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Abstract

Recent ultrafast optical experiments show that excitoriarge biological light-harvesting
complexes are coupled to molecular vibration modes. Thggefrequency vibrations will
not only dfect the optical response, but also drive the exciton tratisptere, using a model
dimer system, the frequency of the underdamped vibratishagvn to have a strondgfect on
the exciton dynamics such that quantum coherent oscifigfinthe system can be present even
in the case of strong noise. Two mechanisms are identified tes¢ponsible for the enhanced
transport €iciency: critical damping due to the tunablffestive strength of the coupling to
the bath, and resonance coupling where the vibrationaliémecy coincides with the energy
gap in the system. The interplay of these two mechanismsrdigtes parameters responsible
for the most éicient transport, and these optimal control parameters@rgarable to those
in realistic light-harvesting complexes. Interestingiggillations in the excitonic coherence at

resonance are suppressed in comparison to the case fifrmsa@nant vibration.

Introduction- The dfect of intramolecular vibrations on energy transport igdédbiological as-
semblies became increasingly intriguing, for recent @bxperiments have been interpreted as a
sign of the coupling of vibrations to electronic excitatiqexcitons) in light-harvesting antennie,
and the reaction center of photosynthetic complex&&hese systems consist of closely spaced
chromophore molecules. Coherent interactions of the ittanglipoles of these molecules lead to
elementary excitations that extend over a number of madsaanlthe form of Frenkel excitons. The
existence of these states enables quantum mechanicalikatensport through the systerfi

The importance of the interaction of such excitons withrtieevironments is well known, and the



interplay of coherent coupling between molecules and mmiggnating from the environment has
been shown to lead to optimal transpb#.

To model the influence of the environment, it is often assuthatlits dfect is fast compared
to the typical time scales of the system such that the erwismmt can be modeled as white noise.
However, recent optical experiments detect rapid dynawiiedectronic excitations on the time
scale of tens to hundreds femtoseconds in molecular aggseylight-harvesting systems of bac-
teria? plantst® and conjugated polyme®sThen, the environment cannot be considered fast on
this time scale. In particular, in many small organic anddmaal molecules, the coupling of
excitations to vibrations is essentfat=1’Not much is known about the transport properties of a
system coupled to these underdamped vibrations. In thisrpaye focus on the exciton dynamics
induced by underdamped vibrations, and our method is agigecto baths as Gaussian colored
noise. Initial analysis beyond the white noise limit haduded overdamped vibrations. Recently,
it has been realized that underdamped vibrations or vibrstiaites with a mixed exciton character
can also lead to long-lived oscillations during the waittirge 22 Much work has been devoted
to the explanation of these oscillations and to the desorifif exciton coherencél’:12Exciton
dynamics in the presence of underdamped vibrations hasthe@dtracted much attention as a
way to explain the quantum beats observed in two-dimenbapiial experiment$,and resonant
vibrations have been proposed to drive exciton coheremcémisystent:1%:17|t is not yet clear,
however, which parameters can optimize transport in asysteipled to underdamped vibrations.
Resonance between an energy gap of the system and a vibifatiode is a possible mechanism
but not the only on&? an equally important mechanism is the critical damping, nettiee exciton
dynamics undergo a transition from underdamped to overddropcillations.

In this work, we address thedfect of an underdamped vibration on energy transport. Ifavibr
tions couple strongly to excitons, as suggested by the tee@hanations of long-lived coherences,
they are also expected to influence the population dynanmidsnlying energy transport. In order
to clearly bring out the essential physics of the interplagizen excitonic coherence anidleet

of an underdamped vibration, we study a prototype modelieutrenic dimer coupled to a single



underdamped vibration. The transpdti@ency in such a system depends strongly on the coupling
to the vibration and is found to be highly non-trivial.

