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ABSTRACT: Eukaryotes have evolved the ubiquitin (Ub)/
proteasome system to degrade polypeptides. The Ub/
proteasome system is one way that cells regulate cytosolic
protein and amino acids levels through the recognition and
ubiquitination of a protein’s N-terminus via E1, E2, and E3
enzymes. The process by which the N-terminus stimulates
intracellular protein degradation is referred to as the N-end
rule. Characterization of the N-end rule has been limited to
only the natural L-amino acids. Using a cytosolic delivery
platform derived from anthrax lethal toxin, we probed the
stability of mixed chirality proteins, containing one D-amino
acid on the N-terminus of otherwise all L-proteins. In all cases, we observed that one N-terminal D-amino acid stabilized the cargo
protein to proteasomal degradation with respect to the N-end rule. We found that since the mixed chirality proteins were not
polyubiquitinated, they evaded N-end-mediated proteasomal degradation. Evidently, a subtle change on the N-terminus of a
natural protein can enhance its intracellular lifetime.

■ INTRODUCTION

The chirality of biomolecules in nature is critical for substrate
recognition, protein binding, and product formation. While E3
ubiquitin (Ub) ligases of the Ub/proteasome system have
promiscuous substrate binding sites, the chirality of protein
substrates has never been investigated.1−3 Since the homeo-
stasis of a cell’s protein and amino acid concentrations is
regulated by the proteasome, perturbation of the proteasome’s
activity through substrate modification can affect the intra-
cellular equilibrium. Here, we investigated the effect of one
mirror image D-amino acid on the N-terminus of otherwise all
L-proteins on proteasomal degradation after delivery of the
mixed chirality proteins into the cytosol of cells.
Varshavsky and co-workers have characterized the N-end rule

as it relates to the intracellular stability of proteins.4−6

According to the N-end rule, the identity of the N-terminal
amino acid mediates the selective degradation of specific
proteins through the Ub/proteasome system. The N-terminal
degradation signals are termed N-degrons, which can range
from stabilizing to destabilizing residues. Key destabilizing
residues include type 1 (R, K, and H) and type 2 (L, F, Y, W,
and I) residues, while D, E, N, Q, and C can be destabilizing
after modifications such as acetylation or arginylation. N-
degrons are recognized by N-recognins, or E3 Ub ligases, which
interact with E2 Ub conjugating enzymes to polyubiquitinate
proteins for proteasomal degradation.6 To date, the N-end rule
has been defined only for L-amino acids.7−10 In a recent study
by Sriram et al. to identify inhibitors of the N-end rule, the
authors demonstrated that two mixed chirality dipeptides

containing an N-terminal DArg did not affect protein stability to
the same extent as dipeptides containing an N-terminal LArg.3

While this study suggested that the N-end rule is stereospecific,
it does not provide direct evidence that these findings will hold
for an intact protein. The main challenge with probing the
stability of proteins containing non-natural functionalities at the
N-terminus is the delivery of such proteins into the cytosol. To
overcome this challenge, we utilized a platform derived from
nature that enables the delivery of different types of proteins
into the cytosol of cells.
Anthrax lethal toxin from Bacillus anthracis utilizes the

protective antigen (PA) pore to deliver lethal factor (LF) into
the cytosol.11 Protein translocation by anthrax lethal toxin has
been extensively characterized. In short, to obtain entry into the
cell, PA binds to an anthrax receptor on the cell surface and
forms the PA prepore.12−17 LF binds to the PA prepore, then
the entire complex is endocytosed, and endosomal acidification
triggers a conformational rearrangement of the PA prepore to
form a pore.18,19 LF translocates through the pore via a charge
state dependent Brownian ratchet into the cytosol.13,20 The N-
terminal domain of LF (LFN) is sufficient to bind to the PA
prepore, but does not cause any intracellular toxicity.21 The
PA/LFN delivery system has been engineered to deliver various
peptide, protein, and small molecule cargoes into the cell
cytosol. Previous work has shown that numerous peptides and

Received: September 10, 2015
Published: November 11, 2015

Research Article

http://pubs.acs.org/journal/acscii

© 2015 American Chemical Society 423 DOI: 10.1021/acscentsci.5b00308
ACS Cent. Sci. 2015, 1, 423−430

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

http://pubs.acs.org/journal/acscii
http://dx.doi.org/10.1021/acscentsci.5b00308
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


proteins, including those composed of D-amino acids, can be
efficiently delivered through the PA pore.22−25

