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The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such,
one expects physical intuition to be highly influential in the understanding and design of many quantum
algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with
current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but
unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods
by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for
Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation.
Specifically, we show that the query complexity of implementing time evolution by a d-sparse Hamiltonian
Ĥ for time-interval t with error ϵ is O½td∥Ĥ∥max þ log ð1=ϵÞ= log log ð1=ϵÞ�, which matches lower bounds
in all parameters. This connection is made through general three-step “quantum signal processing”
methodology, comprised of (i) transducing eigenvalues of Ĥ into a single ancilla qubit, (ii) transforming
these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this
ancilla with near unity success probability.
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Introduction.—According to Feynman, “if you want to
make a simulation of nature, you’d better make it quantum
mechanical, and by golly it’s a wonderful problem, because
it doesn’t look so easy.” [1]. Quantum computers are based
on the physics of quantummechanics, a fundamental tenant
of nature as we know it. Thus, it seems natural to expect
that the design and interpretation of quantum algorithms
be heavily driven by physical intuition. The adiabatic
algorithm [2,3] inspired by adiabaticity, and quantum
walks [4,5] inspired by locality, are prominent examples.
However, many quantum algorithms, most surprisingly
those for the simulation of physical systems [6], are not
as similarly insightful, and successive improvements in
their complexity and analysis trend towards increasing
abstraction and mathematical sophistication.
Analogous to physical theories, good quantumalgorithms

for physics simulations should, beyond being correct, also
ideally be simple. In seeking simplicity, not only is their
implementation on physical machines eased, but so too
could their performance and understanding be enhanced.
As the essence of coherent quantum computation is the
design of unitary operations with desired properties, this
motivates consideration of its closest analogue in experi-
ments: physical quantum control [7], which has a similar
goal of designing quantum response functions [8].
This hints at a deep connection between the design of

optimal quantum algorithms and the synthesis of optimal
quantum control policies. While robust time-optimal
control [9,10] is certainly an established tool in quantum
computing, its role is often secondary to the ends: the
synthesis of computing primitives, such as Clifford

gates or even the quantum Fourier transform. It would
be more desirable if physical dynamics were directly
applicable to generic quantum algorithms without this
intermediary. Indeed, the fact that intuition of the
simplest quantum control—discrete single-qubit rotations
R̂ϕðθÞ ¼ e−iðθ=2Þðσ̂x cosϕþσ̂y sinϕÞ—can extend to algorithms
such as Grover search supports this notion.
This relationship is made concrete by interpreting dis-

crete sequences of physical operations as programs that
compute functions. In the simplest setting, chaining N
identical rotations generates h1jR̂N

π=2ðθÞj0i ¼ sin ðNθ=2Þ.
With θ as the input, this computes the function
fðθÞ ¼ sin ðNθ=2Þ, which may be estimated through
measurement. As Pauli matrices σ̂x;y;z form a complete
basis for 2-by-2 matrices, generic sequences of the form

V̂ðθÞ ¼ R̂ϕN
ðθÞR̂ϕN−1

ðθÞ � � � R̂ϕ1
ðθÞ; ~ϕ ∈ RN;

¼ AðθÞ1̂þ iBðθÞσ̂z þ iCðθÞσ̂x þ iDðθÞσ̂y; ð1Þ
which we fully characterized in [8], then compute more
general functions of θ in the real A, B, C, D, through a

program specified by some choice of phases ~ϕ. In fact, the
isomorphism of single-qubit rotations to those on a sphere
(up to a double covering), furnishes an intuitive classical
interpretation for this simple model of quantum computa-
tion. Moreover, the quantum control in Eq. (1), being
piecewise, is naturally compatible with the inherently
discrete nature of fault-tolerant architectures.
Though physically appealing, the computational merit of

directly exploiting the structure of single-qubit rotations, or
any physical system, ultimately rests on two criteria:
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(i) usefulness in solving important problems, and (ii) opti-
mality in space and time resources. It is also particularly
challenging to see how this approach could apply generally
to the complex multiqubit dynamics arising in the simu-
lation of quantum systems.
The simulation problem maps one set of physical

