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The most precise top quark mass measurements use kinematic reconstruction methods, determining the
top mass parameter of a Monte Carlo event generator mMC

t . Because of hadronization and parton-shower
dynamics, relating mMC

t to a field theory mass is difficult. We present a calibration procedure to determine
this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting
eþe− 2-jettiness calculations at next-to-leading-logarithmic and next-to-next-to-leading-logarithmic order
to PYTHIA 8.205, mMC

t differs from the pole mass by 900 and 600 MeV, respectively, and agrees with the
MSR mass within uncertainties, mMC

t ≃mMSR
t;1 GeV.
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Making more precise measurements of Standard
Model parameters is a major aim of the collider physics
program. The determination of the top quark mass is
important due to its influence on many quantitative and
conceptual aspects for the StandardModel and beyond. The
most precise determinations to date include the combined
result from the Tevatron mt ¼ 174.34ð64Þ GeV [1], CMS
Run-I mt ¼ 172.44ð49Þ GeV [2], and ATLAS Run-I
mt ¼ 172.84ð70Þ GeV [3].
The highest precision measurements are based on direct

reconstruction methods exploiting kinematic properties
related to the top quark mass, and are based on multivariate
fits that depend on a maximum amount of information on the
top decay final states. This includes template and matrix
element fits for distributions such as the measured invariant
mass. These observables are highly differential, depending
on experimental cuts and jet dynamics. Multipurpose
Monte Carlo (MC) event generators are employed to do the
analysis, and the results are influenced by both perturbative
and nonperturbative QCD effects. Thus, the measured mass
is the top mass parameter mMC

t contained in the particular
MCevent generator. Its interpretationmay also depend in part
on the MC tuning and the observables used in the analysis.
The systematic uncertainties from MC modeling are a

dominant uncertainty in the above measurements, but do
not address howmMC

t is related to a mass parameter defined
precisely in quantum field theory that can be globally
used for higher-order predictions. The relation is nontrivial
because it requires an understanding of the interplay
between the partonic components of the MC generator
(hard matrix elements and parton shower) and the hadro-
nization model. In the context of top quark mass determi-
nations, it is often assumed that MC generators should be

considered as models whose partonic components and
hadronization models are, through the tuning procedure,
capable of describing experimental data to a precision that
is higher than that of their partonic input.
In the past mMC

t has been frequently identified with the
pole mass. This is compatible with parton-shower imple-
mentations for massive quarks, but a direct identification is
disfavored because of sensitivity to nonperturbative effects
from below the MC shower cutoff, Λc ∼ 1 GeV. Also, the
pole mass has an OðΛQCDÞ renormalon ambiguity, while
mMC

t does not (since partonic information is not employed
below Λc). It has been argued [4,5] that mMC

t has a closer
relation to the MSRmassmMSR

t ðR ≈ ΛcÞ, where the scale R
defining this scheme is close to Λc. The MSR mass
mMSR

t ðRÞ [6] applies the pole mass subtraction for momen-
tum fluctuations only from aboveR and also does not suffer
from the renormalon ambiguity.
For a given MC generator, mMC

t can be calibrated into
a field theory mass scheme through a fit of MC predictions
to hadron level QCD computations for observables closely
related to the distributions that enter the experimental
analyses. In this Letter we provide a precise quantitative
study on the interpretation ofmMC

t in terms of the MSR and
pole mass schemes based on a hadron level prediction for
the variable τ2 for the production of a boosted top-antitop
quark pair in eþe− annihilation. It is defined as

τ2 ¼ 1 −max
~nt

P
ij~nt · ~pij
Q

; ð1Þ
where the sum is over the 3-momenta of all final state
particles, the maximum defines the thrust axis ~nt, and Q is
the center-of-mass energy. In Refs. [7,8] a factorization
theorem has been proven for boosted top quarks, yielding
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hadron level predictions for τ2, which we refer to as
2-jettiness [9]. For unstable top quarks it is very close to
thrust, which has the sum of the 3-momenta magnitudes for
final states instead of Q in Eq. (1). The τ2 distribution has a
distinguished peak very sensitive to the top mass, and is a
delta function at τmin

