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Abstract

Recent ultrafast optical experiments show that excitons inlarge biological light-harvesting

complexes are coupled to molecular vibration modes. These high-frequency vibrations will

not only affect the optical response, but also drive the exciton transport. Here, using a model

dimer system, the frequency of the underdamped vibration isshown to have a strong effect on

the exciton dynamics such that quantum coherent oscillations in the system can be present even

in the case of strong noise. Two mechanisms are identified to be responsible for the enhanced

transport efficiency: critical damping due to the tunable effective strength of the coupling to

the bath, and resonance coupling where the vibrational frequency coincides with the energy

gap in the system. The interplay of these two mechanisms determines parameters responsible

for the most efficient transport, and these optimal control parameters are comparable to those

in realistic light-harvesting complexes. Interestingly,oscillations in the excitonic coherence at

resonance are suppressed in comparison to the case of an off-resonant vibration.

Introduction– The effect of intramolecular vibrations on energy transport in large biological as-

semblies became increasingly intriguing, for recent optical experiments have been interpreted as a

sign of the coupling of vibrations to electronic excitations (excitons) in light-harvesting antennae,1

and the reaction center of photosynthetic complexes.2,3These systems consist of closely spaced

chromophore molecules. Coherent interactions of the transition dipoles of these molecules lead to

elementary excitations that extend over a number of molecules in the form of Frenkel excitons. The

existence of these states enables quantum mechanical, wave-like transport through the systems.4–6

The importance of the interaction of such excitons with their environments is well known, and the
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interplay of coherent coupling between molecules and noiseoriginating from the environment has

been shown to lead to optimal transport.7,8

To model the influence of the environment, it is often assumedthat its effect is fast compared

to the typical time scales of the system such that the environment can be modeled as white noise.

However, recent optical experiments detect rapid dynamicsof electronic excitations on the time

scale of tens to hundreds femtoseconds in molecular aggregates,9 light-harvesting systems of bac-

teria,4,6 plants10 and conjugated polymers.5 Then, the environment cannot be considered fast on

this time scale. In particular, in many small organic and biological molecules, the coupling of

excitations to vibrations is essential.1,11–17Not much is known about the transport properties of a

system coupled to these underdamped vibrations. In this paper, we focus on the exciton dynamics

induced by underdamped vibrations, and our method is applicable to baths as Gaussian colored

noise. Initial analysis beyond the white noise limit has included overdamped vibrations. Recently,

it has been realized that underdamped vibrations or vibronic states with a mixed exciton character

can also lead to long-lived oscillations during the waitingtime.18 Much work has been devoted

to the explanation of these oscillations and to the description of exciton coherence.1,17,19Exciton

dynamics in the presence of underdamped vibrations has recently attracted much attention as a

way to explain the quantum beats observed in two-dimensional optical experiments,4 and resonant

vibrations have been proposed to drive exciton coherences in the system.1,15,17It is not yet clear,

however, which parameters can optimize transport in a system coupled to underdamped vibrations.

Resonance between an energy gap of the system and a vibrational mode is a possible mechanism

but not the only one;20 an equally important mechanism is the critical damping, where the exciton

dynamics undergo a transition from underdamped to overdamped oscillations.

In this work, we address the effect of an underdamped vibration on energy transport. If vibra-

tions couple strongly to excitons, as suggested by the recent explanations of long-lived coherences,

they are also expected to influence the population dynamics underlying energy transport. In order

to clearly bring out the essential physics of the interplay between excitonic coherence and effect

of an underdamped vibration, we study a prototype model: an electronic dimer coupled to a single
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underdamped vibration. The transport efficiency in such a system depends strongly on the coupling

to the vibration and is found to be highly non-trivial.

Model system– The prototype model that describes exciton delocalization is an electronic

dimer, with two molecules labeled 1 and 2, and extension of this model to larger systems is

straightforward. Each molecule is modeled as a two-level system with a common ground state

and an excited state. The excitation energy of molecule 1 (2)is denotedǫ1 (ǫ2) and the coherent

interaction between molecules as−J. The full Hamiltonian is given in terms of the creation and

annihilation operators ˆc†1(2) andĉ1(2) by

Ĥ(t) = [ǫ1+δǫ1(X1(t))]ĉ†1ĉ1+ [ǫ2+δǫ2(X2(t))]ĉ†2ĉ2

− J(ĉ†1ĉ2+ ĉ†2ĉ1), (1)

where the system is on-site coupled to the baths. The coordinates of the environmentXn comprise

all degrees of freedom not included in the tight-binding Hamiltonian, and, in particular, vibrations.