dynamics of interest—described by Hamiltonian Ĥ—to
another physical system that can be precisely controlled.
Thus one expects the role of physics to be preeminent and
obvious. Following seminal work by Lloyd [11] for
Hamiltonians with local interactions, and Aharonov and
Ta-Shma [12] for more general sparse Hamiltonians, many
celebrated results have been obtained over the years
[13–19] for approximating the time evolution operator
e−iĤt for time-interval twith error ϵ. Encouragingly, intuitive
quantum walks are already part of the state of art. More,
however, could be hoped from their other components.
The complexity of such quantum algorithms is usually

judged by the number of queries made to a unitary quantum
oracle Ô that provides a description of Ĥ. Many interesting
physical systems are described by the especially well-
studied model of d-sparse Ĥ with at most d nonzero
elements in every row, and the best known algorithms
[18] are based on the Childs quantum walk [14], which
builds upon the Szegedy walk [20], that simulates time
evolution by arcsinðĤÞ, which must be linearized. The
difficulty lies in finding a quantum circuit that does this
with the fewest queries to Ô and the fewest number of
additional primitive quantum gates.
Lower bounds on the query cost are well known. The

“no-fast-forwarding” theorem [13,18] demands at least
ΩðτÞ queries independent of ϵ, where τ ¼ td∥Ĥ∥max and
∥Ĥ∥max is the largest element of Ĥ in absolute value, and
impressive recent work [17,18] proved an exact error
scaling of Θ½log ð1=ϵÞ= log log ð1=ϵÞ� for τ ¼ Oð1Þ.
Though this suggests a naive additive lower bound
Ω½τ þ log ð1=ϵÞ= log log ð1=ϵÞ� [18], the best algorithms
to date approach these factors multiplicatively with either
linear scaling in time Oðτ= ffiffiffi

ϵ
p Þ [14] or sublogarithmic

scaling in error O½τ log ðτ=ϵÞ= log log ðτ=ϵÞ� [17,21]. Long
unanswered is the existence of an algorithm that is
additively optimal, with implications for the relation
between continuous and discrete-time models of physics,
and of interest in problems [22] where τ, ϵ scale together.
We achieve precisely this with a simple algorithm that

matches the additive lower bound. In fact, it also realizes
the optimal trade-off between time and error; thus, no
further improvement in query complexity for this formu-
lation of Hamiltonian simulation is possible. Compared
to prior art [14,17], this represents up to a square-root
improvement. Moreover, the space overhead in ancilla
qubits, beyond those required for the quantum walk, is
reduced from scaling with some function of τ=ϵ to just 1.

Most remarkably, this is achieved by finding a class of
computational problems addressed by the optimal control
of the single-qubit in Eq. (1) in a very natural way. Given a

unitary Ŵ with eigenstates Ŵjuλi ¼ eiθλ juλi, we consider
the general problem of constructing a quantum circuit V̂ ideal
with transformed eigenphases

Ŵ ↦ V̂ ideal ¼
X
λ

eihðθλÞjuλihuλj; ð2Þ

using the fewest queries to controlled Ŵ for any real
function hðθÞ. We call our solution to this “quantum signal
processing” (Fig. 1), and its application to d-sparse
Hamiltonian simulation leads to tremendous simplification
and the claimed improvements. Our success here elevates
optimal discrete quantum control in general as a tool that
can be rigorous and essential in the design of optimal
quantum algorithms, thus providing a medium through
which physical intuition may flow.
Two key properties distinguish quantum signal

processing from routines that can effect similar transfor-
mations, such as quantum phase estimation [23] or linear-
combination-of-unitaries [16,18,19] which require a large
number of ancilla. First, is its intuitive use of just a single
ancilla qubit. Second, the query complexity of the meth-
odology is exactly the degree N of optimal trigonometric
polynomial approximations to eihðθÞ with error ϵ [24–27],
without the decaying success probability of prior art.
Analogous to digital filter design techniques in discrete-
time signal processing [28], this also elegantly bridges the
design of a number of quantum algorithms to the vast field
of function approximation [26].
In the following, we describe the reduction of quantum

signal processing to optimal quantum control, and show
how to efficiently choose the phases ~ϕ Eq. (1) such that any
unitary transformation Eq. (2) is approximated with error ϵ
and success probability 1 −OðϵÞ. The essential features of
the quantum walk are then reviewed to show how quantum

