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In a previous paper, we developed tools for studying the horizon geometry of a Kerr black hole that is
tidally distorted by a binary companion using techniques that require large mass ratios but can be applied to
any bound orbit and allow for arbitrary black hole spin. We now apply these tools to generic Kerr black hole
orbits. This allows us to investigate horizon dynamics: the tidal field perturbing the horizon’s geometry
varies over a generic orbit, with significant variations for eccentric orbits. Many of the features of the
horizon’s behavior found previously carry over to the dynamical case in a natural way. In particular, we find
significant offsets between the applied tide and the horizon’s response. This leads to bulging in the
horizon’s geometry which can lag or lead the orbit, depending upon the hole’s rotation and the orbit’s
geometry. An interesting and apparently new feature we find are small-amplitude, high-frequency
oscillations in the horizon’s response. We have not been able to identify a mechanism for producing
these oscillations but find that they appear most clearly when rapidly rotating black holes are distorted by
very strong-field orbits.
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I. INTRODUCTION

The study of relativistic tidal deformations and their
impact on the dynamics of compact binaries has received a
great deal of attention in recent years. Much of this recent
activity was kicked off by studies of tides in systems
containing neutron stars [1–8]. Older work had already
demonstrated that tidal coupling was quite important in
systems containing black holes but used language that
clouded the role of tides, using instead a dual description
of tidal coupling as “radiation down the event horizon”
[9–12]. Recent papers focusing on black holes in binaries
have examined in detail how tides distort black holes and
their near-hole geometry. Most of these papers have
focused on nonrotating [5,13–16] and slowly rotating
[17–19] black holes (with Ref. [19] discussing tidal
distortions of a broad class of spinning objects).
Our contribution to this body of work has been to

develop numerical tools for characterizing tidally distorted
black holes which are good for strong-field orbits and
arbitrary black hole spins. These tools are based on black
hole perturbation theory and so assume binaries of extreme
mass ratio: the mass μ of the small body which is the source
of the tide is much less than the mass M of the black hole
that is tidally distorted. In Ref. [20] (hereafter “paper I”),
we developed tools for characterizing the tidal field that
acts on a Kerr black hole. The tools are designed in order to
adapt preexisting codes which have been used to study
gravitational wave emission from extreme mass ratio
binaries (e.g., Ref. [21]). We also developed tools to
visualize a tidally distorted black hole by embedding the
two-dimensional horizon at each moment in some time

slicing in a flat three-dimensional Euclidean space. These
embeddings are only good for Kerr spin parameter
a=M ≤

ffiffiffi
3

p
=2; for higher spins, the horizon cannot be

globally embedded in a Euclidean space even in the
absence of a distorting tide [22].
Although the tools we developed in paper I are generic

and can be applied to any bound Kerr black hole orbit, we
only showed results for tidal distortions arising from
circular and equatorial orbits. By focusing on this relatively
simple case, we were able to examine some of the key
aspects of event horizon physics in a particularly clean
limit. For example, paper I examined in some detail the
phase offset between the angle at which the horizon is
maximally distorted (the location of its “tidal bulge”) and
the position of the orbit. As has been amply discussed in
past literature [23–26], the event horizon acts in many ways
like the surface of a gravitating fluid body; a very readable
summary discussion of this connection can also be found
in the work by Cardoso and Pani [27]. The horizon is
deformed by tidal stresses, tending to bulge toward the
“moon” which is the source of the tide. The bulging
response is, however, not synchronous with the applied
tide. For a fluid body, viscosity causes the fluid’s response
to lag the applied tide. As a consequence, if the moon’s
orbit is faster than the body’s spin, the bulge lags the orbit’s
position. Conversely, if the orbit is slower than the spin,
then the bulge leads the orbit’s position.
At least for very slowly varying tidal fields, this picture

describes the geometry of the black hole’s tidal bulge with
respect to the orbit—provided we swap “lead” and “lag.”
Tides from a moon which orbits faster than the hole’s spin
raise a bulge which leads the orbit’s position; tides from a
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moon which orbits more slowly lag the orbit’s position.
The swap of lead and lag as compared to the fluid star is
due to the teleological nature of the event horizon: how the
horizon depends at some moment in a given time slicing
depends upon the stresses that it will feel in the future.
Though this counterintuitive behavior might seem to
violate causality, it is a simple consequence of how the
horizon is defined: whether an event is inside or outside the
horizon depends on that event’s future. See paper I and
references therein (as well as the references cited above) for
much more detailed discussion of the horizon’s teleological
nature and its consequences.
Although circular and equatorial orbits were useful for

testing our tidal distortion toolkit, this limit does not show
the full range of horizon dynamics that can be expected
from tidal interactions. Indeed, the horizon’s distortion is
stationary in this case, showing no variation at all in a frame
that corotates with the orbit. The purpose of this paper is to
go beyond this limit and to explore how the horizon
responds to generic—inclined and eccentric—orbits.
Generic orbits and the tides they produce are dynamical
even when examined in a frame that corotates at the orbit’s
axial frequency. Eccentricity is particularly important; at
leading order, the tidal field varies as 1=r3, so as the orbit’s
radius varies from rmax to rmin, the tidal field varies by a
factor r3max=r3min. If the large black hole spins, even constant
radius inclined orbits show horizon dynamics, since the
on-horizon tidal field varies as the orbit moves in the
nonspherical black hole spacetime.
The remainder of this paper is organized as follows. We

begin in Sec. II with a summary of the formalism that we
developed in paper I. Section II A introduces the notation
and conventions that we use and carefully defines several
quantities that are critical to our analysis, such as the
Newman-Penrose basis legs, the tidal field Ψ0, and
the horizon’s shear σ. This section also briefly describes
the techniques we use to compute these quantities; further
details are given in paper I. Appendix A supplements this
material, demonstrating that the complex fields we use for
various quantities needed to describe the horizon’s dis-
tortion are equivalent to certain second-rank tensors defined
on the horizon which other authors have used (notably
Ref. [16], hereafter VPM11). Section II B summarizes
how these quantities are used to understand the distorted
horizon’s geometry.
We show our results in Secs. III, IV, V, and VI. Much of

the horizon’s dynamics turns out to be closely correlated to
the dynamics of the applied tidal field, so we begin in
Sec. III by examining this tide in some detail. We show that
the vast majority of the tide’s behavior can be understood as
a simple consequence of the orbital dynamics. There are,
however, subtle features related to a position-dependent
phase and a mode-dependent amplitude correction that
must be explained with some care. We turn to the horizon’s
response proper in Sec. IV, carefully examining the

Schwarzschild limit, a ¼ 0. This limit is spherically sym-
metric, so the horizon distortions must exhibit certain
symmetries as an orbit is inclined from equatorial to some
arbitrary inclination θinc. We demonstrate that this is the
case. This is not a surprise, since the black hole perturbation
theory code on which our analysis is based has previously
been shown to handle this limit correctly [11,21]. It is
reassuring to see that the modifications we made to analyze
distorted horizons have not broken this behavior.
In Sec. V, we next compare certain important aspects of

the applied tidal field Ψ0 to the horizon shear σ that arises
from this field. We first (Sec. VA) look at the relative phase
of the tide and the shear, an analysis quite similar to one
that we undertook in paper I. We focus for simplicity on
equatorial orbits. In the Schwarzschild limit, the tide and
the shear are very similar. Much of the difference between
the two quantities is due to a simple temporal offset of
κ−1 ¼ 4M (where κ is the event horizon’s surface gravity).
This offset can be understood by examining the equation
relating the ride to the shear in the frequency domain. The
difference becomes much less simple as the black hole’s
spin is increased.
It’s worth noting that some of the physics associated with

the offset between the orbiting body and the horizon’s
distortion that we discussed above is reproduced in the tide-
shear analysis. In particular, we find that the shear response
leads the applied tidal field for a ¼ 0 but lags it for large
black hole spin—just as the horizon bulge always leads the
orbit in Schwarzschild but lags the orbit for rapidly
spinning Kerr. Because the tide and the shear are evaluated
at the same coordinate radius, many ambiguities associated
with comparing the position of the horizon’s bulge with the
position of the orbit disappear. This helps to put notions of
which quantities lead and lag on firm footing.
In the course of this analysis, we have found an

interesting oscillatory feature in the horizon’s response
which is most apparent for strong-field orbits of rapidly
rotating black holes. Examining the response of a black
hole with spin a ¼ 0.9999M to the tidal field of a strong-
field eccentric orbit, we see a very strong response near
periapse with properties that closely correlate to the near-
periapsis orbital dynamics. This is followed by about seven
cycles of low-amplitude, high-frequency oscillations in the
horizon’s response. We do not see corresponding oscil-
lations in the tide.
Although we can estimate the frequency of these

oscillations fairly well, we have not been able to connect
them to any of the frequencies that describe this orbit or this
black hole. The rate at which the oscillations decay also
does not appear to correlate with any time scale that we can
imagine would lead to such behavior. Having not suc-
ceeded in coming up with a compelling explanation for this
phenomenon, for now we simply present it as an empirical
finding of our analysis, hoping that future work may offer
some physical understanding.
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We conclude by examining the dynamics of horizon
embeddings in Sec. VI. For several representative cases, we
show a sequence of still images taken from an animation
that combines the behavior of the small body’s orbit with
the dynamics of the horizon embedding. Those animations
can be found at the URL listed in Ref. [28]. Although we
have endeavored to describe the dynamics as clearly as
possible using these stills, some of these results are
particularly clear when examined with the animations.
We first consider orbits that are circular but inclined in
Sec. VI A, examining in detail orbits of a Schwarzschild
black hole and of a Kerr hole with a ¼ 0.6M. The
Schwarzschild results confirm our expectations from
Sec. IV about how the horizon should behave in this
spherically symmetric example. The nonspherical Kerr
results show more interesting shape dynamics. We then
consider eccentric orbits in Sec. VI B. As expected, the
horizon’s distortion varies considerably as an orbit moves
from rmax to rmin and back. We examine in some detail two
highly eccentric (e ¼ 0.7) orbits: one that is equatorial and
one inclined at θinc ¼ 30°. The generic case combines
features that we see from the inclined circular and the
eccentric equatorial limits.

