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Optimization of Composite
Fracture Properties: Method,
Validation, and Applications
A paradigm in nature is to architect composites with excellent material properties com-
pared to its constituents, which themselves often have contrasting mechanical behavior.
Most engineering materials sacrifice strength for toughness, whereas natural materials
do not face this tradeoff. However, biology’s designs, adapted for organism survival, may
have features not needed for some engineering applications. Here, we postulate that mim-
icking nature’s elegant use of multimaterial phases can lead to better optimization of
engineered materials. We employ an optimization algorithm to explore and design com-
posites using soft and stiff building blocks to study the underlying mechanisms of nature’s
tough materials. For different applications, optimization parameters may vary. Valida-
tion of the algorithm is carried out using a test suite of cases without cracks to optimize
for stiffness and compliance individually. A test case with a crack is also performed to
optimize for toughness. The validation shows excellent agreement between geometries
obtained from the optimization algorithm and the brute force method. This study uses dif-
ferent objective functions to optimize toughness, stiffness and toughness, and compliance
and toughness. The algorithm presented here can provide researchers a way to tune ma-
terial properties for a vast number of engineering problems by adjusting the distribution
of soft and stiff materials. [DOI: 10.1115/1.4033381]

1 Introduction

Mechanical defects, which may be introduced during manufac-
turing, can weaken a material by orders of magnitude, depending
on their quantity, location, and size. With imperfections present, a
material has diminished strength. In structural design, such
strength reductions are not tolerable and defects need to be
addressed [1]. As a result, researchers seek to learn from natural
materials that have been proven to exhibit high defect tolerance
[2–4], i.e., insensitivity to flaws in their microstructure. The pres-
ence of structural hierarchy in such natural materials, for example,
silk and abalone shells, allows them to achieve properties well
beyond those of synthetic materials [5]. Furthermore, natural
materials display the ability to combine complementary properties
such as brittle and ductile, or soft and stiff. For instance, fish have
scales that consist of two distinct phases with contrasting proper-
ties that allow them to have enough rigidity to protect themselves
from attackers and enough flexibility to move with agility [6].
Nacre, made up 95% of calcite minerals and with only 5% of a
compliant biopolymer protein, has a toughness that is 3000 times
larger than the brittle minerals alone [2]. Several thorough studies
depict natural materials’ toughening mechanisms at different

length scales as seen in bone, nacre, and sea sponges [5,7,8]. Due
to the complexity of these systems, numerical modeling is needed
to enable researchers to investigate material behavior at multiple
length scales, which can be difficult to perform through
experiments.

While it may be desirable to replicate natural composites’ com-
plex designs, they are usually optimized for their own survival,
which may involve things such as self-cleaning and obtaining
food that lack counterparts in specific engineering applications
[9–12]. Such human applications require specific properties, such
as stiffness, strength, and lightweight to carry imposed loads eco-
nomically and reliably, that are not aligned with all the functions
that nature requires. This paper discusses a way to evolve a mate-
rial into an optimized structure through a numerical modeling and
optimization approach. Nature’s objective function is survival,
while for engineering materials, the objectives are human speci-
fied material properties. We postulate that we can use nature’s
design tools to tune and optimize for specific mechanical proper-
ties such as toughness and strength. Past efforts have sought to
optimize composite materials through ply tailoring, number of
plies, and laminate sequence, specifically using genetic algorithms
to apply to the design optimization of composite laminate designs
[13–16]. In addition, researchers have studied how to optimize
composite topology with three materials for thermal conductivity
properties [17]. Similarly, topology optimization groups strive to
optimize compliance in a structure based on loads and boundary
conditions [18–23]. Some research groups have used a form of
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topology optimization to optimize the toughness in a composite
[24,25], but limitations to those studies were lack of consideration
of either cracks or the presence of multiple materials in the sys-
tem. To the best of our knowledge, no work thus far has found a
method to optimize a material design with a crack using stiff and
soft materials for fracture resistant properties. Here, we provide a
method to find a distribution of stiff and soft phases, optimized for
toughness, in a composite material.

