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This paper provides a superfield based approach to constructing a collinear slice of N ¼ 1 superspace.
The strategy is analogous to integrating out anticollinear fermionic degrees-of-freedom as was developed in
the context of soft-collinear effective theory. The resulting Lagrangian can be understood as an integral over
collinear superspace, where half the supercoordinates have been integrated out. The application to N ¼ 1

super Yang-Mills is presented. Collinear superspace provides the foundation for future explorations of
supersymmetric soft-collinear effective theory.
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Supersymmetry (SUSY) is a powerful framework for
exploring the properties of quantum field theory. There
are many examples of extraordinary results derived for
SUSY models, for instance the exact NSVZ β-function [1],
Seiberg duality [2], Seiberg-Witten theory [3,4], and
the finiteness of N ¼ 4 SUSY Yang-Mills (SYM) [5].
Identifying models that manifest SUSY in nontrivial ways
has yielded many fruitful developments, see [6–13] for
recent examples. In this paper, we explore a new class of
N ¼ 1 SUSY effective field theory (EFT) models which
live on a “collinear slice” of superspace; defining this
collinear superspace is the subject of this paper.
The connection between collinear superspace and gauge

theories becomes apparent in the infrared (IR), where the
physics can be largely inferred from the presence of soft
and collinear divergences. There is a rich history associated
with the IR structure of gauge theories. For example, a
correspondence between the coefficients of Sudakov logs
in Yang-Mills theory and the cusp anomalous dimension of
Wilson loops was discovered as early as 1980 [14]. The
importance of these IR effects helped lead to the discovery
of soft-collinear effective theory (SCET) [15–22], which is
a powerful formalism developed for resumming the IR
divergences occurring for processes that are dominated by
soft (low momentum) and collinear degrees of freedom; see
[23,24] for reviews. There exists an ever growing literature
exploring practical applications of SCET to heavy meson
decays [21,22,25,26], LHC collisions [27–31], and even
WIMP dark matter systems [32–34]. Our purpose here is to
lay the groundwork for supersymmetrizing SCET, in hopes
of further illuminating nontrivial aspects of field theory.
SCET can be understood in terms of a mode expansion,

where a power-counting parameter λ is used to separate
degrees-of-freedom that are “near” a lightlike direction,
thereby capturing the IR dynamics as an expansion in λ,
from the “far” modes. Integrating out these “anticollinear”
degrees-of-freedom yields the effective Lagrangian of

SCET. Note that this procedure obscures the underlying
Lorentz invariance of the theory, leaving behind the
constraints known as reparameterization invariance (RPI)
[35]. Given its spacetime nature, it is unclear that SUSY
can be preserved in any meaningful way. Our main result
is to show how collinear superspace packages a SCET
Lagrangian in a language that makes the SUSYof the EFT
manifest.
To derive the collinear limit for a fermion requires

integrating out the anticollinear modes, which in practice
are half of the full theory fermion helicity degrees of
freedom (the momenta of the EFT fields are also con-
strained). This procedure guides the construction here: the
EFT can be characterized in terms of half the supercharges
for N ¼ 1 SUSY—the other half of the supersymmetries
are nonlinearly realized. We refer to this as “integrating
out” half of superspace, which leave behind a collinear
subsurface of superspace. Our procedure for deriving
collinear superspace, which should be generally applicable
to a wide class of SUSY EFTs, can be described by the
following algorithm:
General Algorithm
(i) Find projection operators that separate the

superfield into collinear/anti-collinear superfields
[e.g., Eq. (10)].

(ii) Starting with the superspace action for the full
theory, integrate out the entire anticollinear
superfield. This will yield a constraint equation
[e.g., Eq. (14)].

(iii) Based on the constraint equation, guess an ansatz
for the equation of motion for the anticollinear
superfield in terms of collinear degrees-of-freedom
[e.g., Eq. (16)].

(iv) Plug the ansatz into the full theory action to yield the
superspace action of the effective theory [e.g., (19)].