The majority of eukaryotic proteins from ribosomal trans-
lation are composed of L-amino acids and achiral glycine. In
order to study the intracellular stability of proteins containing
D-amino acids, we used sortase A (SrtA) from Staphylococcus
aureus or native chemical ligation (NCL) to ligate one D-amino
acid onto the N-terminus of L-proteins that can then be
delivered in a PA dependent manner.26 Furthermore, we
incorporated a cleavable linker that releases the cargo protein
from LFN after translocation into the cytosol further allowing us
to characterize N-terminal D-amino acids on proteins other
than LFN, including A-chain of diphtheria toxin (DTA)27,28 and
a designed ankyrin repeats protein (DARPin).29,30 We opted to
use a hindered disulfide cleavable linker that was small in
structure such that it could translocate through the PA pore
efficiently and be readily cleaved in the reducing environment
of the cytosol.31

■ RESULTS
Sortase A Attaches One D-Amino Acid onto the N-

Terminus of LFN-DTA. The X-LFN-DTAmut constructs were
produced through enzyme-mediated ligation of XALPSTGG
onto the N-terminus of the LFN-DTAmut. The N-terminal
amino acid (X) represents a natural L-amino acid (LX) or its
mirror image D-amino acid (DX), while the remaining residues
were L-stereochemistry (Figure 1a). Each XALPSTGG peptide

was ligated to G5-LFN-DTAmut using Staphylococcus aureus
sortase A to yield XALPSTG5-LFN-DTAmut constructs (X-LFN-
DTAmut; Figure 1b). A one-pot ligation scheme was used for
each reaction.22,32

One N-Terminal D-Amino Acid Stabilizes LFN-DTA to
Proteasomal Degradation. We used the A chain of
diphtheria toxin (DTA) as a first measure of proteasomal

degradation inside cells with less protein synthesis inhibition,
inferring that the cargo was degraded more rapidly. Similar
assays have been used to understand how the N-end rule affects
toxin stability in the cytosol of cells.7 For our experiments, we
used a mutant form of DTA (E148S; DTAmut) that is 300-fold
less active than wild-type DTA,33 allowing us to detect
differences in cytosolic lifetime of each X-LFN-DTAmut over a
wider dynamic range. Since wild-type DTA can neutralize its
substrate in minutes, DTAmut enabled analysis of various
substrates after a 6-h time period. DTA inhibits protein
synthesis by ADP ribosylating elongation factor-2.27,28 To
corroborate our observations with DTA as the read-out, we
used an orthogonal assay based on Western blot analysis of the
cytosolic fraction (Figure 1c).34

For the protein synthesis inhibition assay, Chinese hamster
ovary (CHO-K1) cells were treated with 10-fold serial dilutions
of each construct for 6 h to allow for sufficient buildup of the
translocated material in the cytosol and to observe DTAmut
activity. After translocation, the cells were washed and treated
with 3H-Leu in leucine-free medium for 1 h to detect DTAmut
activity. The fraction of protein synthesis with respect to
DTAmut was measured with a scintillation counter (Figure S1
and Table S1). According to Figure 2a, regardless of chirality,
stabilizing amino acids such as A and V on the N-terminus of
LFN-DTAmut had similar EC50 values as the positive control
(LFN-DTAmut), which contains LA at the N-terminus.
Furthermore, destabilizing residues like LW on the N-terminus
of LFN-DTAmut had significantly higher EC50 values than the
control (i.e., less DTA activity) while the DW-LFN-DTAmut
construct displayed activity comparable to the control, which
suggests that D-amino acids act as stabilizing residues.
To further confirm that our observations were a result of

proteasomal degradation, we used Western blot analysis. The
X-LFN-DTAmut constructs were delivered into CHO-K1 cells,
lysed using digitonin lysis buffer, and analyzed by Western blot.
Digitonin is a nonionic detergent used to permeabilize the
plasma membrane, while the membrane-bound organelles
remain intact. CHO-K1 cells were treated with X-LFN-DTAmut
constructs in the presence of PA for 6 h and were lysed using a
digitonin lysis buffer and then analyzed by Western blot. The
Western blot was immunostained with an LF antibody for
stability analysis, and then stained for the cytosolic proteins,
Erk1/2, and the early endosomal protein, Rab5. A low level of
Rab5 and a high level of Erk1/2 demonstrate efficient cytosolic
extraction. Based on the findings in Figure 2b, the Western blot
results corroborated the protein synthesis inhibition data and
showed significant differences in cytosolic protein levels, where
D-amino acids proved to be stabilizing regardless of the side
chain identity. These data support the N-end rule for N-
terminal L-amino acids, while all N-terminal D-amino acids
stabilized X-LFN-DTAmut to degradation.
As a control, CHO-K1 cells were treated with select