II. SUMMARY OF FORMALISM

A. Tools, notation, and conventions

All of our calculations are performed in the spacetime of
a Kerr black hole with massM and spin angular momentum
J. Throughout this analysis, we work in ingoing coordi-
nates ðv; r; θ;ψÞwhich are well behaved on the black hole’s
event horizon. In these coordinates, the spacetime’s line
element is given by

ds2 ¼ −
�
1 −

2Mr
Σ

�
dv2 þ 2dvdr − 2asin2θdrdψ

−
4Marsin2θ

Σ
dvdψ þ Σdθ2

þ ðr2 þ a2Þ2 − a2Δsin2θ
Σ

dψ2; ð2:1Þ

with a ¼ J=M. (Here and throughout the paper, we use
units in which G ¼ 1 ¼ c.) Equation (2.1) introduces the
functions Δ ¼ r2 − 2Mrþ a2 and Σ ¼ r2 þ a2 cos2 θ. The
event horizon is at coordinate radius r¼rþ¼Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2

p
,

the larger root of Δ. Although not needed here, for
completeness we note that ingoing coordinates are simply
related to the more commonly used Boyer-Lindquist
coordinates ðt; r; θ;ϕÞ; the coordinates r and θ are iden-
tical, and the ingoing time v and angle ψ are related to
Boyer-Lindquist time t and angle ϕ via

dv ¼ dtþ r2 þ a2

Δ
dr; ð2:2Þ

dψ ¼ dϕþ a
Δ
dr: ð2:3Þ

The tidal field which distorts the black hole’s horizon
arises from a small body on a bound Kerr geodesic; detailed
discussion of these orbits, with an emphasis on the proper-
ties relevant to this analysis, is given in Refs. [29,30]. Such
geodesics are parametrized by three conserved integrals:
the orbital energy E, related to the spacetime’s timelike
Killing vector; the axial angular momentum Lz, related to
the spacetime’s axial Killing vector; and the Carter constant
Q, related to the Kerr spacetime’s Killing tensor. Once E,
Lz, and Q have been selected, the orbit’s motion is
determined up to initial conditions. A particularly impor-
tant feature of bound Kerr orbits is that they are triperiodic
[29]. Each orbit has a frequency Ωr which describes radial
oscillations, a frequency Ωθ which describes polar oscil-
lations, and a frequencyΩϕ which describes rotations about
the black hole’s spin axis. Once E, Lz, and Q are known, it
is not too difficult to compute Ωr, Ωθ, and Ωϕ [29,30].
We remap the motion in r and θ to the parameters p

(semilatus rectum), e (eccentricity), and θm, defined by

r ¼ p
1þ e cos χr

; ð2:4Þ

cos θ ¼ cos θm cosðχθ þ χθ;0Þ: ð2:5Þ

The orbit’s radius r thus oscillates between periapsis rmin ¼
p=ð1þ eÞ and apoapsis rmax ¼ p=ð1 − eÞ; the polar angle
θ oscillates between θmin ¼ θm and θmax ¼ 180° − θm.
With the parametrization (2.4) and (2.5), the geodesic

equations for the coordinates r and θ become equations for
the angles χr and χθ. Note that we could include an offset
phase χr;0 in Eq. (2.4). We have set χr;0 ¼ 0, which is
equivalent to setting the origin of our time coordinate to
the moment that the orbit passes through periapsis.
References [29,30] give easy-to-use expressions relating
the (E, Lz, Q) and (p, e, θm) parametrizations. For much of
our analysis, we use the angle θinc introduced in Ref. [21] in
place of θm:

θinc ¼ 90° − sgnðLzÞθm: ð2:6Þ

This angle varies smoothly from 0° to 180° as the orbit
varies from prograde equatorial (θm ¼ 90°, Lz > 0) to
retrograde equatorial (θm ¼ 90°, Lz < 0).
The tidal field is quantified by the complex scalar field1

Ψ0, which is built from the Weyl curvature tensor:

Ψ0 ¼ −Cμανβlμmαlνmβ: ð2:7Þ

1In this paper, we use capitalΨ rather than the more commonly
used lowercase ψ to denote the Weyl curvature scalars in order to
avoid confusion with the ingoing axial coordinate.
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The vectors used here are the Newman-Penrose null legs in
the Hawking-Hartle representation [23]:

lμ ≐
�
1;

Δ
2ϖ2

; 0;
a
ϖ2

�
; ð2:8Þ

nμ ≐ 1

Σ

�
−a2sin2θ=2;−ϖ2 þ a2Δsin2θ

4ϖ2
; 0;−aþ a3sin2θ

2ϖ2

�
;

ð2:9Þ

mμ ≐ 1ffiffiffi
2

p ðrþ iacosθÞ

�
0;−

iaΔsinθ
ϖ2

;1; icscθ−
ia2 sinθ
ϖ2

�
:

ð2:10Þ
The symbol≐means the components of the quantity on the
left-hand side are represented by the array on the right-hand
side in ingoing Kerr coordinates. For brevity, we have
introduced ϖ2 ¼ r2 þ a2. These legs satisfy

lμnμ ¼ −1; mμm̄μ ¼ 1; ð2:11Þ

with overbar denoting complex conjugate; all other inner
products between legs vanish.
Following VPM11, the Weyl curvature on the horizon

is completely described by a two-dimensional trace-free
symmetric tensor CAB, where capital Roman indices denote
components associated with coordinates on the horizon.
Such a tensor has only two independent components, which
we can describe as “tidal polarizations,” and denote Cþ and
C×. These polarizations are simply related to the curvature
scalar Ψ0 on the horizon:

Ψ0ðrþÞ ¼ −ðCþ þ iC×Þ: ð2:12Þ

See Appendix A for further details and a proof of
Eq. (2.12). We use the polarizations Cþ;× in much of
our presentation of results, especially in Sec. V.
The tidal field can be decomposed into harmonics of the

three fundamental Kerr frequencies, allowing us to write its
value at r ¼ rþ as

Ψ0ðv;θ;ψÞ¼
1

16M2r2þ

X
lmkn

WH
lmknS

þ
lmknðθÞeiΦmknðv;ψÞ: ð2:13Þ

The function

SþlmknðθÞ ¼ þ2Slmðθ; aωmknÞ ð2:14Þ

is a spheroidal harmonic of spin-weight þ2; detailed
discussion of this function and how it is computed can
be found in Ref. [11]. The frequency ωmkn is a harmonic of
the orbital frequencies,

ωmkn ¼ mΩϕ þ kΩθ þ nΩr: ð2:15Þ

The product aωmkn sets the “oblateness” associated with
SþlmknðθÞ. We describe the phase Φmknðv;ψÞ in more
detail below.
The amplitude WH

lmkn can be found by solving the
Teukolsky equation [9]. In practice, we compute the field
Ψ4, a different projection of the Weyl curvature. In the
limits r → rþ and r → ∞, the fields Ψ4 and Ψ0 can be
related to one another without too much trouble [10]. As
r → rþ, Ψ4 takes the form

Ψ4 ¼
Δ2

ðr − ia cos θÞ4
X
lmkn

ZH
lmknS

−
lmknðθÞeiΦmknðv;ψÞ: ð2:16Þ

Detailed discussion of how to compute the amplitude ZH
lmkn

using the Teukolsky equation is given in Ref. [21]. The
function

S−lmknðθÞ ¼ −2Slmðθ; aωmknÞ ð2:17Þ

is a spheroidal harmonic of spin-weight −2; see Ref. [11]
for detailed discussion.
The Starobinsky-Churilov identities [31] connect the

amplitudes of these two curvature scalars,

WH
lmkn ¼ βlmknZH

lmkn; ð2:18Þ

where

βlmkn ¼
64ð2MrþÞ4pmknðp2

mknþ κ2Þðpmknþ2iκÞ
clmkn

; ð2:19Þ

jclmknj2 ¼ f½ðλþ 2Þ2 þ 4maωmkn − 4a2ω2
mkn�

× ðλ2 þ 36maωmkn − 36a2ω2
mknÞ

þ ð2λþ 3Þð96a2ω2
mkn − 48maωmknÞg

þ 144ω2
mknðM2 − a2Þ; ð2:20Þ

Imclmkn ¼ ð−1Þlþkþm12Mωmkn; ð2:21Þ

Reclmkn ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jclmknj2 − 144M2ω2

mkn

q
: ð2:22Þ

In these equations,

pmkn ¼ ωmkn −mΩH; ð2:23Þ

withΩH ¼ a=2Mrþ, the angular frequency associated with
the Kerr event horizon. The real number λ is related to the
eigenvalue of the spheroidal harmonic,

λ ¼ E − 2amωmkn þ a2ω2
mkn − sðsþ 1Þ; ð2:24Þ
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where s ¼ −2, and E is the eigenvalue2 associated with
the s ¼ −2 spheroidal harmonic. In the limit a ¼ 0,
E ¼ lðlþ 1Þ. Note that the imaginary part of clmkn is
positive for “polar”modes (lþ kþm even) and is negative
for “axial” modes (lþ kþm odd). This sign is given
incorrectly in many papers in the literature, including the
first one in which the constant is computed [10]. We discuss
this error briefly in an erratum which was recently
published for Ref. [20]; further discussion will be given
in a forthcoming paper by Flanagan and Hinderer [32].
Other important quantities appearing in these equations

are the black hole’s surface gravity,

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

2Mrþ
; ð2:25Þ

and the phase

Φmknðv;ψÞ ¼ m½ψ − KðaÞ�
− ðmΩϕ þ kΩθ þ nΩrÞv; ð2:26Þ

where

KðaÞ ¼ a
2MðMrþ − a2Þ

�
a2 −Mrþ

þ 2M2arctanh
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2=M2

q 	

þM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
ln

�
a2

4ðM2 − a2Þ
�


: ð2:27Þ

In Eqs. (2.13) and (2.16), the sum over l goes from 2 to
∞, the sum over m goes from −l to l, and the sums over k
and n go from −∞ to ∞. We abbreviate this set of indices
Λ≡ fl; m; k; ng. With this, Eq. (2.13) becomes

Ψ0ðv; θ;ψÞ ¼
1

16M2r2þ

X
Λ

WH
ΛS

þ
ΛðθÞeiΦΛðv;ψÞ

≡X
Λ

Ψ0;ΛS
þ
ΛðθÞeiΦΛðv;ψÞ: ð2:28Þ

We have introduced

Ψ0;Λ ¼ WH
Λ

16M2r2þ

¼ 64M2r2þpΛðp2
Λ þ κ2ÞðpΛ þ 2iκÞZH

Λ

cΛ
: ð2:29Þ

Note that the phase ΦΛ ≡ Φmkn and wave number pΛ ≡
pmkn do not actually depend on the index l. Using Λ as a

label for these quantities, is thus somewhat redundant,
though this redundancy is harmless.

B. Geometry of a distorted event horizon

1. Shear to the horizon’s generators

The first tool we need to understand how the tidal field
affects the horizon’s geometry is the shear σ of the
horizon’s generators. It is given by

σ ¼ mμmν∇μlν; ð2:30Þ

evaluated at r ¼ rþ. (Note that, for an unperturbed black
hole, lμ is tangent to the generators at r ¼ rþ.) Just as the
complex Weyl scalar Ψ0 can be written using polarizations
Cþ;× of the on-horizon Weyl tensor, the complex shear can
be written in terms of polarizations σþ;× of an on-horizon
shear tensor:

σ ¼ σþ þ iσ×: ð2:31Þ

See Appendix A for further details and a proof of
Eq. (2.31). We will use σþ;× in much of our discussion
of results, especially in Sec. V.
With the tetrad and gauge that we use, the perturbed

shear is governed by the equation [25]

ðD − κÞσ ¼ Ψ0; ð2:32Þ

where the derivative operator D≡ lμ∂μ. Let us expand σ as
we expanded Ψ0:

σðv; θ;ψÞ ¼
X
Λ

σΛS
þ
ΛðθÞeiΦΛðv;ψÞ: ð2:33Þ

Using the fact that D → ∂v þΩH∂ψ on the horizon, we
find that Eq. (2.32) is satisfied if

σΛ ¼ 64M2r2þc−1Λ pΛðpΛ þ iκÞðipΛ − 2κÞZH
Λ:

As was extensively discussed in paper I, there is a phase
offset between the shear and the applied tidal field. The
phase offset for each mode is simple to calculate:

σΛ
Ψ0;Λ

¼ i
pΛ − iκ

¼ exp ½−i arctanðpΛ=κÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Λ þ κ2

q : ð2:34Þ

In other words, for each mode, the shear leads the tide by an
angle given by the mode’s wave number pΛ times the
inverse surface gravity κ−1. For circular and equatorial
orbits, pΛ → mðΩϕ −ΩHÞ, so each mode experiences the
same phase shift, modulo m. For these orbits, we find a
simple, constant offset between the tidal field and the
resulting shear. More complicated behavior results for

