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ABSTRACT: A mild, efficient, and low-temperature palla-
dium-catalyzed cyanation of (hetero)aryl halides and triflates is
reported. Previous palladium-catalyzed cyanations of (hetero)-
aryl halides have required higher temperatures to achieve good
catalytic activity. This current reaction allows the cyanation of
a general scope of (hetero)aryl halides and triflates at 2—5 mol
% catalyst loadings with temperatures ranging from rt to 40
°C. This mild method was applied to the synthesis of

lersivirine, a reverse transcriptase inhibitor.
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he nitrile functional group is prevalent in organic materlals,

polymers,” dyes,® pesticides,* natural products,’ and
pharmaceuticals.” The compact nature of the nitrile moiety, as
well as its hydrogen bond accepting ability, metabolic stability in
vivo studies, and use as a hydroxyl or carboxyl isostere has made it
an important functional group in medicinal chemistry research.”
Currently, there are over 30 approved drugs along with 20
additional leads in late-stage clinical trials that possess one or
more nitrile substituents. These nitrile-containing bioactive
molecules have been shown to treat a broad spectrum of
ailments, such as depressmn, breast cancer, anti-HIV, and
Parkinson’s disease.’ Nitriles are also an excellent synthetic
handle to install a variety of functional groups such as amides,
ketones, amines, and alcohols.

Palladium-catalyzed cross coupling of aryl halides and metallo-
nucleophiles have seen tremendous advances over the last 30
years.® In 1973, Takagi and co-workers reported the first
palladium-catalyzed cyanation of aryl halides and KCN.” This
reportincluded only a few substrates, and hlgh temperatures (140
°C) were needed to achieve high conversion. " Since this semmal
report, there have been numerous, advances by Beller,""
Grushin,"” our group,"® and others'* (Scheme 1, top). An
interesting study by Grushin elucidated the challenges associated
with the catalytic palladium cyanation of aryl halides.'** The high
binding affinity and 7-accepting nature of cyanide make it an
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Halides
X CN .
/j/ Pd-L, M*CN- /j/  high temperatures
R—— R—— « grinding of cyanide
Sy | solvent Sy l SourceX
50-160 °C + limited scope
X Pd-L, Zn(CN), N [« low temperature
R—— | —> R—— | - easy setup
K\Y THF:H,0 (1:5) \\Y + aqueous conditions
rt-40 °C + 30 examples

77-99% yield

-4 ACS Publications  ©2015 American Chemical Society 202

excellent ligand for palladium. Therefore, complete solubilization
of the nucleophilic cyanide source leads to rapid ligand
displacement to form inactive off-cycle species, thus inhibiting
product formation. Many have circumvented these undesired
pathways by using biphasic solvent mixtures or solvents in which
the cyanide source is sparingly soluble in the reaction
mixture,' 912931494 These approaches have led to improve-
ments in the palladium-catalyzed cyanation both in terms of
substrate scope and reproducibility.”> However, these methods
usually require grinding of the cyanide source to maintain a
uniform particle size and high reaction temperatures (50—80 °C)
to facilitate efficient and reproducible reactions for aryl and
heteroaryl substrates.'® Previous stoichiometric studies in the
palladium-catalyzed cyanation have shown that the oxidative
addition, transmetalation, and reductive elimination steps occur
at or below 40 °C.">"” Despite these findings a substoichiometric
method for a general room temperature palladium-catalyzed
cyanation has not been reported.'® A mild palladium-catalyzed
cyanation would allow safer reaction conditions, cleaner reaction
profiles, and an expanded substrate scope. In this study, we
disclose a general and efficient low temperature (rt to 40 °C)
palladium-catalyzed cross coupling of (hetero)aryl halides and
triflates with Zn(CN), in aqueous media (Scheme 1, bottom)."”
This reaction does not require vigorous drying of the glassware or
grinding of the Zn(CN), and is amenable to a broad range of aryl
halides/triflates, five- and six-membered heterocycles, and
natural product derivatves. This method was directly utilized
for the late-stage cyanation and synthesis of the non-nucleoside
reverse transcriptase inhibitor, lersivirine.*°

We began the examination of this room-temperature
palladium-catalyzed cyanation by using our third-generation
palladacycle precatalyst (P1—P3; Scheme 2) as the palladium
source.”! Our initial experiments focused on the cyanation of

Received: November 6, 2014
Published: January 2, 2015

DOI: 10.1021/015032359
Org. Lett. 2015, 17, 202—205


https://core.ac.uk/display/85123328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
pubs.acs.org/OrgLett
http://dx.doi.org/10.1021/ol5032359
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html

Organic Letters

Scheme 2. Ligand and Palladium Precatalysts
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ethyl 4-chlorobenzoate (2a) with Zn(CN), (Table 1). We chose
zinc cyanide as the nucleophile since it is commercially available,
inexpensive, and significantly less toxic than the representative
potassium and sodium salts. A preliminary solvent screen showed
that only when conducting the reaction in THF was there any
appreciable amount of product.