conjugates (LV-, DV-, LA-, DA-, LW, and DW-LFN-DTAmut) in
the presence of lactacystin, a proteasome inhibitor. The samples
treated with lactacystin all showed strong anti-LF bands,
indicating that the proteasome played a key role in degrading
the LX-LFN-DTAmut constructs but had no observable effect on
the DX-LFN-DTAmut constructs. Furthermore, these data
indicated that each construct translocated efficiently into the
cells, regardless of the N-terminal amino acid.
To verify the mechanism of translocation and endosome

escape, we incubated the X-LFN-DTAmut constructs with a
mutant PA (PA[F427H]),35 a vacuolar H+-ATPase inhibitor

Figure 1. Intracellular stability was monitored for X-LFN-DTA
constructs delivered through protective antigen pore. (a) LX- (left)
and DX- (right) amino acids ligated to the N-terminus of LFN-DTA
(LFN, green, pdb is 1J7N; DTA, orange, pdb is 1DTP). (b)
XALPSTGG peptides, where X represents either an L- or D-amino
acid, are ligated onto G5-LFN-DTA using sortase A (SrtA) to form X-
LFN-DTA constructs. (c) Translocation of X-LFN-DTA constructs is
achieved using protective antigen (PA) of anthrax toxin.
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(bafilomycin A1), or at 4 °C with CHO-K1 for 6 h. In all cases,
no material was found to translocate into the cytosol by
Western blot (Figure S2). These controls indicated that
delivery of the X-LFN-DTAmut constructs into the cytosol is
dependent on functional endocytic machinery and PA.
Moreover, we found that our observations were not cell-
specific. After translocation, we observed protein stabilization in
human embryonic kidney cells (HEK-293T) and human
cervical cancer cells (HeLa), similar to the stabilization
observed in CHO-K1 cells (Figure S3).
Proteasomal Stabilization Is Not an Artifact of the

Sortag. SrtA ligation adds a short linkage (i.e., LPSTG5)
between the N-terminal amino acid (X) and the start of the
protein. We used native chemical ligation (NCL)36 to prepare
constructs with native N-terminal sequences for comparison
with sortagged proteins. For our analysis, LFN-DTAmut was
synthesized containing L-alanine at the N-terminus (wild-type)
and compared to NCL synthesized constructs containing DA,
LW, or DW.37 Each NCL construct was translocated in CHO-
K1 cells, and their protein stability was compared to that of the
sortagged conjugates using Western blot. For the NCL reaction

we installed a Cys residue at position 17 that was later alkylated
with bromoacetamide, which does not affect translocation.
Based on the Western blot of the translocated material in
Figure S4, both native and sortagged constructs containing LA,
DA, and DW had similar protein stability, while LW in both cases
was degraded. These observations indicated that stabilization of
LFN-DTAmut through the incorporation of one N-terminal D-
amino acid is not an artifact of the sortag.

LFN-DTA with One N-terminal D-Amino Acid Is Stable
In Vitro. To support our cytosolic studies, we analyzed the in
vitro rates of degradation of the X-LFN-DTAmut constructs in
rabbit reticulocyte lysate (RRL). Pure X-LFN-DTAmut proteins
were incubated in the presence of 70% RRL at 37 °C. Samples
at various time points were pulled and analyzed by Western
blot using LF and β-actin antibodies (Figure 3a). As indicated
in Figure 3b, only LW-LFN-DTAmut experienced significant
protein degradation after 120 min. These data further support
the in vivo protein synthesis inhibition and Western blot
analyses, which collectively suggest that N-terminal D-amino
acids stabilize LFN-DTAmut to protein degradation.

