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Mathematical Description and Mechanistic Reasoning: A Pathway Toward
STEM Integration

Paul J. Weinberg

Oakland University

Abstract

Because reasoning about mechanism is critical to disciplined inquiry in science, technology, engineering, and mathematics (STEM)
domains, this study focuses on ways to support the development of this form of reasoning. This study attends to how mechanistic
reasoning is constituted through mathematical description. This study draws upon Smith’s (2007) characterization of mathematical
description of scientific phenomena as ‘‘bootstrapping,’’ where negotiating the relationship between target phenomena and represented
relations is fundamental to learning. In addition, the development of mathematical representation presents a viable pathway towards
STEM integration. In this study, participants responded to an assessment of mechanistic reasoning while cognitive interviews were
conducted to characterize their reasoning about mechanism and mathematical description of the systems of levers represented in the items.
Participant item responses were modeled using item response theory and participant talk and gesture were coded according to developed
analytic frameworks. Participants were elementary, middle, and high school students as well as college undergraduates, and adults without
college education. The results suggest a relationship between participants’ tendencies to describe these systems mathematically and their
mechanistic reasoning ability. Moreover, there are specific elements of mechanistic reasoning that are more highly associated with mathe-
matical description. In addition, there is a relationship between a participant’s propensity to both mathematically describe and mech-
anistically trace mechanical systems.

Keywords: engineering education, mathematics education, science education, STEM education, STEM integration, mechanistic reasoning, mathematical
description, psychometrics

STEM Integration and Mathematical Description

One challenge facing science, technology, engineering, and mathematics (STEM) education is integration, advancing
student conceptual development within and across STEM domains (National Research Council [NRC], 2007). The National
Academies Press (NAE) (Honey, Pearson, & Schweingruber, 2014) has argued that integrated STEM education should
bring together concepts from more than one discipline (e.g., mathematics and science, or science, technology, and engi-
neering); it may connect a concept from one domain to a practice of another, such as applying properties of geometric
shapes (mathematics) to engineering design (Weinberg, 2012); or it may combine two practices, such as scientific inquiry
(which include modeling, argument, etc.) and engineering design (in which data from a science experiment can be applied).

The NAE (2014) has also argued that STEM education is a potential vehicle for concept development in mathematics
through the mathematical description of natural and designed systems in science and engineering. However, in spite of the
potential for mathematical learning through STEM integration, studies have shown that most STEM curricula (designed to
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target mathematics content) do not reach this potential
(Nathan, Tran, Phelps, & Provost, 2008; Prevost, Nathan,
Stein, Tran, & Phelps, 2009; Welty, Katehi, & Pearson,
2008). These studies indicate that the vast majority of such
curricula address few mathematics content standards (e.g.,
National Council of Teachers of Mathematics, 2000) and
those standards that are addressed are done so in a shallow,
disconnected manner. Moreover, such treatment of mathe-
matics ignores the fundamental role of mathematical descrip-
tion in the other STEM fields (i.e., other than mathematics).
The lack of integration in STEM programs, between mathe-
matics and other STEM fields suggests that these programs
are either: (1) not targeting content that can readily be described
mathematically or (2) failing to mathematically describe
content appropriately.

Honey et al. (2014) and the NRC (2007) have argued
that mechanistic reasoning is an effective entry point into
learning across STEM disciplines. Russ, Scherr, Hammer,
and Mikeska (2008) explain that mechanistic reasoning
‘‘involves more than noting which causes are associated
with which effects; it concerns the process underlying the
association’’ (p. 8). Reasoning about causal mechanism
(i.e., mechanistic reasoning) supports the capacity to both
diagnose and trace through the components of mechanical
systems. In addition, a predisposition for seeking out
mechanism within these systems is valuable for disciplined
inquiry in STEM fields. For instance, focusing on mech-
anism is central to the development of capacities to engage
in scientific explanation and argumentation (Bolger, Kobiela,
Weinberg, & Lehrer, 2012; Russ et al., 2008).

This study proposes that the mathematical description of
systems in other STEM disciplines is critical to conceptual
change in both those STEM fields and mathematics. This
study attends to what is difficult about mechanistic reason-
ing as well as how mathematical description can support
as well as constitute this form of reasoning. For instance,
in spite of the vast literature about early children’s com-
petencies for mechanistic reasoning in laboratory settings
(e.g., Shultz, 1982), previous studies (Bolger et al., 2012;
Kobiela, Bolger, Weinberg, Rouse, & Lehrer, 2011; Lehrer &
Schauble, 1998; Metz, 1991) indicate that even for simple
systems, such as gears and levers, constructing coherent
mechanistic explanations is not trivial.

Mathematical Description and Conceptual Change

This study highlights that the difficulty with mechanistic
reasoning emerges from the contexts in which participants
are asked to employ conceptual resources and not from the
absence or presence of said resources. For instance, being
able to perceive and diagnose the motion of a lever in one
context does not imply the propensity to immediately per-
ceive and diagnose all other levers’ motions in all contexts
where they appear. Disciplining one’s perception to ‘‘see’’
in such a way as to diagnose lever motion across lever

types and arrangements no doubt takes time and experience
within a legitimate situated context (Lave & Wenger, 1991;
Stevens & Hall, 1998) (e.g., K–12 STEM education).
As one’s experience grows, these systems can become
more generally useful for diagnosing and explaining many
simple and complex systems. For example, two levers and
a screw are the constituent parts of a pair of scissors;
bicycles and eggbeaters are other common examples of
compound machines. Developing an understanding of the
mechanisms within these systems of levers can aid children
in understanding the mechanisms of many more machines,
including both simple and compound systems. Moreover, a
predisposition for seeking out mechanism is valuable for
inquiry across the STEM disciplines.