In what follows, we will apply this procedure to the explicit
case of N ¼ 1 SYM.
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To begin, we will provide some conventions. The
SUSY EFT is defined in Minkowski space with signature
gμν ¼ diagðþ1;−1;−1;−1Þ. The collinear direction is
taken along the ẑ light-cone direction: nμ ¼ ð1; 0; 0; 1Þ.
The anticollinear direction is defined by n2 ¼ 0 ¼ n̄2 and
n · n̄ ¼ 2. It is usually convenient to make the explicit
choice n̄μ ¼ ð1; 0; 0;−1Þ. Four vectors are expanded as
pμ ¼ ðn · p; n̄ · p; ~p⊥Þ, where “⊥” refers to the two direc-
tions perpendicular to both n and n̄. A state is collinear to
the light-cone when it lives within a momentum shell which
scales as pμ

n ∼ ðλ2; 1; λÞ, where λ ≪ 1 is the SCET power
counting parameter. The virtuality for the collinear modes
in the effective theory p2 ∼ λ2 can be interpreted as
closeness to the light cone. Similarly, an anticollinear
momenta scales as pμ

n̄ ∼ ð1; λ2; λÞ. Fields also scale as
powers of λ; the power counting rules can be inferred from
the appropriate kinetic terms, and must be necessarily
tracked when determining the order of a given operator.
As discussed previously, studying the collinear fermion

EFT will provide insight for the derivation of collinear
superspace. A two-component left-handed Weyl spinor can
be decomposed into collinear and anticollinear momentum
modes using projection operators; u ¼ ðPn þ Pn̄Þu ¼
un þ un̄, where

Pn ¼
n · σ
2

n̄ · σ̄
2

Pn̄ ¼
n̄ · σ
2

n · σ̄
2

: ð1Þ

These also correspond to chiral projection operators that
distinguish the fermion’s spin states in the collinear limit
(a detailed discussion of two-component collinear fermions
will be given in a forthcoming paper [36]). The anticol-
linear modes un̄, which scale as Oðλ2Þ, are power sup-
pressed relative to the collinear ones un ∼OðλÞ. Therefore,
un̄ should be integrated out using the classical equation of
motion:

un̄ ¼ −
n̄ · σ
2

1

n̄ ·D
ðσ̄ ·D⊥Þun; ð2Þ

yielding the following Lagrangian for a charged collinear
fermion

Lu ¼ iu†n

�
n ·Dþ σ̄ ·D⊥

1

n̄ ·D
σ ·D⊥

�
n̄ · σ̄
2

un; ð3Þ

where D is the covariant derivative appropriately power
expanded when acting on collinear fields, and the nonlocal
operator is defined in terms of its momentum eigenvalues,
see e.g., [23,24].
The gauge bosons of the full theory can simply be

expanded as Aμ ¼ Aμ
n þ Aμ

n̄, with a corresponding gauge
Lagrangian for each sector L ¼ − 1

4
ðFμν

n Þ2 − 1
4
ðFμν

n̄ Þ2. Note
that the gauge field is decomposed into components that
scale as momentum along the collinear, anticollinear, and
perpendicular directions. Thus the field strength igFμν

n ¼
½Dμ;Dν� scales inhomogeneously with λ. However, after

contractions the gauge boson Lagrangian density does scale
homogeneously: F2 ∼ λ4. In what follows, we focus on the
collinear modes, as the soft modes can be decoupled at
leading power by a field redefinition [23,24].
Collinear superspace is on-shell, i.e., only physical

degrees-of-freedom will be present in the Lagrangian. To
this end, it is convenient to work in light cone gauge (LCG)
which corresponds to the non-(space-time)-covariant gauge
choice n̄ · A ¼ 0, see e.g., [37] for a review. Additionally,
the mode n · A is nonpropagating in this gauge (with
respect to light-cone time)—it can be integrated out by
solving the classical equation of motion. The two remain-
ing bosonic physical degrees of freedom, the transverse
components of the gauge field, can be recast as a complex
scalar A, defined by

∂⊥ · An⊥ ≡ −∂�A − ∂A�; ð4Þ
where ∂ and ∂� are also implicitly defined by this
equation [37]. Then L ¼ − 1