Model system The prototype model that describes exciton delocalinaisoan electronic
dimer, with two molecules labeled 1 and 2, and extension f todel to larger systems is
straightforward. Each molecule is modeled as a two-levslesy with a common ground state
and an excited state. The excitation energy of molecule is(@gnoted: (e2) and the coherent
interaction between molecules ad. The full Hamiltonian is given in terms of the creation and

annihilation operatorsizz) andcy ) by

Ht) = [er+der(Xa(D)]E]C1+[e2+Sex(Xa(t)]ESE2

~ JEe+ehen), 1)

where the system is on-site coupled to the baths. The caiedirof the environmeng, comprise
all degrees of freedom not included in the tight-binding Heonian, and, in particular, vibrations.
In principle, theseX,’s are operators that must be described by the rules of goamntechanics.
Their correlation functionXu(t)X,(0)) is a complex quantity, with its real and imaginary parts
balanced by the fluctuation-dissipation theorem. Howeivethe spirit of stochastic modeling,
we first assume thaX,(t) is a real function of time. The energy fluctuatiofisare then random
variables which follow a specific correlation function. $tapproximation is valid when the tem-
perature is large compared with the bandwidth of the systenour numerical simulations, we
will consider a dimer with the same site energéies= e2 (homodimer) as well as a dimer with
different site energies (heterodimer), where tfieat in site energies I8 = €1 — eo. Furthermore,
we will use the excitonic coupling as the energy unit. At the end of our paper, we will show
that the essential physics obtained from our model withsatas$ fluctuations is retained, when the
environment is modeled quantum mechanically.

Although this model is standard, most studies assume tbedtubtuating excitation energies

are either stationary random variabfspr as white noise which can be modeled in the Markov



approximation!2? Here, we consider general Gaussian colored noise with tielation function
L(t) = (den(t)oen(0)). (2)

We assume that the fluctuations in the site energies are netetied and the correlation functions
are identical for every site, although these assumptionseeaily be relaxed. The correlation

function for damped vibrations is given by
L(t) = ?cos@t)e"t'/ T (3)

The two parametersy/r andw describe the amplitude of fluctuations and the frequencytray
tion. The parameter models the memory time scale of the bath, which is equal tonverse
damping rate of the vibration. Far = 0 the correlation function in EJ.J(3) describes overdamped
vibrations and can be derived from a Langevin equation driMea white nois&3:24n this case,
1/t is known as the Debye frequency. The presence of memory(ize0) can increase the co-
herence in the systefhand hence the excitonfilision gficiency. Here, we focus on théfect of
nonzeraw to describe underdamped vibrations.

We are interested in the exciton dynamics with one excitgpieesent. It is known that from
Eq. (1) the system Hamiltonian and system-bath interaaimmot commute. Hence, there is
no analytical solution for the dynamics beyond the whitesadimit. The two-state dynamics is
therefore found numerically by solving the time-dependsiirédinger equation. The calculation
is repeated for many realizations of the random noise andehsity matrix is averaged over all
the realizations. All simulations in this paper were avedigver 10 noise trajectories. To do this,
we first generate trajectories of random proce$&gst;)} for thenth site, with discrete time series
{ti}. It is practically obtained by applying a linear transfotioa deq(ti) = X Aikonn(tk), where
{onn(tk)} are sequences of white noise, with correlatiémh (t)onn(t)) = dk). Moreover, the trans-
formation matrixA is constrained by the correlation functit(t), and is computed by Cholesky

decomposition of the covariance matfspecified ad (tjj) = (ﬂﬂT)ij . Hence, the noise correla-



tion function is recovered agen(ti)den(tj)) = 21k Ak A (0nn(t)onn(l)) = Zkﬂik(ﬂT)kJ = L(tij).
Populations and coherences at each time step are theretore by storing the components of the
density matrixonm(t) = Wn(t)¥m(t)).

Critical damping-Let us first briefly consider the white noise case. The catigl function
is then given byL(t) = I'6(t), where the dephasing rafequantifies the strength of the noise. In
this case, the average over the noise can be performed iaalyyand leads to the Haken-Strobl-
Reineker model of exciton transport. The equation of mof@mthe reduced density matrix is
found to bedA(t) = —i[Hs,p(t)] + La[p(t)] with (NILa[pE)]Im) = ~I(1 - Snm)Xnip(R)Im) in the site
basis2? whereHs is the system Hamiltonian without coupling to the bath, pmds the site state.
The behavior of the system can be tuned by varyindg-or smalll’ (I" < I'¢ritical) the population
dynamics exhibit oscillations, such that irreversiblengf@r of population from one site to the
other is slow. We will refer to this situation as the undergachregime. For largg, the transfer
is incoherent (overdamped regime) and slows down with agirggyI". In between, the critical
value ofT" optimizes the transfer (critical damping), which has beestylated as optimal energy
transfer in light-harvesting systems. Although an optiwalie ofl" exists, there is a broad plateau
of values close to the maximum that lead to near-optimunspar The coherent oscillations
disappear at the critical value bf= 4J based on the eigenvalues of the Liouville operator, which
is analytically found in the homodimer. These eigenvaluesa-I" and 3(-I' + VI2-16J?).
Critical damping corresponds to the crossover from pureft to complex eigenvalues, which
occurs when the latter two eigenvalues become equil=a#J. In the case of the heterodimer,
though not shown here, it is numerically found thatAor 2J, the critical value is best understood
by the energy gap of the systeRyiticair VAZ + 4J2~A.