This paper is organized as follows. In Sec. 2, the optimization
method will be discussed along with the objective function and
finite element method. Section 3 will present case studies on
applications using various objective functions with the proposed
optimization model. Finally, we summarize our findings and make
suggestions for future research.

2 Methods

The optimization method is centered around an algorithm that
employs the finite element method to evaluate an objective func-
tion based on desired material properties. Validation of the algo-
rithm is carried out using a test suite of cases without cracks to
optimize for stiffness and compliance. Geometries obtained from
the optimization algorithm optimizing for toughness are compared
with brute force method results, which are explained in Sec. 2.3.

2.1 Computational Model. We propose an optimization
code to generate geometries composed of soft and stiff building
blocks by the use of an algorithm combined with existing finite
element procedures to solve a particular mechanical problem. The
material to be distributed must be either soft or stiff. There is a
fixed soft material volume fraction used in the model. The mate-
rial possesses an edge crack with x-direction tensile loading under
mode I failure (Fig. 1). Model parameters include crack geometry,
crack location, and loading condition. Different observables from
the algorithm are Young’s modulus, toughness modulus, compli-
ance, and stress/strain fields. After the unit cell is optimized for a
desired application, it can be repeated in a certain orientation to
optimize the composite microstructure. This paper will focus on a

single unit cell optimization. The algorithm, along with the finite
element solver, optimizes an objective function defined in this
section.

The optimization method used is a modified greedy algorithm,
which is a mathematical process that looks to create a better solu-
tion to a complex problem [26–28]. The algorithm takes as an
input a random initial population of soft and stiff elements. From
this initial configuration, the objective function for the desired ma-
terial property is evaluated in order to decide the next best solu-
tion for the system. One element at a time is then replaced by its
opposite material. For instance, if the element at hand is a soft ma-
terial, it will be switched to a stiff material. After the first switch,
the volume fraction will change. Volume fraction of soft material
is kept constant by switching the next best element to the opposite
material. For example, if a stiff material is at first switched, the
algorithm searches for the best element to switch to a soft material
next. This process is continued for all elements in the system, and
the corresponding objective function with constraint included is
calculated for each switch. From the pool of switches, the switch
that obtains the highest objective is kept and used for the next iter-
ation. If the kept objective value is higher than its previous itera-
tion, which for the first iteration is compared to the random initial
configuration, it feeds back to replacing each element one at a
time. This loop continues until at a certain iteration, the new
objective is not higher than its predecessor, which prompts the
program to exit and output the final geometry. This overall meth-
odology is depicted in Fig. 2.

The objective function can vary depending on application. Me-
chanical properties we seek to optimize individually and com-
bined are stiffness, compliance, and toughness moduli. Stiffness is
the ability of an object to resist deformation in response to an
applied force and is defined in Eq. (1), where Eeff is the effective
stiffness, N is the number of elements, ri is the stress on a given
element, and �i is the strain in a given element. The mean of the
stress and strain is calculated because the stiffness distribution is
nonhomogeneous. Compliance is defined as the inverse of stiff-
ness. We define toughness modulus as the area underneath the
stress–strain curve for a material; it can be understood as the

Fig. 1 Model formulation. Targeted material property optimization is performed by algorith-
mic assignment of stiff and soft elements in a multiphase building block. The prescribed bi-
nary distribution of element stiffness defines stiffness and volume ratios for each initial
geometry. The material contains an edge crack and undergoes tensile loading under mode I
failure with displacement controlled boundary conditions (“dx”). a is the length of the sam-
ple (square), and b is the length of the crack.