In principle, theseXn’s are operators that must be described by the rules of quantum mechanics.

Their correlation function〈Xn(t)Xn(0)〉 is a complex quantity, with its real and imaginary parts

balanced by the fluctuation-dissipation theorem. However,in the spirit of stochastic modeling,

we first assume thatXn(t) is a real function of time. The energy fluctuationsδǫ are then random

variables which follow a specific correlation function. This approximation is valid when the tem-

perature is large compared with the bandwidth of the system.In our numerical simulations, we

will consider a dimer with the same site energiesǫ1 = ǫ2 (homodimer) as well as a dimer with

different site energies (heterodimer), where the offset in site energies is∆ = ǫ1− ǫ2. Furthermore,

we will use the excitonic couplingJ as the energy unit. At the end of our paper, we will show

that the essential physics obtained from our model with classical fluctuations is retained, when the

environment is modeled quantum mechanically.

Although this model is standard, most studies assume that the fluctuating excitation energies

are either stationary random variables,21 or as white noise which can be modeled in the Markov

4



approximation.7,22Here, we consider general Gaussian colored noise with the correlation function

L(t) = 〈δǫn(t)δǫn(0)〉. (2)

We assume that the fluctuations in the site energies are uncorrelated and the correlation functions

are identical for every site, although these assumptions can easily be relaxed. The correlation

function for damped vibrations is given by

L(t) =
Γ0

τ
cos(ωt)e−|t|/τ. (3)

The two parametersΓ0/τ andω describe the amplitude of fluctuations and the frequency of vibra-

tion. The parameterτ models the memory time scale of the bath, which is equal to theinverse

damping rate of the vibration. Forω = 0 the correlation function in Eq. (3) describes overdamped

vibrations and can be derived from a Langevin equation driven by a white noise.23,24 In this case,

1/τ is known as the Debye frequency. The presence of memory (i.e., τ > 0) can increase the co-

herence in the system25 and hence the exciton diffusion efficiency. Here, we focus on the effect of

nonzeroω to describe underdamped vibrations.

We are interested in the exciton dynamics with one excitation present. It is known that from

Eq. (1) the system Hamiltonian and system-bath interactiondo not commute. Hence, there is

no analytical solution for the dynamics beyond the white noise limit. The two-state dynamics is

therefore found numerically by solving the time-dependentSchrödinger equation. The calculation

is repeated for many realizations of the random noise and thedensity matrix is averaged over all

the realizations. All simulations in this paper were averaged over 104 noise trajectories. To do this,

we first generate trajectories of random processes{δǫn(ti)} for thenth site, with discrete time series

{ti}. It is practically obtained by applying a linear transformation δǫn(ti) =
∑

kAikδηn(tk), where

{δηn(tk)} are sequences of white noise, with correlation〈δηn(tk)δηn(tl)〉 = δk,l . Moreover, the trans-

formation matrixA is constrained by the correlation functionL(t), and is computed by Cholesky

decomposition of the covariance matrix,26 specified asL(ti j ) = (AAT)i j . Hence, the noise correla-
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tion function is recovered as〈δǫn(ti)δǫn(t j)〉 =
∑

l,kAikA jl 〈δηn(tk)δηn(tl)〉 =
∑

kAik(AT)k j = L(ti j ).

Populations and coherences at each time step are therefore found by storing the components of the

density matrixρnm(t) = 〈ψn(t)ψ∗m(t)〉.

Critical damping–Let us first briefly consider the white noise case. The correlation function

is then given byL(t) = Γδ(t), where the dephasing rateΓ quantifies the strength of the noise. In

this case, the average over the noise can be performed analytically and leads to the Haken-Strobl-

Reineker model of exciton transport. The equation of motionfor the reduced density matrix is

found to be d
dtρ̂(t) = −i[ĤS, ρ̂(t)] + L̂d[ρ̂(t)] with 〈n|L̂d[ρ̂(t)]|m〉 = −Γ(1− δnm)〈n|ρ̂(t)|m〉 in the site

basis,27 whereĤS is the system Hamiltonian without coupling to the bath, and|n〉 is the site state.