For colored noise with a more general correlation functeosimilar phenomenon is expected.
In the Markovian limit, when the bath time scale is much fast@n the system dynamics, the
effect of the bath can be understood with dfeetive damping rat@eg = f0°° dtL(t). Thus, a
crossover from the underdamped to the overdamped regimgéeced when the integral of the

correlation function increases. This can be achieved bgasing the strength of the fluctuations,
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Figure 1. Panels (a) - (c) show realizations of the noisesfer0.0,5.0,10.0J, respectively. Panels
(d) - (f) show the chosen correlation function as well as thatation function calculated from
the generated noise. The two lines overlap in all three cdzasels (g) - (i) show (solid line) the
population and (dashed line) the coherence in a homodiraesinketers are = 3.0J andr = 1.0/J.
Time is in units of 7 J.

given byL(0), by changing thefeective memory time of the bath, or by changing the shape of the
correlation function. Although the argument dfextive model for the damping does not always
hold outside the Markovian limit, it provides qualitativesight.

We now turn to the colored noise describing thikeet of underdamped vibrations on the sys-
tem, as defined in EJ.](3). Th&ective damping rate in this case is given by

__To
1+ w12’

Ceff (4)

which decreases with increasiagor fixedI'g andr. Thus, we expect that an overdamped dynam-



ics for low vibrational frequency will change to an undergead behavior for large. This dfect

is shown in Fig[dl, which summarizes the simulation resulis homodimer4 = 0). Figs[1(a) -
(c) show a single realization of the noise foffdrent values of the vibrational frequenoy The
noise leads to fluctuations in the transition enesgwhich is plotted relative to the amplitude of
the noiseo? = I'p/7. In all panels the correlation time of the noiseris: 1/J. Evidently, the
colored noise caused by an underdamped vibration leadsctitatiens in the transition energy,
with a characteristic frequency given ay The noise sequences are generated from the correlation
functions shown in Fig$.l 1(d) - (f), which are typical for ameodamped vibration (FigJ 1(d)) and
underdamped vibrations (Fids. 1(e) - (f)). The bottom thpaeels (Figd.]1(g)-(i)) show the popu-
lation P = p11 and the real part of the coherenCe= Refp1,] as a function of time, starting from
an initial state where only molecule 1 is populated. Althodlge amplitude of the fluctuations
o2 =T/t is the same in all panels, th&ective damping strengtie in Eq. (2) is reduced with
increasingw, leading to coherent oscillations in the population. Thaper damping strength by
tuning vibration frequency may optimize the transféioeency. Hence, coherent behaviors of the
system emerges even in the presence of strong noise, amgabptnsfer will occur for a critical
vibrational frequencyuritical-

Resonant transfefThe crossover from overdamped to underdamped system dys&srthe
first effect that optimizes transfer in the dimer system. Now we aw@rghe second mechanism.
We expect the transfefficiency to increase when the environmental vibration ismasbwith the
energy gap in the system. Thus, for our dimer, resonantfeeamsll occur near the vibrational
frequencywres= VA2 +4J2, and can drive transfer between the two sites in the systéis.dfect
can be understood as the driving of system dynamics by amnektield, here provided by the
vibration, in analogy to optical driving with a laser. Thieahanism has been put forward as a
way to regenerate coherence in the systémand as quantum resonan&eHere, we show that it
also enhances population transfer through classical ae®en Thus, there are two mechanisms
that control optimal transfer in the system: critical dangpcontrolled by, which can lead to

a crossover from overdamped to underdamped system dynanitsesonant transfer defined by
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Figure 2: Transfer rate from site 1 to site 2 as a function bfational frequency. Fixed parameters
areA =8J,Tp=12J andr = 3/J. The two maxima in the transfefficiency as a function ab,
which correspond to the crossover from overdamped to uadgprdd dynamics{~4J) and the
exciton-vibrational resonance£8J), respectively.

wres Which matches the excitonic gap.
The transfer rate between the two monomers can be underfstoodrorster theory as follows.