Although mechanistic reasoning is essential for disciplined
inquiry in STEM fields, its development is not trivial. diSessa
(1993) notes that learning calls for the complex coordina-
tion of knowledge. According to his ‘‘knowledge-in-pieces’’
framework (1988), naı̈ve knowledge structures consist of
multiple conceptual elements that are spontaneously con-
nected and activated according to the relevance of their
contexts. From this perspective, conceptual change involves
a process of bottom-up accumulation and coordination of
knowledge components. Such conceptual coordination entails
changes in student thinking, mediated by new, symbolic,
representational resources (Hall & Greeno, 2008). For instance,
the coordination of these new representational resources
with pre-existing conceptions of the workings of physical
systems provides individuals with the capacity to make
novel mechanistic inferences.

When individuals learn content in science and engineer-
ing, representing relations from other domains can be funda-
mental to developing new understandings. Smith (2007)
describes this process of representing as ‘‘bootstrapping,’’
where negotiating the relationship between the content and
represented relations is critical to developing new under-
standings of content. Lehrer and Schauble (2006) sup-
ported the development of scientific concepts, known to be
challenging to students in the elementary grades, through the
utilization of mathematical description. For example, students
‘‘invented’’ Cartesian coordinates in order to more effectively
describe the growth of Wisconsin Fast Plants2. They note,
‘‘Inscriptional [representational] development transformed
the conceptual terrain, so that students began to pose new
questions about the plants’’ (p. 376). Such a use of mathe-
matical description of content in other STEM fields is central
to the process of reasoning about that content (Lehrer, Strom,
& Comfrey, 2002; Smith, 2007). For instance, Lehrer et al.
(2002), also working with Wisconsin Fast Plants2, leveraged
third grade students’ perceptions of everyday experiences to
help understand multiple forms of mathematical similarity.
For instance, here students used volume measurement to
describe and compare the plant canopies.

When students learn content in science and engineering,
representing relations from mathematics involves the use of
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what Hall and Greeno (2008) term representational resources.
Representational resources, which include the mathematical
description of scientific phenomena, are central to the
development of reasoning about mechanism in science and
engineering. For example, attending to both the physical
system and its analogue mathematical description is
necessary to understand and explain the mechanism of a
system of levers. For instance, this explanation indicates
how representational relations buttress descriptions of the
physical system of levers. For example, in Weinberg
(2012), Kayla (a sixth grader) noted, ‘‘the curved distance
travelled by the output (circular path) for a given input, for
this lever, depends on the relationship between the distance
of a point on the lever and the fulcrum (radius).’’

This study focuses on content in science and engineering
education (i.e., systems of levers) that lends itself to mathe-
matical description through its analogue to the geometry of
circles (Table 1); this system also supports reasoning about
causal mechanism because of its ‘‘simplicity’’ (i.e., all
machine parts and mechanisms are visible and inspectable).
In addition, this work investigates how individuals bring
mathematical representations to bear to mediate their
reasoning.

Mechanistic Reasoning and Mathematical Description

Kobiela et al. (2011) have shown that when students
engage in the mathematical description of systems of
levers it makes their mechanisms more salient and com-
prehensible. Their study characterizes the relationship
between mathematical description and mechanistic reason-
ing about systems of levers within engineering design.
In addition, it investigates how mathematical description
mediates the mechanistic tracing of these systems from
input to output.

Bolger et al. (2012) showed that by mathematically
describing systems of levers, participants supported both
mathematical and mechanistic reasoning. In Weinberg
(2012), when working with systems of levers, 76% (n 5 56)
of those participants who could causally trace through sys-
tems of levers, from input to output, on at least one item made
a reference to the mathematics of circles (a representational

analogue of the system of levers) when responding to
an assessment and a cognitive interview. For example,
participants used the following terms (in the interview)
to explain the machine motion: ‘‘circle,’’ ‘‘center of the
circle,’’ ‘‘radius,’’ ‘‘circumference,’’ ‘‘axis of rotation.’’ In
addition, those participants who spontaneously referenced
mathematics to explain machine motion, on at least one
item, had higher mechanistic reasoning ability scores on
the assessment (M 5 0.43 logits; p , 0.0001) than those
who did not reference mathematics in their explanations
(M 5 21.38 logits). These findings suggest that mathe-
matical description supports the identification and causal
coordination of mechanistic elements.

Research Questions

This study characterizes the ways that participants
spontaneously deploy mathematical description to buttress
mechanistic reasoning. The following research questions
are addressed: (1) in what ways do participants mathe-
matically describe simple systems of levers and (2) how
does this mathematical description mediate their mechan-
istic reasoning about these systems?

Method

Participants

The participant groups that comprise the sample are
shown in Table 2. The elementary, middle, and high school
students come from public and private schools in the
southeastern United States. The university undergraduates
come from three universities, two in the southeastern and
one in the mid-western United States. Of the two universities
in the southeastern United States, one is a highly ranked
private university and the other is a large lower-ranked public
university. The university in the mid-western United States is
a highly ranked private liberal arts college.

The public elementary, middle, and high schools
belong to Centennial Public School District (a pseudonym).
The percent of children attending these three schools qualify-
ing for free or reduced lunch ranges between 60 and

Table 1.
The analogues between the geometry of circles and levered systems.