2Multiple conventions for this eigenvalue can be found in the
literature. Another common one puts λ¼A−2amωmknþa2ω2

mkn;
they are related by A ¼ E − sðsþ 1Þ.
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generic orbits, since many modes, each with different phase
shifts, contribute to Ψ0 and σ.
Although we do all of our calculations in this paper in the

frequency domain, it is also useful to examine Eq. (2.32) in
a “timelike” domain. As mentioned above, the Newman-
Penrose leg lμ is tangent to the unperturbed horizon
generators at r ¼ rþ. We may therefore write D≡ d=dλ
on the horizon, where λ is affine parameter along the
generator. In this representation, λ is effectively a time
measure, albeit a somewhat unusual time, measured by a
clock that ticks at a uniform rate as it follows a specific
horizon generator.
With this in mind, following Ref. [26] Sec. VI C 6, let us

find the Green’s function Gðλ; λ0Þ for Eq. (2.32):

ðD − κÞGðλ; λ0Þ ¼ δðλ − λ0Þ: ð2:35Þ

This equation has the solution

Gðλ; λ0Þ ¼ −eκðλ−λ0ÞΘðλ0 − λÞ; ð2:36Þ

where the step function

ΘðxÞ ¼ 1 x > 0

¼ 0 x < 0: ð2:37Þ

The shear along the generator is then

σðλÞ ¼ −
Z

∞

λ
eκðλ−λ0ÞΨ0ðλ0Þdλ0; ð2:38Þ

or, using Eqs. (2.12) and (2.31),

σþ;×ðλÞ ¼
Z

∞

λ
eκðλ−λ0ÞCþ;×ðλ0Þdλ0: ð2:39Þ

Notice that the behavior at λ depends on the tides to the
future of λ—a manifestation of the horizon’s teleological
nature. What we see is that the shear at λ on a particular
generator depends on the tide integrated over an interval
from λ to λþ ða fewÞ × κ−1.

2. Curvature of the distorted horizon

The tidal field Ψ0 on the horizon also tells us the scalar
Ricci curvature of the black hole, RH. This is discussed in
great detail in paper I. Briefly, the scalar curvature of the
hole’s event horizon is given by

RH ¼ Rð0Þ
H þ Rð1Þ

H ; ð2:40Þ

where

Rð0Þ
H ¼ 2

r2þ

ð1þ a2=r2þÞð1 − 3a2cos2θ=r2þÞ
ð1þ a2cos2θ=r2þÞ3

ð2:41Þ

describes an undistorted Kerr black hole, and

Rð1Þ
H ¼ −4Im

X
Λ

ð̄ ð̄Ψ0;Λ

pΛðipΛ þ κÞ ð2:42Þ

is the perturbation to RH arising from the tidal fieldΨ0. The
operator ð̄ lowers the spin weight of the angular basis
functions. As discussed in Sec. II C of paper I, it is quite
simple to evaluate ð̄ ð̄Ψ0;Λ with the spectral expansion for
the spin-weighted spheroidal harmonics that we use. See
paper I for a detailed discussion.
To visualize the curvature of a distorted horizon, we

embed the horizon in a global Euclidean 3-space. This
means finding the function

rEðθ;ψÞ ¼ rð0ÞE ðθÞ þ rð1ÞE ðθ;ψÞ ð2:43Þ

that defines a surface with the same Ricci scalar curvature
as the distorted horizon. This works well for spins
a=M <

ffiffiffi
3

p
=2; for higher spins, global Euclidean embed-

dings do not exist even for the undistorted event horizon
[22]. As such, we confine our embedding visualizations in
this paper to the range 0 ≤ a=M <

ffiffiffi
3

p
=2. Work in progress

indicates that an elegant way to lift this restriction will to be
embed the horizon’s distorted geometry in the globally
hyperbolic space H3 [33].
Confining our discussion to Euclidean 3-space, a simple

analytic solution exists for the undistorted hole’s embed-
ding radius rð0ÞE ðθÞ [22]. To find the perturbation rð1ÞE ðθ;ψÞ,
we expand in spherical harmonics, writing

rð1ÞE ðθ;ψÞ ¼ rþ
X
lm

εlmYlmðθ;ψÞ: ð2:44Þ

Given this form, it is a straightforward (although rather

lengthy) exercise to construct the scalar curvature Rð1Þ
E

associated with rð1ÞE ; details are given in Appendix B of

paper I. By enforcing Rð1Þ
E ¼ Rð1Þ

H , we read off the embed-
ding coefficients εlm. Full details of the algorithm for doing
this are given in Appendix B of paper I.

III. BEHAVIOR OF THE TIDAL FIELD

Before examining how the horizon responds to dynami-
cal tides, we first look at some examples of tides from
geodesic orbits. As we will see in later sections, the shear
polarizations σþ;× largely follow the behavior of the
driving tides Cþ;×. There are, however, some features of
the shear that are unique. It is thus useful to examine the
tide in detail to set a baseline for comparing the two
functions’ behaviors.
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A. Circular inclined orbits

The simplest behavior is seen for circular orbits of
Schwarzschild black holes, for which Ωθ ¼ Ωϕ. These
orbits do not precess, instead maintaining a fixed orienta-
tion for all time. Figure 1 shows3 a typical example of the
behavior we see in this case. The four panels of this figure
all illustrate the tidal field arising from an orbit with a ¼ 0,
p ¼ 10M, θinc ¼ 60°. The orbit is oriented so that θ ¼ 30°
at ψ ¼ 0°. It crosses the equator at ψ ¼ 90°, continues to
θ ¼ 150° at ψ ¼ 180°, crosses the equator again at
ψ ¼ 270°, and returns to θ ¼ 30° at ψ ¼ 360°.
Although simple, the tidal field shown in Fig. 1 dem-

onstrates certain important features which will recur in
more complicated examples. Perhaps most significantly,
note the strong modulation of the tide’s amplitude with
azimuthal position ψ . The panels on the left show the tide
evaluated at ψ ¼ 0°, where the tide is near its maximum;
those on the right show it at ψ ¼ 90°, near its minimum.
The amplitude varies sinusoidally with ψ between these
extremes.
The two upper panels show the tidal field including

modes up to l ¼ 9; the two lower panels only include
quadrupole modes (l ¼ 2, mþ k ¼ �2). The quadrupolar
tidal field is a pure sinusoid, oscillating twice per orbit.
Additional modes complicate this structure, adding features
which oscillate at both lower frequency (m ¼ 1modes) and
higher frequency.
Consider next the tide arising from circular orbits of Kerr

black holes. Two examples are shown in the left-hand
panels of Fig. 2. The top example is for spin a ¼ 0.3M, and
the bottom is for a ¼ 0.85M; both examples use p ¼ 10M,
θinc ¼ 60° and include modes up to l ¼ 9. Thanks to frame
dragging, the orbit’s orientation is not fixed in these cases.
The orbit instead precesses about the black hole’s spin axis,
modulating the tide. This precession causes a modulation of
the fields Cþ;×; they oscillate between bounds similar to
those seen in Fig. 1 at ψ ¼ 0° and ψ ¼ 90°. This precession
is substantially faster at a ¼ 0.85M than at a ¼ 0.3M,
leading to the more rapid modulation seen in the bottom
figure than in the top.
More interestingly, the amplitude is roughly an order of

magnitude smaller for a ¼ 0.3M than for a ¼ 0.85M. The
reason for this can be understood by examining Eq. (2.29):
each mode of the tidal field is proportional to the wave

number pΛ ¼ ωΛ −mΩH. For a ¼ 0.3M, Ωθ and Ωϕ are
roughly a factor of 2 from ΩH (MΩθ ¼ 0.0312,
MΩϕ¼0.0317,MΩH¼0.0768). By contrast, these frequen-
cies are quite different for a ¼ 0.85M (MΩθ ¼ 0.0303,
MΩϕ ¼ 0.0318, MΩH ¼ 0.2784). The wave number is
substantially smaller in the case a ¼ 0.3M for the most
important modes of the tide, and the resulting field is of
much smaller amplitude. This dependence of tide on pΛ
causes a strong variation of its amplitude as a function of a.
The right-hand panel of Fig. 2 shows how, holding the orbit
geometry fixed, the amplitude of Cþ varies with a. The
effect is quite significant, with the field being a factor ∼70
larger for nearly maximal Kerr holes than it is for very slow
rotation. Although differing in detailed behavior, similar
variation of the tide with a is found for other orbits. For
example, for strong-field orbits with (p; e; θinc) fixed, we
typically find a minimal tide at a=M ∼ 0.1–0.3.

B. Eccentric equatorial orbits

Let us now examine tides from eccentric orbits in the
black hole’s equatorial plane. We again begin with
Schwarzschild black holes and examine the tidal field
Cþ for an orbit with p ¼ 8M, e ¼ 0.5. The left-hand panels

FIG. 1. Examples of the on-horizon tidal field C for circular
orbits around a Schwarzschild black hole. The four plots shown
here are for an orbit with p ¼ 10M and with inclination angle
θinc ¼ 60°. The solid (red) line shows the polarization Cþ; the
dashed (blue) line shows C×. The top two panels illustrate how
this field varies with ingoing time v at azimuth angle ψ ¼ 0° and
ψ ¼ 90°; the bottom two figures show the same data, but
including only quadrupolar modes (i.e., modes for which l¼2
and mþ k ¼ �2). These plots illustrate the importance of modes
beyond the quadrupole, as well as the strong functional depend-
ence of the tide on the position at which it is measured.

3We use a mass ratio μ=M ¼ 1=30 for all figures which show
quantities computed in black hole perturbation theory (such as
Cþ, σþ, or the embedding surfaces). This fairly large mass ratio is
only used so that the effects we compute are clearly visible in
these figures. Since we use linear perturbation theory, one can
easily extrapolate to other mass ratios. We also scale these
quantities by r3min=M