2 ðmtÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t =Q2
p

at tree
level. The peak region is dominated by dijet events where
the top quarks decay inside narrow back-to-back cones and
τ2 is directly related to the sum of the squared invariant
masses M2

a;b in the two hemispheres defined by the thrust
axis ~nt, ðτ2Þpeak ≈ ðM2

a þM2
bÞ=Q2. Thus, τ2 in the peak

region is an observable with kinematic top mass sensitivity,
just like those that enter the top quark mass reconstruction
methods. Therefore, the results of our calibration study
should provide information relevant for the interpretation
of these measurements.
2-jettiness distribution.—The τ2 distribution in the peak

region for boosted top quarks has the basic form

dσ
dτ2

¼
Z

dk

�
dσ̂s
dτ2

þ dσ̂ns
dτ2

��
τ2 −

k
Q

�
Fτ2ðkÞ

×
�
1þO

�
ΛQCD

Q
;
Γt

mt

� �
; ð2Þ

where dσ̂s=dτ2 contains the singular partonic QCD cor-
rections αjs½lnkðτ2 − τmin

2 Þ=ðτ2 − τmin
2 Þ�þ and αjsδðτ2 − τmin

2 Þ
in the dijet limit and dσ̂ns=dτ2 stands for the remaining
partonic nonsingular QCD corrections. The shape function
Fτ2 describes the nonperturbative effects from wide-angle
soft gluon radiation [10]. The singular partonic contribution
obeys a factorization theorem,

dσ̂s
dτ2

¼QHð6Þ
Q ðQ;μQÞUð6Þ

HQ
ðQ;μQ;μmÞ

×Hð6Þ
m ðQ;mt;μmÞUð5Þ

Hm

�Q
mt

;μm;μB
�

×
Z

ds
Z

dkJð5ÞB;τ2

� s
mt

;μB;Γt;δmt

�

×Uð5Þ
S ðk;μB;μSÞ Ŝð5Þτ2

�
Q½τ2 − τmin

2 ðmtÞ�−
s
Q
− k;μS

�
;

ð3Þ
based on Soft-Collinear Effective Theory [11–14], which
separates the contributions from the hard interactions in
the hard functions HQ and Hm, the jet function JB;τ2 ,
and the soft cross talk between the top and antitop jets in
the partonic soft function Ŝτ2 . The jet function JB;τ2 is derived
in boosted heavyquark effective theory [7] since the collinear
top jet invariant mass in the peak region is very close to the
top quark mass. It includes the collinear dynamics of
the decaying top quarks and leading top finite-width effects.
The various evolution factors UX sum large logarithms.
Results for dσ̂s=dτ2 with next-to-leading logarithmic

resummation þ OðαsÞ singular corrections (NLLþ NLO)

can be found in Ref. [8], with the addition of the virtual top
quark contribution and rapidity logarithms in Hm and UHm

from Ref. [15]. The next-to-next-to-leading logarithmic
(NNLL)evolution inUHQ

andUS is known fromthemassless
quark case, and is consistentwith thedirectOðα2sÞ calculation
of the JB;τ2 anomalous dimension [16]. We implemented all
the NNLL order ingredients for the proper treatment of the
flavor number dependence [superscript (6) for including
top as dynamic quark versus superscript (5) for excluding
the top] in the RG evolution [17,18]. We also include the
OðαsÞ nonsingular corrections dσ̂ns=dτ2 [19].
For the shape function Fτ2 we use the convergent basis

functions introduced in Ref. [20] truncated to 4 elements
(where the fourth element is already numerically irrel-
evant). These elements determine moments of the shape
function Ωi [21,22], which are the parameters that can also
be fit together with αs in event-shape analyses [21–28]. The
leading power correctionΩ1 is defined in the R-gap scheme
such that it cancels an OðΛQCDÞ renormalon present in Ŝτ2
[29]. This is achieved through an appropriate subtraction
series δðRS; μSÞ [30], which induces both RS and μS
dependence in Ω1. We quote results for Ω1 at the reference
scales μS ¼ RS ¼ 2 GeV. The evolution of Ω1 with RS is
described by R-evolution [6,31].
Equation (3) is written in terms of a generic mass scheme