The corresponding Férster rate in the presence of clagsitaied noise is given B7:30
x = 2J°Re] f dte2t-90], (5)
0

where the line shape function is given ¢ify) = % fot dtlfotdtzL(tl —1t2). For the correlation function
given in Eq.[(8), the line-shape function is evaluated as

T'o t, 2 2
T(1/12+w2)2{7(1/T +e)

+ (W =1/ -eY coswt)

a(t)

ZTwe‘t/ Tsinwt). (6)

Hence, the transfer raf® of which the inverse is defined as

RI= fo B dt(% —P(t)) = 4—1K, (7)



is readily evaluated, wher(t) is the transferred population at tinhe The result for the model
dimer is shown in Fig.12, where we indeed observe two pealsarnransfer rate as a function of
vibrational frequency.

We now show how these twdfects appear in numerical simulations, which can be apptied t
treat noise strengths outside the Forster regime. Fronrdhsfer rate at EqL.{7), the overdamped
behavior is observed in low frequency regime. By increasinghere exists the crossover from
overdamped to underdamped behavior, leading to optimadfeafor the critical value od¢ritical-
Thus, the prediction of Eq.{4) of a decrease of tfieaive noise strength with increasiagolds.
However, the numerical solution of the vibrational fregeyethat leads to critical damping is dif-
ferent from the simple estimate, based on white noise ré&sita = VAZ+4J2. We attribute
the diference to non-Markovianfiects. Surprisingly, the peak in the population transfeaiber
sharp, as opposed to the broad peak observed for white hioigekeep increasing, a resonance
of the exciton system with the vibration appearswat8J. Thus, the two maxima in the transfer
efficiency as a function ab correspond to the crossover from overdamped to underdachped
namics, and to the exciton-vibration resonance. Moredkierstrong increase of the transfer rate
in the presence of a resonant vibration is found when theesys underdamped. In the over-
damped case, it is confirmed there is almost fiect. If w is increased even further, the system
dynamics becomes more coherent and tfieiency decreases dramatically. In addition to the
results presented here, we have performed simulationstiagthierarchical equations of motion
method for a Brownian oscillator spectral density, whichdels a quantized vibration. As shown
in the Supplemental Material, we again observe the two maxmthe transport as a function of
vibrational frequency.

Suppressed coherence at resonantkere, we also consider the quantum coherence between
the two monomers in the site basis. We see long-lived coh@sgillations as a result of the
coupling to the vibration. This is a vibrationdfect diterent from the absence of sustained oscil-
lations atw = 0. At resonance (i.ewres= 8J), the coherence is damped faster théiresonance.

A similar faster decay is observed@giiical = 4J and both &ects can be implied by more rapid

10
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Figure 3: Population (left panel) and coherence (right panethe site basis as a function of
time for different vibrational frequencies. Coherences wéiget by -0.4 ¢ =0),-0.2 w=4J),0
(w=16J), +0.2 (w = 8J) and+0.4 (w = 9J). The other parameters are identical to those in[Fig. 2.

population transfer. Thus, to observe long-lived cohezeesulting from coupling to vibrations,
one should probe away from the vibrational resonance.

The two mechanisms havefidirent éfects on the coherence of the dimer system. The critical
damping is the boundary between weak and strong dampindparefére cannot be described with
either a weak or strong coupling master equation alone. ¥amnple, the standard Markovian ver-
sion of the Redfield equation fails to predict the optimakgpéransfer! whereas a non-Markovian
version, i.e., the generalized Bloch-Redfield equatiomently predicts the transfer time anflie
ciency in the Fenna-Matthews-Olson complex (FMO) over titeeparameter spactin compar-
ison, resonant transfer occurs at a weaker coupling streargt thus the standard Bloch equation
is applicable. Then, in the resonant transfer regime, tloelBequation predict§, = 2T1, where
T, andT; are the dephasing and population relaxation rate constasjsectively. This simple
relationship explains the rapid decay of excitonic coheedor resonant transfer.