3 ¼ p3=½Mð1þ eÞ�3, accounting for the
1=r3 leading-order scaling associated with tides. This makes it
easier to compare tidal distortions for different orbits, ensuring
that the maximum distortion is roughly the same in all cases we
present.
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of Fig. 3 show the behavior of Cþ close to the moment that
the orbit passes through periapsis. We examine this field in
the hole’s equatorial plane, θ ¼ 90°, and at four evenly
spaced axial angles, ψ ¼ 0°, 90°, 180°, and 270°. Note that
the cross-polarization C× vanishes for all equatorial orbits,
so we do not show it in any of our figures. (Away from the
equatorial plane, C× is nonzero but is qualitatively quite
similar to Cþ.) The right-hand panel of Fig. 3 shows the
orbit’s radius as a function of ingoing time near periapse
passage.
The behavior of Cþ at ψ ¼ 0° can be regarded as a

prototype for the tidal field from eccentric orbits: there is a
large spike at roughly the same time as periapsis,with smaller
scale oscillations before and after. These dynamics in Cþ
occur when the small body is closest to the event horizon. To
quantify this, we havemarkedwith large dots themoments at
which the orbital radius is r ¼ 101=3rmin (v≃ 295M and
v≃ 475M). Since at leading order the tide scales as 1=r3, we
expect that the tide will be about an order of magnitude
smaller than its peak at these moments. Comparing the left-
hand panels, we see that Cþ in all cases is at least a factor of
10 smaller than its peak value at these times.
The remaining three left-hand panels show how the tide

is modulated by the azimuthal angle. In all cases, we see
three oscillations, but the relative amplitude of these
oscillations varies significantly with the value of ψ at

which the field is measured: the middle oscillation is
“large,” and the other two are small for the prototypical
form we see at ψ ¼ 0°, but all three wiggles are of nearly
equal amplitude at ψ ¼ 180°. As we saw in the circular case
(cf. Fig. 1), the position at which the field is measured
significantly affects the tide.
Figure 4 examines the tide for eccentric equatorial Kerr

black hole orbits. We show Cþ for orbits with p ¼ 8M,
e ¼ 0.5 about black holes with spins a ¼ 0.3M, a ¼ 0.6M,
and a ¼ 0.9M, as well as an orbit with p ¼ 3.5M, e ¼ 0.7
about a black hole with spin a ¼ 0.9M. Two of the
examples (p¼8M, e¼0.5 for a ¼ 0.6M and a ¼ 0.9M)
are similar to the prototype eccentric tide we examined for
Schwarzschild (the ψ ¼ 0° case of Fig. 3): a large spike
near periapsis, with smaller scale oscillations before and
after. The only notably new feature we see in these
examples is the rather different amplitude of Cþ as
compared to the Schwarzschild case and as compared to
each other. This is explained similarly to how we explained
the varying tidal amplitudes of circular Kerr orbits
(cf. Fig. 2 and associated discussion): the amplitude of
each mode Λ is proportional to pΛ ¼ ωΛ −mΩH. Modes
can be significantly suppressed when the orbit frequencies
are close to ΩH.
The cases a ¼ 0.3M, p ¼ 8M, e ¼ 0.5 (top left panel of

Fig. 4) and a ¼ 0.9M, p ¼ 3.5M, e ¼ 0.7 (bottom right

FIG. 2. Examples of the on-horizon tidal polarizations Cþ;× for circular orbits around Kerr black holes (left panels) and the amplitude
as a function of black hole spin (right panel). All data are for orbits with p ¼ 10M, θinc ¼ 60°. The top plot on the left is for a black hole
with spin a ¼ 0.3M; the bottom is for a hole with spin a ¼ 0.85M. Notice that the amplitude is significantly smaller for a ¼ 0.3M and
that the modulation is significantly slower. The difference in modulation is simply explained: frame dragging is substantially stronger at
a ¼ 0.85M, so the orbit precesses much more rapidly. The amplitude effect is more subtle. Each mode Λ of the on-horizon tidal field is
proportional to pΛ ≡ ωΛ −mΩH. At a ¼ 0.3M, both Ωϕ and Ωθ are close enough to ΩH to suppress the most important modes of the
tide. On the right, we we show the amplitude of Cþ as a function of a, showing how strongly this field varies thanks to this
proportionality of the modes with pΛ.
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panel) both demonstrate significate deviations from this
prototype. Consider the a ¼ 0.3M case first: the spike at
periapse passage in this case is interrupted by about a cycle
and a half of very small-amplitude wiggle. This phenome-
non appears to arise because of a change in the relative
angular speeds of the orbit and of the event horizon during
periapse passage.
To understand this, recall (as discussed in paper I) that

the tidal field Ψ0 (and hence Cþ) vanishes for orbits that
corotate with the event horizon. This only occurs for
circular, equatorial orbits and is simple to understand: such
orbits are characterized by only one frequency, Ωϕ, and so
ωmkn → mΩϕ. If Ωϕ ¼ ΩH, then pΛ ¼ mðΩϕ − ΩHÞ ¼ 0,
and by Eq. (2.29), Ψ0 ¼ 0.
In our case, the orbit does not corotate with the horizon

for all time, but it corotates at two moments as it moves
through periapsis. The top panel on the right of Fig. 4
shows dϕ=dt near periapse passage, comparing it to the
horizon’s spin frequency ΩH. The orbit’s angular speed is
slower than the horizon’s spin until v≃ 315.9M. It is then
faster than the horizon until v≃ 346.3M, returning to a
slower angular speed than the horizon. The small-scale
oscillations in Cþ occur almost precisely during the
moments that the orbit overtakes the hole’s rotation. The

tidal field oscillates with small amplitude as the orbit passes
through corotation and back near its periapse passage.
The additional oscillations we see in the periapse spike

for the case a ¼ 0.9M, p ¼ 3.5M, e ¼ 0.7 are simpler to
explain. This orbit has a “zoom-whirl” structure, in which
the small body whirls multiple times around the event
horizon at periapsis before zooming back to apoapsis. The
bottom panel on the right of Fig. 4 shows the number of
windings about the horizon, ϕ=2π, that the orbit executes as
a function of time. The orbit winds the horizon about two
and a half times in the time interval 180M ≲ v ≲ 230M
(periapsis occurs at v ¼ 203M, near the middle of this
range). The multiple oscillations in Cþ occur during the
period in which the orbit is whirling close to the black hole.

C. Summary of tidal behavior

We conclude our discussion of the tide by summarizing
the features that we found above. For the most part, we find
that the dynamics of the fields Cþ;× correlate with the
dynamics of the orbit. For circular orbits, the tides are
essentially sinusoidal, with the amplitude modulated by the
axial angle at which the field is measured. Thanks to frame
dragging, for the Kerr case, this modulation becomes

FIG. 3. Examples of the on-horizon tidal field Cþ for an eccentric equatorial orbit of a Schwarzschild black hole (left) and a portion of
that orbit’s radial motion (right). The orbit has p ¼ 8M, e ¼ 0.5. We examine Cþ on the hole’s equator at four different axial positions.
(We do not show the cross-polarization since C× ¼ 0 at θ ¼ 90° for tides from equatorial orbits.) Consider first the tidal field at ψ ¼ 0°.
The shape of this field can be considered a prototype of the tide from an eccentric orbit: there is a large spike at roughly the moment the
orbit passes through r ¼ rmin, with smaller scale oscillations before and after. The oscillations and spike occur only when the orbit is
close to the event horizon. In the right-hand panel, we have marked with large dots the moments when the orbital radius is r ¼ 101=3rmin.
Since the tide scales roughly as 1=r3, these should indicate when the tide has fallen by about an order of magnitude from its peak value.
Indeed, at these moments (v≃ 295M and v≃ 475M), the tide has fallen by at least an order of magnitude. The three other small panels
on the left-hand side illustrate how the tide is modulated by azimuth angle. The position at which the field is measured can significantly
affect the qualitative appearance of the tide during periapse passage.
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associated with the orbit, leading to a dynamical modula-
tion of the tide’s amplitude.
For eccentric orbits, the prototype form of the tide is a

large spike at periapse passage, modulated by the axial
angle in a manner similar to the axial modulation we saw
with circular orbits. Zoom-whirl orbits, fairly common in
the strong field of rapidly spinning black holes, are orbits in
which the orbit whirls around the black hole at periapsis,
completing multiple revolutions before zooming back out
to apoapsis. In such cases, multiple oscillations occur
during the large-amplitude periapse spike.
Certain interesting and seemingly subtle features of the

tides we find originate in the fact that modes of the tidal
field are proportional to pΛ ¼ ωΛ −mΩH. This factor
varies quite a bit depending on the hole’s spin and the
nature of the orbit. This leads to substantial variation in the
amplitude of the tide when we consider a sequence in
which the orbit’s geometry is held fixed and the black hole
spin is varied. It also leads to interesting behavior when we
consider orbits for which ωΛ ≃mΩH.
Figure 5 shows how the features of tides from inclined

circular and equatorial eccentric cases combine for generic
orbits. We examine two orbits with p ¼ 8M, θinc ¼ 60°

about a black hole spin a ¼ 0.6M. One orbit has eccen-
tricity e ¼ 0.2, and the other has e ¼ 0.5. The low
eccentricity case blends the features of the inclined circular
and equatorial eccentric limits in a fairly straightforward
way: we find relatively high-amplitude tidal spikes at each
periapse passage, with sinusoidal tidal oscillations between
each passage. In the case e ¼ 0.5, the behavior we see
practically cannot be distinguished from an equatorial
eccentric case. The eccentricity is sufficiently large in this
case that there is a very large contrast between the tidal
spike near periapsis and the much weaker tide at apoapsis.
Any oscillations between periapse passages are dwarfed by
the much more important spike in the tide when the orbit is
closest to the black hole.

IV. HORIZON DYNAMICS I: CONSISTENCY
TEST FOR THE SCHWARZSCHILD LIMIT

We now turn to our examination of the dynamics of
the horizon’s geometry. We begin by first testing whether
the Schwarzschild limit exhibits the correct behavior.
These black holes are spherically symmetric, so there is
no physical distinction between an equatorial orbit

FIG. 4. Examples of the on-horizon tidal field Cþ for equatorial eccentric orbits of Kerr black holes (left) and features of the orbits
which we use to explain some of the behavior we find (right). The cases shown here demonstrate several examples of interesting
behavior for strong-field Kerr orbits. On the left, the top panels and the bottom left panel are for orbits with p ¼ 8M, e ¼ 0.5 and show
orbits about black holes with spins a ¼ 0.3M, a ¼ 0.6M, and a ¼ 0.9M; the bottom right panel on the left is for an orbit with
p ¼ 3.5M, e ¼ 0.7 about a black hole with a ¼ 0.9M. In all cases, we examine the field at θ ¼ 90°, ψ ¼ 0°; C× vanishes there for all
equatorial orbits. The behavior we see in the top right and bottom left panels is very similar to the prototype behavior of Cþ we saw in
Fig. 3: a large spike coinciding with periapse passage and smaller-scale oscillations before and after. The behavior we see in the top left
and bottom right deviates from the prototype in interesting ways. For a ¼ 0.3M, p ¼ 8M, e ¼ 0.5, Cþ undergoes additional very small-
amplitude oscillations during the spike. On the right, the top panel compares the orbit’s axial speed dϕ=dt with the horizon’s spin
frequency ΩH. The small-amplitude oscillations occur during the brief span in which dϕ=dt exceeds ΩH. For a ¼ 0.9M, there are
multiple high-amplitude oscillations near the largest spike. This is correlated with “whirling” orbital dynamics. As shown in the bottom
panel on the right, the orbit wraps around the black hole multiple times at periapsis before “zooming” back out to apoapsis.
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(θinc ¼ 0°) and an orbit of arbitrary inclination. Our
representation of these orbits will certainly be different,
but this is due to the coordinate orientation we have chosen.
(By contrast, when a ≠ 0, the black hole’s spin axis picks
out a preferred spatial direction.) We thus expect that many
properties related to black hole perturbations should
become invariant with respect to orbit inclination for
a ¼ 0, or else vary in a simple way.
This limiting behavior has been discussed in past work,

in particular describing how the amplitude of gravitational
waves and the energy that they carry varies as the orbit’s
inclination varies. As one example, consider the energy
carried by gravitational waves. The total energy carried by a
given l-mode must be constant as a function of orbital
inclination:

�
dE
dt

�
l
≡X

mkn

�
dE
dt

�
lmkn

¼ constant with θinc: ð4:1Þ

The sum in Eq. (4.1) is taken overm from −l to l and over n
from −∞ to ∞. The sum over k in principle runs from

−∞ to ∞, though many modes do not actually contribute,
as we discuss momentarily.
Although the summed flux ðdE=dtÞl does not vary with