FIG. 1. Quantum circuitsmapping (a) a sequence of single-qubit
rotations V̂ðθÞ to (d) quantum signal processing V̂. Each single-
qubit rotation R̂ϕðθÞ is replaced by (b) Ûϕ, built from Hadamard
gates and controlled-W with eigenstates Ŵjuλi ¼ eiθλ juλi. Thus
(c), Ûϕ on input juλi reduces to a single-qubit rotation R̂ϕðθλÞ.
By linearity, V̂ on an arbitrary input jψi may be understood as
rotations V̂ðθλÞ controlled by a superposition of juλi. By some
choice of single-qubit input state and measurement basis, coef-
ficients of the juλi are then rescaled by the components of the

function V̂ðθλÞ programmed by ~ϕ.
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signal processing for the special case of hðθÞ ¼ −τ sinðθÞ
solves the sparse Hamiltonian simulation problem. That
this achieves lower bounds follows by analyzing the scaling
between N, τ, ϵ of quantum signal processing for this hðθÞ.
Quantum signal processing.—All quantum algorithms

require a rigorous analysis of their resource costs in space
and time. Thus any form of quantum control repurposed to
such ends must have a similarly rigorous characterization.
Previously [8], we studied the optimal control of arbitrary
sequences of single-qubit rotations in Eq. (1), provided an
intuitive characterization of the functions A, B, C, D

achievable by some choice of ~ϕ, and provided efficient
algorithms for synthesizing all these functions and the

required ~ϕ from some partial specification. The results
relevant here are
Theorem 1.—[Achievable ðA;CÞ] ∀ even N > 0, a

choice of real functions AðθÞ, CðθÞ can be implemented

by some ~ϕ ∈ RN , if and only if, all these are true:
(i) ∀θ ∈ R, A2ðθÞ þ C2ðθÞ ≤ 1.
(ii) Að0Þ ¼ 1.
(iii) AðθÞ ¼ PN=2

k¼0 ak cos ðkθÞ, fakg ∈ RN=2þ1.

(iv) CðθÞ ¼ PN=2
k¼1 ck sin ðkθÞ, fckg ∈ RN=2.

Moreover, ~ϕ can be efficiently computed from AðθÞ, CðθÞ.
Note that in Ref. [8], A, C are expressed as trigono-

metric polynomials, but can be rewritten as a Fourier
series (iii),(iv) using Chebyshev polynomials of the first
and second kind Tk½cosðθÞ�¼cosðkθÞ and Ukðcos θÞ ¼
sin ½ðkþ 1Þθ�= sin θ.
We now map these results, in three steps, to quantum

signal processing, which transforms an arbitrary input
unitary Ŵ ¼ P

λe
iθλ juλihuλj into one with modified eigen-

phases V̂ ideal ¼
P

λe
ihðθλÞjuλihuλj:

(a) Signal transduction of Ŵ into a signal unitary clas-
sically controlled by ϕ ∈ R:

Ûϕ ¼
X
λ

R̂ϕðθλÞ ⊗ juλihuλj: ð3Þ

This is implemented in Fig. 1(b) with one controlled
Ŵ, which is always possible on a quantum computer
in the worst case by replacing all of its gates with a
controlled version, and Oð1Þ single-qubit rotations:

Ûϕ ¼ ðe−iϕσ̂z=2 ⊗ 1̂ÞÛ0ðeiϕσ̂z=2 ⊗ 1̂Þ;
Û0 ¼ jþihþj ⊗ 1̂þ j−ih−j ⊗ Ŵ

¼
X
λ

eiθλ=2R̂0ðθλÞ ⊗ juλihuλj; ð4Þ

where j�i ¼ ðj0i þ j1i= ffiffiffi
2

p Þ. As Ûϕ acting on juλi
selects the rotation R̂ϕðθλÞ ¼ huλjÛϕjuλi as seen in
Fig. 1(c), these are precisely the single-qubit ancilla
rotations in Eq. (1) with rotation angle θλ controlled by
the λ index, but with an additional global phase eiθλ=2.