Mathematical description Definition Physical system Definition

Center A point inside the circle. All points on
the circle are equidistant (same distance)
from the center point

Fixed pivot (fulcrum) The fulcrum (fixed pivot) is fixed to the
board and all points on the lever
remain equidistant

Radius The radius is the distance from the center to any
point on the circle. It is half the diameter

Link (lever) Every point on the lever is a constant
distance from the fixed pivot

Circumference The circumference is the distance around the circle Distance As the lever rotates about the fixed
pivot, it traces a circular path. This
circular path is the circumference
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90% from year to year. The adults without college degrees
(n 5 10) are 10% Caucasian and 90% African-American.

The participants in elementary, middle, and high school,
according to their teachers, represent a wide spectrum
of academic achievement. The undergraduates, both engi-
neering majors and non-science majors, represent students
along a continuum of academic success (i.e., from less to
more highly rated universities). It was hypothesized that the
engineering majors would perform well on this assessment
because of the benefit of their academic training. The adults
without college degrees are likely from different popula-
tions than the other adults in the study (i.e., college under-
graduates) and their experiences are also likely different.
It was conjectured that these populations would draw upon
diverse conceptual resources as a result of their disparate
histories and cultures. Thus, individuals in the study repre-
sent various ethnic backgrounds and life experiences. These
participants were chosen because of the hypothesis that
representational resources would aid in mechanistic reason-
ing in diverse ways across all different cultures and histories.

Procedure

The data in this study were collected from a cognitive
interview that was conducted while participants worked on
an assessment of mechanistic reasoning (Weinberg, 2012).
The results of the assessment were also analyzed.

Cognitive interview
Each participant responded to a cognitive interview

while working on each assessment item. The total interview
(i.e., assessment administration) was completed during one
session and lasted an average of 37.5 minutes (ranging
from 17 minutes to 78 minutes). Interviews were recorded
using one camera, with a table microphone. The camera
was positioned at the side of the participant, about one
half foot away from the table, angled down to capture
what the participant was looking at as well as gestures
made over the paper. Interview sessions were digitally
rendered for further analysis.

Assessment
The assessment contained 21 paper-and-pencil items,

which were presented to participants across seven forms, to

maximize the number of items to which participants could
respond. Each participant was given one form containing
15 items. There were three common items (or link items)
that appeared on all forms so that scores and item dif-
ficulties across the forms could be compared. Link items
are central to the process of test equating in item response
theory (IRT) (Kolen & Brennan, 2013). The mean number
of respondents for each item was 53.5, with a range from
38 to 112 (link items); the median number of respondents
per item was 44.

Elementary and middle school students completed ten
items per form, while high school students, undergraduates,
and non-college educated adults completed fifteen items
per form. Five items were indicated on each form that
elementary and middle school students were to skip.

Short-answer items that required respondents to draw
predicted motion were used in this assessment. All items
represented simple systems of levers. The assessment fea-
tures two types of items, System Tracing (Appendix A) and
Machine Prediction (Appendix B). System Tracing items
require the participant to predict the motion of all levers in
the system, while Machine Prediction items only require
the participant to predict the motion of the output lever(s).
Participants drew predicted motion of the levers under
indicated directed inputs. In addition, the different systems
can be broken down into four categories according to:
(1) number of levers (e.g., fourteen systems were composed
of three or more levers, while seven systems were com-
posed of two or fewer), (2) the arrangement of levers (e.g.,
seven systems were constructed with one or more inter-
mediate link(s) between the input and output, while fourteen
were constructed with no intermediate links, (3) lever type
(e.g., five systems were composed of class 1 levers, while
five systems were composed of class 3 levers), and (4) the
presence of specialized and unfamiliar levers (e.g., two
systems contained an intermediate link that was a bent crank,
while the remaining nineteen systems did not contain
unfamiliar levers).

Related direction and rotation could be assessed on
21 and 19 items (respectively); lever arms, constraint via
the fixed pivot, and tracing could be assessed on 11 items.
The mechanistic elements that can be scored for each item
are given in Table 3.

Conduct of the Interview

While participants responded to each assessment item,
they were asked to: (1) read the problem aloud and
(2) think aloud as they responded to each item. When the
participant completed the item, the participant was asked to
explain again, if necessary, the rationale for the observed
item response with interviewer probes. Finally, participants
were asked to report any words that they found confusing,
as well as whether there was any confusion about what
the item was asking. The interview was conducted in this

Table 2.
Participants.

Participants Number

Elementary school students 28 (female 5 17)
Middle school students 25 (female 5 16)
High school students 20 (female 5 4)
University undergraduates (non-science majors) 16 (female 5 13)
University undergraduates (engineering majors) 13 (female 5 5)
Adults (without college education) 10 (female 5 8)
Total 112 (female 5 63)
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order to: (1) determine spontaneous thinking throughout
participant interaction with each item (i.e., think-aloud)
and (2) assess mechanistic reasoning that was present, but
possibly not elicited during the think-aloud (i.e., retrospec-
tive explanations) with interviewer probes.