Combined gect and relevant photosynthetic systelf® now show that the combination of
the two optimization mechanisms leads to optimal transkég. 4 shows the population in the
heterodimer for exponentially correlated noige= 0) in the underdamped regime (black solid
line) and close to critical damping regime (black dashed)limespectively. In comparison, we
also show the dynamics in the presence of a resonant vibragad solid line). Finally, we plot

the system population in the presence of both an underdaamedn overdamped vibration (red

11
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Figure 4. Population on site 1 in a heterodimer as a functiaimee. Black lines are for expo-
nentially correlated noiseJs= 0), with g = 6J for solid line andl'p = 96J for dashed line. Solid
red line is for oscillating decay noise 2.8J), with I'o = 6J. Dashed red line is for oscillating
decay noise combined with exponentially correlated onevehat Eq. [(8), with['o = 6J, 72 = 2/J
andI'p2 = 2J. The other parameters ate= 2J andr = 6/J.

dashed line) by selecting the optimal parameters, with éimetined correlation function
I I
Lo(t) = 2 cosgt)e /7 4 22 /2, (8)
T T2

We observe that the latest case, in which a resonant vibréipresent and the system is tuned
close to critical damping, gives mordtieient transfer, compared to other cases. Because the
estimate of the féective damping in Eq[{4) does not quantitatively predi& tnossover from
overdamped to underdamped dynamics in the system, only nzahsimulation can predict the
parameters that may lead to maximum transfeéciency. The combination of the two mechanisms
identified in this paper, resulting in a resonant frequangyand a critical frequencycritical, leads

to optimal transfer.

Recent experiments have detected oscillations of coheseincthe heterodimer, which were
attributed to both electronic coherence and vibratiorsdést Many vibrational modes with frequen-
cies close to the electronic energy gap were identified. &fbeg, vibrational resonancéects are
expected to play a central role in the population dynamidb@se systems. A recent theoretical

study considers arfective dimer model for the FMO compléX.The heterodimer has an energy

12



offset of A = 2.43J. The spectral density considered consists of a broad-b#&haweorganization
energy of1, = 0.65J and a vibration with a frequency @ = 3.36J and reorganization energy
of 1 = 0.74J. Because in the high temperature lifiig/r = 21/8, we find thatlo/r = 1.5J% and
T'o2/72 = 1.3J% at a temperature of 77 K. At this temperature, the paramaterslose to the opti-
mal values used in our Figl 4, suggesting that our simulatéwa directly relevant to real systems.
Further experiments that detect site populations are wketdghow the optimal transfeffeciency
explained in the present paper.

ConclusiorWe have studied energy transfer in an exciton system couplan underdamped
vibration. The essential feature of the underdamped vidmatan be obtained by considering in-
tramolecular interaction. Two mechanisms determine ogittransfer parameters. First, there is a
crossover from overdamped to underdamped system dynagowstned by theféective strength
of the noise. Because the strength of the noise depends briH@vibrational frequency as well
as its damping constant, the behavior of the system changledhe frequency. Furthermore,
a crossover from underdamped to overdamped dynamics cambd by changing the damping
constant. This shows that experimentally controllablepeaters, such as the choice of solvent,
can modify the transporttiecency, and even change the character of the populatiorptvetregual-
itatively. Second, a vibration resonant with the excitogép can drive population transfer. We
found that resonance can strongly increase transport gfytbiem dynamics is underdamped, even
in the presence of strong noise. Optimal transfer is acHievween these two mechanisms coin-
cide. Coupling to a vibration also leads to long-lived datibns in the coherence, which have the
longest life time for a vibration that is slighthyfleresonance. Our analysis can trivially be applied
to larger systems and to arbitrary correlation functionsluding correlated fluctuatiorfs3* Our

results contribute to the heated debate on ffeceof a vibrational resonance on energy transport.

13



Supplemental Material

In the supplemental material, we present the derivatiorhefRorster rate shown in Ed.l (7) in
the main text. Second, we present a plot of the transferredlption as a function of time, in
which the crossover from underdamped to overdamped behaviesible. Finally, we present

hierarchical equations of motion calculations for a quaedtivibration.

