in Fig.1. The results of analyzing y1(t) with sampling
frequency of Ts = 0.00005 sec by HHT, FT, and short-time SGPOF are shown in Fig.2. f1, `, and τ in this figure
denote frequency, size of window, and window overlap, respectively. The trade-off between the temporal and
frequency resolutions of the FFT is obvious in this figure. Basically, the FFT can either detect the discontinuity in
frequency or time, because improving the accuracy of one decreases the accuracy of the other (Fig.2(a) and 2(b)).
Hilbert spectrum, which is shown in Fig.2(c), provides the highest possible resolution for time and frequency
simultaneously. The sparsity in HHT is not guaranteed, but the method usually represents the signals in terms of
limited number of nonlinear functions called intrinsic modes (IMFs) if the parameters for extracting these modes
are tuned appropriately. Although the accuracy and interpretablity of HHT results depend highly on those
tuning parameters, there is no single method for determining the appropriate values for them. Moreover, HHT
is computationally intensive, does not provide any information about the systems’ damping, and its results are
sometimes difficult to interpret. Note that, the definition of frequency in HHT is different from Fourier domain,
however the same units for this quantity are used in all figures. The SGPOF frequency spectrum, shown in
Fig.2(d), implies that the proposed method provides a sparse spectrum without energy leakage. Furthermore,
the method is capable of detecting both the frequency shift and the spike. However, as it is shown in this figure,
SGPOF did not eliminate all spurious poles at the point of frequency shift. The reason for that is the inherent
stationarity assumption of short-time SGPOF as a result of windowing.

Time (sec)
0 0.05 0.1 0.15 0.2 0.25

y
1
(t
)

-1

0

1

2

Figure 1. The two sinusoidal waves with a spike, y1(t)

5.2 Application to SHM

The sparse property of SGPOF, which avoids energy leakage by excluding spurious modes, makes it appropriate
for use in SHM with energy-based technique. For more information on the energy-methods in SHM and the
importance of sparsity the readers are referred to20 . In addition to sparsity, SGPOF directly provides information
about the real-parts of the poles. In this part, we use this feature and compare it with auto-regressive (AR)
coefficients21,22 for damage detection in a plate structure. The experimental setup involved a shaker, high-speed
camera, and extra lighting as shown in Fig.3(a). The details of the specimens are also shown in Fig.3(b) and
3(c). The plate is bolted to a concrete base and the shaker excited the plate with a white Gaussian noise
waveform in a horizontal direction in the video. After the plate vibration reached steady state, 3.5 seconds of
video was recorded at 2000 frames per second using the high speed camera. The screenshots of the intact and
the notched elements are respectively shown in Fig.4(a) and 4(b). The displacement filed of both the intact and
the notched plates were extracted using the procedure which is described in23,24 . A set of 100 pixels in the form
of a 20 × 5 planar grid on the screenshot of the plates were chosen as the pseudo-sensor location (Fig. 4(c)).
The displacement time-series of these points were processed by SGPOF and the complex poles were extracted.
The real and imaginary parts of the poles were used as the damage sensitive features to be fed as the input to
the graphical model based algorithm described in25 . As it is shown in Fig.4(d), the damage can be perfectly
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(d)

Figure 2. The results of analyzing y1(t); (a) Fourier spectrum with ` = 64 and τ = 60; (b) Fourier spectrum with ` = 256
and τ = 250; (c) Hilbert spectrum; (d) SGPOF spectrum with ` = 50 and τ = 45.

(a) (b) (c)

Figure 3. Picture of the experimental setup for the plate structure and the speciments, (a) shows the plate fixed to a
concrete base, the shaker bolted to the top of the plate, high-speed camera, and extra lighting, (b) dimensions of the
plate, (c) position and configuration of the notch on the plate
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t

I

localized using the poles of the system as the damage sensitive feature. The system’s complex poles at the tip of
the notch before and after damage are shown in Fig.5(a) and 5(b). It follows from this figure that the real part
of the poles are considerably more sensitive to the damage than the complex parts which is affected dominantly
by frequency. This confirms the importance of the information about the real part of the poles provided by SEM
methods for the sake of system identification.