(b) Signal transformation by computing unitary func-
tions V̂ðθλÞ over a superposition of θλ on the

single-qubit ancilla through the simple circuit of
Fig. 1(d):

V̂¼ ÛϕN
ÛϕN−1

� � �Ûϕ1
; ~ϕ∈RN; N even: ð5Þ

As this invokes Ŵ a number N times, its query
cost is OðNÞ. Note that the unwanted phase eiθλ=2

can be uncomputed by alternating between Ûϕ and
Û†

ϕþπ , since R̂ϕðθÞ ¼ R̂†
ϕþπðθÞ and N is even.

(c) Signal projection of the ancilla onto some basis, to select
desired components of V̂ðθλÞ in Eq. (1). As the desired
phase transformation can be implemented throughAðθÞ,
CðθÞ, consider the input state jþijuλi, and postselect on
measuring hþj. Other choices are, of course, possible.
This applies onto state juλi the coefficient

hþjV̂jþijuλi ¼ ½AðθλÞ þ iCðθλÞ�juλi;
p ¼ min

θ∈R
jhþjV̂ðθÞjþij2

¼ min
θ∈R

jAðθÞ þ iCðθÞj2; ð6Þ

with worst-case success probabilitiy p. Thus, (a)–(c)
provide a reduction from finding quantum algorithms
for approximating V̂ ideal to finding Fourier approxima-
tions of AðθÞ þ iCðθÞ to eihðθÞ.

By applying Theorem 1 to these three steps of quantum
signal processing, we now prove following theorem which
furnishes the complexity of implementing V̂ ideal given this
Fourier approximation:
Theorem 2.—(Quantum signal processing) ∀ real

odd periodic functions h∶ð−π; π� → ð−π; π� and even
N > 0, let ½AðθÞ; CðθÞ� be real Fourier series in
½cos ðkθÞ; sin ðkθÞ�; k ¼ 0;…; N=2, that approximate

max
θ∈R

jAðθÞ þ iCðθÞ − eihðθÞj ≤ ϵ: ð7Þ

Given AðθÞ, CðθÞ, one can efficiently compute the ~ϕ
such that hþjV̂jþi in Eq. (5) applies Ûϕ a number N
times to approximate V̂ ideal in Eq. (2) with success
probability p ≥ 1 − 16ϵ and trace distance

ϵTr ¼ max
jψi

∥ðhþjV̂jþi − V̂ idealÞjψi∥ ≤ 8ϵ: ð8Þ

Note that the restricted symmetry of hðθÞ is for con-
sistency with the parity and periodicity of AðθÞ, CðθÞ.
Given AðθÞ, CðθÞ that satisfy Eq. (7), conditions (i), (ii)

of Theorem 1 will not generally be satisfied. (i) is violated
as maxθðjAðθÞj; jCðθÞjÞ ≤ 1þ ϵ. Thus, we rescale

A1ðθÞ¼AðθÞ=ð1þϵÞ; C1ðθÞ¼CðθÞ=ð1þϵÞ;
j½A1ðθÞþ iC1ðθÞ�−eihðθÞj≤ ϵ=ð1þϵÞþϵ≤2ϵ; ð9Þ

at the cost of a slightly larger error 2ϵ. Note that
A2
1 þ C2

1 ≥ ½ð1 − ϵÞ=ð1þ ϵÞ�2. (ii) is violated as A1ð0Þ ¼
cos δ ≥ ð1 − ϵÞ=ð1þ ϵÞ for some δ ∈ R. Fixing this is
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more involved. As V̂ðθÞ is unitary, A2
1 þ B2þ

C2
1 þD2 ¼ 1. We can apply the prescription in Ref. [8]

using polynomial sum of squares to compute the unspeci-
fied B, D from A1, C1, such that B, D are of the form
(iii) and (iv), respectively. Thus, A2