mt, with δmt ¼ mpole
t −mt in J

ð5Þ
B;τ2

controlling the dominant
sensitivity to the mass scheme. In the pole mass scheme,
δmt ¼ 0. Using renormalon-free schemes, theMSmasswith
δmt ∝ mt is appropriate for the hard functions. In the jet

function Jð5ÞB;τ2
one has to adopt a scheme such as MSR [6]

withδmt ∼ R ∼ Γt tomaintain the power counting in the peak

region. The MSR scheme is defined by [a≡ αð5Þs ðRÞ=4π]
mpole

t −mMSR
t ðRÞ≡ Rðc1aþ c2a2 þ c3a3 þ � � �Þ; ð4Þ

where c1 ¼ 5.333, c2 ¼ 131.785, c3 ¼ 4699.703;… are
precisely the coefficients that define the series relating the
MS to pole mass, mpole

t −mtðmtÞ with R ¼ mtðmtÞ. The
evolution of the MSR mass with R is also described by
R-evolution. The MSR mass is convenient as it is directly
related to the MS mass, mMSR

t ðmtÞ ¼ mtðmtÞ. Because of
limR→0mMSR

t ðRÞ ¼ mpole
t it interpolates to the pole mass.

However, in taking this limit one encounters the Landau
singularity reflecting the pole mass renormalon problem.
To sum large logarithms we use τ2-dependent scales

μiðτ2Þ and Riðτ2Þ, known as profile functions [20,21]. They
have canonical scaling in resummation regions, freeze at a
perturbative scale to avoid the Landau pole, and exhibit
smooth transitions between regions. They are expressed in
terms of 9 parameters that are varied to estimate perturba-
tive uncertainties. We developed a natural generalization of
those used for massless event shapes in Ref. [32], to which
they reduce in the massless limit [19].
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For a given center-of-mass energy Q, the key parameters
that enter the QCD factorization predictions for the τ2
distribution are the top mass mt, the top width Γt, the
hadronic parameters Ωi, and the strong coupling αsðmZÞ.
We will consider fits both in the pole and the MSR mass
schemes. Our results in the MSR scheme are given in terms
of mMSR

t ð1 GeVÞ following Refs. [4,5].
Fit procedure.—For a given mMC

t , we produce MC data
sets for dσ=dτ2 in the peak region for variousQ values. For a
given profile and value of αsðmZÞ, we fit the parameters mt
and Ωi of the hadron level QCD predictions to this MC data
set.We fit for integrals over bins in τ2 of size≃ 0.13 GeV=Q.
For each Q value the distribution is normalized over the fit
range, and multiple Q’s are needed simultaneously to break
degeneracies. This procedure is carried out for theMCoutput
and the QCD predictions. We then construct the χ2 using the
statistical uncertainties in the MC data sets. We do the fit by
first, for a given value of mt, minimizing χ2 with respect to
the Ωi parameters. The resulting marginalized χ2 is then
minimized with respect to mt used in the QCD predictions.
Uncertainties obtained for the QCD parameters from this χ2

simply reflect the MC statistical uncertainties used to
construct the χ2. When fitting for mpole

t or mMSR
t ð1 GeVÞ,

we find that the resulting χ2 is no longer sensitive to αsðmZÞ.
Therefore, we fix αsðmZÞ to the world average, and do not
consider it as a fit parameter.
To estimate the perturbative uncertainty in the QCD

predictions we take 500 random points in the profile-
function parameter space and perform a fit for each of them.
The 500 sets of best-fit values provide an ensemble from
which we remove the upper and lower 1.5% in the mass
values to eliminate potential numerical outliers. From the
ensemble we determine central values from the average of
the largest and smallest values and perturbative uncertain-
ties from half the covered interval.
To illustrate the calibration procedure we use PYTHIA