θinc, the distribution of gravitational-wave power among the
harmonic indices varies with inclination quite a bit. In the
Schwarzschild limit, Ωθ ¼ Ωϕ. Consider two orbits which
are identical except for inclination. One is equatorial
(θinc ¼ 0°), and the other is not. Power in an axial m-mode
at θinc ¼ 0° becomes distributed among polar k-modes and
axial modes with m0 ¼ ðm − kÞ in the inclined orbit. The
way in which the power is so distributed is easily deduced
from the rotation properties of spherical harmonics:

ðdE=dtÞlðm−kÞknðθincÞ
ðdE=dtÞlm0nðθinc ¼ 0°Þ ¼ jDl

ðm−kÞmðθincÞj2: ð4:2Þ

Here, Dl
ðm−kÞm is a Wigner function, which relates the

spherical harmonic Ylm at θ to the harmonic Ylðm−kÞ at
θ − θinc. (This relation implies that there is no power in any
mode with jmþ kj ≥ l.) Further discussion of this relation
is given in Refs. [11] (with a few minor errors) and [21]
(which corrects those errors).
What applies to the gravitational wave flux likewise

applies to all the quantities which describe tidal distortions
of a Schwarzschild black hole’s event horizon. We find
that, in all cases we have checked, quantities transform
under rotation exactly as they should. This is not terribly
surprising, since this property of our code has been checked
very carefully in previous analyses. It is reassuring, how-
ever, that the modifications we have made to compute the
horizon’s tidal distortion have not broken this behavior.
Figure 6 shows one example of a test for the rotational

consistency of Schwarzschild horizon distortions. Consider
two orbits around a Schwarzschild black hole, both with
p=M ¼ 10 and e ¼ 0.5. One orbit is equatorial in the
coordinates we impose, and the other is highly inclined
(θinc ¼ 80°) in these coordinates. Due to spherical sym-
metry, the horizon distortion for the equatorial case should
be identical to the horizon distortion in the inclined case,
correcting for the tilt of θinc.
In this figure, we show the perturbation to the radius of

the horizon’s embedding surface, rð1ÞE , for these two cases.
The solid (blue) line shows the distortion for the inclined
case as measured at ψ ¼ 0, θ ¼ 10° (i.e., rotated θinc from
the equator). The dots (red) show the distortion at ψ ¼ 0 on
the equator for the equatorial orbit. We include all modes
which contribute to the horizon’s distortion up to l ¼ 7; we
estimate that modes beyond this affect the horizon’s shape

at a level rð1ÞE =2M ≲ 10−7.
Although these calculations were done using very differ-

ent orbits, and very different modes enter the expansion, the
horizon distortions rð1ÞE we find are essentially identical,
only differing due to accumulated roundoff error at a level
≲ϵ, where ϵ≃ 10−10 is a parameter controlling the

FIG. 5. Example of the on-horizon tidal polarizations Cþ;× for
generic Kerr orbits. Both panels show the tide for orbits with
p ¼ 8M, θinc ¼ 60° about black holes with spin a ¼ 0.6M; the
top is for an orbit with the relatively low eccentricity e ¼ 0.2, and
the bottom is for the much larger value e ¼ 0.5. The solid (red)
curves show Cþ, and the dashed (blue) curves show C×. In both
cases, we show the tide resulting from five complete radial cycles
of the orbit’s motion. For e ¼ 0.2, we see a blending of features of
the circular inclined and eccentric equatorial tides, with larger-
amplitude spikes occurring near periapse passage and sinusoidal
oscillations between these spikes. For e ¼ 0.5, the behavior is
dominated by the very large spike seen at periapse passage and is
quite similar in form to the eccentric equatorial case.
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accuracy of numerical integrals. If both curves had been
plotted as solid lines, they would have been indistinguish-
able here. This is a typical example of how our code
handles this consistency test.

V. HORIZON DYNAMICS II: APPLIED TIDAL
FIELD AND RESULTING SHEAR

We begin with an analysis of the horizon’s response to an
equatorial, eccentric orbit. The applied tidal field varies
from quite strong near periapsis [r ¼ rmin ¼ p=ð1þ eÞ] to
weak near apoapsis [r ¼ rmax ¼ p=ð1 − eÞ], giving us a
chance to study the horizon’s response for a wide range of
applied tidal field.

A. Relative phase of the tide and shear

We begin our study of the shear induced on the horizon
by examining its phase relative to the driving tide. In paper
I, the driving tide was stationary, and the difference
between the tide and the response amounted to a simple
phase shift. For generic orbits, the difference is not so
simple.
Figures 7, 8, and 9 compare the tidal field and shear in

five different situations. In all cases, the orbit has p ¼ 8M,

e ¼ 0.5, θinc ¼ 0°, but the black hole spin varies over
a=M ∈ ½0; 0.3; 0.6; 0.9; 0.9999�. We include all modes up
to l ¼ 9 in these plots. We compare one polarization of the
on-horizon Weyl tensor, Cþ [dashed (blue) curves], to the
corresponding polarization of the horizon’s shear, σþ [solid
(red) curves]. The orbits are all equatorial, so we examine
these quantities in the holes’ equatorial planes; all data are
shown at the point θ ¼ 90°, ψ ¼ 0°.
Begin with Fig. 7, which shows Cþ vs σþ for orbits of a

Schwarzschild black hole. The top panel of this figure
shows that the horizon’s response leads the driving tide by
what is apparently a constant offset. To understand this,
consider again Eq. (2.34):

σΛ
Ψ0;Λ

¼ exp ½−i arctanðpΛ=κÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
Λ þ κ2

q : ð5:1Þ

In the Schwarzschild limit, pΛ ¼ ωΛ, and κ−1 ¼ 4M. Each
mode σΛ of the shear response leads the driving tide Ψ0 by
4MωΛ radians. This is equivalent to σ leadingΨ0 in time by
4M. We check this in the bottom panel of Fig. 7; this plot is
identical to the top panel of Fig. 7, but we have shifted σþ

FIG. 6. A test for consistency of our results in the a ¼ 0 limit:
the distortion to the embedded horizon arising from a highly
inclined orbit [θinc ¼ 80°; solid (blue) curve] as measured by an
observer sitting θinc above the equator and from an equatorial
orbit [θinc ¼ 0°; points (red)] as measured by an observer on the
equator. Both data sets include modes to l ¼ 7; we estimate that
contributions beyond this affect the horizon’s shape at a level

rð1ÞE =2M ≲ 10−7. The two data sets agree to within numerical
accuracy, as they should—a Schwarzschild black hole is spheri-
cally symmetric, so there is no unique notion of the hole’s
equator.

FIG. 7. Applied tidal field vs shear response for an eccentric
equatorial orbit of a nonspinning black hole. Data are for an orbit
with p ¼ 8M, e ¼ 0.5, θinc ¼ 0°. We show the on-horizon Weyl
curvature polarization Cþ [dashed (blue) curves] as well as the
resulting shear polarization σþ [solid (red) curves]. Both fields
are plotted at θ ¼ 90°, ψ ¼ 0° and include all modes up to l ¼ 9.
The top panel shows Cþ and σþ as functions of ingoing time v.
Notice that σþ appears to lead Cþ by an almost constant time
interval. The bottom panel shows the same data, but with σþ
shifted by Δv ¼ κ−1 ¼ 4M. The shear response lines up almost
perfectly with the driving tide in this panel, showing that the shear
σþ leads the tide by κ−1 in the Schwarzschild limit.
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by Δv ¼ κ−1 ¼ 4M. Notice that the tide and the shear
are almost precisely aligned in this panel, confirming that
the responses here differ primarily by a temporal offset of
κ−1 ¼ 4M.
As the black hole’s spin increases, the shift between the

applied tide and the shear response becomes more com-
plicated: the time scale κ−1 becomes larger as a → M, and
the wave number pΛ ¼ ωΛ −mΩH which enters the mode
ratio (2.34) differs significantly from the frequency ωΛ. We
can see the impact of this change in Fig. 8. In the top panel,
we examine Cþ and σþ for the same orbit used in Fig. 7
(p ¼ 8M, e ¼ 0.5, θinc ¼ 0°), but now about a black hole
with spin a ¼ 0.3M. In this case, the tide and the shear are
nearly coincident as a function of ingoing time v (including
the small-amplitude oscillations in the periapse spike we
discussed in Sec. III). In the bottom panel, we plot Cþ and
σþ for this orbit about a black hole with spin a ¼ 0.6M.
The tide now leads the shear, and the shapes are not
congruent. Empirically, we find that if we shift σþ by δv≃
3.8M we can make the largest peaks line up. Other features,
however, do not line up so well; the differing behaviors of
Cþ and σþ cannot be ascribed to a simple time shift.
The trend seen in Fig. 8 continues in Fig. 9, which shows

Cþ and σþ for the same orbit about black holes with
a ¼ 0.9M (top) and a ¼ 0.9999M (bottom). We again see
that the tidal field Cþ leads the shear response σþ. We can

match the largest peaks by shifting σþ by δv≃ 8M in the
case a ¼ 0.9M and by δv≃ 9M in the case a ¼ 0.9999M.
However, none of the other features align when we do this,
indicating that the shift at these large spins cannot be
described as a simple shift in time.
One interesting feature that comes across as we review

Figs. 7–9 is the transition from the shear leading the tide at
a ¼ 0 to the shear lagging the tide for a > 0.3M. This
transition is reminiscent of the behavior of the tidal bulge
that was seen in paper I. There, we found for circular
equatorial orbits that the tidal bulge leads the applied tide at
small spin and lags the applied tide at large spin. At least in
the small a and large a limits, this could be understood in
the circular equatorial case as reflecting the relative angular
frequencies of the orbit and the black hole. Qualitatively
similar behavior clearly shows up for these dynamical
situations, although quantifying it is not so straightforward
since these orbits have a more complicated time-frequency
structure.

B. High-frequency oscillations at high spin

At the highest spins we have examined, a new phe-
nomenon emerges: a high-frequency oscillation in the shear
σ following the orbit’s passage through periapsis. This
oscillation decays over a time of about 70M for the orbits
we have examined. An example is shown in Fig. 10. Both

FIG. 8. Applied tidal field vs shear response for eccentric
equatorial orbits of spinning black holes. Data in both panels are
for an orbit with p ¼ 8M, e ¼ 0.5, θinc ¼ 0°, and include modes
up to l ¼ 9. The top is for a hole with spin a ¼ 0.3M, and the
bottom is for a hole with spin a ¼ 0.6M. As in Fig. 7, we show
the on-horizon Weyl curvature polarization Cþ [dashed (blue)
curve] and the shear polarization σþ that results [solid (red)
curve]. All data are plotted at θ ¼ 90°, ψ ¼ 0°.