Analysis

The assessment
The assessment instrument used in this study characterized

how participants deployed different mechanistic elements
(i.e., naı̈ve resources for making sense of machine motion).
These elements were (a) related direction (attention to the
coordinated direction of the input and output of a linkage),
(b) rotation (attention to the rotary motion of the levers),
(c) lever arms (attention to the coordinated opposite motion
of the two lever arms), and (d) constraint via the fixed pivot
(attention to the causal relation between the pivot being
fixed to the board and the resultant motion). These mech-
anistic elements were developed in a previous study (Bolger
et al., 2012). In addition, the assessment characterizes
participant proclivity to construct causal schemes, coordi-
nating these elements from input to output (i.e., tracing).
Each item was scored according to its exemplar (Appendix A,
Appendix B). An exemplar is a scoring guide designed for
each assessment item. These scoring guides are ordered from
the least to most difficult mechanistic elements for participants
to endorse. A demonstration of how one item was scored,
according to its exemplar, is presented (Appendix A,
Appendix B). Exemplars contain three scoring categories:

(1) the missing code (i.e., scores for missing responses), (2)
the no linking code (i.e., scores for responses that do not
link to the construct map), and (3) construct linking codes
(i.e., scores for responses that link to the construct map).

Missing
The ‘‘missing’’ code was assessed when participant

responses were not present. However, in this study partici-
pants responded to all items.

No linkage
The ‘‘no link’’ code was assessed when participants gave

responses that provided evidence that they did not under-
stand the nature of the task. This is seen in responses like
‘‘I don’t know.’’

Construct linking codes
The construct linking codes include participant responses

that (a) do not reason about causal mechanism, (b) reason
about the four mechanistic elements (i.e., related direction,
rotation, lever arms, constraint via the fixed pivot), and
(c) causally coordinate all mechanistic elements from input
to output (i.e., tracing). Each construct linking code is
displayed below.

No mechanistic elements are shown
These participant responses are not mechanistic. These

may indicate participant reasoning about individual system
components, machine structure, or idiosyncratic rules about
machine motion. This is seen in the participant response
scored at level 0.

Related direction
These participant responses indicate identification of the

coordinated motion of input and output. This is seen in the
participant response scored at level 1.

Rotation
These participant responses indicate identification of

the rotary paths of the systems’ levers. This is seen in the
participant response scored at level 2.

Lever arms
These participant responses indicate identification of the

coordinated opposite direction of the lever’s arms. This is
seen in the participant response scored at level 3.

Constraint via the fixed pivot
These participant responses indicate identification of the

coordinated motion around the fixed pivot. This is seen in
the participant response scored at level 4.

Tracing
These participant responses indicate (a) identification of

all mechanistic elements and (b) the sequential coordination

Table 3.
Item Wright Map results: mean item difficulty estimates, standard errors,
and mechanistic elements assessed.

Item Mechanistic elements assessed

Hands Fixed Pivot-Opposite RD, R
Machine Prediction-A2 RD, R
Sequential Tracing-D1 RD, R, LA, CFP, T
Sequential Tracing-E2 RD, R, LA, CFP, T
Hands Fixed Pivot-Same RD, R
Machine Prediction-A1 RD, R
Machine Prediction-A3 RD, R
Machine Prediction-A3’ RD, R
Machine Prediction-B2 RD, R
Machine Prediction-B2’ RD, R
Machine Prediction-D1 RD, R
Machine Prediction-D1’ RD, R
Sequential Tracing-A1 RD, R, LA, CFP, T
Sequential Tracing-A3 RD, R, LA, CFP, T
Sequential Tracing-A3’ RD, R, LA, CFP, T
Sequential Tracing-B1 RD, R, LA, CFP, T
Sequential Tracing-B1’ RD, R, LA, CFP, T
Sequential Tracing-B2 RD, R, LA, CFP, T
Sequential Tracing- D1’ RD, R, LA, CFP, T
Sequential Tracing-E1 RD, R, LA, CFP, T
Sequential Tracing-CMT RD, R, LA, CFP, T

Note. Estimate is constrained. RD 5 related direction, R 5 rotation, LA 5

lever arms, CFP 5 constraint via the fixed pivot, and T 5 tracing.
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of these elements from input to output. This is seen in the
participant response scored at level 5.

Participants were scored at the highest level (i.e., most
difficult mechanistic element) where they achieved com-
petency. For example, if a participant was assessed at
both the levels of rotation and related direction on an
item, they were assessed at the level of rotation. To be
scored at the level of tracing, participants must have
indicated a causal coordination of all elements. An out-
side researcher scored 10% of the total items. The agree-
ment was 85%.

Item response theory modeling
When all the participant responses were scored, IRT

analysis was used. IRT modeling determines the ability of
each respondent and difficulty of each item through the
calculation of a log-odds ratio (i.e., the logit function).
Logits are an equal interval level of measurement; as such,
the distance between each point on the scale is equal. A
probability of 0.5 (50% of participants correctly respond-
ing to a dichotomous item) corresponds to a logit of 0. Nega-
tive logit values indicate probabilities smaller than 0.5;
positive logit values indicate probabilities greater than 0.5.
The relationship is symmetrical: logits of 20.2 and 0.2 cor-
respond to probabilities of 0.45 and 0.55, respectively. The
absolute distance to 0.5 is identical for both probabilities.

In this study, one-tailed t-tests were conducted to com-
pare mean person ability scores.