In order to compare the efficacy of SGPOF with other methods in capturing the changes of structural
properties, the same analysis were performed using AR coefficients. A tree-based feature selection method was
used to conduct this comparison. For that, both the SGPOF and AR features were fed into a a gradient boosting
model26 with 300 estimators, learning ration of 0.1, and the maximum length of 6 for the decision trees. The
feature importance results computed by the gradient boosting model is shown in Fig.5(c). It follows from the
figure that the effects of damage are better manifested in SGPOF feature compared to AR model. Note that the
relevancy of features is problem dependent and these results may not be generalizable for other structures.

(a) (b) (c)

MCMC results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d)

Figure 4. the specimens, the location of pseudo-sensors, and the graphical model used for damage detection; (a) screenshot
of the intact plate, (b) screenshot of the notched element with a green circle around the notch, (c) the pseudo-sensors
grid points and the configuration of graphical model that is used for damage detection, (d) damage localization result

6. CONCLUSION

SGPOF was presented as a sparse extension to GPOF method and a solution to the problem associated with
imposition of spurious poles in SEM techniques. The proposed method excludes the spurious harmonics using
sparsity based regularization with `1-norm. Also, we provided an information-based technique for finding the
optimal value of the pencil matrix shape parameter.

The comparison between the SGPOF, FT and HHT shows that the proposed method does not suffer from
the trade-off between the temporal and frequency resolutions as much as FT does. Furthermore, contrary to
HHT, the SGPOF guarantees sparsity because of using the `1-norm. However, SGPOF cannot conquer FT for
its computational efficiency nor the HHT for the high resolution it provides for frequency spectrum. The result of
damage detection using SGPOF damage sensitive features also shows the capability of the method for capturing
the changes in the system’s properties, especially through the variations in the real part of the poles.

Proc. of SPIE Vol. 9805  98050B-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



Re(z
m

)
-1.5 -1 -0.5 0 0.5 1 1.5

Im
(z

m
)

-1.5

-1

-0.5

0

0.5

1

1.5

(a)

Re(s
m

)
0 0.2 0.4 0.6 0.8 1 1.2

Im
(s

m
)

-4

-3

-2

-1

0

1

2

3

4

(b)

AR 1 AR 2 AR 3 AR 4 AR 5 AR 6 AR 7

SGPOF 1

SGPOF 2

0

20

40

60

80

100

(c)

Figure 5. (a) real vs. imaginary part of parameter z before (blue) and after damage (red), (b) real vs. imaginary part
of the poles, ln(z), before (blue) and after damage (red), (c) feature importance results of gradient boosting model for
comparing SGPOF and AR damage sensitive features

Finding the optimal value for the pencil matrix shape parameter was conducted through a grid search and
model selection using AIC. Having a mathematical formula for SGPOF brings the potential for further investi-
gations for more efficient optimization techniques in order to determine the shape parameter.

ACKNOWLEDGMENTS

The authors acknowledge the support provided by Royal Dutch Shell through the MIT Energy Initiative, and
thank chief scientists Dr. Dirk Smit and Dr. Sergio Kapusta for their oversight of this work. We express our
sincere appreciation to Justin Chen for his help in collecting the experimental data.

REFERENCES

[1] Huang, N., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N., Tung, C. C., and Liu, H. H.,
“The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series
analysis,” Proceedings of the Royal Society Series A (454), 903–995 (1998).

[2] Baum, C. E., [On the singularity expansion method for solution to electromagnetic interaction problem ],
Interaction Note 88 (Dec. 11 1971).

[3] Baum, C. E. and Felsen, L. B., [Transient Electromagnetic Fiellds ], Springer-Verlag (1976).

[4] Van Blaricum, M. L. and Mitra, R., “A technique for extracting the poles and residues of a system directly
from its transient response,” IEEE Transactions on Antennas and Propagation AP-23(6), 777–781 (1975).

[5] Jain, V. K., Sarkar, T. K., and Weiner, D. D., “Rational modeling by pencil-of-functions method,” IEEE
Transactions on Antennas and Propagation AP-28(6), 928–933 (1980).

[6] Sarkar, T. K., Nebat, J., Weiner, D. D., and Jain, V. K., “Suboptimal approximation/identification of
transient waveforms from electromagnetic systems by pencil-of-function method,” IEEE Transactions on
Acoustics, Speech, and Signal Processing ASSP-31(3), 564–573 (1983).

