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ABSTRACT
This study investigates a new probabilistic strategy for model updating using incomplete modal data. A hierar-
chical Bayesian inference is employed to model the updating problem. A Markov chain Monte Carlo technique
with adaptive random-work steps is used to draw parameter samples for uncertainty quantification. Mode match-
ing between measured and predicted modal quantities is not required through model reduction.We employ an
iterated improved reduced system technique for model reduction. The reduced model retains the dynamic fea-
tures as close as possible to those of the model before reduction. The proposed algorithm is finally validated by
an experimental example.

Keywords: Bayesian model updating, model reduction, Markov chain Monte Carlo, modal data, mode match-
ing, structural health monitoring

1. INTRODUCTION

Model updating conditional on observed data is a key component in structural health monitoring (SHM). Con-
siderable efforts have been made on this topic.1–8 In general, model updating seeks to determine a set of the
most plausible parameters that best describe the structure given the measured system responses. To address the
uncertainties associated to model updating, probabilistic approach such as Bayesian inference can be applied.5

Bayesian model updating makes possible to identify a set of plausible models with probabilistic distributions
describing the model uncertainties of a structural system.

Recently, a number of Bayesian model updating approaches have been proposed. For example, Beck and
Katafygiotis9 first presented a statistical framework for Bayesian model updating, which was then extended
and applied to update various types of structural models using Markov chain Monte Carlo (MCMC) sampling
techniques.10–12 Nichols et al.13 applied the MCMC to sample the parameter distributions of nonlinear structural
systems and extended this approach to damage detection of composites. Beck14 presented a rigorous framework
to quantify modeling uncertainty and perform system identification using probability logic. Green15 presented
a Data Annealing-based MCMC algorithm for probabilistic system identification. Yan et al.16 investigated
a reverse jump MCMC method for Bayesian updating of flaw parameters. Sun and Büyüköztürk proposed a
MCMC approach with adaptive random-walk steps for probabilistic model updating of buildings.17

Bayesian model updating based on modal characteristics has been popular.18,19 However, mode matching is
typically required for the majority of existing Bayesian updating approaches using modal data. In practice, when
incomplete measurements of mode shapes are only available, mode matching is not an easy task. In addition, when
some of the measured modes are missing or the mode orders are unclear, mode matching becomes more difficult.
Mode switching due to structural damage even makes the case worse.20 Recently, Bayesian methods without
requiring mode matching have been proposed for model updating.20–22 This is realized through introducing the
concept of system mode shapes. In the updating process, the system mode shapes become extra parameters to
be updated as well, which might bring convergence difficulty to the algorithm. To address the mode matching
problem in model updating, we propose a new strategy for Bayesian model updating using incomplete modal
data. This is realized by employing a model reduction technique and MCMC with adaptive random-walk steps.

Here is the organization of this paper. Section 2 presents the probabilistic model updating framework based on
hierarchical Bayesian inference using incomplete modal data, in which mode matching is not required. Section 3
describes the sampling technique using MCMC with adaptive random-walk steps. Sections 4 discusses a numerical
example to validate the proposed model updating technique. Finally, Section 5 provides the conclusions.
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Health Monitoring of Structural and Biological Systems 2016, edited by Tribikram Kundu, 
Proc. of SPIE Vol. 9805, 98050D · © 2016 SPIE · CCC code: 0277-786X/16/$18 · doi: 10.1117/12.2219300

Proc. of SPIE Vol. 9805  98050D-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/85123538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. PROBABILISTIC MODEL UPDATING WITHOUT MODE MATCHING