The behavior of the system can be tuned by varyingΓ. For smallΓ (Γ < Γcritical) the population

dynamics exhibit oscillations, such that irreversible transfer of population from one site to the

other is slow. We will refer to this situation as the underdamped regime. For largeΓ, the transfer

is incoherent (overdamped regime) and slows down with increasingΓ. In between, the critical

value ofΓ optimizes the transfer (critical damping), which has been postulated as optimal energy

transfer in light-harvesting systems. Although an optimalvalue ofΓ exists, there is a broad plateau

of values close to the maximum that lead to near-optimum transport.8 The coherent oscillations

disappear at the critical value ofΓ = 4J based on the eigenvalues of the Liouville operator, which

is analytically found in the homodimer. These eigenvalues are 0, −Γ and 1
2(−Γ±

√
Γ2−16J2).

Critical damping corresponds to the crossover from purely real to complex eigenvalues, which

occurs when the latter two eigenvalues become equal atΓ = 4J. In the case of the heterodimer,

though not shown here, it is numerically found that for∆ > 2J, the critical value is best understood

by the energy gap of the system,Γcritical≈
√
∆2+4J2≈∆.

For colored noise with a more general correlation function,a similar phenomenon is expected.

In the Markovian limit, when the bath time scale is much faster than the system dynamics, the

effect of the bath can be understood with an effective damping rateΓeff =
∫ ∞
0 dtL(t). Thus, a

crossover from the underdamped to the overdamped regime is expected when the integral of the

correlation function increases. This can be achieved by increasing the strength of the fluctuations,
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Figure 1: Panels (a) - (c) show realizations of the noise forω = 0.0,5.0,10.0J, respectively. Panels
(d) - (f) show the chosen correlation function as well as the correlation function calculated from
the generated noise. The two lines overlap in all three cases. Panels (g) - (i) show (solid line) the
population and (dashed line) the coherence in a homodimer. Parameters areσ= 3.0J andτ= 1.0/J.
Time is in units of 1/J.

given byL(0), by changing the effective memory time of the bath, or by changing the shape of the

correlation function. Although the argument of effective model for the damping does not always

hold outside the Markovian limit, it provides qualitative insight.

We now turn to the colored noise describing the effect of underdamped vibrations on the sys-

tem, as defined in Eq. (3). The effective damping rate in this case is given by

Γeff =
Γ0

1+ω2τ2
, (4)

which decreases with increasingω for fixedΓ0 andτ. Thus, we expect that an overdamped dynam-
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ics for low vibrational frequency will change to an underdamped behavior for largeω. This effect

is shown in Fig. 1, which summarizes the simulation results in a homodimer (∆ = 0). Figs. 1(a) -

(c) show a single realization of the noise for different values of the vibrational frequencyω. The

noise leads to fluctuations in the transition energyǫ, which is plotted relative to the amplitude of

the noiseσ2
= Γ0/τ. In all panels the correlation time of the noise isτ = 1/J. Evidently, the

colored noise caused by an underdamped vibration leads to oscillations in the transition energy,

with a characteristic frequency given byω. The noise sequences are generated from the correlation

functions shown in Figs. 1(d) - (f), which are typical for an overdamped vibration (Fig. 1(d)) and

underdamped vibrations (Figs. 1(e) - (f)). The bottom threepanels (Figs. 1(g)-(i)) show the popu-

lation P = ρ11 and the real part of the coherenceC = Re[ρ12] as a function of time, starting from

an initial state where only molecule 1 is populated. Although the amplitude of the fluctuations

σ2
= Γ0/τ is the same in all panels, the effective damping strengthΓeff in Eq. (4) is reduced with

increasingω, leading to coherent oscillations in the population. The proper damping strength by

tuning vibration frequency may optimize the transfer efficiency. Hence, coherent behaviors of the

system emerges even in the presence of strong noise, and optimal transfer will occur for a critical

vibrational frequencyωcritical.

Resonant transfer–The crossover from overdamped to underdamped system dynamics is the

first effect that optimizes transfer in the dimer system. Now we consider the second mechanism.