071006-2 / Vol. 83, JULY 2016 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jamcav/935222/ on 06/23/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



energy needed to fracture a system. For our definition of tough-
ness modulus, we solve for the energy to initiate crack propaga-
tion and not global composite crack propagation energy. The
toughness modulus is defined by Eq. (2) below, where T is the
toughness modulus, Eeff is the effective stiffness of the material,
and �tip is the local element strain of the tip element

Eeff ¼

1

N

XN

i¼1

ri

1

N

XN

i¼1

�i

(1)

T ¼ 1

2
Eeff�

2
tip (2)

We use the tip strain element because we assume that the crack
will propagate from the crack tip. Material failure is typically con-
trolled by material closest to the crack tip [29–31]. The soft and
stiff materials differ in stiffness by a stiffness ratio. The constitu-
tive relation between them is that the soft material has a larger
critical strain compared to the stiff material but a lower stiffness
with same toughness modulus. This constitutive relation is used
because we wanted to look at pure geometry effects of adding soft
materials to stiff material instead of material effects. The input
values used in the algorithm are stiffness ratio, stiffness modulus
of stiff material, length of material, and critical strain for stiff and
soft materials and are summarized in Table 1.

The objective function is evaluated using a finite element
method, with four-node elements, each with two degrees-of-
freedom. The finite element method is used to obtain the stress
and strain field from displacements. A linear elastic model is used
because we assume that the dominating mechanisms are con-
trolled by linear elastic mechanisms, which are shown in experi-
mental evidence in additive manufactured materials [32,33].
Displacement boundary conditions are applied in the x-direction.
The symmetry of the problem reduces the number of elements by
a factor of two. Infinitesimal displacements are assumed, and we
stipulate that the toughness modulus is equal for the two different
materials. We reiterate that the reason for the toughness equality
is to eliminate material effects on change in toughness modulus,
so as to make sure it is the geometry that is driving the effects on
the change in toughness and not the material used. The failure cri-
terion is strain and we set a critical strain value for both materials,
and once the crack tip strain reaches it, the objective function is
determined for the given toughness modulus.

2.2 Validation of the Algorithm for Effective Stiffness and
Compliance. The algorithm can be applied to a case where the
material has no crack. To check the validity of the method, a test
case for effective stiffness and compliance was done on a material
with no crack and a fixed volume fraction. The volume fraction
constraint is used because of the trivial answer that maximum
stiffness derives from all stiff elements in a material, and likewise,
all soft elements produce a maximum compliance case. Using the
same x-direction loading case as the case with a crack in Fig. 1, a
volume fraction of 50% soft material and 50% stiff material is
used in the composite. Due to the mechanics theory of springs in
series and in parallel, the optimized material for stiffness should
have in-parallel conditions, while the optimized material for com-
pliance should have in-series conditions, as shown in Fig. 3. The
algorithm is capable of obtaining the correct geometries from any
random geometry. Additionally, it is observed that there is no sin-
gle solution for the optimum geometry, but many solutions with
the same objective function value. Using the values given for stiff-
ness ratio and modulus (Estiff) in Table 1, the optimized values for
these two cases should be 5.5Estiff for maximum stiffness and
0.18Estiff for maximum compliance, and these converged values
are shown for a larger grid size system in Fig. 4.

2.3 Validation of the Algorithm Using a Brute Force
Method for Toughness. The validation of a maximum stiffness
and compliance solution was shown in Sec. 2.2 using a case where
the material has no crack. Since there is no known geometry for
optimized toughness with a crack in a material, a brute force
method is used for comparison with the proposed algorithm. The
generated geometries from the modified greedy algorithm used in
this project are compared with geometries using brute force. The
brute force method works by checking all the possibilities in a
system with a set volume fraction and picking the final solution
that obtains the highest toughness modulus. The number of possi-
bilities for this method is determined based on a combinatorial
approach taking into consideration the volume fraction of the two
materials. For instance, if the grid size is 16 and the volume frac-
tion is 25% soft material (4 soft and 12 stiff elements), there are
1820 possible configurations, and the brute force algorithm evalu-
ates all of them, choosing the best one. This method, though it can
guarantee the optimized solution, is very computationally

Fig. 2 Algorithm organization. The algorithm takes in as an
input a random initial population of soft and stiff elements. At
every iteration, an objective function value of the system is cal-
culated for every element when only it is switched. Elements
switch from soft to stiff and vice versa. The switch that gener-
ates the highest objective value increase is kept for the next
iteration. This process is repeated until there is no switch that
generates a higher objective value compared to the previous
iteration at which point the algorithm exits outputting the final
geometry.