2.1 Hierarchical Bayesian inference for model updating

We consider a linear structure model with n degrees-of-freedoms (DOFs). The mass matrix M ∈ Rn×n is assumed
to be known and the stiffness matrix K ∈ Rn×n is parameterized by θ, namely, K = K(θ), where θ ∈ RNθ×1

is the model parameters to be updated and Nθ is the number of parameters. In Bayesian model updating, the
posterior probability density function (PDF) of the model parameters (θ), given a specified model class, can be
obtained based on the Bayes’ theorem:5

p(θ|D) = c−1p(D|θ)p(θ) (1)

with c being the normalizing factor (the evidence given by data D) which can be written as:

c = p(D) =

∫
Θ

p(D|θ)p(θ)dθ (2)

where Θ denotes the domain of integration; p(θ) is the prior PDF of θ; and p(D|θ) is the likelihood function
which gives a measure of the agreement between the measured and the predicted data; p(θ|D) denotes the
posterior PDF of θ conditional on the measured data D consisting of the extracted modal data from measured
system responses, namely,

D =

Ns⋃
i=1

Di =

Ns⋃
i=1

{
ω̃i,1, ω̃i,2, . . . , ω̃i,Nm , φ̃i,1, φ̃i,2, . . . , φ̃i,Nm

}
(3)

where ω̃i,j and φ̃i,j are the ith measured frequency and mode shapes of the ith data set; Nm is the total number
of observed modes; Ns is the number of measured data sets used for model updating. The problem of Bayesian
model updating can be stated as follows: given the specified model class, the measured data D, and the parameter
prior PDF p(θ), one’s objective is to determine the posterior PDF p(θ|D).

2.1.1 Likelihood function

The likelihood function can be formulated based on the prediction error εi,j ∈ RNo×1 (e.g., No denotes the
number of observed DOFs) which represents the discrepancy between the measured and the predicted modal
data, where the subscripts i and j denote the ithe data set and the jth mode, respectively, with i = 1, 2, . . . , Ns
and j = 1, 2, . . . , Nm. Herein εi,j can be expressed as the eigenvalue equation error below

εi,j =
[
KR(θ)− ω̃2

i,jMR

]
φ̃i,j (4)

where MR and KR are the reduced mass and stiffness matrices defined according to the measured DOFs, which
can be obtained using an iterated improved reduced system (IIRS) technique presented in Section 2.2. In this
study, we model εi,j as a discrete zero-mean Gaussian process,23 namely, εi,j ∼ N(0,Σε) = N(0, σ2

j I) where

I ∈ RNo×No is an identity matrix; σ2
j denotes the variance of the prediction error of the jth mode, which is an

additional unknown variable. Therefore, the likelihood function can be expressed as follows

p(D|θ) =
1[

(2π)Nm
∏Nm
j=1 σ

2
j

]NoN/2 exp

− Ns∑
i=1

Nm∑
j=1

1

2σ2
j

∥∥∥[KR(θ)− ω̃2
i,jMR

]
φ̃i,j

∥∥∥2

2

 (5)

where ‖ · ‖2 denotes the `2 (Euclidean) norm of a vector.

2.1.2 Prior distributions

Let us assume that the system parameters θk (k = 1, 2, . . . , Nθ) follow the Laplace prior distribution given by24

p(θ|λ) =

Nθ∏
k=1

p(θk|λ) =

(
λ

2

)Nθ
exp

(
−λ‖θ− θ̄‖1

)
(6)

Proc. of SPIE Vol. 9805  98050D-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



where λ is the parameter of the Laplace distribution (λ > 0) called the regularization parameter (note that λ
becomes another unknown parameter in the Bayesian updating process); θ̄ ∈ RNθ×1 is the mean for the prior
distribution; ‖ · ‖1 denotes the `1 (Taxicab) norm.

Since σ2
j (j = 1, . . . , Nm) and λ are always positive, their prior distributions can be modeled by an inverse

Gamma and a Gamma distribution, respectively: p(σ2
j ) ∼ Ginv(α, β) and p(λ) ∼ G(a, b), where α, β, a, b are

positive constant hyperparameters, defined as23

p(σ2|α, β) =

Nm∏
j=1

p(σ2
j ) =

Nm∏
j=1

βα

Γ(α)
σ
−2(α+1)
j e−β/σ

2
j (7)

p(λ|a, b) =
ba

Γ(a)
λa−1 exp (−bλ) (8)

where G(·, ·) and Ginv(·, ·) denote the Gamma and the inverse Gamma distribution function, respectively, and
Γ(·) is the Gamma function. In addition, the hyperparameters are fixed to be small (e.g., α = a = 1× 10−3 and
β = b = 1× 10−6) , leading to a non-informative process.