We expect the transfer efficiency to increase when the environmental vibration is resonant with the

energy gap in the system. Thus, for our dimer, resonant transfer will occur near the vibrational

frequencyωres=
√
∆2+4J2, and can drive transfer between the two sites in the system. This effect

can be understood as the driving of system dynamics by an external field, here provided by the

vibration, in analogy to optical driving with a laser. This mechanism has been put forward as a

way to regenerate coherence in the system,17 and as quantum resonance.28 Here, we show that it

also enhances population transfer through classical resonance. Thus, there are two mechanisms

that control optimal transfer in the system: critical damping controlled byΓeff , which can lead to

a crossover from overdamped to underdamped system dynamics, and resonant transfer defined by
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Figure 2: Transfer rate from site 1 to site 2 as a function of vibrational frequency. Fixed parameters
are∆ = 8J, Γ0 = 12J andτ = 3/J. The two maxima in the transfer efficiency as a function ofω,
which correspond to the crossover from overdamped to underdamped dynamics (ω≈4J) and the
exciton-vibrational resonance (ω≈8J), respectively.

ωres which matches the excitonic gap.

The transfer rate between the two monomers can be understoodfrom Förster theory as follows.

The corresponding Förster rate in the presence of classicalcolored noise is given by29,30

κ = 2J2Re[
∫ ∞

0
dtei∆t−g(t)], (5)

where the line shape function is given byg(t)= 1
2

∫ t
0 dt1
∫ t
0 dt2L(t1− t2). For the correlation function

given in Eq. (3), the line-shape function is evaluated as

g(t) =
Γ0

τ(1/τ2+ω2)2
{ t
τ

(1/τ2
+ω2)

+ (ω2−1/τ2)(1−e−t/τ cosωt)

− 2ω
τ

e−t/τsinωt}. (6)

Hence, the transfer rateR, of which the inverse is defined as

R−1
=

∫ ∞
0

dt(
1
2
−P(t)) =

1
4κ
, (7)
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is readily evaluated, whereP(t) is the transferred population at timet. The result for the model

dimer is shown in Fig. 2, where we indeed observe two peaks in the transfer rate as a function of

vibrational frequency.

We now show how these two effects appear in numerical simulations, which can be applied to

treat noise strengths outside the Förster regime. From the transfer rate at Eq. (7), the overdamped

behavior is observed in low frequency regime. By increasingω, there exists the crossover from

overdamped to underdamped behavior, leading to optimal transfer for the critical value ofωcritical.

Thus, the prediction of Eq. (4) of a decrease of the effective noise strength with increasingω holds.

However, the numerical solution of the vibrational frequency that leads to critical damping is dif-

ferent from the simple estimate, based on white noise resultΓcritical =
√
∆2+4J2. We attribute

the difference to non-Markovian effects. Surprisingly, the peak in the population transfer is rather

sharp, as opposed to the broad peak observed for white noise.If we keep increasingω, a resonance

of the exciton system with the vibration appears atω≈8J. Thus, the two maxima in the transfer

efficiency as a function ofω correspond to the crossover from overdamped to underdampeddy-

namics, and to the exciton-vibration resonance. Moreover,the strong increase of the transfer rate

in the presence of a resonant vibration is found when the system is underdamped. In the over-

damped case, it is confirmed there is almost no effect. If ω is increased even further, the system

dynamics becomes more coherent and the efficiency decreases dramatically. In addition to the

results presented here, we have performed simulations withthe hierarchical equations of motion

method for a Brownian oscillator spectral density, which models a quantized vibration. As shown

in the Supplemental Material, we again observe the two maxima in the transport as a function of

vibrational frequency.

Suppressed coherence at resonance– Here, we also consider the quantum coherence between

the two monomers in the site basis. We see long-lived coherent oscillations as a result of the

coupling to the vibration. This is a vibrational effect different from the absence of sustained oscil-

lations atω = 0. At resonance (i.e.,ωres= 8J), the coherence is damped faster than off-resonance.

A similar faster decay is observed atωcritical = 4J and both effects can be implied by more rapid
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Figure 3: Population (left panel) and coherence (right panel) in the site basis as a function of
time for different vibrational frequencies. Coherences were offset by -0.4 (ω = 0), -0.2 (ω = 4J), 0
(ω = 6J), +0.2 (ω = 8J) and+0.4 (ω = 9J). The other parameters are identical to those in Fig. 2.

population transfer. Thus, to observe long-lived coherence resulting from coupling to vibrations,

one should probe away from the vibrational resonance.