Figure 2. One N-terminal D-amino acid on LFN-DTA enhances protein stability. (a) Translocation X-LFN-DTA constructs was analyzed by protein
synthesis inhibition assay in CHO-K1 cells after 6 h (n = 3). EC50 values from the protein synthesis inhibition assay were graphed for all LX-LFN-
DTA or DX-LFN-DTA constructs. EC50 values (and error bars) were determined using a Boltzmann distribution fit. (b) LV-, DV-, LA-, DA-, LW-, and
DW-LFN-DTAmut were translocated into CHO-K1 cells in the presence of 20 nM PA for 6 h, then extracted using digitonin lysis buffer, and analyzed
by Western blot. As a proteasomal inhibitor, 20 μM lactacystin was used. Translocation of all LX-LFN-DTA or DX-LFN-DTA constructs was analyzed
by Western blot.
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LFN-DTA with One N-Terminal D-Amino Acid Is Not
Ubiquitinated. Polyubiquitination of proteins by the E1, E2,
and E3 enzymes is a critical step before proteasomal
degradation.38 In order to identify the mode in which proteins
with N-terminal D-amino acids are stabilized, we used a pull-
down assay. Protein constructs containing biotin (X-K(bio)-
LFN-DTAmut, where K(bio) represents biotinylated lysine and
X represents LV, LW, DW, LR, or DR) were synthesized (Figure
S5 and Figure S6). Each construct was incubated with 70%
RRL for 10 min to allow for polyubiquitination followed by
pull-down using streptavidin beads and Western blot analysis
(Figure 3c). Streptavidin and anti-ubiquitin staining indicated
that only the constructs containing N-terminal LW and LR were
ubiquitinated, while the negative control LV- as well as both
DW- and DR-K(bio)-LFN-DTAmut constructs contained no
detectable ubiquitination. These results indicate that destabiliz-
ing amino acids like LW and LR are recognized by the Ub/
proteasome system and are readily degraded, while DW and DR
are not ubiquitinated (Figure 3d).
N-Terminal Stabilization Is Not Protein-Specific. In

order to study the stabilization of proteins other than LFN, we
incorporated a cleavable linker to separate the attached cargo
from LFN once the entire construct translocated into the
cytosol. The cleavable linker allowed for the intracellular
stabilization of different types of cargo to be explored using the
PA/LFN delivery platform. We used a hindered disulfide
cleavable linker to increase its stability toward reduction outside
of the cell.31 While hindered disulfide bonds have a wide range
of reduction rates, the penicillamine−cysteine bond was chosen

since it is more stable than unhindered disulfide bonds, but can
be readily reduced in the cytosol over the time scale of our
experiments (Figure S7).
Enabled by the hindered disulfide cleavable linker, we

analyzed the stability of X-DTAmut and X-DARPin protein
cargo after translocation into the cell cytosol. For our analyses,
1-X (Figure 4a) and 2-X (Figure 4b) conjugates were
synthesized containing X-DTAmut and X-DARPin linked to
LFN through a hindered disulfide, respectively, where X
represents LV, DV, LA, DA, LW, and DW. The protein stability
of X-DTAmut was analyzed using the protein synthesis
inhibition assay after translocation in CHO-K1 cells for 6 h.
According to the results in Figure S8, the protein synthesis
inhibition of X-DTAmut was stabilized through the addition of
one N-terminal D-amino acid. These data were confirmed
through the use of Western blot analysis. CHO-K1 cells were
treated and lysed using the same conditions previously
described. According to the anti-LF immunostaining in Figure
4c, there was no detectable full-length material (1-X) after the 6
h incubation. These results indicated sufficient cleavage of the
hindered disulfide material in the reducing environment of the
cytosol after translocation. The bands corresponding to cleaved
LFN further demonstrated the reduction. The presence of
bands corresponding to DTA in Figure 4c corroborated the
protein synthesis inhibition assay data; the cleaved X-DTAmut

proteins in which X represents a D-amino acid were stabilized to
degradation upon cleavage from LFN. A similar analysis was
made for the X-DARPin protein cargo (2-X), in which we
demonstrated the stabilization of biotinylated DARPin using

Figure 3. One N-terminal D-amino acid prevents ubiquitination of LFN-DTA. (a) The stability of
LV-, DV-, LA-, DA-, LW-, and DW-LFN-DTAmut (4

ng) was monitored in 70% RRL over time at 37 °C and then analyzed by Western blot. (b) The concentration of X-LFN-DTAmut (%) was plotted
against time, based on the Western blot in panel a. (c) X-K(bio)-LFN-DTAmut constructs (1 μM; X represents LV, LW, DW, LR, and DR) were
incubated in 70% RRL for 10 min at 37 °C and then pulled down using streptavidin beads for 1 h. Elution samples were analyzed by Western blot
(streptavidin and anti-ubiquitin staining).
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one N-terminal D-amino acid (Figure 4d). Both DTAmut and
DARPin proteins were stabilized using one N-terminal D-amino
acid suggesting that this phenomenon is not protein-specific.