Derivation of transfer rate

It is known that the transfer rate in the Forster limit is givey
k= 2J°Re[ f dtdAt-9t)], 9)
0
whereld is the inter-site coupling strength,is energy splitting, and the correlation phase is
1 t t t
o= [ du [ duCti-t)= [ dut-tLw), (10)

with L(t1) the correlation function of the phonon bath. In the higlvperature limit, the correlation

functionL(t) is described by the colored noise
L(t) = Lo(t)e 7, (11)

with Lo(t) the time dependent strength, anthe characteristic correlation time. Hence, the corre-

sponding accumulation function li¢r,t) = fotdtlL(tl). Then, the correlation phase is given by

a. 0
0= (t+51) [ Lt =@+ 1), (12

with r = 1/7. If we further specify the correlation function ) = 22e1%/7, with T/ the fluctua-

tion strength. the accumulation function becorest) = I'g(1-eY7). And the correlation phase

14



g(t) = Tor(e™V/" = 1+t/7). (13)

In the strong damping limit—0(r— o), the correlation phase is simplified ¢¢t) = ['ot. The
corresponding transfer rate is given by

ero

. 14
A2+T3 a4

k = 2J°Re][ f dtdAt-Tot] = 2
0

If we consider a damped oscillation in the correlation fisrttorresponding to intramolecular

vibrations, the correlation function is modified as
I'o —Itl/T
L(t) = — coswt)e ™", (15)
T

with w the vibrational frequency of the local mode. The accumatatunction is given by

I t I t . I 1-— —t/T—wt
I(r,t) = —2 f costy)e/7dt; = —2Re[ f dte @it/ = ORe= S
7 Jo T 0 T l/7+iw
coswt
= ——[1/r-e'7 —wsinwt 16
Tyl T —wsinat)] (16)
and the correlation phase is given by
O = -+
9o = ar’
T'o L2, 2y, (2 2 ~t/r 20 _t/r
= —————[-(1 -1 1- t)— — t]. (17
1(1/12+w2)2[1( [T+ %)+ ("= 1/77)(1-€ " coswt) —€ sinwt]. (17)

In the Forster limit, the dynamics of the populations areodgded from the coherence term,

and the former is expressed as

d th(t) = —k(P1(t) ~ P2(t)) = k— 2«P1(t) 4o

15



with Pj(t) the population at sitg. This results inPy(t) = 3(1- e 2%) + P1(0)e 2. If the initial
condition is given a$1(0) = 1, the population dynamics of site 1 dpPg(t) = %(1+e‘2’<t). Hence,
the transferred population after a times given byP(t) = 1— P4 (t) = %(1—e‘2’“). The inverse of

the corresponding transfer rate is given by

R1= f B dt(1/2- P(t)) = 1/(4«), (19)
0

andR = 4«.

Hierarchical equations of motion results

In order to show explicitly that the two peak structure foumthis paper is still valid in a quantum
mechanical calculation, we performed numerically exattusations with the hierarchical equa-
tions of motion for the Brownian oscillator spectral deps¥ In this model, the energy fierence
between the two molecules is coupled to a vibrational modé;wis in turn coupled to a continu-
ous bath of harmonic oscillators. The coordinates of thi Kedre treated as operators instead of
functions of time. The spectral density for this model isegioy

ywlw'
(w2 _ w/2)2 + 720)/2 ’

J(w') =22 (20)

The parameters are the reorganization engrgyhich quantifies the strength of the system vibra-
tion coupling, the vibrational frequeneyand the coupling strength of the underdamped vibration
to the thermal batly. The thermal bath is furthermore characterized by an ievensiperaturg.
Simulations were performed with one Matsubara frequenbyem@archy depth of 6 and time steps
of 0.001/J.

The results of these simulations are shown in Eig. 5. We ahaoemperature of 10and
setd = 0.2J to reproduce the same fluctuation amplitude as in the clElssadculation shown in
Fig.[2 (In the high temperature limit = 8T'o/27.). Although the amplitude depends an this

choice of parameters reproduces a valuEgp# 12— 13J for all values ofw used. The Brownian
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Figure 5: Transferred population from site 1 to site 2 (a) famation of vibrational frequency after
a time 20 J and (b) as a function of time for frequencies (from bottomadp)w = 6J,4J,9J,8J.
The dynamics were calculated with a quantized vibratiore@parameters are= 8J, 1 = 0.2J,

v =2J/3 andB =0.1/J. The two maxima found in Fidl 2 are reproduced in this catouta

oscillator spectral density gives rise to fluctuations dadwith a characteristic time scalte- 2/y,

so we set = 2J/3. Indeed, the two maxima in the transferred populationgpeaduced, showing
the value of our simplified approach in predicting the bebiawf the system. In the right panel
of Fig.[8 the dfect of the finite temperature is seen. At long times, the sitgufations reach
thermal equilibrium instead of the value abdound in the classical calculation reported in Eig. 3.

Essentially, the samefects are also found at much lower temperature, though netrshere.
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