Table 1 Inputs to the optimization algorithm used in this study. Estiff is the modulus of the stiff material; Esoft is the modulus of the
soft material.

Estiff Failure strain of stiff material Stiffness ratio Esoft/E-stiff Length of sample

Value 1000 0.1 0.1 1
Units MPa — — mm
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expensive. For two test cases of 8� 8 and 10� 10 discretizations,
respectively, with set volume fractions and crack sizes shown in
Fig. 5, our algorithm was able to obtain the exact same solution as
brute force, but orders of magnitude faster. This performance
shows that our proposed algorithm is reliable and efficient.

3 Results and Discussion

3.1 Case Studies. For different applications, optimization pa-
rameters may vary. Here, we show different case studies for (1)
optimizing toughness alone (fT), (2) optimizing toughness and
stiffness (fTS), and finally (3) optimizing toughness and compli-
ance (fTC). The objective functions are shown in the following
equations:

fT ¼
T

T0

� �
(3)

fTS ¼
Eeff

E0

T

T0

� �
(4)

fTC ¼
E0

Eeff

T

T0

� �
(5)

where T is the toughness, T0 is the initial population toughness,
E0 is the effective stiffness of the initial population, and Eeff is
the effective stiffness. Using a 20� 20 grid size and a crack size
of 20% of the length of the material, we generated geometries
based on different objective functions. In addition, a volume frac-
tion of 20% soft material is used. For the objective function of
optimizing for toughness alone, the geometry that we generated is
shown in Fig. 6. Soft material starts to surround the crack tip area
to mitigate the local stress. For the objective function of optimiz-
ing toughness and stiffness, the geometry is shown in Fig. 6. Now,
more material wants to be in parallel to the direction of loading
compared to the case in which only toughness is optimized. Softer
materials that were originally not aligned with the loading condi-
tions moved so that the material could be stiffer. In the case for
which toughness and compliance are simultaneously optimized,
the opposite is true. More elements tend to be in series to the
direction of loading, and a more columnar structure perpendicular
to the direction of loading results.

3.2 Strain Delocalization. To observe the strain field of a
tougher material design, a more refined 40� 40 system geometry
for case study 1 is compared to a homogenous stiff solution in
Fig. 7. In the homogenous solution, strain concentrates at the
crack tip. The resultant geometry mitigates strain at the crack tip

Fig. 3 Optimized solutions for maximizing effective compliance and effective stiffness for
8 3 8 and 12 3 12 grid size systems. (a) The maximum compliance solution is a geometry in
which the soft (black) and stiff (gray) materials are in series with the loading conditions. From
different initial random geometries, the algorithm leads to the optimized design of in-series
materials. (b) The maximum stiffness solution is a geometry in which the soft and stiff materi-
als are in parallel. Similarly, the algorithm leads to the optimized design starting from random
initial geometries. These final geometries show that there is no single optimum solution for
these problems, but many optimal solutions solving the same objective function.
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Fig. 4 Larger grid size solutions for minimizing stiffness (maximizing compliance) and maximizing stiffness. Convergence
of solutions: (a) For a 16 3 16 system, the optimal solution obtained from the algorithm remains the same. The graph shows
that the initial effective stiffness starts out high and decreases as iteration increases. (b) The optimal solution remains the
same for maximizing stiffness and the graph shows an increase in effective stiffness with iteration. These two graphs show
the solutions converging to the theoretical optimal values of compliance and stiffness.