Cognitive interview
Participant proclivity to employ mechanistic reasoning

(Bolger et al., 2012) and mathematical description (Kobiela

et al., 2011) was characterized according to analytic frame-
works developed in previous studies as participants noticed,
described, and explained the motion of these systems of
levers. Mechanistic reasoning was coded according to the
elements described above: (a) related direction (e.g.,
‘‘When you push the input up, the output goes down’’),
(b) rotation (‘‘The output goes around’’), (c) lever arms
(‘‘When this side [of the lever] goes up, this side goes
down’’), and (d) constraint via the fixed pivot (‘‘Because
the brad is stuck to the board, the lever is going to move
that way’’). In addition, tracing, the causal coordination of
these mechanistic elements, was determined according to
the following criteria: participants (1) referred sequentially,
in talk or gesture, to each of the links in linkages and
(2) reasoned about all mechanistic elements.

Mathematical description was categorized according to
the following: (1) describing or noticing a mathematical
object and (2) attending to magnitude relations (Figure 1).

Describing or noticing a mathematical object included
the following subcategories: (a) circular path (‘‘this lever
goes in a circle’’) (Constance, grade 3), (b) center of circle
(‘‘this lever moves around this point,’’) (Kim, under-
graduate/engineering major), and (c) radius of circle (‘‘the
part of the link that will move up is from here [fulcrum] to
here [end of lever]) (Roderick, grade 9; underline highlights
mathematical description).

Citing magnitude relations may include (a) circumference–
radius relations (‘‘the farther you go out on the link, the more
distance it’s going to cover when you push it’’) (Jacqueline,
adult), (b) constant radius (‘‘as you move the lever around, all
points are always going to be the same distance from the
fulcrum’’) (Maddie, 11th grade), and other relations (‘‘the

Figure 1. Framework for mathematical description.
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speed of the rotation of the lever increases as you move farther
from the fixed pivot’’) (Chris, grade 12; underline highlights
mathematical description).

Coding interviews
The coding of the talk and gesture for one high school

student, James (pseudonym), is presented below (Figure 2).
James begins diagnosing item Sequential Tracing D1
(STD1), indicating the directed motion of the input and
linking that to the fixed pivot constraint: ‘‘this [input
lever]—this is going upward (related direction, input) and
the point (fixed pivot, center of circle) is to the right.’’ Here,
the fixed pivot constraint was supported by the mathema-
tical description of the circle’s center. Next, James connects

the coordinated opposite directed motion of the system’s
lever arms with resultant motion from the constraint via the
fixed pivot: ‘‘things to the left will go up (lever arms, left;
constraint via the fixed pivot, resulting motion) because
they’re attached to that [connected to the input] … I think
… this would go up and, um, this one would go down
(lever arms, right).’’

Next, James characterizes the rotary motion of the output
by invoking mathematical description of the circular path
(Figure 2B): ‘‘…but it’s like that (indicates motion of
outputs; related direction, output) … and because the fixed
pivot’s (constraint via the fixed pivot, identification) here,
it’ll (internal lever) have to move like that (indicates rotary
motion; rotation, circular path)…’’

Figure 2. (A) James.
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Finally, James provides further evidence that these expla-
nations have been facilitated by the mathematical descrip-
tion of this system (Figure 2C): ‘‘these two (stars) look like
they will move the same amount because they’re … an
equal distance away from the fixed point (constant radius)
and this one’s (star) a farther distance. So it’ll move, um,
further (circumference-radius relation).’’

A participant’s work on one item is defined as a ‘‘perfor-
mance.’’ Participants were coded at the highest level where
they achieved competency within each performance for
mechanistic reasoning codes. For example, if a participant
was coded at both the levels of constraint via the fixed
pivot and tracing within the same instance, they were
reported at the level of tracing. Participants were double-
coded for mathematical description codes. For example,
some individuals were coded as citing circular path and
circumference–radius relation to explain machine motion.
All performances were coded using NVivo 11.0 software.
An outside researcher coded 10% of the total instances. The
agreement was 83%.

This qualitative analysis was used to characterize math-
ematical description and mechanistic reasoning. This
characterization was used to triangulate the behaviors and
practices engaged in by participants and their assessment
IRT person ability scores. In addition, these behaviors
and practices were used to understand how participants
reasoned when they diagnosed specific mechanistic
elements.

Results

In this section, the relationship between mathematical
description and mechanistic reasoning is described. In
addition, mechanistic elements are explored and clarified.
Finally, a participant’s propensity to both mathematically
describe and trace is characterized.

Mathematical Description Constitutes Mechanistic
Reasoning

Mechanistic reasoning, across all participants, was not
simple. For instance, 11% (n 5 12) of participants did not
show the propensity to diagnose one mechanistic element
on even one item. However, those participants that spon-
taneously referenced mathematics to explain machine motion,
on at least one item, had higher mechanistic reasoning ability
scores on the assessment (M 5 0.43 logits; p , 0.0001,
one-tailed t-test) than those who did not reference mathe-
matics in their explanations (M 5 21.38) during the
interview. There is also a difference in ability between those
who made one reference to mathematics (M 5 20.60;
p , 0.05, one-tailed t-test) and those who made no refe-
rences (M 5 21.38). This shows the relationship between
mathematical description and mechanistic reasoning.

With each additional instance of mathematical descrip-
tion, there was an increase in assessed mechanistic reasoning
ability. For instance, of those fifteen participants (13%) who
mathematically described the highest proportion of systems,
all but one individual was able to trace at least one system
from input to output. These individuals referenced mathematics
on at least five items (range 5 5–10; M 5 7.93; Mdn 5 8).

Mathematical Description Constitutes Specific Mechanistic
Elements

Participants had difficulty diagnosing all of the mech-
anistic elements. For instance, on the assessment the fol-
lowing percentage of participants diagnosed the following
mechanistic elements on at least one system of levers: 71%
(n 5 80) of participants diagnosed related direction, 30%
(n 5 34) diagnosed rotation, 65% (n 5 73) diagnosed lever
arms, 44% (n 5 49) diagnosed constraint via the fixed pivot,
and 23% (n 5 26) were assessed as tracing. In addition,

Figure 2. (B) James.
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only 1% (n 5 1) of the participants deployed all of the
mechanistic elements across the assessment items; only 10%
(n 5 11) of participants diagnosed related direction, rota-
tion, lever arms, and constraint via the fixed pivot across the
assessment items; only 16% (n 5 18) of participants
diagnosed related direction, rotation, and lever arms across
the assessment items; and only 10% (n 5 11) diagnosed
rotation, lever arms, and constraint via the fixed pivot across
the assessment.

In spite of the difficulty participants had in diagnosing
individual mechanistic elements (let alone multiple ele-
ments) across the assessment items, there was a relationship
between mathematical description and mechanistic reason-
ing for most mechanistic elements. For instance, partici-
pants mathematically described the levered systems more
frequently (in more performances) when explaining the
following: rotation (29%), constraint via the fixed pivot
(37%), as well as tracing (76%) the system from input to
output (Table 4).

Participants who were unable to diagnose any mechan-
istic elements rarely mathematically described the system

(3%) (Table 4). Moreover, participants who diagnosed
the system exclusively referencing related direction only
mathematically described 9% of performances (Table 4). In
addition, participants who were scored at the level of lever
arms mathematically described few performances (16%).

Further investigation of mathematical description focuses
on two mechanistic elements that most frequently corresponded
with mathematical description: rotation and constraint
via the fixed pivot. In addition, the causal coordination
of all the mechanistic elements (i.e., tracing) also shows a
significant correspondence with mathematical description.

Figure 2. (C) James.

Table 4.
Percentage of mathematical description by mechanistic element.

Mechanistic element Mathematical description

No mechanistic elements (n 5 553) 3% (18)
Related direction (n 5 219) 9% (20)
Lever arms (n 5 114) 16% (18)
Rotation (n 5 199) 29% (57)
Constraint via the fixed pivot (n 5 109) 37% (40)
Tracing (n 5 74) 76% (56)
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The frequency of specific mathematical description codes
by specific mechanistic element codes (as well as tracing)
is shown in Table 5.

Those participants who showed the proclivity to mathe-
matically describe the levered system were all coded at
the level of describing or noticing mathematical objects.
However, those participants who were diagnosed at the
level of rotation, constraint via the fixed pivot, and tracing
cited magnitude relations more than those who did not
(p , 0.0001; Chi-squared test; Figure 3). This is likely the
case because when participants saw circular paths it did not
only allow them to see and potentially explain the levers’
rotary path (rotation). In addition, these participants also
likely saw these circles emanating from a ‘‘center’’ (center
of the circle). This mathematical description cued the
relation between the constraint of the fixed pivot (center of
circle) and the resultant lever motion (constraint via the
fixed pivot).

Mathematical Description Constitutes System Tracing

Tracing these mechanical systems was more difficult
than citing all other mechanistic elements individually
(Weinberg, 2012). For example, 77% (n 5 86) of partici-
pants did not show the propensity to trace on even one item.
This is because tracing requires participants to causally
connect all mechanistic elements from input to output.
However, in 76% of items where participants traced, they
mathematically described the systems (coded as describing

or noticing mathematical objects or magnitude relations).
An example of tracing while mathematically describing
the mechanistic elements, from input to output, on an
assessment item is presented in Figure 4. Kelly, an under-
graduate engineering major, provided evidence of tracing and
mathematical description on this paper-and-pencil representa-
tion of a system of levers. She first identified the input motion
‘‘this star is on this link (indicates input) … when I push this
forward the star that’s on that link will just go straight up’’
(related direction, input). Kelly then continued to trace the
system with the identification of the output lever, indicat-
ing the coordinated motion of input and output: ‘‘…that
this piece (indicates output) … this cross-link will move’’
(related direction, output). She then linked constraint via
the fixed pivot to the motion of the output lever (identifying
the fixed pivot), indicating its rotary path. The identification
of these mechanistic elements is constituted and mediated by
mathematical description (i.e., center of circle): ‘‘because
… it’s constrained over here (constraint via the fixed pivot,
identification) so it can only rotate around this point
(constraint via the fixed pivot, resulting motion; rotation;
center of circle).’’

Finally, Kelly links the output motion (Figure 4B; related
direction, output) to the coordinated opposite motion of the
two lever arms: ‘‘these two stars will just move up and to the
right as well as this one (lever arm, left) whereas this star
which is on the opposite side of the fulcrum (lever arm,
right) will move down and to the left.’’ This reasoning
was mediated by representational resources from the

Table 5.
Percentage of specific mathematical description codes by mechanistic element codes.

Describing or noticing mathematical objects Magnitude relations

Mechanistic element Circular path Center Radius Circumference–radius Constant radius Other

Rotation (n 5 57) 91% (52) 46% (26) 0% (0) 12% (7) 2% (1) 2% (1)
Constraint via the fixed pivot (n 5 40) 80% (32) 40% (16) 3% (1) 33% (13) 0% (0) 15% (6)
Tracing (n 5 56) 80% (45) 57% (32) 0% (0) 38% (21) 2% (1) 7% (4)

Figure 3. Percentage of relational mathematical description by groups of mechanistic elements.
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mathematics of circles: ‘‘the longer the moment arm from
this star to this star, the more distance it’s going to travel
(circumference–radius relation; radius). These stars will
move. This star will cover more distance and these will
be progressively less and less distance the closer you get
to the fulcrum of axis.’’ Here, mechanistic reasoning and
mathematical description seem to be inseparable. This
suggests that the development of repre-
sentational resources and mechanistic elements are tied.