[7] j. Mackay, A. and McCoven, A., “An improved pencil-of-function method and comparisons with traditional
methods of pole extraction,” IEEE Transactions on Antennas and Propagation AP-35(4), 435–441 (1987).

[8] Roy, R. and Kailath, T., “Esprit-estimation of signal parameters via rotational invariance technique,” IEEE
Transactions on Acoustics, Speech, and Signal Processing 37(7), 984–995 (1989).

[9] Hua, Y. and Sarkar, T. K., “Generalized pencil-of-function method for extracting poles of an em systemfrom
its transient response,” IEEE Transactions on Antennas and Propagation 37(2), 229–234 (1989).

[10] Van Blaricum, M. L. and Mitra, R., “Problems and solutions associated with prony’s method for processing
transient data,” IEEE Transactions on Antennas and Propagation AP-26(1), 174–182 (1978).

[11] Angkaew, T., Matsuhara, M., and Kumagai, N., “Finite-element analysis of waveguide modes: A novel
approach that eliminates spurious modes,” IEEE Transactions on Microwave Theory and Techniques MTT-
35(2), 117–123 (1987).

Proc. of SPIE Vol. 9805  98050B-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



[12] Yang, S., Deng, W., Yang, Q., Wu, G., and Suo, Y., “A frequency selection method based on the pole
characteristics,” International Journal of Antennas and Propagation , 1–8 (2013).

[13] Carriere, R. and Moses, R. L., “High resolution radar target modeling using a modified prony estimator,”
IEEE Transactions on Antennas and Propagation 40(1), 13–18 (1992).

[14] Lee, J. and Kim, H., “Natural frequency extraction using generalized pencil-of-function method and transient
response reconstruction,” Progress In Electromagnetics Research C 4, 65–84 (2008).

[15] Van Den Berg, E. and Freidlander, M. P., “Probing the pareto frontier for basis pursuit solutions,” Journal
of Scientific Computing 31(2), 890–912 (2008).

[16] de Andrade, J. F., de Campos, M. L. R., and de Apolinario, J. A., “A complex version of the lasso algorithm
and its application to beamforming,” in [The 7th International Telecommunications Symposium (ITS 2010) ],
(2010).

[17] Maleki, A., Anitori, L., Yang, Z., and Baraniuk, R., “Asymptotic analysis of complex lasso via complex ap-
proximation message passing (camp),” IEEE Transactions on Information Theory 59(7), 4290–4308 (2013).

[18] Chaurasia, A. and Harel, O., “Using aic in multiple linear regression framework with multiplyimputed data,”
Health Serv Outcomes Res Methodol 12((2-3)), 219–233 (2012).

[19] Cavanaugh, J. E., “Unifying the derivations of the akaike and corrected akaike information criteria,” Statis-
tics and Probability Letters 31, 201–208 (1997).

[20] Ghazi, R. M. and Buyukozturk, O., “Damage detection with small data set using energy-based nonlinear
features,” Journal of Structural Control and Health Monitoring (2015).

[21] Nair, K. K., Kiremidjian, A., and Law, K., “Time series-based damage detection and localization algorithm
with application to the asce benchmark structure,” Journal of Sound and Vibration 291, 349–368 (2006).

[22] Nair, K. K. and Kiremidjian, A., “Time series based structural damage detection algorithm using gaussian
mixtures modeling,” Journal of Dynamic Systems, Measurement, and Control .

[23] Wadhwa, N., Rubinstein, M., Durand, F., and Freeman, W. T., “Phase-based video motion processing,”
ACM Trans. Graph. (Proceedings SIGGRAPH 2013) 32(4) (2013).

[24] Chen, J. G., Wadhwa, N., Cha, Y.-J., Durand, F., Freeman, W. T., and Buyukozturk, O., “Modal iden-
tification of simple structures with high-speed video using motion magnification,” Journal of Sound and
Vibration 345, 58–71 (2015).

[25] Ghazi, R. M., Chen, J., and Buyukozturk, O., “Ising graphical models for structural health monitoring with
dense sensor networks,” Journal of Mechanical Systems and Signal Processing (in review).

[26] Hastie, T., Tibshirani, R., and Friedman, J., [The Elements of Statistical Learning: Data Mining, Inference,
and Prediction ], Springer Series in Statistics, second ed. (2009).

Proc. of SPIE Vol. 9805  98050B-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx


