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A universal characteristic of mesoscale turbulence in active suspensions is the emergence of a typical vortex
length scale, distinctly different from the scale invariance of turbulent high-Reynolds number flows. Collective
length-scale selection has been observed in bacterial fluids, endothelial tissue, and active colloids, yet the physical
origins of this phenomenon remain elusive. Here, we systematically derive an effective fourth-order field theory
from a generic microscopic model that allows us to predict the typical vortex size in microswimmer suspensions.
Building on a self-consistent closure condition, the derivation shows that the vortex length scale is determined
by the competition between local alignment forces, rotational diffusion, and intermediate-range hydrodynamic
interactions. Vortex structures found in simulations of the theory agree with recent measurements in Bacillus
subtilis suspensions. Moreover, our approach yields an effective viscosity enhancement (reduction), as reported
experimentally for puller (pusher) microorganisms.
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A universal feature shared by many living systems is
the emergence of characteristic length and time scales that
arise from the nonequilibrium dynamics of their microscopic
constituents. Examples range from circadian oscillations in
individual cells [1] to multicellular gene-expression patterns
in embryos [2] and vortex structures in microbial suspensions,
endothelial tissue, and active colloids [3–6]. Yet, despite
their broad biological relevance, it has proved difficult to
predict quantitatively how such emergent scales arise from
the underlying chemical or physical parameters. In the past
decade, bacterial and other active suspensions [4,5,7] have
emerged as important biophysical model systems that can
help bridge the gap between large-scale spatiotemporal pattern
formation and microscopic nonequilibrium dynamics [8]. At
high densities, bacterial fluids form coherent vortex struc-
tures, spanning several cell lengths in diameter [5,7,9] and
persisting for several seconds [9] or even minutes [10–12].
Although a number of insightful theoretical models have
been proposed [13–18], a theory connecting microswimmer
properties to the experimentally observed vortex patterns has
been lacking.

Here, we present such a theory by drawing guidance from
the recent observation [5,9] that an effective fourth-order
continuum model can provide a quantitative phenomenolog-
ical description of dense bacterial suspensions [19]. This
model, which combines the seminal Toner-Tu description of
flocking [20] with the Swift-Hohenberg equation from pattern
formation [21], describes the effective bacterial velocity field
w(t,x) by

(∂t − λ0w · ∇)w = −∇q + λ1∇|w|2 + αw − β|w|2w

+�0∇2w − �2(∇2)2w, (1)

where the bacterial pressure field q(t,x) accounts for incom-
pressibility, ∇ · w = 0. Although a direct fit of Eq. (1) can
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reproduce the key statistical features of experimental data for
dense quasi-two-dimensional (2D) [5] and three-dimensional
(3D) [9] B. subtilis suspensions, the connection between the
phenomenological parameters (λ0,λ1,α,β,�0,�2) and individ-
ual bacterial properties has remained unknown. Below, we
systematically derive a generalized variant of Eq. (1) directly
from a generic model for polar microswimmers. The derivation
specifies each parameter in the continuum theory in terms of
microscopic swimmer parameters and yields direct theoretical
predictions for the typical vortex size and effective viscosity
in dense microswimmer suspensions. Compared with previous
studies, our approach differs in that we deduce a self-consistent
closure condition that accounts for shear-induced tumbling
and active stress up to fourth order. Both contributions are
important to explain the length-scale selection. We present
a bifurcation analysis of the resulting fourth-order model
and discuss numerical results, demonstrating satisfactory
agreement with available experimental data for quasi-2D
suspensions [22].

Microscopic model. We consider microswimmers moving
in an incompressible Newtonian fluid at low Reynolds number,
described by the Stokes equations

−∇p + μ∇2u + ∇ · σ = 0, ∇ · u = 0. (2)

Here, u(t,x) is the fluid velocity, p(t,x) the hydrodynamic
pressure, and μ the effective dynamic viscosity. The active
stress tensor σ represents the forcing of the fluid by the
swimmers [8,16,17]. For dense suspensions, the bulk viscosity
μ contains contributions from the solvent as well as passive
and active contributions from the microswimmers [23–28].
For simplicity, we assume that the passive contribution is
approximately given by the Batchelor-Einstein relation for
spherical colloids, μ = μ0(1 + k1φ + k3φ

2), where μ0 is the
“bare” solvent viscosity, φ is the volume fraction, and ki are
positive constants [23,29–31]. The active contribution of the
linear part will be derived below. In quasi-2D Hele-Shaw flow,
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FIG. 1. Schematic of a bacterial microswimmer such as B.
subtilis. The center of the hydrodynamic stress X (green) is located in
front of the force dipole center (red) [33]. br and bf are the distances
between the center X and acting forces. The drag force defines the
swimmer orientation N .

an effective boundary-friction term −ν0u is added [32] on the
left-hand side of the Stokes equation (2).

Focusing on time scales larger than a typical stroke period,
we describe microswimmers as force dipoles of strength
f0 [33] (Fig. 1). Assuming σ = 1, . . . ,M identical swimmers,
their time-dependent positions Xσ (t) and orientation unit
vectors Nσ (t) are determined by the overdamped Langevin
equations [34,35]

Ẋσ = v0Nσ + u(t,Xσ ) +
√

2Dξσ , (3)

Ṅσ = �σ ·
[
∇u · Nσ − ∇Nσ 
 + 1√

τ
ησ

]
, (4)

where overdots indicate time derivatives. The translational
dynamics (3) is caused by self-swimming at speed v0,
hydrodynamic advection u(t,Xσ ), and translational Brownian
motion of strength D. The random functions ξσ (t) and
ησ (t) denote independent δ-correlated Gaussian white noise.
The orientational dynamics (4), interpreted as a Stratonovich
stochastic differential equation [36] with rotational relaxation
time τ , conserves the length of the orientation vector Nσ

by virtue of the projector �σ = I − Nσ Nσ , where I is the
unit matrix. The ∇u term accounts for reorientation of
elongated particles by flow gradients in the limit of large aspect
ratios [37,38]. In dense suspensions of fast-swimming bacteria,
steric collisions are negligible in the translation dynamics but
may contribute significantly to reorientation. We therefore
include a polar reorientation interaction potential 
(Nσ ) =
−g

∑
|Xσ −Xν |�ε Nσ · Nν with a cutoff length ε and alignment

strength g = g0v0/2 in Eq. (4), reflecting the experimental
observation of locally aligned bacterial jets [5,6,39]. In partic-
ular, we assume that kinematically induced polar interactions
dominate over nematic ordering [40], the latter representing
the dominant alignment force in the passive limit v0 → 0. It is
worth emphasizing that the assumed dominance of effectively
polar alignment interactions is essential and distinguishes our
model from previous studies of active nematics [15,41] and
nematically interacting microswimmers [35].

Although Eqs. (3) and (4) as well as the main steps
of the subsequent derivation remain valid for 3D bulk
suspensions, we focus, for clarity, on free-standing quasi-2D
films [22,42,43] from now on.

Fokker-Planck dynamics. To derive a continuum model
from Eqs. (2)–(4), we consider the one-particle distribution
P(t,x,n) = M−1 ∑M

σ=1〈δ(x − Xσ )δ(n − Nσ )〉, where 〈 · 〉 de-
notes an average over the Gaussian white noise {ξσ (t),ησ (t)}.
The evolution of P(t,x,n) is governed by the Fokker-Planck

equation [36,44] (see the Supplemental Material [45])

∂tP = −∇ · (v0n + u)P + D∇2P − ∇n · � · (∇u) · n P

+ 1

τ
∇n · nP + 1

2τ
∇n∇n : (� · �T )P + C(2)[
].

(5)

Alignment interactions enter via the collision integral

C(2)[
] = ∇n ·
∫

dn′
∫

ε

dx′ � · [∇n
(n,n′)]P (2), (6)

which involves the two-particle distribution function
P (2)(t,x,n; x′,n′).

Moment equations. To derive hydrodynamic field equations
from Eqs. (5) and (6), we define the 2D swimmer number
density ρ(t,x) = M

∫
dnP , the polar order-parameter field

P(t,x) = n, and the nematic order-parameter field Q(t,x) =
(nn − I/2), where the bar denotes the marginal average over all
orientations g(t,x) = ∫

dn g(n)P/
∫

dnP . Integrating Eq. (5)
over n, considering the limit of constant density ρ, and using
∇ · u = 0 implies incompressibility of the orientation field,
∇ · P = 0 (see the Supplemental Material [45]).

To obtain the dynamic equation for P, we multiply Eq. (5)
by n and integrate over all orientations. Adopting a standard
mean-field approximation for Eq. (6), assuming again constant
density ρ, and neglecting terms of tensorial rank higher than
two, we find (see the Supplemental Material [45])

∂tP + u · ∇P = −∇p̂ − v0∇ · Q

+ (D + Dε)∇2P + (ε2/24)Dε∇4P

+ [� + (1/2)P · � + (4/ε2)Dε(I − 2Q)

− (1/τ )I] · P, (7)

where ∇4 = (∇2)2. The local Lagrange multiplier p̂(t,x)
ensures a divergence-free orientation field, � = 1

2 [∇u +
(∇u)�] is the hydrodynamic rate-of-strain tensor, � is the
antisymmetric part of ∇u, and Dε = ρg0v0πε4/8 encodes
translational diffusion caused by mean-field polar interactions.
The destabilizing (ε2/24)Dε∇4P term, arising from polar
interactions, is counteracted by the ∇ · Q term.

To connect with Eq. (1), we introduce an nonconserved
self-swimming velocity field v(t,x) = v0P. The total velocity
field of the microswimmers, appearing in Eq. (1) and measured
in experiments [5,7,9], is given by w = u + v, corresponding
to the hydrodynamic average of Eq. (3).

Self-consistent closure. To close Eq. (7), we have to
approximate the nematic order-tensor Q in terms of P and
u. A simple closure condition for passive hard rods [46] is
Q ∼ (PP)+, where A+ with components A+

ij = (Aij + Aji −
δijAkk)/2 denotes the symmetric traceless part of tensor A in
2D. However, this commonly used closure condition does not
account for the fact that active microswimmers permanently
impose stress on the ambient fluid which feeds back into the
orientational order, analogous to the shear-induced isotropic-
nematic transition in liquid crystals [47–50]. To derive a self-
consistent closure condition, we multiply Eq. (5) by nn and
then integrate over all orientations. Taking the stationary limit
of the resulting equation, assuming small spatial variations of
Q, and neglecting “flexoelectric” contributions [51], one finds

Q = λP(PP)+ + λ��, (8)
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with λP = (2/ε2)Dετ and tumbling parameter
λ� = τ/16.

Hydrodynamic stress. As a last step, we have to relate
the active stress tensor σ in Eq. (2) to P. To this end, note
that the swimmer position Xσ coincides with the center of
hydrodynamic stress (Fig. 1), which is the point where the
hydrodynamic net torque on a rigid body vanishes [52]. For an
asymmetric dipole swimmer of effective length � = bf + br

with bf ,br > 0, the propulsive rear force Fσ
r = −f0Nσ acts at

Xσ
r = Xσ − brNσ , and the resistive front force Fσ

f = f0Nσ

at Xσ
f = Xσ + bf Nσ (Fig. 1). The swimmer is force free,

Fσ
r + Fσ

f = 0, and for bacterial pusher dipoles we have f0 > 0
[33]. The total force density is then given by

f = ∇ · σ =
∑

σ

Fσ
r δ

(
x − Xσ

r

) + Fσ
f δ

(
x − Xσ

f

)
. (9)

Taylor-expanding for small br and bf , assuming constant
density across a thin film of thickness h ∼ �, neglecting
terms of order (∇P)2, and averaging over noise and orien-
tations [16,17], we find for the divergence of the averaged
total stress tensor [53]

∇ · σ = −f0ρ

h
∇ · [�Q + 2(γ2 + γ4∇2)(∇P)+], (10)

with γ2 = (b2
r − b2

f )/8 > 0 and γ4 = (b4
r − b4

f )/192 > 0 for
pushers (in 3D, ρ/h is replaced by the concentration c). The
divergence of the symmetric traceless gradient tensor (∇P)+

is proportional to the Laplacian of the orientation field P.
Combining Eqs. (8) and (10) with (2) and (7), we obtain a
closed set of equations for the two incompressible vector fields
(u,P) and their associated pressure fields.

Stokes equations and viscosity. Inserting Eq. (10) into
Eq. (2), the Stokes equation can be written as

μ∗∇2u − ∇p∗ = f0ρ
(
�λPP · ∇ + γ2∇2 + γ4∇4)P, (11)

with effective viscosity and pressure given by

μ∗ = μ − �λ�

2

f0ρ

h
,

(12)
p∗ = p − �λP

2
|P|2 f0ρ

h
.

Rewriting μ∗ in terms of the volume fraction φ = ρA, where
A is the projected 2D area of a swimmer, and choosing h = �,
we find

μ∗ = μ0[1 + (k1 − k2)φ + k3φ
2], (13)

where k1 = 5/2 for passive spherical objects [23,29–31] and
k2 = f0λ�(2μ0A)−1. Thus, our theory implies that, to linear
order in φ, pushers with f0 > 0 can reduce the viscosity
whereas pullers with f0 < 0 generally enhance the viscosity.
In 3D, an analogous derivation yields k2 = f0�λ�(2μ0Vb)−1,
where Vb is the effective volume of the individual swimmer.
For pullers, the coefficient k3 > 0 is chosen according to
Refs. [23,29], and for pushers we determine k3 > 0 directly
from the data (Fig. 2). Comparing Eq. (13) against experi-
mental data yields good agreement with recent measurements
in 3D bacterial [24,25] and algal [26] suspensions (Fig. 2).
We note that qualitatively similar results for the effective vis-
cosity were obtained recently for other basic microswimmers
models [23,54].

FIG. 2. Comparison of predictions (dashed lines) based on
Eq. (13) with recent experiments (symbols) for force density values
f0 given in the text. (a) For Chlamydomonas algae (puller), the
theory predicts an increase in the viscosity for motile cells with
k2 > 0 (dashed lines, using � = 5 μm, τ = 3.5 s, Vb = 294.5 μm3,
k3 = 7.6 [23,29]) compared with nonmotile cells (solid line, k2 = 0),
in agreement with recent measurements for motile (red circles)
and dead (green triangles) cells [26]. (b), (c) For bacteria (pusher)
with k2 < 0, the theory correctly reproduces a viscosity decrease
at intermediate filling fractions. Dashed curves are based on the
following fit parameters: (b) For E. coli data (green circles [25]):
v0 = 20 μm/s, Vb = 1.57 μm3, k3 = 2400, τ = 4.8 s. (c) For B.
subtilis data (blue circles [24]): v0 = 30 μm/s, Vb = 1.92 μm3,
k3 = 385, τ = 0.5 s.

Orientation field dynamics. Taking the divergence of Eq. (8)
and utilizing the Stokes equation (11) yields ∇ · Q in terms of
the orientation field P. Substituting the resulting expression
into Eq. (7), we find the fourth-order partial differential
equation (PDE)

∂tP + (u + v0λP∗P) · ∇P

= −∇p̂∗ + � · P + [1/2 − (8/ε2)Dελ�]� · P

+αP − β|P|2P + �0∇2P − �2∇4P, (14)

where λP∗ = (μ/μ∗)λP and the effective orientation-pressure
field is given by

p̂∗ = p̂ + v0

(
− λP

2
|P|2 + λ�

2μ∗
p∗

)
. (15)

The remaining parameters in Eq. (14) are obtained as

�0 = (D + Dε) − λ�v0f0φ

2μ∗A�
γ2,

α = 4Dε

ε2
− 1

τ
,

(16)

�2 = λ�v0f0φ

2μ∗A�
γ4 − ε2Dε

24
,

β = 4Dε

ε2
λP.

For clarity, we summarize parameters and relations between
them in Table I.

Equation (14) is structurally similar to the Toner-Tu equa-
tion [20] with the significant difference that the “diffusion”
parameter �0 can become negative when the volume fraction
φ and active power v0f0 become sufficiently large, as proposed
earlier on purely phenomenological grounds [5,9,19]. For
�0 < 0, Eq. (14) predicts a transition to mesoscale turbulence,
as observed in dense B. subtilis suspensions [5,7,9].
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TABLE I. Summary of key parameters and typical values
for B. subtilis suspensions used in our simulations, based on
Refs. [5,7,9,24,55].

Value Description

� 5.0 μm Effective dipole length
d 0.7 μm Width of the swimmer
v0 1 . . . 40 μm/s Self-propulsion speed
φ 0.4 Volume fraction
τ 0.01 . . . 104 s Rotational noise
g0 0.001 . . . 103 μm−1 Strength of polar alignment
ε 3.0 μm Polar alignment range
D 0 . . . 5 μm Diffusion length

Dε ρg0v0πε4/8 Alignment diffusion
λ� τ/16 Tumbling parameter
f0 2πμ0�v0 Force density
μ∗ μ0[1 − (k1 − k2)φ + k3φ] Effective bulk viscosity
λP 2Dετε−2 Advection strength
γ2 �2/8 HD stress expansion coeff.
γ4 �4/192 HD stress expansion coeff.
A �d Projected 2D area
λP∗ μμ−1

∗ λP Scaled advection strength

Parameters. The coefficients in Eqs. (11)–(16) can be
directly estimated from experiments [5,7,9,24,55]: In our
simulations, we consider parameters for B. subtilis bacteria
(cell length ∼5 μm and diameter d = 0.7 μm) at high vol-
ume fractions φ ∼ 0.4 [5,55], assuming an effective dipole
length � = br = 5 μm (Fig. 1) and for the projected 2D
area A ≈ d�. The typical force f0 exerted by a single
microswimmer on the surrounding fluid can be estimated as
f0 ≈ 2πμ0�v0 [55], with a typical bacterial self-propulsion
speed v0 ∈ [1,50] μm/s [22]. In the collision-dominated high-
density regime relevant to our study, translational Brownian
motion is negligible, D  Dε , and we set D = 0 in our
simulations. We further assume that steric short-range inter-
actions occur predominantly on the length scale of the cell
body, ε = 3 μm. After fixing the above parameter values, we
can analyze how changes of the rotational relaxation time
τ , alignment strength g0, and swimming activity v0 affect the
collective dynamics, by exploring the range τ ∼ 0.01 . . . 104 s,
g0 = 0.001 . . . 103 μm−1, and v0 = 1 . . . 40 μm/s (Fig. 3).
The typical coefficient values used to model the collective
dynamics of B. subtilis are summarized in Table I.

Bifurcation diagram. The field equations (11) and (14)
have two fixed points: the disordered state (u = 0,P = 0)
and the polar ordered state (u = 0,P �= 0). Upon varying τ

and g0, these homogeneous states become unstable when
the alignment strength becomes subcritical relative to the
rotational noise [red line in Fig. 3(a)]. Conversely, strong
alignment stabilizes the homogeneous polar state. Defining
τ as the control parameter and the collective velocity vc =
v0

√
α/β as an order parameter, the dotted black line of the

state diagram yields the bifurcation diagram of Fig. 3(b).
Upon linearizing Eq. (14) about the isotropic state, the typical
vortex length follows from the most unstable mode, which
has a wavelength � ∼ 2π

√
2�2/(−�0). As is evident from

the explicit expressions for �0, �2, and α in Eq. (16), this
vortex scale is set by the competition between hydrodynamic