Fig. 5 Solutions from brute force method to validate algorithm when optimizing for toughness. The chart describes the
differences between systems A and B. System A has a grid size of 8 3 8 and an edge crack that is 50% of the system
length, with a being the length of the sample. The algorithm begins with a random geometry and generates the solution
that exactly matches the solution obtained from brute force (i.e., checking every possible solution and selecting the
best). The algorithm, however, is orders of magnitude faster than the brute force method. System B has a grid size of
10 3 10 and an edge crack that is 20% of the system length. The algorithm also obtains the same solution as the brute
force method. Tbrute is the toughness obtained from the brute force method and Talg is the toughness obtained from our
algorithm, and the ratio shows unity. This performance confirms that our algorithm is effective and robust.
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and increases its fracture energy. The placement of the soft mate-
rial in relation to the stiff material and the crack tip leads to lower
local stress. The role of the soft material is to delocalize the stress.
As a result, soft material is placed in the regions circling around
the crack tip. The soft material relaxes the stiff material around
the crack tip and protects it from high stress concentration; strain
will concentrate in the soft material instead of stiff as a result.
Another aspect of the geometry is that the soft material follows

the stress contour around the crack tip. The soft material pattern
follows the stress gradient, which helps to alleviate the stress con-
centration with soft material.

3.3 Future Outlook. Now that we have a technique to opti-
mize composites with a crack, we look to manufacture these
designs and test them for mechanical properties. These

Fig. 6 Various case studies. (a) The geometry for the objective function that optimizes toughness modulus only. (b) The ge-
ometry for the objective function that optimizes toughness along with stiffness. More elements need to be in parallel to main-
tain high stiffness and also toughness. (c) The geometry for the objective function that optimizes toughness along with
compliance. More elements are spread out to be in series with each other. Variables: f is the objective function, T is the
toughness modulus, T0 is the initial geometry toughness modulus, Eeff is the effective stiffness of the system, and E0 is the
effective stiffness of the initial population.

Fig. 7 Strain field for homogenous design compared to optimized design for 40 3 40 grid
size. White space represents the stiff material and black space represents the soft material.
Delocalization of strain seen in optimized design from crack tip area to soft material
locations.
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multimaterial complex designs cannot be synthesized through tra-
ditional subtractive manufacturing. It requires a different
approach that may be similar to how other researchers synthesize
bio-inspired designs from nature such as nacre. Researchers tried
to replicate natural material nacre by mimicking the natural layer-
by-layer approach to fabricate a hierarchical crystalline multilayer
material [34] and used nanoindentation to study its fracture behav-
ior. Others have learned how to create a nanoscale version of
nacre with alternating organic and inorganic layers by sequential
deposition of polyelectrolytes and clays [35]. Freeze casting of
various polymers and ceramics to create the brick and mortar
designs proved to have a significant increase in toughness com-
pared to the base materials [36,37].

Most recent are endeavors to emulate the brick-and-mortar
structure of nacre using three-dimensional (3D) printing and test-
ing for mechanical properties [32,33,38]. Three-dimensional
printing is a tool that does not limit the geometry of the sample.
For future work, we plan to use additive manufacturing to manu-
facture optimized geometries and test them in tension to compare
and analyze with simulation predictions.

4 Conclusions

This paper explored the optimization of a composite structure
made up of soft and stiff building blocks with an edge crack under
uniaxial tension. We used a modified greedy algorithm to find the
optimized composite morphology and showed that through itera-
tion, we can achieve a better design compared to the initial config-
uration. To validate our algorithm, we simulated the material with
no crack and a fixed volume fraction to show that the algorithm
obtains the optimized solutions for maximum effective stiffness
and compliance. Indeed, the algorithm obtains the stripes parallel
to the loading conditions for maximizing stiffness and obtains the
columnar shapes in series to the loading conditions for maximizing
compliance. Additionally, through a brute force method, we were
able to validate our algorithm with crack for various grid sizes.

We applied our algorithm to various case studies of optimizing
toughness alone, toughness and stiffness, and toughness and com-
pliance. For the case of optimizing toughness alone, soft materials
start to surround the crack tip area. For the case of optimizing
toughness and stiffness, soft materials move toward the structure
that optimizes stiffness, without crack, which align parallel to the
loading conditions. Observing the strain field for a larger grid
size, the strain is delocalized and the highest strained area is expe-
rienced by the soft material. We presented a technique to design
and optimize materials for different material properties. Possible
next steps include manufacturing these designs and testing them
for mechanical properties.
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