The two mechanisms have different effects on the coherence of the dimer system. The critical

damping is the boundary between weak and strong damping and therefore cannot be described with

either a weak or strong coupling master equation alone. For example, the standard Markovian ver-

sion of the Redfield equation fails to predict the optimal energy transfer,7 whereas a non-Markovian

version, i.e., the generalized Bloch-Redfield equation, correctly predicts the transfer time and effi-

ciency in the Fenna-Matthews-Olson complex (FMO) over the entire parameter space.8 In compar-

ison, resonant transfer occurs at a weaker coupling strength and thus the standard Bloch equation

is applicable. Then, in the resonant transfer regime, the Bloch equation predictsT2 = 2T1, where

T2 andT1 are the dephasing and population relaxation rate constants, respectively. This simple

relationship explains the rapid decay of excitonic coherence for resonant transfer.

Combined effect and relevant photosynthetic systems–We now show that the combination of

the two optimization mechanisms leads to optimal transfer.Fig. 4 shows the population in the

heterodimer for exponentially correlated noise (ω = 0) in the underdamped regime (black solid

line) and close to critical damping regime (black dashed line), respectively. In comparison, we

also show the dynamics in the presence of a resonant vibration (red solid line). Finally, we plot

the system population in the presence of both an underdampedand an overdamped vibration (red
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Figure 4: Population on site 1 in a heterodimer as a function of time. Black lines are for expo-
nentially correlated noise (ω = 0), with Γ0 = 6J for solid line andΓ0 = 96J for dashed line. Solid
red line is for oscillating decay noise(ω = 2.8J), with Γ0 = 6J. Dashed red line is for oscillating
decay noise combined with exponentially correlated one shown at Eq. (8), withΓ0 = 6J, τ2 = 2/J
andΓ0,2 = 2J. The other parameters are∆ = 2J andτ = 6/J.

dashed line) by selecting the optimal parameters, with the combined correlation function

L2(t) =
Γ0

τ
cos(ωt)e−|t|/τ+

Γ0,2

τ2
e−|t|/τ2. (8)

We observe that the latest case, in which a resonant vibration is present and the system is tuned

close to critical damping, gives more efficient transfer, compared to other cases. Because the

estimate of the effective damping in Eq. (4) does not quantitatively predict the crossover from

overdamped to underdamped dynamics in the system, only numerical simulation can predict the

parameters that may lead to maximum transfer efficiency. The combination of the two mechanisms

identified in this paper, resulting in a resonant frequencyωresand a critical frequencyωcritical, leads

to optimal transfer.

Recent experiments have detected oscillations of coherences in the heterodimer, which were

attributed to both electronic coherence and vibrational states.Many vibrational modes with frequen-

cies close to the electronic energy gap were identified. Therefore, vibrational resonance effects are

expected to play a central role in the population dynamics inthese systems. A recent theoretical

study considers an effective dimer model for the FMO complex.17 The heterodimer has an energy

12



offset of∆ = 2.43J. The spectral density considered consists of a broad-band with a reorganization

energy ofλ2 = 0.65J and a vibration with a frequency ofω = 3.36J and reorganization energy

of λ = 0.74J. Because in the high temperature limitΓ0/τ = 2λ/β, we find thatΓ0/τ = 1.5J2 and

Γ0,2/τ2 = 1.3J2 at a temperature of 77 K. At this temperature, the parametersare close to the opti-

mal values used in our Fig. 4, suggesting that our simulations are directly relevant to real systems.

Further experiments that detect site populations are needed to show the optimal transfer efficiency

explained in the present paper.