Investigation of a qualified catalytic base to activate the
precatalysts showed that as the pK, of the base increased, the
corresponding conversion to the aryl nitrile decreased (entries
1-S5), with potassium fert-butoxide resulting in no conversion
(entry 6). Examination of this reaction in the absence of base
resulted in the highest level of conversion (entry 7). Presumably,
cyanide acts as the ideal base to activate the precatalyst to form
the Pd(0)-L species. Exploration of other precatalysts with
different li§ands did not provide any higher levels of
conversion.”” To improve the rate of transmetalation of cyanide
we examined a H,O/THEF solvent mixture. The assumption was
that the Zn(CN), would be solubilized in the aqueous phase and
a slow diffusion of the cyanide to the organic phase would allow a
moderate rate of transmetalation without deactivation of the
palladium catalyst. Ranges of different ratios of H,O/THF
mixtures were surveyed (entry 8—14). Higher levels of
conversion were observed when the percentage of water in the
THF/H,O mixture was increased. It was eventually determined
that 5:1 H,O/THF solvent allowed full conversion of aryl
chloride 2a and an 89% isolated yield of nitrile 3a (entry 12).
Further exploration of the reaction revealed that running this
reaction with just precatalyst P1 and no additional ligand
furnished nitrile 3a in 93% isolated yield (entry 15). It is
interesting to point out that the substitution on the phosphine
was key for the overall conversion. Evaluation of the smaller
dicyclohexyl- or larger adamantyl-XPhos ligand systems resulted
in no reaction (entries 16 and 17). We hypothesize that the steric
environment of the tert-butyl phosphine prevents displacement
of the ligand by cyanide during the course of the reaction, thus
allowing efficient cross-coupling without poisoning of the
palladium catalyst.

With the optimized reaction conditions in hand, we explored
the substrate scope for this palladium-catalyzed cyanation
(Scheme 3).** Aryl bromides with electron-withdrawing
substitution were first examined. Aldehyde (3b), ketone (3c),
and nitrile (3d) functional groups were readily tolerated on the
aryl halide. No benzoin products were observed with the p-
aldehyde substrate (3b), even though cyanide is known to
catalyze the benzoin reaction. Use of 2-fluoro-4-nitrobromoben-
zene furnished only the mononitrile compound (3e), implying
that nucleophilic aromatic substitution is not a dominant pathway
in this protocol at 40 °C.

We next surveyed aryl bromides with electron-donating
functional groups. Methoxy (3f and 3h) and dioxolane (3i)
substitution was accommodated, providing the corresponding
nitriles in excellent yields (>95% yield). Dioxolane 3i is an
aromatic nitrile that has reported micromolar EDg, values for
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Table 1. Optimization of Reaction Conditions”

CN
Et0,C” :

3a

2 mol % P1, 2 mol % L1
0.66 equiv Zn(CN),

solvent, 10 mol % base, rt, 18h

entry base solvent conversion® (%)
1 KOAc THF 17
2 Cs,CO; THF 6
3 Et;N THF 4
4 DBU THF 3
s K,PO, THF 7
6 KO-t-Bu THEF 0
7 none THEF 23
8 none H,0 26
9 none THF/H,0 (1:1) 60
10 none THF/H,0 (4:1) 11
11 none THF/H,O (1:4) 60
12 none THF/H,0 (1:5) 100 (89)
13 none THF/H,0 (1:6) 82
14 none THF/H,0 (1:9) 39
15¢ none THF/H,0 (1:5) 100 (93)
167 none THF/H,0 (1:5) 0
17¢ none THF/H,0 (1:5) 0

“Reaction conditions: ethyl 4-chlorobenzoate (0.2 mmol), Zn(CN),
(0.66 equiv), P1 (0.004 mmol), L1 (0.004 mmol), base (0.02 mmol),
solvent (1 mL). “Percent conversion determined by 'H NMR (500
MHz) with CLLCHCHCI, as an internal standard. Isolated yield in
parentheses. “Reaction run without additional 2 mol % of L1 and at
(1.0 mmol scale). “Reaction run with P2 as the catalyst. “Reaction run
with P3 as the catalyst.

treatment against Ermatophagoides farinae, Dermatophagoides
pteronyssinus, and Tyrophagus putrescentiae.* Ortho-substitution
(3g) was tolerated, although the reaction needed to be heated at
40 °C for optimal efficiency. Additionally, this method exhibits a
high compatibility for substrates bearing free N—H and O—H
functional groups, such as benzylic alcohol (3j), phenol (3k), and
aniline (31) moieties. Lastly, this protocol was compatible with a
boronate ester (3 m), with homocoupling not observed.