1ð0Þ þ B2ð0Þ ¼ 1, and
jBð0Þj ¼ j sin δj. Define

A2ðθÞ ¼ A1ðθÞ cos δþ BðθÞ sin δ;

jA2ðθÞ − A1ðθÞj ≤
2ϵ

1þ ϵ
þ jBðθÞj 2

ffiffiffi
ϵ

p
1þ ϵ

≤ 6ϵ: ð10Þ

This introduces an additional error by using the triangle
inequality and B2 ≤ 1−A2

1−C2
1 ≤ 1− ½ð1−ϵÞ=ð1þ ϵÞ�2 ¼

4ϵ=ð1þ ϵÞ2. By construction, A2ð0Þ ¼ 1. The functions
A2ðθÞ, C1ðθÞ thus satisfy Theorem 1. By adding the errors
in Eqs. (9), (10), the distance of hþjV̂jþi from V̂ ideal in
Eq. (2) and the worst-case success probability in Eq. (6) are

ϵTr ≤ max
θ∈R

jA2ðθÞ þ iC1ðθÞ − eihðθÞj ≤ 8ϵ;

p ≥ ð1 − 8ϵÞ2 ≥ 1 − 16ϵ: ð11Þ
The optimality of this remarkably simple procedure for

eigenphase transformation follows from its role in
obtaining the best possible quantum algorithm for d-sparse
Hamiltonian simulation. We now highlight essential fea-
tures of a quantum walk Ŵ constructed from the oracles Ô
describing sparse Ĥ.
Childs’ quantum walk [14].—Ŵ can be constructed from

oracles that specify a d-sparse Hamiltonian Ĥ with n-qubit
eigenstates Ĥjλi ¼ λjλi. Access to two oracles ÔH, ÔF is
commonly assumed: ÔH accepts the input ðj; kÞ ∈ ½2n� ×
½2n� on 2n-qubit registers and returns Hj;k ¼ hjjĤjki in
another m-qubit register. ÔF accepts the input ðj; lÞ ∈
½2n� × ½d� on the same 2n-qubit registers and computes in
place the column index fðj; lÞ ∈ ½2n� of the lth nonzero
element in the jth row of Ĥ.
It is well known [29] that with 1 query to ÔF, ÔH,

Ô†
H each and O½nþmpolyðlogmÞ� primitive gates, one

can implement an isometry T̂ that maps every state
jλij0i⊗nþmþ2 onto two eigenstates jλ�i of Ŵ:

T̂jλi ¼ ðjλþi þ jλ−iÞ=
ffiffiffi
2

p
: ð12Þ

Moreover, T̂ is constructed such that the walk Ŵ ¼
iŜð2T̂T̂† − 1̂Þ has eigenvalues Ŵjλ�i ¼ eiθλ�jλ�i,

θλ� ¼ � arcsin ðλ=∥Ĥ∥maxdÞ þ ð1 ∓ 1Þπ=2; ð13Þ
that depends on the Ĥ eigenvalues λ. As Ŵ corresponds to
reflection about T̂T̂† followed by swapping (2nþ 2)-qubit
registers with Ŝ, its query and gate complexities are
identical to T̂ up to constant factors.
Hamiltonian simulation is achieved by creatively

applying Ŵ some number of times to implement jλ�i ↦
e−iλtjλ�i, independent of the � index. Uncomputing with
T̂† then maps jλ�i back onto jλij0i⊗nþmþ2 with the desired
phase evolution. However, some difficulties arise. First, the

applied phase θλ� is nonlinear in λ. Second, each eigenstate
jλ�i evolves under Ŵ with phases in opposite directions.
Thus uncomputing with T̂† does not map Ŵ T̂ jλij0i⊗nþmþ2

back onto the basis jλij0i⊗nþmþ2. In Ref. [18], these are
overcome by approximating the unitary transformation in
Eq. (2) with target function

hðθÞ ¼ −τ sinðθÞ ⇒ hðθλ�Þ ¼ −λt; ð14Þ
resulting in the desired phase, but implemented using a
technique combining a linear combination of N-controlled
Ŵ1;…;N such that the success probability decays with N.
Our quantum signal processing methodology does not
experience such a decay and its direct application furnishes
an optimal Hamiltonian simulation algorithm.
Hamiltonian simulation.—Applying quantum signal

processing in Theorem 2 to Hamiltonian simulation
requires a good Fourier approximation to