■ DISCUSSION
We have demonstrated that one D-amino acid at the N-
terminus of a protein abrogates its proteasomal degradation by
the N-end rule pathway. This phenomenon was evident for
LFN-DTAmut, DTAmut, and DARPin proteins delivered into the
cytosol using the PA/LFN delivery system. Our findings suggest
that stabilization using D-amino acids at the N-terminus of
proteins that follow the N-end rule is not protein-specific.
Thus, we update the N-end rule to include D-amino acids as
stabilizing residues. Since proteins with an N-terminal D-amino
acid were not polyubiquitinated, our observations hold for
proteins that follow the N-end rule and rely on ubiquitination
for degradation. Further investigation of the promiscuity of E3
Ub ligases using noncanonical L-amino acids such as

selenocysteine or hydroxyproline would provide insight into
E3 substrate specificity. We believe that the inclusion of N-
terminal D-amino acids can be expanded to stabilize biologics
prone to degradation via the N-end rule as well as to extend the
intracellular half-lives of therapeutic proteins.
In addition to D-amino acids, we observed that LPro

effectively abrogated the degradation of LFN-DTAmut. The
original N-end rule studies were performed in vitro and relied
on protein fusions such as beta-galactosidase to the C-terminus
of ubiquitin.39 After translation, deubiquitinating enzymes
(DUBs) cleaved the protein fusions, allowing each derivative
to be analyzed. Although proline is a naturally occurring amino
acid, the ubiquitin−proline bond is inefficiently cleaved by
naturally occurring DUBs.40 Using the PA/LFN delivery
platform, we delivered both LP-LFN-DTA and DP-LFN-DTA.
Our results demonstrated that both L- and D-stereoisomers had
an equivalent stabilizing effect. As a result, proteins can be
stabilized to the same extent as those containing N-terminal D-
amino acids through the natural LPro residue.
In the Ub/proteasome system, an E3 Ub ligase forms a

complex with an E2 Ub conjugating enzyme, in order to
conjugate ubiquitin onto the fated protein.41,42 Specifically, the
UBR box domain within E3 ubiquitin ligases recognizes protein
substrates containing type 1 destabilizing residues, while the N-
domain recognizes protein substrates containing type 2
destabilizing residues. The Kd for the interaction between an
E3 Ub ligase from Saccharomyces cerevisiae (Ubr1) and peptide
substrates containing type 1 N-terminal destabilizing residues
has been determined to be ∼1 μM.2 This low affinity makes
binding experiments challenging and our attempts to
investigate binding unsuccessful. Nevertheless, analysis of
crystal structures of the UBR box domains from the Ubr1
and Ubr2 E3 ubiquitin ligases revealed critical hydrogen bonds
between the first two residues of the substrates.43,44 We
hypothesized that inverted stereochemistry at the α carbon of
the N-terminal residue would interrupt the hydrogen bonding
network, prevent substrate binding in the UBR box, and inhibit
ubiquitination. Consistent with this hypothesis, through a pull-
down assay, we demonstrated that LFN-DTAmut constructs
containing one N-terminal D-amino acid were not ubiquiti-
nated, while the constructs containing an N-terminal L-amino
acid were polyubiquitinated. These experiments provide direct
evidence for the N-end rule in nature. In this study, each
construct contained the same residue in the second position
(i.e., LAla). Based on analyses of the Ubr crystal structures, it is
clear that the second amino acid plays a supportive role in
substrate recognition. Exploration into the effect of the second
position amino acid’s identity (e.g., stereochemistry) is
underway.
The biological properties of mixed chirality proteins have

previously been unexplored due to the plasma membrane,
which acts as a barrier between the extracellular and
intracellular environments. The development of the PA/LFN
delivery system has provided access to a new chemical space
within the cytosol of cells. The PA/LFN delivery system has
been used to deliver a variety of cargoes into the cytosol. Many
examples of delivery incorporate the protein, peptide, or small
molecule cargo on the C-terminus of LFN, leaving cargo
attachment to the N-terminus of LFN relatively unex-
plored.22,23,25,45 Through these studies, we have found that
the PA pore can tolerate short peptide modifications at the N-
terminus of LFN. Furthermore, we analyzed the intracellular
stability of two different proteins, DTAmut and DARPin, by