FIG. 9. Applied tidal field vs shear response for eccentric
equatorial orbits of spinning black holes. Data in both panels are
for an orbit with p ¼ 8M, e ¼ 0.5, θinc ¼ 0°, and include modes
up to l ¼ 9. The top is for a hole with spin a ¼ 0.9M, and the
bottom is for a hole with spin a ¼ 0.9999M. As in Figs. 7 and 8,
we show the on-horizon Weyl curvature polarization Cþ [dashed
(blue) curves] and the shear polarization σþ that results [solid
(red) curves]. All data are plotted at θ ¼ 90°, ψ ¼ 0°.
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panels of this figure show data for equatorial orbits with
e ¼ 0.7 about black holes with spin a ¼ 0.9999M. The left
panel shows data from an orbit with p ¼ 10M. The
behavior of Cþ and σþ is quite similar to the cases
discussed previously: Cþ shows a large spike near periapse
passage, with small-scale oscillations before and after; σþ
has a similar shape, offset somewhat in time. (Because this
is an equatorial orbit and we examine these fields on the
equator, C× and σ× are both zero.)
On the right, we show a much stronger field orbit,

p ¼ 3M. The spike at periapse passage has several large-
amplitude oscillations characteristic of the whirling near
periapsis common for large spin, strong-field orbits. This is
essentially the same phenomenon seen in the bottom right
panel on the left-hand side of Fig. 4. The new phenomenon
to which we call attention is the low-amplitude, high-
frequency wiggles that follow periapse passage. We see
roughly seven low-amplitude cycles in σþ between peri-
apse spikes, decaying in amplitude as the system evolves
from one spike to the next. These wiggles are only apparent
in the shear σþ; we have not seen evidence of them in the
tidal field Cþ.
As we complete this analysis, the origin of these low-

amplitude oscillations is a mystery. They do not appear to
be a numerical artifact; we are confident that our harmonic
expansion has converged, as including additional modes
does not change our results beyond the ninth or tenth digit.

The fact that these oscillations only appear in the shear σþ
and not in the tidal field Cþ orΨ0 indicates that they cannot
be related to the hole’s quasinormal modes. As we will
discuss in a moment, the behavior of their decay also argues
against such an explanation. In an earlier version of this
paper, we argued that these wiggles could be understood as
an imprint of the teleological Green’s function discussed in
Sec. II B, with the oscillation frequency related to the
horizon’s spin frequency ΩH, and the decay to the Green’s
function’s decay time κ−1 ¼ 2rþ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða=MÞ2

p
. On

deeper analysis (prompted by our original submission’s
referee report), we have concluded that the data do not
support this explanation either.
For now, rather than offering any hypotheses attempting

to explain these wiggles, we simply lay out the empirical
situation as it stands. Figure 11 zooms in on the region of
Fig. 10 in which this phenomenon is apparent. We also
include data for additional spin values for orbits with this
geometry. The trend we see is that the frequency of the
oscillations is nearly the same for these cases, evolving
slightly as the spin moves toward the extremal limit. The
decay time likewise is nearly constant over this range of
spin. The near constancy of the decay time appears to rule
out an explanation for these wiggles based on black hole
quasinormal modes or on the Green’s function (2.39). Both
of these explanations would require the decay time to
become dramatically longer as a → M. The form of the

FIG. 10. Detailed study of the horizon’s shear response σþ [solid (red) curves] given a driving tidal field Cþ [dashed (blue) curves] for
the case of very rapid spin, a ¼ 0.9999M. In both panels, we consider equatorial (θinc ¼ 0°) orbits with eccentricity e ¼ 0.7, and include
all modes up to l ¼ 9. In the left-hand panel, the orbit has semilatus rectum p ¼ 10M; in the right, p ¼ 3M. For the case p ¼ 10M, no
particularly noteworthy feature is evident. This behavior is qualitatively similar to the shear response that we see across a wide range of
orbits: σ has a shape similar to C but is offset as a function of time. However, for high spins and strong-field orbits, new behavior
emerges: low-amplitude, high-frequency wiggles can be seen in the shear between the high-amplitude “bursts” corresponding to the
orbit’s periapse passage. Notice that these wiggles are not present in the tidal field, only in the shear response.
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teleological Green’s function, for example, would lead us to
expect the decay time to increase by a factor of 10 as the
spin changes from a ¼ 0.9999M to a ¼ 0.999999M. The
lack of such an increase points to some other mechanism.
By fitting and subtracting a quadratic to remove the

secular trend in the data shown in Fig. 11, we can more
accurately locate the position of the peaks and estimate the
frequency associated with the wiggles. Assuming that the
phase of these wiggles follows the form

Φwiggle ¼ Ωwigglevþ δΦ ð5:2Þ

and requiring that the phase of the peaks lie on the line

ΦwiggleðpeakÞ ¼ 2πn ð5:3Þ

with n integer, we can estimate the wiggle frequency that
best fits our data. The results are summarized in Table I. We
present the best-fit frequencies vs both the spin a and a
parameter ϵ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ða=MÞ2
p

, which characterizes the
deviation of the spacetime from the extremal Kerr.
We find that a linear fit in ϵ describes our best-fit

frequencies quite well. Performing a least-squares fit of our
data, we find

MΩwiggle ¼ ð0.5786� 0.0001Þ þ ð0.1288� 0.0032Þϵ:
ð5:4Þ

Although the goodness of this fit with ϵ is intriguing, we
cannot yet claim any understanding for what this might
signify. In Table I, we include the geodesic frequencies Ωϕ

and Ωr for the orbits used in Fig. 11, as well as the horizon
frequency ΩH. As an exercise in arithmetic, we can find no
combination of these frequencies that produces the values
we find for Ωwiggle. Absent any compelling physical model,
any combination we did find would arguably be no more
useful than numerology.
For now, we leave this phenomenon as an intriguing

empirical finding of this analysis and hope that additional
work may explain it in the future.

VI. HORIZON DYNAMICS III:
HORIZON EMBEDDINGS

In this section, we examine dynamical horizon embed-
dings for several representative orbits. Our goal will be to
show how the horizon behaves as a function of the orbit’s
behavior, so we will show a sequence of figures that show
both the tidally distorted horizon and the smaller member
of the binary. As discussed at length in paper I, there is
substantial ambiguity in such a plot, associated with the fact
that the horizon and the orbit are at different positions in a
curved spacetime. Comparing the horizon and the orbit
requires that we carefully define exactly what is shown.
Following the choices that we made in paper I, our plots are
all shown on a slice of constant ingoing time v; this is
equivalent to what we called the “instantaneous map” in
paper I.
One might wonder why, given this ambiguity, we choose

to present our data using these embedding diagrams.
Indeed, there are multiple ways that one can present data
representing the geometry of distorted black holes. For
example, one could make a color map representing the
scalar curvature Rð1Þ

H or a color map representing the phase

FIG. 11. A zoom on the high-frequency wiggles shown in the
right-hand panel of Fig. 10. Along with the a ¼ 0.9999M case
shown previously, we include data describing wiggles for orbits
with the same values of p, e, and θinc, but for spins a ¼ 0.9995M,
a ¼ 0.99999M, and a ¼ 0.999999M. As described in the text,
the frequency associated with the wiggles (which we have not
succeeded in relating to other frequencies in the problem)
decreases slightly as a function of spin. The rate at which the
amplitude decays does not vary significantly with spin. We have
not been able to come up with a satisfactory explanation for the
phenomenon of these wiggles.

TABLE I. The best-fit frequency Ωwiggle characterizing the
high-frequency oscillations shown in Fig. 11. We present this
frequency as a function of both the black hole spin a=M and the
parameter ϵ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ða=MÞ2
p

which characterizes deviation from
extremality. For comparison, we show the hole’s spin frequency
ΩH for these spins and the orbit’s geodesic frequencies Ωϕ

and Ωr. We see no obvious physically motivated way to connect
Ωwiggle to these other frequencies.

a=M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða=MÞ2

p
MΩwiggle MΩH MΩϕ MΩr

0.9995 0.03162 0.5826 0.4844 0.0988 0.0399
0.9999 0.01414 0.5805 0.4930 0.0988 0.0399
0.99999 0.004572 0.5792 0.4978 0.0988 0.0399
0.999999 0.001414 0.5787 0.4993 0.0988 0.0399
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between the on-horizon tide Ψ0 and the resulting shear σ.
(Note that both Ψ0 and σ are spin-weight-2 quantities and
so cannot be simply represented on a surface—both, for
example, are multiply valued at the poles, θ ¼ 0 and
θ ¼ π.) Such representations have the advantage of pre-
senting quantities that are less ambiguous.
In the end, we have chosen to use embeddings primarily

for aesthetic reasons. One of our goals was to develop
graphics which demonstrate the extent to which a black
hole’s shape is distorted by tides from its companion.
Although one must be careful in interpreting this shape,
embeddings provide a compelling picture of this tidal shape
distortion. We supplement the shape with a color map
which codes the horizon’s distortion from the shape it
would have in the absence of a binary companion. In all of
the figures which follow, surfaces colored green are
essentially undistorted from the embedding of an isolated
black hole; those colored red have larger radius than that of
an isolated black hole; and those colored blue have smaller
radius. We find that color maps of other quantities, such as
the scalar curvature Rð1Þ

H , are visually quite similar to the
color maps we associate with the embedding. For our
purposes, horizon embeddings, though somewhat arbitrary,
convey exactly the information that we hoped to present.
Using the tools we have developed here and in paper I, it is
straightforward to modify this analysis to focus upon other
measures of horizon distortion.
As in paper I, a major shortcoming of our use of

embeddings is that we embed the horizon in a Euclidean
three-dimensional space. This means we are confined to
spin parameter a=M ≤

ffiffiffi
3

p
=2; for faster spins, even an

undistorted horizon cannot be embedded in this geometry.
As mentioned previously, work in progress indicates that
embedding the horizon in the globally hyperbolic spaceH3,
following Ref. [33], is an elegant way to get around this
restriction.
The cases we examine in detail are associated with

Figs. 12–15. These figures are each a series of snapshots
taken from animations showing the combined orbital and
embedded horizon dynamics. These animations are avail-
able in Ref. [28]. Readers may find it useful to examine
these visualizations in concert with the text pre-
sented below.

A. Embeddings from inclined circular orbits

We begin with an especially simple case: an inclined,
circular orbit of a Schwarzschild black hole. Figure 12
shows an embedding of the distorted horizon for the case of
a circular orbit with radius r ¼ 6M inclined at θinc ¼ 60°.
We show 12 frames illustrating the horizon embedding and
particle motion for this orbit; the frames are evenly spaced
over nearly one orbital period (Torb ¼ 92.3M for a circular
orbit at r ¼ 6M for Schwarzschild). Axes indicate the
location of the equatorial plane; they are static in this
sequence, since the horizon of a Schwarzschild black hole

is static. The bottom two panels of this figure show the
angular position of the horizon’s bulge [defined as the
coordinate for which the embedding radius is largest;
dotted (blue) curves] and the orbiting body [solid (red)
curve], both as functions of ingoing time v. The bottom left
panel shows cos θðvÞ; the bottom right shows ψðvÞ −Ωϕv.
(We subtract Ωϕv to remove an uninteresting overall
secular growth in ψ over an orbit.)
As should be expected following Sec. IV, the results we

see in Fig. 12 are consistent with the fact that the physics of
an inclined orbit is identical to that of an equatorial orbit in
the a ¼ 0 limit. In particular, the embedded horizon is
identical to that shown in the rorb ¼ 6M panel of paper I’s
Fig. 3, but with the distortion centered on a plane that is
inclined at θinc ¼ 60° to our chosen equator. The offset
between the orbit and the horizon’s bulge is constant over
the orbit, with the bulge leading the orbiting body by a
fixed amount; this can be seen particularly clearly in an
animation of the horizon and orbit dynamics and in the plot
of cos θðvÞ. As we have previously discussed, this can be
understood as due to the spherical symmetry of the
Schwarzschild spacetime—the magnitude of the tidal field
is constant over an orbit. In paper I, the lead was purely
axial (i.e., purely in the direction of ψ); here, it is a mixture
of the axial and polar angles ψ and θ. As discussed
extensively in paper I, bulge leading orbit is exactly what
we expect for circular Schwarzschild orbits.
We next consider an inclined, circular orbit of a Kerr

black hole. Circular Kerr orbits are defined as those for
which the Boyer-Lindquist coordinate radius r is constant.
Although they are therefore closely tied to a particular
coordinate system, they nonetheless are a well-defined and
well-studied subset of Kerr orbits. It has been shown that
the eccentricity e of Kerr orbits [defined in Eq. (2.4)]
decreases over all but the most strong-field orbits due to
gravitational-wave driven backreaction [34,35] and that
orbits with e ¼ 0 remain at e ¼ 0 [36–38]. As such, we
expect that gravitational-wave emission will drive large
mass-ratio binaries toward the constant Boyer-Lindquist
radius circular limit.
Figure 13 is much like Fig. 12, but for an orbit of a black

hole with spin parameter a ¼ 0.6M. The orbit again has
constant radius r ¼ 6M and is inclined at θinc ¼ 60°. We
show 12 frames illustrating the horizon and particle motion
for this orbit, with frames evenly spaced over nearly one
orbital period.4 In this sequence, the axes (which indicate
the equatorial plane) are tied to the horizon’s spin, which
completes a full rotation in a period TH¼2π=ΩH¼37.7M.

4“Orbital period” is somewhat ambiguous for this orbit: the
period to complete a single polar oscillation is Tθ ¼ 98.7M, and
the period to complete a rotation of 2π radians in the axial
direction is Tϕ ¼ 91.5M. These two periods differ only by ∼10%,
so our statement that we show nearly one period is accurate no
matter which notion of period we use.

STEPHEN O’SULLIVAN and SCOTT A. HUGHES PHYSICAL REVIEW D 94, 044057 (2016)

044057-16



FIG. 12. Top: Snapshots of an animation depicting an embedding of the distorted horizon for a circular inclined orbit of a
Schwarzschild black hole (a ¼ 0). Bottom: Angular position of the horizon’s bulge [dotted (blue) curve] vs the angular position of the
orbiting body [solid (red) curve]. The orbit is at radius r ¼ 6M, inclined at θinc ¼ 60° to our chosen equatorial plane. The axes shown in
these snapshots indicate the hole’s equatorial plane; we have placed the camera slightly above this plane in order to illustrate the hole’s
bulge geometry. The orbiting body is indicated by the small moon (dark blue in the color plot) located near one of the horizon bulges.
The small body’s orbit begins on the side of the black hole near the camera, descends down through the equatorial plane (crossing just
after v ¼ 7.8M), sweeps behind the far side of the hole (moving from right to left as plotted), then comes up through the equatorial plane
(crossing just after v ¼ 54.6M) to pass in front of the side near the camera again. The animation from which these stills are taken is
available in Ref. [28]. The bottom two panels show the angular position of the bulge and the orbit, illustrating the polar angle (cos θ, left)
and the axial angle (ψ , right). The horizon’s bulge moves in lockstep with the orbiting body, always leading the orbit by a small,
constant angle.
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FIG. 13. Identical to Fig. 12, except that the black hole shown here is spinning with Kerr parameter a ¼ 0.6M. As in Fig. 12, the axes
indicate the hole’s equatorial plane. In this plot, these axes rotate with the event horizon at frequency ΩH ¼ a=2Mrþ ¼ 1=6M
(corresponding to a rotation period TH ¼ 2π=ΩH ¼ 37.7M). In this sequence, the orbiting body (small sphere, dark blue in color) begins
near the face close to the camera on the lower right-hand side of the black hole. It then sweeps up, crossing the equator soon after
v ¼ 16.13M; passes behind the black hole; and then descends downward again, crossing the equator soon after v ¼ 64.5M. The
horizon’s distortions in this case do not move in lockstep with the orbiting body. Instead, the horizon exhibits mild shape variations. This
is because the hole is not spherically symmetric, and so the tidal field acting on the horizon varies slightly over the orbit. Notice that the
horizon’s bulge leads the angular position of the orbit in the polar (θ) direction but lags its position in the axial (ψ ) direction; this can be
seen in the snapshots but is especially clear in the angle vs time plots shown in the bottom two panels. (We subtract Ωϕv from ψ to
remove the uninteresting secular growth in this angle over a single orbit.) The polar behavior is much like what we see for Schwarzschild
or very slow rotation; the axial behavior is about the same as the behavior we saw for equatorial circular orbits in paper I. The animation
from which these stills are taken is available in Ref. [28].
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The bottom two panels of Fig. 13 compare cos θ and ψ for
the horizon’s bulge and the orbit’s position.
Some new horizon dynamics begin to appear in Fig. 13.

Over the course of an orbit, the tidal field arising from the
small body is not of constant magnitude since the spacetime
is no longer spherically symmetric. As a consequence, the
shape of the embedded horizon varies over an orbit. There
is also interesting new behavior associated with the bulge-
orbit offset. As discussed at length in paper I (and briefly in
Sec. I), for circular, equatorial orbits of rapidly spinning
black holes, the horizon bulge tends to lag the position of
the orbiting body on a constant v time slice. Let us call this
“Kerr-like” bulge-orbit behavior, and let us call the oppo-
site behavior (bulge leading the orbit on a constant v time
slice) “Schwarzschild-like.” What we see in Fig. 13 is that
the bulge behaves in a Kerr-like manner in the ψ-direction
but behaves in a Schwarzschild-like manner in the θ-
direction. This can be seen by carefully examining the
sequence of stills (and the animation from which these stills
are taken) but is especially clear in the bottom two panels
showing the angular position of the orbit and of the
horizon’s bulge.
We have found that this bulge-orbit behavior

(Schwarzschild-like with respect to the θ direction, Kerr-
like with respect to the ψ direction) is quite generic. It is
clear in all the circular, inclined cases we have examined
and appears in inclined eccentric examples as well. This
behavior arises from the fact that the black hole’s spin picks
out the ψ direction as special. The hole’s rotation plus the
horizon’s teleological nature mixes time and axial angle; a
tide that would produce a bulge on a Schwarzschild black
hole at ðθmax;ψmaxÞ will produce a bulge on a Kerr black
hole at roughly ðθmax;ψmax − δψÞ, where δψ is (at leading
order) proportional to the black hole’s spin parameter a.

B. Horizon embeddings from eccentric orbits

We conclude our analysis by examining horizon
embeddings for highly eccentric black hole orbits. The
key point to bear in mind here is that, at leading order, the
tidal field varies with orbital separation as 1=r3. As such,
the tidal field from an orbit with eccentricity e varies by
ð1þ eÞ3=ð1 − eÞ3 over the course of an orbit. This factor
grows very quickly with e. The two cases we examine in
detail have e ¼ 0.7, for which the tide varies by a factor of
about 180. This means that the hole can be essentially
unaffected by its companion for much of the orbit but be
highly distorted as the smaller body passes through
periapsis.
Figure 14 shows this behavior quite clearly; see Ref. [28]

for the animation from which these stills were taken. The
large black hole used here has spin a ¼ 0.85M, nearly the
largest value for which a globally Euclidean embedding
exists. The orbit is equatorial (θinc ¼ 0°), quite strong
field (p ¼ 4M), and highly eccentric (e ¼ 0.7). We only
show a portion of a full radial cycle, from r≃ rmax=2 to

rmin ¼ p=ð1þ eÞ back to r≃ rmax=2. As in Fig. 13, the
axes indicating the equatorial plane rotate with the horizon.
For a ¼ 0.85M, the period of this rotation is TH ¼ 22.6M.
We sample our animation every 5.6M. By coincidence,
this is nearly TH=4, so the axes are sampled in a nearly
stroboscopic fashion and appear to be stationary.
The embedded horizon of an undistorted a ¼ 0.85M

black hole is an oblate ellipsoid that is nearly flat at the
poles. This geometry can be seen in the first and last few
frames shown in Fig. 14—the tidal field is so weak in these
frames5 (for which r ∼ rmax=2) that the horizon is not
noticeably distorted by the companion. The distortion
becomes quite strong as the orbital approaches periapsis;
we see the horizon beginning to change shape at
v ¼ 11.03M, and it is highly distorted over the range
22.06M ≤ v ≤ 33.10M. At its peak, the horizon’s distor-
tion is similar to the most distorted horizon embedding
shown in the right-hand panel of paper I’s Fig. 7. Notice the
Kerr-like bulge-orbit behavior; the bulge’s position in ψ
lags the orbit in all cases. This is quite clear in the v ¼
27.58M panel and in the plot of ψðvÞ. (Since the orbit is
equatorial, there is no lag or lead associated with θ.)
Notice also the high-frequency, low-amplitude wiggles

in the ψ position of the horizon’s bulge at v≃ 40M and
v≃ 260M. These are reminiscent of the high-spin features
that we discussed in Sec. V B. In this case, we do not see
such strong wiggles in the shear σ. It is plausible that the
wiggles are present in σ, but at such low amplitude that they
cannot be cleanly pulled out of that data; it could be that
constructing other quantities associated with the horizon

distortion, such as Rð1Þ
H and the embedding surface, makes

the wiggles stand out even more strongly. Similar behavior
is seen near periapsis for the generic case we discuss next
(cf. lower right-hand panel of Fig. 15). We hope to study
this further in future work.
Figure 15 shows the embedding for a horizon distorted

by tides from a generic orbit. We again consider spin a ¼
0.85M and a very strong-field (p ¼ 4M), highly eccentric
(e ¼ 0.7) orbit, but we now take the orbit to be inclined at
θinc ¼ 30°. The set of frames we show again corresponds to
motion from roughly rmax=2 to rmin and back to nearly
rmax=2. We have moved the “camera” in this sequence to a
point slightly above the equatorial plane in order to more
clearly see the orbit’s polar motion and the distortions
associated with motion above and below this plane.
The embedding dynamics shown in Fig. 15 combines the

features found for inclined circular orbits with those found
for eccentric equatorial orbits. In particular, notice that the
embedded horizon geometry is practically undistorted in
the first frame, as well as the last two or so frames. This

5This is why we show only a fraction of an orbit here. A full
radial cycle of this orbit takes Tr ¼ 229.8M, with the tide having
a large impact only for r≃ rmin. The hole is practically undis-
torted for the majority of the orbit.