2.1.3 Final form of the posterior distribution

Following the hierarchical Bayesian modeling framework,5 we obtain the augmented posterior PDF for unknown
parameters {θ,σ2, λ} as follows

p(θ,σ2, λ|D) ∝ p(D|θ,σ2)p(θ|λ)p(σ2|α, β)p(λ|a, b) (9)

The substitution of Equations (5), (6), (7) and (8) into Equation (9) leads to the final form of the posterior PDF
of the unknown parameters:

p(θ,σ2, λ|D) ∝ λN2[∏Nm
j=1 σ

2
j

]N1
exp

−
Nm∑
j

1

2σ2
j

[
Ns∑
i

∥∥∥[KR(θ)− ω̃2
i,jMR

]
φ̃i,j

∥∥∥2

2
+ 2β

]
− λ

(
‖θ − θ̄‖1 + b

)
(10)

where N1 = NoNs/2 + α + 1 and N2 = Nθ + a − 1. The total number of unknown parameters in Equation
(10) is Nθ + Nm + 1. The conditional posterior PDFs of p(θ,σ2, λ|D) in Equation (10) can be sampled using
the MCMC with adaptive random-walk steps described in Section 3. Noteworthy, the analytical solution of the
conditional distributions for σ2

j and λ are written as

{σ2
j |θ,D, α, β} ∼ Ginv

(
α+

NoNs
2

, β +
1

2

Ns∑
i

∥∥∥[KR(θ)− ω̃2
i,jMR

]
φ̃i,j

∥∥∥2

2

)
(11)

and
{λ|θ, a, b} ∼ G

(
Nθ + a, ‖θ− θ̄‖1 + b

)
(12)

Following Equations (11) and (12), σ2
j and λ can be easily sampled given θ.

2.2 Model reduction

Let us write the generalized eigenvalue problem of a n-DOF linear system containing the first m modes, with the
partitioned mass and stiffness matrices and mode shapes governed by the master and slave DOFs, as follows25[

Kmm Kms

KT
ms Kss

]{
Φmm

Φsm

}
=

[
Mmm Mms

MT
ms Mss

]{
Φmm

Φsm

}
Ωmm (13)

where M and K ≡ K(θ) are the mass and stiffness matrices, respectively; Φ ∈ Rn×m is the mass-normalized
mode shape matrix; Ω ∈ Rm×m is the diagonal eigenvalue matrix consisting of the eigenvalues ωi (i = 1, 2, ...,m);
m and s denote the number of master and slave DOFs, respectively, satisfying m + s = n. Let us denote
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Φsm = tΦmm, where t ∈ Rs×m is a transformation matrix, and substitute it into the second set of Equation
(13) to obtain

t = −K−1
ss KT

ms + K−1
ss

[
MT

ms + Msst
]
ΦmmΩmmΦ−1

mm (14)

The substitution of Φ = [Φmm Φsm]T = TΦmm into Equation (13) pre-multiplied by TT yields

M−1
R KR = ΦmmΩmmΦ−1

mm (15)

where T = [I t]T and I ∈ Rm×m; MR and KR are the mass and stiffness matrices of the reduced order model,
namely,

MR = TTMT and KR = TTKT (16)

The substitution of Equation (15) into (14) yields

t = −K−1
ss KT

ms + K−1
ss

[
MT

ms + Msst
]
M−1

R KR (17)

It is noted that Equation (17) forms an implicit function with t as the unknown parameter which can be
solved through an iterative process. Friswell et al.26 proposed an IIRS technique to solve for Equations (16) and
(17) iteratively to obtain the reduced mass and stiffness matrices KR(θ).

3. MARKOV CHAIN MONTE CARLO SAMPLING

The Markov chain Monte Carlo (MCMC) has been proven to be successful for quantifying the uncertainties of the
model parameters. The idea is to create stationary chains of samples to approximate the parameter distributions.
We sample the model parameters θ, the perdition error variance σ2 and the prior regularization parameter λ
sequentially using Gibbss sampling.23 Note σ2 and λ can be directly sampled using Equations (11) and (12).

To establish the chain for the model parameters θ, we herein apply the Metropolis-Hastings (M-H) algorith-
m.27,28 Let us assume that random samples are generated from a target distribution denoted with π(θ) (e.g.,

p(θ|σ2, λ,D) in this study). The M-H algorithm generates a sequence of samples θ(p) from the target distribution
through a rejection sampling procedure. At a generic pth iteration, a candidate solution θ∗ is generated based
on the current value θ(p−1), which can be sampled from a chosen proposal or a transition distribution function

g
(
θ∗ | θ(p−1)

)
. A Bernoulli trial is then performed with a success probability defined as

γ = min

 π(θ∗)g
(
θ(p−1) | θ∗

)
π
(
θ(p−1)

)
g
(
θ∗ | θ(p−1)

) , 1

 (18)

Note that if the result of the trial is successful (e.g., r0 ≤ γ, where r0 is a uniform random number sampled from

[0, 1]), θ(p) is replaced by θ∗; otherwise (e.g., r0 > γ), θ(p) is kept as θ(p−1). The acceptance-rejection process
is repeated many times until the chain becomes stationary. The samples in the non-stationary part of the chain
are called “burn-in” samples and the rest stationary samples are called “retained” samples. In this paper, we
apply a uniform distribution to describe the transition proposal, e.g.,{

θ∗k | θ
(p−1)
k

}
∼ U

(
θ

(p−1)
k −

L
(p−1)
k

2
, θ

(p−1)
k +

L
(p−1)
k

2

)
(19)

where U denotes a uniform distribution; θ∗k and θ
(p−1)
k represent the kth (k = 1, 2, . . . , Nθ) parameter in θ∗ and

θ(p−1); L
(p−1)
k is the interval length (random-work step) of the uniform distribution for θk. Here, L

(p−1)
k changes

adaptively along with the iterations.13 For example, L
(p)
k = κL

(p−1)
k , where κ is the adaptivity coefficient. In

the burn-in period, if the sampling trial is successful, κ is adopted 1.01; otherwise (sample is rejected), κ is

chosen 0.99. It is noteworthy that in the retained period, κ is selected to be 1. The initial value L
(0)
k is set

to be 0.05
(
θmaxk − θmink

)
. The use of an adaptive random-walk step leads to a more efficient sampling process,

meanwhile, keeping the tuning capability of the algorithm.
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4. NUMERICAL EXAMPLE: A NINE-STORY SHEAR-TYPE BUILDING

In order to test the performance of the proposed algorithm for probabilistic model updating, a nine-storey shear-
type building with synthetic measurements is studied here. The building has uniformly distributed mass and
stiffness parameters, e.g., m̄ = 150 metric tons and k̄ = 200 MN/m. The first four frequencies are 0.960, 2.853,
4.669 and 6.357 Hz.

We first generate the synthetic ambient response time histories sampled at 100 Hz by applying ambient ground
motions to the building. The damping ratio of each mode is chosen to be 3% in the simulation. Accelerometers
are placed at the 1st, 3rd, 5th, 7th and 9th floors. To test the effect of measurement noise on parameter updating,
white noise (20%) has been considered in the synthetic measurements. Eight data sets are synthesized and used
for modal identification (e.g., Ns = 8). The frequency domain decomposition (FDD) is applied to extract the
modal characteristics (e.g., frequencies and mode shapes). The identified first four modes are used for model
updating. The identified frequencies are 0.957 (0.89%), 2.845 (0.96%), 4.660 (0.87%) and 6.338 (0.92%) Hz,
where the percentages in the parentheses denote the coefficient of variation.