Figure 4. N-terminal D-amino acid stabilization is not limited to LFN.
(a) Molecular composition of X-DTAmut conjugated to LFN through a
hindered disulfide (1-X), where X represents G5,

LV, DV, LA, DA, LW,
or DW. (b) Molecular composition of X-DARPin conjugated to LFN
through a hindered disulfide (2-X), where X represents LV, DV, LA, DA,
LW, or DW. (c) CHO-K1 cells were treated with 100 nM 1-X
conjugates in the presence of 20 nM PA for 6 h, then extracted using
digitonin lysis buffer, and analyzed by Western blot. The absence of
full-length material suggests that each construct was appropriately
reduced in the cytosol. Furthermore, LFN (LA as the native N-
terminus) and X-DTAmut bands indicated cleavage and stabilization of
the X-DTAmut cargo with one N-terminal D-amino acid. The
postincubation medium was analyzed by Western blot to indicate
the stability of the hindered disulfide over the time of the experiment.
(d) CHO-K1 cells were treated with 100 nM 2-X conjugates in the
presence of 20 nM PA for 6 h, then extracted using digitonin lysis
buffer, and analyzed by Western blot using anti-LF and streptavidin
staining. LFN and X-DARPin bands indicated cleavage and stabilization
of the X-DARPin cargo with one N-terminal D-amino acid.
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installing a hindered disulfide cleavable linker between LFN and
the protein cargo. The hindered disulfide was shown to be
readily reduced in the cell cytosol, freeing the cargo for
interactions with intracellular substrates. This type of cleavable
linker permits any cargo to be tethered onto LFN for delivery
followed by traceless release inside the cell. Previous
explorations of translocation have involved the delivery of
proteins from N- to C-termini. For the first time, by use of a
cleavable linker, we demonstrated that the PA pore is capable of
translocating protein cargo from C- to N-termini, providing
further support to PA’s payload promiscuity. Utilizing the PA/
LFN delivery system, studies are ongoing to explore the effect of
mirror image amino acids on ubiquitin-independent protein
degradation including unstructured or destabilizing regions of
proteins.23

D-Amino acid incorporation into polypeptides occurs in
nature, albeit infrequently when compared to L-amino acid
incorporation. Select organisms including bacteria and some
eukaryotes utilize racemases to convert L- to D-amino acids or
nonribosomal protein synthetases to site specifically insert a D-
amino acid within a growing peptide chain.46,47 The precise
roles of naturally occurring D-amino acid containing poly-
peptides remain an area of investigation; however, early studies
have shown that polypeptides containing D-amino acids are
often more active compared to their L-counterparts.46

Furthermore, naturally occurring cyclic peptides which would
also evade the N-end rule have been demonstrated to have
enhanced stability in cells.48 Perhaps nature has evolved
unexpected ways to circumvent the N-end rule.

■ METHODS
Materials. Peptides were synthesized using Fmoc-protected

L- and D-amino acids, N,N,N′,N′-tetramethyl-O-(1H-benzotria-
zol-1-yl)uronium hexafluorophosphate (HBTU), and 1-[bis-
(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]-
pyridinium 3-oxid hexafluorophosphate (HATU) purchased
from Creosalus and ChemImpex. Dimethylformamide, piper-
idine, diisopropylethylamine, trifluoroacetic acid, and triisopro-
pylsilane were purchased from VWR or Sigma-Aldrich. All
cloning was accomplished using the QuikChange Lightning kit
(Agilent) or HiFi DNA Taq Polymerase (LifeTechnologies)
and pET SUMO Champion kit (LifeTechnologies). All
proteins were expressed in BL21(DE3) from LifeTechnologies.
All medium for tissue culture was from LifeTechnologies, and
fetal bovine serum was from Sigma-Aldrich. For Western blots,
nitrocellulose membranes (GE), filters (BioRad), and PBS
blocking buffer (LI-COR) were used. We used the following
primary and secondary antibodies: LF (Santa Cruz), DTA
(abcam), Erk1/2 (Cell Signaling), Rab5 (Cell Signaling), β-
actin (Sigma-Aldrich), ubiquitin (Santa Cruz), donkey anti-goat
IRdye800 (LI-COR), donkey anti-goat IRdye680 (LI-COR),
goat anti-mouse IRdye800 (LI-COR), goat anti-mouse
IRdye680 (LI-COR), goat anti-rabbit IRdye680, goat anti-
rabbit IRdye800 (LI-COR), and streptavidin IRdye680 (LI-
COR). Unless specified otherwise, all other reagents were
purchased from VWR, Sigma-Aldrich, or LifeTechnologies.
Sortase A Mediated Ligation of X-LFN-DTAmut Con-