AðθÞ þ iCðθÞ ≈ eihðθÞ ¼ e−iτ sinðθÞ; ð15Þ
which is provided by the Jacobi-Anger expansion [30]

cos ½τ sinðθÞ� ¼ J0ðτÞ þ 2
X∞

k even>0

JkðτÞ cos ðkθÞ;

sin ½τ sinðθÞ� ¼ 2
X∞

k odd>0

JkðτÞ sin ðkθÞ; ð16Þ

where JkðτÞ are Bessel functions of the first kind. Note
that these Fourier series are already in the form required
by conditions (iii), (iv) of Theorem 1. As jJkðτÞj ≤
jτ=2jjkj=jkj! [30] decays rapidly with k, good approxima-
tions are obtained truncating Eq. (16) at k > N=2. This
approximates e−iτ sinðθÞ with error shown in Ref. [18] for
τ ≤ N=2 ¼ q − 1 to be

ϵ ≤
X∞
k¼q

2jJkðτÞj ≤
4τq

2qq!
¼ O

��
eτ
2q

�
q
�
: ð17Þ

Inserting into Theorem 2, the query complexity of
Hamiltonian simulation follows by solving Eq. (17) for
N, using the implementation of Ûϕ in Eq. (4) with Oð1Þ
queries, and that V̂ in Eq. (5) containsN applications of Ûϕ.
The optimality of this result for all input parameters

follows from known lower bounds. Specifically, Eq. (17) is
matched with a corresponding lower bound N ¼ ΩðqÞ
[18,31] for any q satisfying

ϵ <
1

2

���� sin
�
τ

q

�����
q
¼ O

��
τ

q

�
q
�
: ð18Þ

Note that Eqs. (17), (18) are solved by the Lambert W
function [32], which captures the detailed trade-off between
τ and ϵ. Its asymptotic behavior may be understood by sub-
stitutingq ¼ ðe=2Þðτ þ γÞ, where τ; γ ≥ 0.When τ ¼ OðγÞ,
one finds γ ¼ O½log ð1=ϵÞ= log log ð1=ϵÞ�. Thus, we express
the complexity of Hamiltonian simulation as
Theorem 3.—(Optimal sparse Hamiltonian simulation).

A d-sparse Hamiltonian Ĥ on n qubits with matrix elements
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specified to m bits of precision can be simulated for time-
interval t, error ϵ, and success probability at least 1 − 2ϵ
with O½td∥Ĥ∥maxþ logð1=ϵÞ= loglogð1=ϵÞ� queries and a
factor O½nþmpolylogðmÞ� additional quantum gates.
This is valid for τ ¼ O½log ð1=ϵÞ= log log ð1=ϵÞ� and

stronger than prior art [17,18], which assumes τ ¼ Oð1Þ.
Unlike most Hamiltonian simulation algorithms, the query
cost is additive in the simulation length τ and the target
error ϵ. As such, the τ term matches the lower bound ΩðτÞ
[13,18] with no multiplicative dependence on error.
Conclusion.—We have shown that optimal quantum

algorithms for Hamiltonian simulation can be remarkably
simple and physically motivated. Here, physical intuition
flows into the process by directly using the dynamics of
discrete single-qubit rotations as a computational module,
which proves to be exceptionally useful when translated
into quantum signal processing. Indeed, we have focused
on choosing target functions (A, C) for even N in
Theorem 1, but many other choices described in Ref. [8]
are possible. For example, fixed-point amplitude amplifi-
cation [33] and Heisenberg-limited quantum imaging [34]
are special cases for the choice fAðθÞ ∝ TN ½β cosðθ=2Þ�;
BðθÞ ¼ 0g; β > 1.
Directly exploiting the structured dynamics in other

physical systems could lead to powerful tools for a
similarly intuitive approach to rigorous and optimal quan-
tum algorithms. The question of what other important
quantum algorithms can be designed or improved in this
manner is an exciting natural extension to this work.
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