FIG. 3. Bifurcation analysis. (a) State diagram for rodlike pusher
obtained by a linear stability analysis of Eq. (14) for typical B. subtilis
parameters (see text) and v0 = 10 μm/s. The red line demarcates
the transition to mesoscale turbulence. The blue line signals the
transition between disorder and polar order. The purple star indicates
the parameters used in simulations. (b) Bifurcation diagram of the
collective velocity vc = v0

√
α/β for rodlike pushers along the dotted

black line (g0 = 0.04 μm−1) in (a). Red dashed lines depict unstable
branches, whereas blue solid lines depict stable branches. Inset: Zoom
to τ ∈ [0,3] s.

flows, steric alignment interactions, activity, and rotational
noise. In particular, in the limit of strong self-propulsion
and high concentrations, the theoretically predicted vortex
size approaches a constant value in agreement with recent
experiments [5,7].

Simulations versus experiment. To study the full nonlinear
behavior, we solved Eqs. (11) and (14) numerically with
a pseudospectral code that combines antialiasing with an
operator splitting technique [5]. Simulations were performed
using 128 × 128 grid points for an area of 101 × 101 μm2

and time steps of dt = 10−3 s, respectively, for a total
simulation time in the range [500,1000] s. For typical B.
subtilis parameters and τ = 4.5 s, g0 = 0.04 μm−1, we obtain
flow structures that agree with recently measured flow fields
[Fig. 4(a)]. The simulations of the full nonlinear equations

FIG. 4. (a) Representative snapshot of the effective velocity
field w from a simulation with typical B. subtilis parameters (see
text), v0 = 20 μm/s and g0 = 0.04 μm−1. Scale bar corresponds
to 20 μm and color coding indicates vorticity normalized by the
maximum. (b) In dense suspensions, the characteristic vortex size
approaches a constant value at large activity. This prediction agrees
qualitatively with recent measurements [7] in 3D (inset) (reproduced
with permission) and 2D bacterial suspensions [22], which report a
typical velocity correlation length of ∼20 μm (cf. Fig. 5 in Ref. [22]).
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show dynamical vortex structures of a characteristic finite
size independent of box size. Moreover, the numerically
measured vortex scale, obtained from the minimum of the
velocity correlation function, approaches a constant value at
large activity, in agreement with recent measurements [7,22]
[Fig. 4(b)].

Conclusions. We presented a systematic derivation of
higher-than-second-order hydrodynamic equations from a
generic microswimmer model. The resulting field theory
explains simultaneously a number of recent experimental
observations, including the reduction (enhancement) of vis-
cosity in pusher (puller) suspensions and the emergence of a
finite characteristic vortex size in dense active fluids from
the interplay of rotational diffusion, fluid-dynamical, and
polar alignment interactions. Generally, this work shows that

higher-order theories of active suspensions [5,9] arise naturally
if one adopts self-consistent closure conditions. The relations
between microscopic and macroscopic parameters derived
here provide a first step towards the quantitative description of
bacterial turbulence of B. subtilis. Additional improvements
will require more accurate microswimmer models and a better
understanding of pair correlations. Future efforts may focus
on generalizing the above approach to active nematics [56].

Acknowledgments. We are grateful to L. Schimansky-Geier,
R. Großmann, P. Romanczuk, I. Aranson, J. Casademunt,
and C. Marchetti for discussions. This work was supported
by the Deutsche Forschungsgemeinschaft through GRK 1558
and SFB 910 (S.H., S.H.L.K., M.B.), by an MIT Solomon
Buchsbaum Fund Award (J.D.), and an Alfred P. Sloan
Research Fellowship (J.D.).

[1] J. C. Dunlap, Cell 96, 271 (1999).
[2] S. F. Gilbert, Developmental Biology, 8th ed. (Sinauer Asso-

ciates, Sunderland, MA, 2006).
[3] D. Nishiguchi and M. Sano, Phys. Rev. E 92, 052309 (2015).
[4] N. S. Rossen, J. M. Tarp, J. Mathiesen, M. H. Jensen, and L. B.

Oddershede, Nat. Commun. 5, 5720 (2014).
[5] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E.
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