On items where participants traced, they also mathe-
matically described the system of levers. For instance,
when tracing, participants referenced circular paths (80%)
and the center of the circle (57%) in their explanations of
machine motion. In addition, they also cited circumference–
radius relations (38%) as well as other relations (7%). Other
relations included the relation between any two mathematical
objects (e.g., radius and arc curvature) or quantities (e.g., speed).

Discussion

This study focuses on the development of mechanistic
reasoning in science and engineering education and how

such reasoning is constituted through mathematical descrip-
tion. Because these forms of reasoning are context specific
(diSessa, 1993), this study focused on simple systems of
levers. Even though children have conceptual resources for
these forms of reasoning under specific conditions, they do
not necessarily deploy these forms of reasoning sponta-
neously in unfamiliar or untutored contexts. This may be
the case because these forms of reasoning are heavily
dependent on the cues that are provided (and attended to)
when participants are considering which components are
relevant to system functioning. Many characteristics of
simple machines, including aspects of their appearance,
embeddedness within other components, and possibly other
attributes as well, will likely influence the difficulty with
which individuals develop and support mechanistic expla-
nations from a system’s input to output. Smith (2007)
describes ‘‘bootstrapping’’ as a means to facilitate this
context-specific reasoning, whereby individuals negotiate
the relationships between systems of levers and their
represented relations. For instance, participants that spon-
taneously referenced mathematics to explain machine
motion, on at least one item, had higher mechanistic

Figure 4. (A) Kelly.
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reasoning ability scores on the assessment (M 5 0.43 logits;
p , 0.0001, one-tailed t-test) than those who did not
reference mathematics in their explanations (M 5 21.38).
Moreover, with each additional reference to mathematics
there was an increase in assessed mechanistic reasoning
ability. Thus, the capacity to seek out mechanism seems
to be constituted through the development of represented
resources. This work suggests an available entrée into
STEM integration because the development of mechanistic
reasoning (i.e., in science and engineering) relies upon
representational resources from mathematics.

This study reveals that participants who described a
levered system mathematically reasoned more mechan-
istically than those who did not. In addition, participants
who identified relations between mathematical objects and
magnitude relations diagnosed the most difficult mechan-
istic elements: rotation and constraint via the fixed pivot.
For instance, there was a relationship between mathema-
tical description and mechanistic reasoning when explain-
ing the following mechanistic elements: rotation (29%),
constraint via the fixed pivot (37%), as well as tracing
(76%) the system from input to output (Table 4). These
individuals were also able to trace these systems from input
to output. This relationship is not surprising because of

the correspondence these mechanistic elements have with
the geometry of circles. For instance, all points on a lever
trace out rotary paths that are equidistant from the fixed
pivot, generating circles.

Drawing upon these representational relations seems
to be implicated in tracing (Table 5). On items where
participants traced, they mathematically described the
system of levers. When participants traced, they refer-
enced circular paths (80%), the center of the circle (57%),
circumference–radius relations (38%), as well as other
relations (7%). Describing the relations between mathema-
tical objects and magnitudes is implicit in tracing. For
example, if participants reference a circumference–radius
relationship within this system, this suggests an under-
standing that the lever will move in a rotary path (rotation),
that that path will be generated by the ‘‘fixedness’’ of
the fixed pivot (center of circle), and suggests a causal
link between the fixed pivot constraint and the rotary
path (rotation, constraint via the fixed pivot). Having the
proclivity to represent the system mathematically so as to
see the relations that undergird the relationships between
the mechanisms enables one to causally trace the system
from input to output. System tracing is productive when an
individual is diagnosing mechanisms in systems where

Figure 4. (B) Kelly.
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forces are transmitted through visible components, such as
those featured in mechanics and engineering.

Mathematical Description is Not Simply a Support

This work takes the perspective that representational
resources are not simply peripheral supports (i.e., ‘‘scaffolds’’);
these meditational means are inseparable from the act of
reasoning (Wertsch, 1998). The construction and develop-
ment of representational infrastructures (Hall & Greeno,
2008) (e.g., from mathematics) is requisite within dis-
ciplined practice across STEM fields.

This study illustrates the importance of mathematical
description in the development of mechanistic reasoning.
Previous work on mechanistic reasoning (Bolger et al.,
2012; Kobiela et al., 2011; Lehrer & Schauble, 1998; Metz,
1991; Shultz, 1982) and representational description (Hall
& Greeno, 2008; Hall, Stevens, & Torralba, 2002; Lynch &
Macbeth, 1998) has not considered these constructs together
as important co-constituted elements of reasoning towards
conceptual change.