We then turned our attention toward the cyanation of
heteroaryl bromides. Our method was found to be applicable
toward a wide range of five- and six-membered heterocycles. The
cyanation of five-membered heterocycles such as indoles (4a +
4b), benzothiophene (4c), benzofuran (4d), thiophene (4e),
unprotected thiazole (4f), pyrazole (4g), and pyrrole (4h)
proceeded in excellent efficiency. Additionally, benzoxazole (4i),
and unprotected benzothiazole (4j) furnished the corresponding
aryl nitrile in excellent yield. Six-membered heterocycles, such as
quinoline (4k), pyridine (41), and pyrimidine (4m), also
furnished the corresponding nitrile in excellent yield.

To demonstate the robustness and generality of this method
we then explored the cyanation of natural product derivatives.
Cyanation of estrone, coumarin, and J-tocopherol triflates
furnished the corresponding cyanoaryl natural products in high
yield (5a, 5b, and Sc respectively). The cross-coupling of Boc-
protected 4-bromophenylalanine provided the nitrile derivative
(5d) without removal of the protecting group or epimerization of
the stereocenter.”’

For this protocol to have direct application in pharmaceutical
research, we need to demonstrate that these high yields can be
reproduced at larger scale. With this aspect in mind, we examined
the 10 mmol reaction for the cyanation of 4-bromobenzaldehyde,
4-bromoanisole, and unprotected S-bromoindole. The corre-
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Scheme 3. Palladium-Catalyzed Cyanation Scope®
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aIsolated yields (average of two runs) are shown. Reaction conditions: aryl halide (1.0 mmol), ZnCN, (0.66 equiv), P1 (0.02— 0 05 mmol), THF/

0 [(1:5), 3.00 mL], 18 h. ®The correspondlng aryl chloride was used as the starting material. “Reactions were run at 40 °C. 9Reaction run on a
10 0 mmol scale of the aryl bromide. “Reaction run on a 0.5 mmol scale of aryl bromide (triflate) at 0.2 M concentration. “Isolated as the BF,K salt;
yield is over the two steps. £The corresponding aryl trfilate was used as the starting material.

sponding nitriles (3b, 3f, and 4a respectively) were isolated in Scheme 4. Synthesis of Reverse Transcriptase Inhibitor
comparable yields without significant modification to the Lersivirine
reaction conditions.>* B NG
To demonstrate the practicality and robustness of this method o ve  4mol %P1 o e
we applied this developed method toward the late-stage //Z_\(\ 1.32 equiv Zn(CN), //Z/—\(\
cyanation of a non-nucleoside reverse transcriptase inhibitor, Br N THF:H;O (1:5), 40°C NC N
lersivirine (Scheme 4).%° Reverse transcriptase inhibitors are an Me L _on 86% yiold Me K/O”
important class of antiretroviral drugs used in the treatment of 9 lersivirine
HIV and other retroviruses.”> Previous approaches to the
synthesis of lersivirine involved the installation of the nitriles notion that the rate-determining step for this cyanation is the
before the formation of the pyrazole. By using our procedure we reductive elimination.
were able to achieve the double cyanation of pyrazole 9 and In conclusion, we have developed a mild and practical
formation of lersivirine in 88% yield at 40 °C. palladium-catalyzed cyanation of (hetero)aryl halides and
The relative rate for this room-temperature palladium- triflates. Previous reports have required higher temperatures
catalyzed cyanation was shown to follow the general trend and harsher conditions to achieve good catalytic activity for
reported by Hartwig,'” in which aryl bromides with para electron- (hetero)aryl halides and triflates. To date, this method requires
withdrawing substituents reacted at a slower rate than aryl rings the lowest reported temperature to achieve a general catalytic
with electron-donating substitution. This is consistent with the palladium cyanation for hetero(aryl) bromides and triflates,
204 DOI: 10.1021/015032359
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including five-membered heterocycles. This reaction does not
require grinding of the cyanide source, is run under aqueous
conditions, and is easily set up. Finally, the utility of this cyanation
was demonstrated by late-stage cyanation and synthesis of
lersivirine. We anticipate that this palladium-catalyzed cyanation
will be readily integrated into the fields of pharmaceutical and
academic research.
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