Conclusion–We have studied energy transfer in an exciton system coupled to an underdamped

vibration. The essential feature of the underdamped vibration can be obtained by considering in-

tramolecular interaction. Two mechanisms determine optimal transfer parameters. First, there is a

crossover from overdamped to underdamped system dynamics,governed by the effective strength

of the noise. Because the strength of the noise depends on both the vibrational frequency as well

as its damping constant, the behavior of the system changes with the frequency. Furthermore,

a crossover from underdamped to overdamped dynamics can be tuned by changing the damping

constant. This shows that experimentally controllable parameters, such as the choice of solvent,

can modify the transport efficency, and even change the character of the population transport qual-

itatively. Second, a vibration resonant with the excitonicgap can drive population transfer. We

found that resonance can strongly increase transport if thesystem dynamics is underdamped, even

in the presence of strong noise. Optimal transfer is achieved when these two mechanisms coin-

cide. Coupling to a vibration also leads to long-lived oscillations in the coherence, which have the

longest life time for a vibration that is slightly off-resonance. Our analysis can trivially be applied

to larger systems and to arbitrary correlation functions, including correlated fluctuations.8,31 Our

results contribute to the heated debate on the effect of a vibrational resonance on energy transport.
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Supplemental Material

In the supplemental material, we present the derivation of the Förster rate shown in Eq. (7) in

the main text. Second, we present a plot of the transferred population as a function of time, in

which the crossover from underdamped to overdamped behavior is visible. Finally, we present

hierarchical equations of motion calculations for a quantized vibration.

Derivation of transfer rate

It is known that the transfer rate in the Förster limit is given by

κ = 2J2Re[
∫ ∞

0
dtei∆t−g(t)], (9)

whereJ is the inter-site coupling strength,∆ is energy splitting, and the correlation phase is

g(t) =
1
2

∫ t

0
dt1

∫ t

0
dt2C(t1− t2) =

∫ t

0
dt1(t− t1)L(t1), (10)

with L(t1) the correlation function of the phonon bath. In the high-temperature limit, the correlation

functionL(t) is described by the colored noise

L(t) = L0(t)e−|t|/τ, (11)

with L0(t) the time dependent strength, andτ the characteristic correlation time. Hence, the corre-

sponding accumulation function isI (τ, t) =
∫ t
0 dt1L(t1). Then, the correlation phase is given by

g(t) = (t+
∂

∂r
)
∫ t

0
L(t1)dt1 = (t+

∂

∂r
)I (τ, t), (12)

with r = 1/τ. If we further specify the correlation function asL(t) = Γ0
τ

e−|t|/τ, with Γ0/τ the fluctua-

tion strength. the accumulation function becomesI (τ, t) = Γ0(1−e−t/τ). And the correlation phase

14



is

g(t) = Γ0τ(e
−t/τ−1+ t/τ). (13)

In the strong damping limitτ→0(r→∞), the correlation phase is simplified tog(t) = Γ0t. The

corresponding transfer rate is given by

κ = 2J2Re[
∫ ∞

0
dtei∆t−Γ0t] = 2

J2
Γ0

∆2+Γ2
0

. (14)

If we consider a damped oscillation in the correlation function corresponding to intramolecular

vibrations, the correlation function is modified as

L(t) =
Γ0

τ
cos(ωt)e−|t|/τ, (15)

with ω the vibrational frequency of the local mode. The accumulation function is given by

I (τ, t) =
Γ0

τ

∫ t

0
cos(ωt1)e−t1/τdt1 =

Γ0

τ
Re[
∫ t

0
dt1e−iωt1−t1/τ] =

Γ0

τ
Re[

1−e−t/τ−iωt

1/τ+ iω
]

=
Γ

1/τ2+ω2
[1/τ−e−t/τ(

cosωt
τ
−ωsinωt)] (16)

and the correlation phase is given by

g(t) = (t+
∂

∂r
)I (τ, t)

=
Γ0

τ(1/τ2+ω2)2
[
t
τ

(1/τ2
+ω2)+ (ω2−1/τ2)(1−e−t/τ cosωt)−

2ω
τ

e−t/τsinωt]. (17)

In the Förster limit, the dynamics of the populations are decoupled from the coherence term,

and the former is expressed as

dP1(t)
dt
= −κ(P1(t)−P2(t)) = κ−2κP1(t) (18)

15



with P j(t) the population at sitej. This results inP1(t) = 1
2(1− e−2κt)+P1(0)e−2κt. If the initial

condition is given asP1(0)= 1, the population dynamics of site 1 areP1(t) = 1
2(1+e−2κt). Hence,

the transferred population after a timet is given byP(t) = 1−P1(t) = 1
2(1−e−2κt). The inverse of

the corresponding transfer rate is given by

R−1
=

∫ ∞
0

dt(1/2−P(t)) = 1/(4κ), (19)

andR= 4κ.