8.205 [33,34] with the eþe− default tune 7 (the Monash
2013 tune [35] for which Λc ¼ 0.5 GeV) for top mass
parameter values mMC

t ¼ 170, 171, 172, 173, 174, and
175 GeV. We use a fixed top quark width Γt ¼ 1.4 GeV,
which is independent of mMC

t . (Final calibration results for
an mMC

t -dependent top width differ by less than 25 MeV).
No other changes are made to the default settings. To
minimize statistical uncertainties, we generate each distri-
bution with 107 events. We have carried out fits for the
following seven Q sets (in GeV units): (600,1000,1400),
(700,1000,1400), (800,1000,1400), (600–900), (600–1400),
(700–1000), and (700–1400), where the ranges refer to
steps of 100. For each one of these sets we have considered
three ranges of τ2 in the peak region: (60%, 80%),
(70%, 80%), and (80%, 80%), where (x%, y%) means that
we include regions of the spectra for τ2 < τpeak2 with cross
section values larger than x% of the peak height, and
τ2 > τpeak2 with cross sections larger than y% of the peak
height, where τpeak2 is the peak position. This makes a total

of 21 fit settings, each of which gives central values and
scale uncertainties for the top mass and the Ωi.
Numerical results of the calibration.—To visualize the

stability of our fits, we display in Fig. 1 the distribution
of best-fit mass values obtained for 500 random profile
functions for mMC

t ¼ 173 GeV based on the Q set
(600–1400) and the bin range (60%, 80%). Results are
shown for mMSR

t ð1 GeVÞ and mpole
t at NLL and NNLL

order, exhibiting good convergence, with the higher-order
result having a smaller perturbative scale uncertainty. The
results for mMSR

t ð1 GeVÞ are stable and about 200 MeV
belowmMC

t , confirming the close relation ofmMSR
t ð1 GeVÞ

and mMC
t suggested in Refs. [4,5]. We observe that mpole

t is
about 1.1 GeV (NLL) and 0.7 GeV (NNLL) lower than
mMC

t , demonstrating that corrections here are bigger, and
that the MCmass cannot simply be identified with the pole
mass. These fit results are compatible with converting
mMSR

t with R≃μB≃μSQ=mt≃10GeV to mpole
t using

Eq. (4), where μB is the renormalization scale of the
jet function JB;τ2 which governs the dominant mass
sensitivity. In Fig. 2 we see the level of agreement between
the MC and theory results in the MSR scheme at NNLL
order for this fit. The bands show the NNLL perturbative
uncertainty from the profile variations.
The results from the fits to the 21 differentQ sets and bin

ranges mentioned above are quite similar. The differences
can be associated to the level of incompatibility of the MC
event generator results to the QCD predictions, and unlike
the perturbative uncertainties, these differences need not
necessarily decrease when going from NLL to NNLL. We
will use the differences from the 21 fits to assign an
additional incompatibility uncertainty between QCD and
the MC generator for the calibration.
To quote final results we use the following procedure:

(1) Take the average of the highest and lowest central
values from the 21 sets as the final central value of our
calibration. (2) Take the average of the scale uncertainties
of these sets as our final estimate for the perturbative

FIG. 1. Distribution of best-fit mass values from the scan
over parameters describing perturbative uncertainties. Results
are shown for cross sections employing the MSR mass
mMSR

t ð1 GeVÞ (top two panels) and the pole mass mpole
t (bottom

two panels), both at NNLL and NLL. The PYTHIA data sets use
mMC

t ¼ 173 GeV as an input (vertical red lines).