4
F2
n → A�□Aþ Lint.

For concreteness, our focus here is on-shell N ¼ 1
SYM. The fermionic degree of freedom un (the single
remaining spin state in the EFT after the SCET projection)
is the collinear gaugino whose superpartner is the bosonic
light cone scalar A. In [36], we will provide a detailed
derivation of the corresponding collinear SCET Lagrangian
along with a demonstration that it passes checks necessary
for EFT consistency, e.g., RPI.
The N ¼ 1 supercharges are defined by the graded

algebra fQα; Q
†
_αg ¼ 2σμα _αPμ, where the spinor and anti-

spinor indices run over α; _α ¼ 1, 2. Power counting the
generator of translations Pμ ¼ i∂μ as appropriate for collin-
ear momenta, yields the scaling of the algebra in the EFT:

fQα; Q
†
_αg ¼ 2i

�
n · ∂ ffiffiffi

2
p ∂�ffiffiffi

2
p ∂ n̄ · ∂

�
α _α

∼
�
Oðλ2Þ OðλÞ
OðλÞ Oð1Þ

�
;

ð5Þ
from which we can infer

Q2 ∼Oð1Þ; Q1 ∼OðλÞ;
Q†

_2
∼Oð1Þ; Q†

_1
∼OðλÞ: ð6Þ

To leading power, only one supercharge (Q2) is present in the
EFT. Expressing the supercharges as differential operators in
superspace, and expanding on the light cone yields;

Q2 ¼
�
i
∂
∂θ2 − θ̄ _2n̄ · ∂ −

ffiffiffi
2

p
θ̄ _1∂

�
;

Q1 ¼
�
i
∂
∂θ1 − θ̄ _1n · ∂ −

ffiffiffi
2

p
θ̄ _2∂�

�
; ð7Þ

with analogous expressions for the conjugate charges.
Therefore the scaling of the momentum operator, and the
supercharges as given in (6), induce a nontrivial scaling of the
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superspace coordinates, see Table I. Hence, two out of the
fourN ¼ 1 superspace Grassmann coordinates have a high
virtuality and should not play a role in the EFT.
In terms of yμ ¼ xμ þ iθσμθ†, the superspace derivatives

are D̄ _α ¼ −∂=∂θ† _α. Table I implies that they scale as
D̄_2 ∼Oð1Þ and D̄_1 ∼OðλÞ. To leading order in λ,
fD2; D̄_2g ¼ −in̄ · ∂ ∼Oð1Þ, while all other components
of the anticommutator are suppressed.
Chiral and antichiral SCET superfields are defined

such that they obey the EFT chirality condition,
D2Φ† ¼ 0 ¼ D̄_2Φ. The physical degrees of freedom of
the SCET LCG vector multiplet can be repackaged into a
chiral superfield. Enforcing the chirality condition in the
EFT, the chiral superfield Φ takes the form;

Φ ¼ e−
i
2
θ†_2θ2n̄·∂ðA� þ θ2u�n;2Þ

¼ A� þ θ2u�n;2 −
i
2
θ†_2θ2n̄ · ∂A�; ð8Þ

where in the second line we have converted from yμ to xμ

coordinates, dropped terms that are subleading in λ, and
suppressed a gauge index in the case of non-Abelian fields.
There is only one complex fermionic degree of freedom
in Φ, and it obeys Pnu�n ¼ u�n;2, since the spin up state has
been projected out. Similarly, we have integrated out only
one (spin-up) anticollinear fermionic degree of freedom;
this depends on the specific choice for n̄μ.
The (on-shell) SUSY transformations of the component

fields in the EFT follow from the SCET expansion of the
charges in (7). Additionally, they are consistent with the
expected component transformations of a chiral superfield:

δηun;2 ¼ i
ffiffiffi
2

p
η†_2n̄ · ∂A; δηA ¼

ffiffiffi
2

p
η2un;2; ð9Þ

where we have used ðn · σÞ2_2 ¼ 2. The collinear SCET
Lagrangian is invariant under these transformations [36].
Now that we have explored some general aspects of

marrying SCETand SUSY, we will focus our attention on a
specific example. In the rest of this paper, we will apply the
general algorithm presented above to the free Abelian
gauge theory. Then we will conclude by quoting the result
for non-Abelian gauge theory [36].
Since SUSY is a good symmetry, the projection oper-

ators acting on the gauginos of a vector multiplet imply that
the entire superfield obeys the decomposition:

V ¼ V† ¼ PnV þ Pn̄V ¼ Vn þ Vn̄; ð10Þ
where the projection operators are defined in (1). Using
un;1 ¼ 0 ¼ un̄;2, the collinear and anticollinear on-shell
superfields are

Vn ¼−θ1θ†_1n ·An −
ffiffiffi
2

p
ðθ1θ†_2A�

nþ θ2θ†_1AnÞ
þ 2iθ1θ2θ†_2u�

n;_2
− 2iθ†_1θ†_2θ2un;2;

Vn̄ ¼−θ1θ†_1n ·An̄ − θ2θ†_2n̄ ·An̄ −
ffiffiffi
2

p
ðθ1θ†_2A�̄

nþ θ2θ†_1An̄Þ
þ 2iθ1θ2θ†_1u�

n̄;_1
− 2iθ†_1θ†_2θ1un̄;1; ð11Þ

where we have fixed the LCG condition n̄ · An ¼ 0.
The action for the Abelian theory is

S ¼
Z

d4xd2θWαWα þ H:c:; ð12Þ

where Wα is a chiral superfield which in Wess-Zumino
gauge is

Wα ¼ −
i
4
D̄ D̄DαðVn þ Vn̄Þ; ð13Þ

where DD ¼ DαDα and D̄ D̄ ¼ D̄ _αD̄ _α.
The anticollinear vector superfield can be integrated out

using the variation of the superspace action. This yields a
superspace constraint equation,DαWα ¼ 0, which encodes
the equation of motion for Vn̄;

ð−16□þ 4iDαðσ · ∂Þα _αD̄ _αÞðVn þ Vn̄Þ ¼ 0: ð14Þ
It is instructive to see that the equations of motion for the
component fields that are integrated out in the EFT, un̄ and
n · An, are equivalent to this constraint equation. To isolate
the leading order fermionic components of the vector
superfield expanded in (11), apply D̄_2 to the constraint
equation:

D̄_2D
2ðσ · ∂Þ2_2D̄_2Vn̄ ¼ −D̄_2D

1ðσ · ∂Þ1_2D̄_2Vn;

⇒ un̄;1 ¼
ffiffiffi
2

p ∂�

n̄ · ∂ un;2; ð15Þ

which reproduces the expected equation of motion for the
anticollinear gaugino, see (2). Additionally, it is straight-
forward to show that (14) integrates out the unphysical
gauge polarization n · An, thereby reproducing the LCG
Lagrangian.
This motivates an ansatz for the equation of motion of

the anticollinear vector superfield:

Vn̄ ¼ −Vn −
1

n̄ · ∂D2D̄1D1

D̄_2DDðD̄_2D1VnÞ

−
1

n̄ · ∂D̄_2D1D̄_1

D2D̄ D̄ðD2D̄_1VnÞ: ð16Þ

Both nontrivial terms are required to ensure the reality
condition Vn̄ ¼ V†

n̄. Dividing by superspace derivatives is
well defined by taking a super-Fourier transform and
considering momentum and supermomentum eigenvalues.
(16) satisfies the constraint equation (14). Furthermore, it

TABLE I. Power counting for the superspace coordinates.