Hierarchical equations of motion results

In order to show explicitly that the two peak structure foundin this paper is still valid in a quantum

mechanical calculation, we performed numerically exact simulations with the hierarchical equa-

tions of motion for the Brownian oscillator spectral density.32 In this model, the energy difference

between the two molecules is coupled to a vibrational mode, which is in turn coupled to a continu-

ous bath of harmonic oscillators. The coordinates of the bath X are treated as operators instead of

functions of time. The spectral density for this model is given by

J(ω′) = 2λ
γω2ω′

(ω2−ω′2)2+γ2ω′2
. (20)

The parameters are the reorganization energyλ, which quantifies the strength of the system vibra-

tion coupling, the vibrational frequencyω and the coupling strength of the underdamped vibration

to the thermal bathγ. The thermal bath is furthermore characterized by an inverse temperatureβ.

Simulations were performed with one Matsubara frequency, ahierarchy depth of 6 and time steps

of 0.001/J.

The results of these simulations are shown in Fig. 5. We choose a temperature of 10J and

setλ = 0.2J to reproduce the same fluctuation amplitude as in the classical calculation shown in

Fig. 2 (In the high temperature limitλ = βΓ0/2τ.). Although the amplitude depends onω, this

choice of parameters reproduces a value ofΓ0 = 12−13J for all values ofω used. The Brownian
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Figure 5: Transferred population from site 1 to site 2 (a) as afunction of vibrational frequency after
a time 20/J and (b) as a function of time for frequencies (from bottom to top)ω = 6J,4J,9J,8J.
The dynamics were calculated with a quantized vibration. Fixed parameters are∆ = 8J, λ = 0.2J,
γ = 2J/3 andβ = 0.1/J. The two maxima found in Fig. 2 are reproduced in this calculation.

oscillator spectral density gives rise to fluctuations damped with a characteristic time scaleτ= 2/γ,

so we setγ = 2J/3. Indeed, the two maxima in the transferred population are reproduced, showing

the value of our simplified approach in predicting the behavior of the system. In the right panel

of Fig. 5 the effect of the finite temperature is seen. At long times, the site populations reach

thermal equilibrium instead of the value of 0.5 found in the classical calculation reported in Fig. 3.

Essentially, the same effects are also found at much lower temperature, though not shown here.
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New. J. Phys.2010, 12, 105012.

(9) Dijkstra, A. G.; Jansen, T. l. C.; Knoester, J. Localization and coherent dynamics of excitons

18

http://arxiv.org/abs/1310.1111


in the two-dimensional optical spectrum of molecular J-aggregates.J. Chem. Phys.2008,

128, 164511.

(10) Schlau-Cohen, G. S.; Ishizaki, A.; Calhoun, T. R.; Ginsberg, N. S.; Ballottari, M.; Bassi, R.;

Fleming, G. R. Elucidation of the timescales and origins of quantum electronic coherence in

LHCII. Nat. Chem.2012, 4, 389-395.

(11) Adolphs, J.; Renger, T. How Proteins Trigger Excitation Energy Transfer in the FMO Com-

plex of Green Sulfur Bacteria.Biophys. J.2006, 91, 2778-2797.

(12) Olbrich, C.; Jansen, T.l.C.; Liebers, J.; Aghtar, M.; Strümpfer, J.; Schulten, K.; Knoester,

J.; Kleinekathöfer, U. From atomistic modeling to excitation transfer and two-dimensional

spectra of the FMO light-harvesting complex.J. Phys. Chem. B2011, 115, 8609-8621.

(13) Valleau, S.; Eisfeld, A.; Aspuru-Guzik, A. On the alternatives for bath correlators and spectral

densities from mixed quantum-classical simulations.J. Chem. Phys.2012, 137, 224103.

(14) Gelin, M. F.; Egorova, D.; Domcke, W. Exact quantum master equation for a molecular

aggregate coupled to a harmonic bath.Phys. Rev. E2011, 84, 041139.

(15) Christensson, N.; Kauffmann, H. F.; Pullerits, T.; Maňcal, T. Origin of Long-Lived Coher-
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