PRL 117, 232001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 DECEMBER 2016

232001-3



uncertainty. (3) Take half of the difference of the largest
and smallest central values from the sets as the incompat-
ibility uncertainty. (4) Quadratically add the perturbative
and incompatibility errors to obtain a final uncertainty.
Using αs values within the uncertainty of the world

average αsðmZÞ ¼ 0.1181ð13Þ gives an additional para-
metric uncertainty of ≃ 20 MeV for mMSR

t ð1 GeVÞ and
mpole

t at NNLL order. This is an order of magnitude smaller
than the other uncertainties and we therefore neglect it.
Table I shows our final results for the MSR mass

mMSR
t ð1 GeVÞ andmpole

t at NLL and NNLL order, utilizing
the mMC

t ¼ 173 GeV data set. For mMSR
t ð1 GeVÞ we

observe a reduction of perturbative uncertainties from
260 MeVat NLL to 190 MeVat NNLL. The corresponding
incompatibility uncertainties are 140 and 110 MeV. The
corresponding fit results for the first shape function
moment are ΩPY

1 ¼ 0.42� 0.07� 0.03 GeV at NNLL
and ΩPY

1 ¼ 0.41� 0.07� 0.02 GeV at NLL order with
the first uncertainty coming from scale variation and the
second from incompatibility. The result agrees nicely
with the expectation that Ω1 ∼ ΛQCD. For m

pole
t there is a

significant difference to mMC
t , and we observe that the

central value shifts by 330 MeV between NLL and NNLL
order. There is a reduction of perturbative uncertainties
like in the MSR scheme; however, the incompatibility

uncertainty increases at NNLL order. These results may not
be unexpected, since the pole mass often leads to poor
convergence of perturbative series.
Figure 3 shows the outcome of our fits for the MSRmass

mMSR
t ð1 GeVÞ at NNLL order with six different input

values for mMC
t , and error bars with the total uncertainties.

We see the expected strong correlation between these
masses. This calibration results in Table I and Fig. 3 should
be independently determined for each MC and each
generator setting (such as different tunes).

FIG. 2. Comparison of PYTHIA samples with 107 events and mMC
t ¼ 173 GeV (red dots) to the theoretical prediction in the MSR

scheme at NNLL for mMSR
t ð1 GeVÞ ¼ 172.81 GeV and Ω1 ¼ 0.44 GeV. The blue band shows the perturbative uncertainty from a

random scan over 500 profile functions. Vertical error bars on the PYTHIA points are obtained by a global rescaling of PYTHIA statistical
uncertainties such that the average χ2min=dof ¼ 1 and roughly indicate the incompatibility uncertainties on the cross sections. Horizontal
error bars are related to the N2LL incompatibility uncertainty in the MSR mass shown in Table I.

TABLE I. Results of the calibration for mMC
t ¼ 173 GeV in

PYTHIA, combining results from all Q sets and bin ranges. Shown
are central values, perturbative and incompatibility uncertainties,
and the total uncertainty, all in GeV.

mMC
t ¼ 173 GeV (τe

þe−
2 )

Mass Order Central Perturb. Incompatibility Total

mMSR
t;1 GeV NLL 172.80 0.26 0.14 0.29

mMSR
t;1 GeV NNLL 172.82 0.19 0.11 0.22

mpole
t

NLL 172.10 0.34 0.16 0.38

mpole
t

NNLL 172.43 0.18 0.22 0.28

FIG. 3. Dependence of the NNLL fit result for the MSR mass
on the input mMC

t value in PYTHIA. The error bars show the total
calibration uncertainty. The red solid lines correspond to the
weighted average of the individual results. The red shaded area
shows the average of the individual uncertainties.
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To the extent that the treatment of the top factorizes for
different kinematically sensitive observables both in MC
generators and in QCD, and from whether one considers
eþe− or pp collisions, our method can be used to calibrate
mMC

t in current experimental reconstruction analyses. pp
collisions introduce initial state radiation, color reconnec-
tion, and additional hadronization and multiparton interac-
tion effects not present in eþe−. In the future our method can
be extended to use other eþe− and also pp observables to
directly study these effects and also the universality of the
calibration procedure. Prior to this, we believe that applying
our eþe− calibration to mMC

t from a typical pp reconstru-
ction analysis will give a more accurate result than assuming
mMC

t ¼ mpole
t . When corresponding hadron level predictions

exist, this calibration procedure can also be applied to other
MC parameters. The calibration procedure may also provide
new ways to test and improve MC event generators.
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