diSessa and colleagues (diSessa, 2004; diSessa, Hammer,
Sherin, & Kolpakowski, 1991) have been concerned with
meta-representational competence, the proclivity to construct,
revise, critique, and appropriate representational resources
required in making sense of phenomena in the designed or
natural world. Work in the history and philosophy of science
makes it evident that the invention and development of
representations constitutes an integral component of scientific
practice (Bazerman, 1988; Brush, 1989; Daston & Galison,
2007; Dear, 2006; Giere, 1988; Gooding, 1990; Goodwin,
1994, 2000; Kaiser, 2000; Knorr-Cetina, 1999; Kuhn, 2012;
Latour, 1999; Latour & Woolgar, 1986; Nersessian, 2008;
Pickering, 2010). For example, graphing and Cartesian
coordinates integrate data presentations from mathematics
with functional relations that exist in science, technology, and
engineering (e.g., biology, ecology, physics). Thus, it will be
important to attend to how students invent and deploy
mathematical representations of natural and designed sys-
tems. How are these mathematical representations chosen and
how are they utilized? For instance, in this study a majority of
mathematical description focused on representations that
were literal analogues of the system (e.g., circular paths). In
order for students to begin to develop dispositions towards
system tracing, teachers must first support mathematical
descriptions that draw relations between the physical system
and these literal analogues. However, the further develop-
ment of these competencies requires that other more suitable
mappings be employed (e.g., representational systems, syn-
tactic models, etc.; Lehrer & Schauble, 2006).

The Development of Mathematical Description and
Mechanistic Reasoning

The results of this study show that the propensity to
mathematically describe mechanical systems and reason

mechanistically is not systematically developed in schooling
to assist adults (high school aged and older). For instance,
in this study 78% (n 5 87) of all the participants failed
to trace from input to output on all items; in addition, no
participant managed to trace on every item. The assessment
has characterized mechanistic reasoning and mathematical
description about simple levered systems, across age and
life experiences within a diverse sample. The ability to trace
was not dependent on age, gender, or socio-economic status.
When the data were disaggregated, participants with exper-
iences in engineering through their schooling (at least one
year) showed significantly greater capacities to mathemati-
cally describe and coordinate machine mechanisms, indicating
the importance of systematically developing these learning
experiences throughout K–12 education. Further data on
the impact of engineering training on mathematical descrip-
tion and mechanistic reasoning are extensively detailed in
another paper (Weinberg, in process).

Mathematical Description, Mechanistic Reasoning, and
STEM Education

When focusing on mathematics learning within STEM
integration, the selection of content could more frequently
be made based on its capacity to be described mathema-
tically. Systems of levers are particularly good candidates
for mathematical description because of their analogue
to the mathematics of circles. In addition, it is essential that
curriculum designers are mindful of highlighting the poten-
tial mappings between physical systems and analogue mathe-
matical representations so they are accessible for educators
and students. For instance, Lehrer and Penner (2013)
supported K–3 students in the production of mathematical
representations and models of local ecosystems in order to
support them in reasoning mechanistically about ecosystem
composition and function.

In order to support STEM integration using mathema-
tical description, K–12 teachers should be provided with
appropriate supports. For instance, teachers must have
sufficient knowledge of the target STEM domain, mathe-
matics, as well as strong knowledge of teaching within
these domains. The classroom teacher must be able to antici-
pate what mathematical analogues students will likely
make, understand the value in supporting particular ana-
logues over others, and effectively facilitate learning through
these analogues.
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APPENDIX

Appendix A. Item Sequential Tracing A1 (STA1).
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Exemplar for Sequential Tracing A1 (STA1).

Level Mechanistic element Mechanistic element descriptions Mechanistic element example

5 Tracing Participant diagnoses all mechanistic elements (without gaps)
from input to output

4 Constraint via the fixed pivot Participant draws the opposite motion of the two closest
points on opposite sides of the fixed pivot

3 Lever arms Participant draws arrows with opposite directions from
stars on opposite sides of a lever’s arms

2 Rotation Participant draws arced paths. However, the location of these
paths must reasonably approximate fractions of circles
either centered around the fixed or floating pivota

1 Related direction Participant draws the coordinated input/output motion

0 Student diagnoses no mechanistic
elements

No mechanistic elements are shown

NL No link It is not clear if the participant understood the nature
of the task

‘‘I don’t know’’

M Missing response

Note. This item assesses a participant’s propensity to diagnose the mechanistic elements of related direction, rotation, lever arms, and constraint via the
fixed pivot as well as tracing. No link (NL) indicates an item response does not indicate that the participant understands the nature of the task, while ‘‘No
elements’’ provides any evidence of mechanistic reasoning. ‘‘Missing’’ indicates that the item was left completely blank. The ‘‘stars’’ have been placed on
the levers to allow participants to indicate lever motion. A ‘‘little person’’ has been included on the output lever to make the system output salient.
aAlthough these paths are centered around the fixed pivot, this element of mechanistic reasoning does not make this distinction.
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Appendix B. Machine Prediction A1 (MPA1).
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Exemplar for Machine Prediction A1 (MPA1).

Level Mechanistic element Mechanistic element descriptions Mechanistic element example

2 Rotation Participant draws arced paths. However, the location of these
paths must reasonably approximate fractions of circles
either centered around the fixed or floating pivota

1 Linked direction Participant draws the coordinated input/output motion

0 No elements No mechanistic elements are shown

NL No link It is not clear if the participant understood the nature
of the task

‘‘I don’t know’’

M Missing Missing response

Note. This item assesses a participant’s propensity to diagnose the mechanistic elements of related direction and rotation. No link (NL) indicates an item
response does not indicate that the participant understands the nature of the task, while ‘‘No elements’’ provides any evidence of mechanistic reasoning.
‘‘Missing’’ indicates that the item was left completely blank. A ‘‘little person’’ has been included on the output lever to make the system output salient.
aAlthough these paths are centered around the fixed pivot, this element of mechanistic reasoning does not make this distinction.
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