The chain length used in MCMC is Nmc = 6 × 103 and the burn-in period is Nb = 2 × 103. The lower and
upper bounds for the parameters are zero and five times the true values. Since the masses are assumed to be
known, the updating parameters become k1 ∼ k9, σ2

1 ∼ σ2
4 and λ (e.g., Nθ = 14). The prior stiffness parameters

follow the normal distribution with the mean value of 150 MN/m. The numerical analyses are programmed in
MATLABR© (The MathWorks, Inc., MA, USA) on a standard Intel (R) Core (TM) i7-4930K 3.40 GHz PC with
32G RAM.

Figure 1 shows the samples of nine stiffness parameters in the MCMC updating process. It is seen that the
algorithm converges quite fast, e.g., the sample chains become stationary after about 300 iterations. The burn-in
period of 2000 iterations is sufficient and the retained samples are enough to be used for the representation of
the posterior PDFs of the stiffness parameters. Figure 2 shows the quantified posterior PDFs of the ten stiffness
parameters by MCMC with small deviations. Note that the posterior PDFs, represented by histograms, are
obtained based on the statistics of the samples in the “retained” period. We fit the posterior histograms using
the generalized extreme value (GEV) distribution. The identified maximum a posteriori (MAP) values are also
shown in Figure 2 which are quite close to the true value of 200 MN/m. The 95% confidence intervals are also
listed in Figure 2.

Figure 3 shows the depicts the pairwise plots of posterior samples for some typical stiffness parameters. It
can be seen that some of the stiffness parameters approximately follow the normal distribution (e.g., pairwise
samples are similar to ellipses) which matches the PDFs in Figure 2. Figure 4 shows the posterior PDFs of the
prediction error variance σ2

1 , σ2
2 , σ2

3 and σ2
4 and the regularization parameter λ. It takes about 4 min CPU time

to complete the model updating process in this example. The overall performance of the proposed algorithm for
probabilistic model updating is satisfactory.
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Figure 1. Samples of nine stiffness parameters obtained by MCMC using 20% RMS noise measurement.
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Figure 2. The stiffness parameter posterior PDFs of the 9-storey building identified by MCMC using 20% RMS noise
measurement. Note that CI represents the confidence interval. The histograms denote the PDFs obtained from MCMC
sampling and the solid blue lines denote the PDFs through curve fitting using the generalized extreme value (GEV)
distribution. The red star denotes the maximum a posteriori (MAP) estimate.
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Figure 3. Pairwise plots of posterior samples (“retained” period samples of the MCMC) for some stiffness parameters.
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j (j = 1, 2, 3, 4) and the regularization parameter λ. Note

that the histograms denote the PDFs obtained from MCMC sampling and the solid blue lines denote the PDFs through
curve fitting using the log-normal distribution. The red star denotes the maximum a posteriori estimate σ̂2

j and λ̂.

5. CONCLUSIONS

Model updating is very important in SHM. The identified or updated system parameters can be used to assess the
health condition, quantify uncertainties, evaluate the integrity, and estimate the capacity to carry loads and risk
of a structure. Traditional model updating seeks to determine a set of the most plausible parameters that best
describe the structure given the measured system responses, while Bayesian model updating techniques make
possible to identify a set of plausible models with probabilistic distributions and to characterize the modeling
uncertainties of a structural system. This study investigates a new probabilistic strategy for model updating
using incomplete modal data. A hieratical Bayesian inference is applied to model the updating problem. Mode
matching between the measured and the predicted modal quantities is not required in the updating process,
which is realized through model reduction. A Markov chain Monte Carlo technique with adaptive random-walk
steps is proposed to draw the samples to quantify uncertainties of the model parameters. The proposed algorithm
is successfully validated by nine-storey shear-type building example.
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of buildings using seismic interferometry on ambient vibrations,” Earthquake Engineering & Structural
Dynamics in review (2016).
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