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Inference on graphs via semidefinite programming
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Inference problems on graphs arise naturally when
trying to make sense of network data. Oftentimes,
these problems are formulated as intractable optimi-
zation programs. This renders the need for fast heuris-
tics to find adequate solutions and for the study of
their performance. For a certain class of problems,
Javanmard et al. (1) successfully use tools from statis-
tical physics to analyze the performance of semidefin-
ite programming relaxations, an important heuristic
for intractable problems.

Inverse Problems On Graphs
A particularly interesting class of inverse problems in
graphs is that of synchronization problems (2, 3). These
include registration of multiple pictures of the same
scene, alignment of signals, community detection, and
many others. After associating objects (for example,
images or signals) to nodes of a graph, the goal is to
estimate labels of the nodes (viewing direction of the
image, shift of the signal, or community membership)
from pairwise information about labels of nodes sharing
edges (obtained, for example, by comparing two im-
ages). It is productive to think of the labels as being in a
group (for example, of transformations) and the pairwise
information being about group ratios (or relative trans-
formations). An important example is synchronization of
3D rotations, which is a crucial step in the reconstruction
problem in cryoelectron microscopy (4).

Community detection under the binary stochastic
block model has recently received significant attention
(5–10). In this model, a random graph is drawn on ver-
tices belonging to two communities of the same size.
Each pair of nodes share an edge, independently, with a
certain probability: p if they belong to the same com-
munity and q otherwise (oftentimes p>q). The goal is to
recover the community memberships from the observed
network. This is an instance of a synchronization problem
over Z2 (11), the group of two elements. Indeed, the
existence or not of an edge between two nodes pro-
vides information about the relative community mem-
bership of the nodes.

A natural approach to efficiently estimate the
memberships of the nodes of a graph generated from

this model is belief propagation. In a nutshell, the idea is
to have each node record its confidence of belonging
to one of the communities and, in each iteration, have
each node observe the confidences of all its neighbors
and update its own confidence accordingly (through
Bayes rule). In fact, Decelle et al. (5) used tools from sta-
tistical physics to make remarkably precise predictions
of the performance of belief propagation in commu-
nity detection and, based on those, conjectured the
exact location of a phase transition below which it is
information theoretically impossible to make an esti-
mate of the community memberships that outperforms
an uninformed random guess. This conjectured phase
transition was mathematically proved in a recent series
of works (6–8) that also proposed ingenious estimation
procedures that provably outperform a random guess
above the phase transition. However, the exact perfor-
mance of belief propagation has yet to be fully rigorously
understood [there has, nevertheless, been remarkable
progress (12–14)].

Semidefinite Programming
From the point of view of worst-case approximation
in theoretical computer science, semidefinite program-
ming [and the so-called sum-of-squares hierarchy
(15–18)] seems to provide an “off the shelf” hierarchy
of optimal algorithms for a large class of problems (19)
[this is related to the famous unique games conjecture
(20)]. In fact, semidefinite programming has been used
to highlight another phase transition (10) in the binary
stochastic block model, below which it is information
theoretically impossible to exactly recover the com-
munity memberships of all of the nodes (although it
may be possible to outperform a random guess). Us-
ing estimates in random matrix theory, it was recently
shown that the semidefinite programming heuristic
succeeds at exact recovery above this threshold (21,
22). It is worth noting that belief propagation can be
viewed as attempting to approximate the marginal
distributions of the node memberships and not
necessarily directly solving an optimization problem,
whereas the semidefinite program is obtained via the
relaxation of an optimization problem.
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This raises the natural question of understanding the perfor-
mance of the semidefinite programming approach in the sparse
regime, where exact recovery is impossible. A first step toward
this was taken in ref. 23, and the results were further improved in
ref. 24. However, a precise rigorous understanding of its perfor-
mance seems outside the scope of our current techniques.
Remarkably, Javanmard et al. (1) use nonrigorous tools from
statistical physics to make very precise predictions, confirmed with
numerical simulations, of the performance of this approach. These
predictions suggest that semidefinite programming performs ex-
tremely well in this regime. In my view, this is particularly exciting
for a few reasons: Firstly, it suggests that algorithms from the sum-
of-squares hierarchy (the hierarchy of semidefinite programs be-
lieved to be optimal from the worst-case approximation point of
view) may be nearly optimal also for a certain class of inference
problems. Secondly, the results in Javanmard et al. (1) suggest that
these tools may be used to produce precise predictions for the
performance of algorithms in this hierarchy. Finally, this makes a
fascinating connection between hierarchies of semidefinite pro-
grams (which are often believed, in theoretical computer science,
to yield optimal algorithms for a certain class of problems) and
belief propagation [which is tightly connected with the analysis in
Javanmard et al. (1) and is often believed, in statistical physics, to
be optimal for certain inference problems]. It is worth noting that
the predictions suggest that, for a fixed average degree, this al-
gorithm does not fully reach the described phase transition

(although getting very close to it). In fact, a recent paper of Moitra
et al. provides another argument suggesting that this is the case (25).

Javanmard et al. (1) address not only the community detection
problem but also a Z2 synchronization problem with Gaussian noise
(which can be seen as a surrogate of community detection) and syn-
chronization of rotations of the plane, Uð1Þ. There is a semidefinite
programming-based framework for general synchronization problems
(3), and the success of the techniques used to analyze theZ2 andUð1Þ
suggest that statistical physics tools may be useful for understanding
the performance of this approach to more general settings.

Although semidefinite programming is solvable in polynomial
time (26), it tends to be computationally expensive. Javanmard
et al. (1) used a low-rank factorization heuristic, proposed over a
decade ago in ref. 27, to solve fairly large problem instances. In-
terestingly, they also made use of this factorization in their anal-
ysis. With the factorization, the semidefinite program can be seen
as an optimization problem where each node is associated with a
vector variable, which makes it more suitable for the statistical
physics tools that are used. This suggests that the predictions
obtained are valid for the heuristic itself, rendering it extremely
effective at solving these types of semidefinite programs. In fact,
this was recently backed up by rigorous guarantees for this heu-
ristic in refs. 28 and 29.
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