Coordinate θ1 ¼ θ2 θ†_1 ¼ θ†_2
θ2 ¼ −θ1 θ†_2 ¼ −θ†_1

Scaling λ−1 λ−1 1 1
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reproduces the component equations of motion for unphys-
ical degrees of freedom. For example, projecting with
D2D̄1D1 reproduces (15).
In the LCG EFT the remaining physical degrees of

freedom un and A form a chiral superfield. This can be
justified in superspace by taking projections on a vector
superfield (11), for instance

Φ≡ D̄_2D1Vnjθ1¼0¼θ†_1

¼
ffiffiffi
2

p
A� þ 2iθ2u�n;2 þ i

ffiffiffi
2

p
θ2θ†_2n̄ · ∂A�; ð17Þ

which obeys the chirality constraint D̄_2Φ ¼ 0; for the
antichiral multiplet, simply take the conjugate of (18).
Therefore, the ansatz for integrating out the anticollinear
modes (16) can be expressed in terms of the chiral and
antichiral superfields.
After some manipulations, the action (12) is

S∝
R
d4xd4θD̄_1D

αðVnþVn̄ÞD̄_2DαðVnþVn̄Þ. Using (16)

to integrate out the anticollinear superfield yields the

EFT action1

L ¼
Z

d4θ

�
1

n̄ · ∂D̄_1

D1D̄ D̄ðD2D̄_1VnÞ
��

1

n̄ · ∂D1

D̄_1DDðD̄_2D1VnÞ
�

¼
Z

dθ2dθ†_2dθ†_1dθ1
1

D1D̄_1

ðD1D̄ D̄ðD2D̄_1VnÞÞ
1

ðn̄ · ∂Þ2 ðD̄
_1DDðD̄_2D1VnÞÞ

¼
Z

dθ2dθ†_2Φ†
n
D̄ D̄D2D̄_2DD

ðn̄ · ∂Þ2 Φn ¼
Z

dθ2dθ†_2Φ†
n
i□
n̄ · ∂ Φn ⊂ iu�n;2

�
n · ∂ þ ∂2⊥

n̄ · ∂
�
un;2 þA�

□A; ð18Þ

which reproduces the expected equation of motion in the
free theory. We conclude that integrating out the anticol-
linear fermion translates into integrating out two super-
space coordinates, namely θ1 ∼ 1=λ and θ†1 ∼ 1=λ, while
θ2 ∼ 1 and θ†2 ∼ 1 remain in the EFT. Note that in the
above calculation we can identify the various projections of
Vn with a chiral superfield by (18) in the EFT.
Finally for completeness, we quote the result for the

collinear superspace LCG Lagrangian in N ¼ 1 SYM.
This model is invariant under the SUSY transformations (9)
and meets additional requirements such as RPI demonstrat-
ing that it is a consistent collinear EFT [36]:

L¼
Z

dθ2dθ†_2
�
Φ†a □

n̄ ·∂Φ
aþ2g

�
fabcΦaΦ†b ∂⋆

n̄ ·∂Φ
cþH:c:

�

þ2g2fabcfade
1

n̄ ·∂ ðΦ
bD̄_2Φ

†cÞ 1

n̄ ·∂ ðΦ
†dD2ΦeÞ

�
: ð19Þ

Note that the form of this expression is what one would
have naively obtained by supersymmetrizing the pure LCG
Yang Mills Lagrangian [37]. In this sense, the on-shell
collinear EFT makes SUSY transparent. While similar

expressions to (19) do exist in the literature for N ¼ 4
SYM [5,38], the present work simultaneously provides the
first application to collinear fields along with a general
algorithm that can be used to derive the Lagrangian.
In conclusion, this paper has provided a framework for

studying SUSY in the collinear limit. A general algorithm
for deriving an EFT defined on collinear superspace was
proposed, and it was applied to the case of an N ¼ 1
Abelian superfield. We also provided the result for a non-
Abelian theory. In a followup work [36], we will provide a
more complete treatment of the EFT perspective, including
a detailed discussion of the remaining symmetries of the
EFT, and an explanation of how the Super-Poincare
generators reduce to RPI. This will provide the groundwork
for many interesting extensions, including models with a
larger number of supercharges, and even perhaps theories
of collinear supergravity.
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1Recall that
R
dθαDαð…Þ is a total derivative in real space, and

therefore we can drop surface terms when using integration by
parts if we assume that they vanish sufficiently fast at infinity. In
SCET, integration by parts is well defined for the inverse
derivative operator 1=n̄ · ∂ because it can be cast in terms of
its momentum space representation. By analogy we extend this
argument and use integration by parts on 1=D operators in the
following calculation.
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