STRONG-FIELD TIDAL …. II. HORIZON DYNAMICS … PHYSICAL REVIEW D 94, 044057 (2016)

044057-19



FIG. 14. Snapshots of an animation depicting an embedding of the distorted horizon for an equatorial eccentric orbit of a rapidly spinning
Kerr black hole (a ¼ 0.85M). The spin is nearly the largest value for which a Euclidean embedding of the undistorted horizon exists; the
undistorted embedding geometry at this spin is of an axially symmetric oblate spheroid that is nearly flat at its poles. The orbit has semilatus
rectump ¼ 4M and eccentricity e ¼ 0.7, so its orbital radius varies from rmax ¼ 13.33M to rmin ¼ 2.34M. As in Fig. 13, the axes indicating
the equatorial plane rotate at the horizon frequencyΩH ¼ a=2Mrþ, corresponding to period TH ¼ 22.6M. The axes complete a quarter turn
every 5.6M; this is very close to the cadencewith which we sample this animation, so the axes appear nearly stationary in this sequence. The
orbiting body is shown moving from roughly rmax=2 to rmin and back out to roughly rmax=2. For the first and last few stills shown here, the
embedded horizon is nearly identical to that of an undistorted Kerr black hole. The embedded horizon by contrast is highly distorted in stills
corresponding to r≃ rmin (16.55M ≤ v ≤ 44.13M). This reflects the fact that the tidal field varies at leading order as 1=r3, which changes by
a factor ð1þ eÞ3=ð1 − eÞ3 over an eccentric orbit. The tidal field thus varies by a factor∼180 for this orbit; even over this limited segment (for
which the orbit only goes out to about rmax=2), the tidal field varies by∼180=8≃ 22. The horizon bulge lags the particle’s position inψ at all
times, consistent with the behavior seen and discussed in paper I for rapidly rotating Kerr black holes. (The θ behavior is uninteresting, since
this is an equatorial orbit.) The high-frequencywiggles in theψ-position of the bulge near v≃ 40M and v≃ 260M are perhaps related to the
high-spin phenomenon discussed in Sec. V B. The animation from which these stills are taken is available in Ref. [28].
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FIG. 15. Snapshots of an animation depicting an embedding of the distorted horizon for a generic orbit of a rapidly spinning Kerr black
hole (a ¼ 0.85M). The system is nearly identical to that used in Fig. 14, but we have inclined the orbit to θinc ¼ 30°. The orbiting body is
again shown moving from roughly rmax=2 to rmin and back out to roughly rmax=2. The horizon’s dynamics here shares features with both
the equatorial case depicted in Fig. 14 and the inclined cases in Figs. 12 and 13. In particular, the horizon varies from nearly undistorted
when r≃ rmax=2 (roughly the first and last stills in this sequence) to highly distorted when r≃ rmin (stills from 28.52M ≤ v ≤ 57.15M),
in a manner qualitatively similar to the eccentric equatorial case. However, the horizon bulge flexes above and below the plane as the
orbital motion oscillates in the polar direction, very much like the circular inclined cases. The panels illustrating cos θ and ψ vs time
show that the bulge lags the body in ψ . At periapsis, the bulge lags the body the body in θ. This is exactly the same offset behavior that
was seen in the circular inclined Kerr case shown in Fig. 13. (When the orbiting body is far from periapsis, the location of the bulge is
difficult to determine accurately; our code returns θ ¼ 90° for the bulge’s position, reflecting the oblate spheroid shape of the undistorted
black hole.) The animation from which these stills are taken is available in Ref. [28].
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again reflects the large range of the tidal field that acts on
the horizon for eccentric orbits; when r≳ rmax=2, the
horizon’s distortions are so mild that they cannot be seen
in these graphics. A full radial cycle of this orbit takes
Tr ¼ 255.1M, so the horizon is practically undistorted for a
large fraction of this orbit. As the orbit oscillates above and
below the equatorial plane, the horizon’s bulge likewise
oscillates above and below the plane. The bulge lags the
orbit’s ψ position but leads6 its θ position. This is basically
the same behavior that we saw for the inclined circular Kerr
orbit (Fig. 13)—Kerr-like in the axial direction and
Schwarzschild-like in the polar direction. Having already
examined the equatorial and the circular limits in detail,
there are no surprises in Fig. 15. The interesting behaviors
seen in the previously considered cases combine in the
generic case in a very logical way.

VII. CONCLUSIONS

In this paper, we have taken the tools that we introduced
in paper I for studying event horizons that are distorted by a
strong-field (but small mass ratio) binary companion and
have applied them to eccentric and inclined binaries. For
such orbits, the on-horizon tidal field varies significantly
over the course of an orbit, leading to dynamical event
horizon behavior. We have studied these horizon dynamics
with multiple measures, examining the phase offset
between the applied tide and the resulting shear to the
horizons as well as examining embeddings of the distorted
horizons in a globally Euclidean 3-space.
Many of the resultswehave found follow in a fairly natural

and logical way from results that were shown in paper I. In
particular,we find that tidal bulges tend to lead the position of
the orbiting body for very slow black hole spin but lag the
orbit for fast black hole spin. This is exactly the teleological
tidal behavior that was seen with the simpler orbits we
examined in paper I. We find an interesting variant of this
behavior in the present analysis by looking at orbits that are
inclined with respect to the hole’s equatorial plane: the bulge
tends to lead the orbit in the θ direction (Schwarzschild-like
behavior) but lags the orbit for rapid spin in the ψ direction
(Kerr-like behavior). The fact that the bulge exhibits different
behavior with respect to the two angles is not surprising,
since the hole rotates in the direction of ψ .
One interesting new behavior we have found is the low-

amplitude, high-frequency wiggles which appear in the
shear σ associated with the distortion of nearly extremal
(a ≳ 0.9995M) black holes. A perhaps related low-
amplitude, high-frequency wiggle is apparent in the horizon

embedding of more slowly rotating (a ¼ 0.85M) black
holes. We have not succeeded in constructing a compelling
explanation for these features. Althoughwe can estimate the
frequency of the wiggles fairly well, we cannot link them to
other frequencies in the problem, and the rate at which the
oscillations decaywith time does not appear to relate to other
time scales in the problem, such as the correlation time κ−1

associated with the Green function which connects to the
tide to the shear. We hope that future work will elucidate the
nature of this interesting phenomenon.

ACKNOWLEDGMENTS

We are grateful to Eric Poisson for many useful dis-
cussions regarding tidally distorted black holes and to
Daniel Kennefick for discussions regarding the connection
between tidal coupling and superradiant Teukolsky equa-
tion modes, which did much to inspire this analysis. We
also thank this paper’s referee, whose criticisms led us to
expand much of our discussion and to significantly re-
examine some of the claims and analyses we presented in a
previous version of this paper. Our work on this problem
has been supported by NSF Grant No. PHY-1403261.

APPENDIX: NEWMAN-PENROSE FIELDS
AND ON-HORIZON TENSORS

In this paper, we work with quantities that are based on
Newman-Penrose fields such as the complex curvature
scalarΨ0. Other papers, notably VPM11, use tensors which
live in the manifold defined by the black hole’s event
horizon. There is a simple one-to-one correspondence
between these two representations for the quantities which
are important for our analysis. We develop this correspon-
dence in this Appendix.
We begin by defining some notation and background.

As elsewhere in this paper, we use ingoing Kerr coordinates
ðv; r; θ;ψÞ here. Components of tensors in the two-
dimensional manifold of the black hole’s event horizon
are labeled with upper-case Latin indices; these compo-
nents range over the set ðθ;ψÞ. (As elsewhere, Greek
indices denote tensors in four-dimensional spacetime.)
Define the projection tensor PA

α, the components of which
in ingoing Kerr coordinates are given by the matrix

PA
α ≐

�
0 0 1 0

0 0 0 1

�
; ðA1Þ

the components of the inverse tensor Pβ
B are the transpose

of this. When this operates on tensors at r ¼ rþ, it projects
quantities onto a slice of constant v on the horizon. At a
given moment on the horizon, the spacetime’s line element
(2.1) becomes

ds2 ¼ gABdxAdxB ¼ Σþdθ2 þ
4M2r2þsin2θ

Σþ
dψ2; ðA2Þ

6The θ behavior of the bulge is only clear when the orbit is at
periapsis. When the orbit is far from periapsis, the tidal
deformation is gentle, and our algorithm for determining the
position of the bulge becomes inaccurate due to discretization
errors. The algorithm returns θbulge ¼ 90° in this case, corre-
sponding to the largest radius of the undistorted Kerr embedding.
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where Σþ ¼ r2þ þ a2 cos2 θ. Finally, we will need the
Newman-Penrose null legs in the Hawking-Hartle repre-
sentation [10,23]; these are given in Eqs. (2.8)–(2.10). For
r → rþ,

lμ → ½1; 0; 0; aΩH�; ðA3Þ

mμ →
1ffiffiffi

2
p ðrþ þ ia cos θÞ ½0; 0; 1; iðcsc θ − aΩH sin θÞ�:

ðA4Þ

(We will not need nμ.) At r ¼ rþ, lμ is tangent to the null
generators of an unperturbed Kerr hole’s horizon. Let us
manipulate mμðrþÞ: we write

mAðrþÞ≡mμðrþÞPA
μ ¼

1ffiffiffi
2

p ðαA þ iβAÞ; ðA5Þ

where

αA ≐ 1

Σþ
½rþ; a cos θðcsc θ − aΩH sin θÞ�; ðA6Þ

βA ≐ 1

Σþ
½−a cos θ; rþðcsc θ − aΩH sin θÞ�: ðA7Þ

Notice that gABαAαB ¼ gABβAβB ¼ 1, gABαAβB ¼ 0.
The intrinsic geometry of the horizon is governed by the

Weyl curvature. In our analysis, we use the Newman-
Penrose scalar Ψ0, which is given by

Ψ0 ¼ −Cμανβlμmαlνmβ: ðA8Þ

Our focus is on this quantity on the horizon. Let us define

CAB ≡ ðCμανβlμPα
AlνPβ

BÞrþ ; ðA9Þ

where the subscript rþ means that all the quantities in
parentheses are to be evaluated at r ¼ rþ. This definition is
identical to that in VPM11 [see the text following their
Eq. (2.30)]. Using this, on the horizon, we have

Ψ0 ¼ −CABmAmB

¼ −
1

2
CABðαAαB − βAβB þ iαAβB þ iβAαBÞ

≡ −CABðeABþ þ ieAB× Þ: ðA10Þ
On the second line, we used Eq. (A5); on the third, we
introduced the polarization tensors

eABþ ¼ 1

2
ðαAαB − βAβBÞ; ðA11Þ

eAB× ¼ 1

2
ðαAβB þ βAαBÞ: ðA12Þ

We further simplify Eq. (A10) by defining the Weyl
polarization components,

Cþ ≡ CABeABþ ; ðA13Þ

C× ≡ CABeAB× ; ðA14Þ

yielding

Ψ0 ¼ −ðCþ þ iC×Þ: ðA15Þ

In other words, the on-horizon Weyl polarizations are
simply the real and imaginary parts of Ψ0 on the horizon,
modulo an overall sign.
Lowering indices on the polarization tensors,

eþAB ¼ gACgBDeCDþ ; ðA16Þ

e×AB ¼ gACgBDeCD× ; ðA17Þ

allows us to construct the on-horizon Weyl tensor from the
polarization components:

CAB ¼ CþeþAB þ C×e×AB: ðA18Þ

Another important Newman-Penrose quantity which we
can analyze in this manner is the spin coefficient

σ ¼ mμmν∇μlν: ðA19Þ

At r ¼ rþ, this describes the shear of the horizon’s
generators. Because mv ¼ mr ¼ 0 at r ¼ rþ, we have

σðrþÞ ¼ ðmAmB∇AlBÞrþ : ðA20Þ

Define

σAB ¼ 1

2
ð∇AlB þ∇BlAÞrþ : ðA21Þ

Note that σAB is trace free since ∇AlA ¼ 0 on the horizon.
This definition of the shear tensor for the horizon’s null
generators is therefore equivalent to that used in VPM11
[compare their Eqs. (2.11) and (2.15)]. Using Eqs. (A5),
(A16), and (A17), we find

σðrþÞ ¼ σABðeABþ þ ieAB× Þ
¼ σþ þ iσ×: ðA22Þ

The shear polarizations written here were introduced by
VPM11; they are defined in a manner analogous to Cþ and
C× and are just the real and the imaginary parts of the
Newman-Penrose quantity σ.
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