structs. The X-LFN-DTAmut constructs were synthesized using
the one-pot SrtA-mediated ligation strategy with an evolved
SrtA (SrtA*), as reported in Liao et al.22,26 G5-LFN-DTAmut was
ligated onto each XALPSTGG peptide using the following
conditions: 50 μM G5-LFN-DTAmut, 1 mM XALPSTGG, and
5 μM SrtA* in SrtA buffer (50 mM Tris pH 7.5, 150 mM NaCl

and 10 mM CaCl2). These conditions were optimized to
maximize the amount of product formed with respect to G5-
LFN-DTAmut. The sortagging reactions were incubated at room
temperature for 25 min, then NiNTA was added to each
reaction mixture, and the mixtures were rotated for an
additional 5 min to remove the SrtA* from the reaction
mixtures. At the completion of the reaction, the samples were
spin filtered at 4 °C and then buffer exchanged three times into
20 mM Tris pH 7.5 and 150 mM NaCl to remove the excess
peptide. LC−MS was used to analyze the purity of each X-LFN-
DTAmut construct.

Protein Synthesis Inhibition Assay with X-LFN-DTAmut
Constructs. Chinese hamster ovary (CHO-K1) cells (ATCC)
were grown in F-12K medium containing 10% (v/v) fetal
bovine serum and 1× penicillin−streptomycin at 37 °C and 5%
CO2. For the protein synthesis inhibition assay, 20,000 CHO-
K1 cells were plated per well in 96-well plates 16 h before the
assay. Each X-LFN-DTAmut construct was diluted 10-fold and in
triplicate, and then PA was added to each well for a final
concentration of 20 nM. The plates were incubated for 6 h at
37 °C and 5% CO2. After incubation, the medium was removed
and the cells were washed three times with PBS. Leucine-free F-
12K containing 3H-leucine (1 μCi mL−1, PerkinElmer) was
added to each well and incubated for 1 h at 37 °C and 5% CO2.
The radioactivity was removed, and the cells were washed three
times with PBS and suspended in scintillation fluid. Scintillation
counting was used to measure the amount of 3H-Leu present,
which is indicative of DTA activity (i.e., fraction of protein
synthesis). For each sample, the scintillation counts were
normalized to a PA only control. The data were fitted with a
sigmoidal Boltzmann fit using OriginLab software.

Translocation and Western Blot Analysis with X-LFN-
DTAmut Constructs. For Western blot analysis, 200,000 CHO-
K1 cells were plated per well in 12-well plates 16 h prior to
treatment. Cells were treated with 100 nM X-LFN-DTAmut
construct in the presence of 20 nM PA in serum-containing F-
12K for 6 h at 37 °C and 5% CO2. In select experiments,
lactacystin was used to inhibit the proteasome. For this
treatment, cells were preincubated with 20 μM lactacystin for 1
h at 37 °C and 5% CO2 and then subsequently treated with the
X-LFN-DTAmut constructs in the presence of PA. After
translocation, the medium was removed and 0.25% trypsin−
EDTA was added to each well for 5 min at 37 °C and 5% CO2
to remove any nonspecifically bound material from the cell
surface as well as lift the cells from the plate. The cells were
washed twice with PBS at 500g for 2 min at room temperature.
In order to obtain the cytosolic fraction, cells were lysed
according to the conditions previously reported. In brief, the
cells were lysed using 50 μg mL−1 digitonin in buffer containing
75 mM NaCl, 1 mM NaH2PO4, 8 mM Na2HPO4, 250 mM
sucrose, and protease inhibitor cocktail (Roche) for 10 min on
ice and then spun down at 4 °C for 10 min.
The extracted lysates were analyzed by Western blot.

Nitrocellulose membrane and filters were soaked in buffer
containing 48 mM Tris-HCl, 39 mM glycine, 0.0375% SDS (v/
v), and 20% methanol (v/v). Proteins from the gel were
transferred to the membrane at 17 V for 1 h using a TE 70
semi-dry transfer unit (GE Healthcare). After transfer, the
membrane was blocked for 2 h at room temperature with
blocking buffer (LI-COR) and then incubated with the
appropriate primary antibody (LF, Erk1/2, or Rab5) in
TBST (50 mM Tris-HCl, 150 mM NaCl, 0.1% Tween 20
(v/v)) overnight at 4 °C. The membranes were washed three
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times with TBST, then stained with a secondary antibody, and
imaged using an Odyssey infrared imaging system (LI-COR).
The efficiency of lysis was analyzed by anti-Erk1/2 (cytosolic
protein) and anti-Rab5 (early endosome) immunostaining.
In Vitro Stability of X-LFN-DTAmut Constructs. The in

vitro stability of X-LFN-DTAmut constructs (where X represents
LV, DV, LA, DA, LW, or DW) was analyzed in rabbit reticulocyte
lysate (RRL). Each X-LFN-DTAmut construct (4 ng) was
incubated in a 70% RRL solution for up to 120 min. Time
points were pulled at 0, 10, 60, and 120 min. At each time
point, 2 μL of each sample was added to 20 μL of 1× loading
dye and flash frozen. Time points were analyzed by Western
blot, which was immunostained with LF and β-actin antibodies.
The bands were quantified using LI-COR Image Studio
software. The rate of degradation graph was plotted according
to normalized values.
Streptavidin Pulldown of Ubiquitinated Constructs. In

order to analyze the ubiquitination of the biotinylated
constructs, 1 μM X-K(bio)-LFN-DTAmut was incubated in
70% RRL (20 μL total volume) at 37 °C for 10 min. The
samples were then incubated with 20 μL of Dynabeads MyOne
Streptavidin C1 beads (LifeTechnologies; washed twice with
200 μL of 50 mM HEPES pH 7.1, 200 mM KCl, 10% glycerol,
0.02% NP-40) for 1 h at room temperature. After incubation,
the beads were washed twice with the same HEPES buffer and
then eluted in 20 μL of 2× loading dye for 10 min at 95 °C.
Samples were analyzed by Western blot, which was stained with
streptavidin and ubiquitin antibody.
Stabilization of X-DTAmut or X-DARPin after Trans-

location. The hindered disulfide conjugates (1-X and 2-X)
were synthesized through C-terminal penicillamine (C*) on
LFN (LFN-C*) and a C-terminal cysteine (C) on X-DTAmut or
X-DARPin. A three-step ligation strategy was optimized for the
synthesis of the hindered disulfide conjugates: 1, sortagging to
form LFN-C*; 2, sortagging to form X-DTAmut-C-Ellman’s X-
DARPin-C-Ellman’s; and 3, oxidation to form 1-X or 2-X
conjugates, where X is any amino acid on the N-terminus of
DTAmut or DARPin. Complete ligation details can be found in
the Supporting Information.
As a first measure of X-DTAmut’s protein stability, we used

the protein synthesis inhibition assay with 1-X conjugates.
CHO-K1 cells were treated with 10-fold dilutions of 1-X
conjugates for 6 h in the presence of 20 nM PA for 6 h at 37 °C
and 5% CO2. After 6 h, the cells were washed three times with
PBS and then treated with leucine-free F-12K medium
containing 3H-leucine (1 μCi mL−1, PerkinElmer) for 1 h at
37 °C and 5% CO2. The cells were washed three times and
then resuspended in scintillation fluid, and 3H radioactivity was
counted. For each sample, the scintillation counts were
normalized to a PA only control.
The protein stability of both X-DTAmut and X-DARPin was

determined using Western blot analysis. CHO-K1 cells were
treated with 100 nM 1-X or 2-X (where X represents LV, DV,
LA, DA, LW, or DW) in the presence of 20 nM PA for 6 h at 37
°C and 5% CO2. After 6 h, the medium was removed and
0.25% trypsin−EDTA was added to each well for 5 min at 37
°C and 5% CO2. The cells were washed twice with PBS at 500g
for 2 min at room temperature. The cytosolic fraction was
extracted using the digitonin lysis conditions and analyzed by
Western blot as previously described. The membrane was
stained with LF, DTA or streptavidin, Erk1/2, and Rab5
antibodies and then stained with the appropriate secondary
antibodies prior to imaging.
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