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ABSTRACT 

 

Objective: This paper addresses the following statistical question: ‘if genuine improvements in 

cardiopulmonary resuscitation (CPR) were discovered that doubled the probability of 

resuscitation success in a series of randomized clinical trials, would they be recognized and 

incorporated into consensus guidelines?’ 

 

Methods: Statistical powers for hypothetical individual clinical trials comparing experimental 

and control CPR were computed as a function of the study N when the true probabilities for 

immediate survival, 24 h survival, and discharge survival in the experimental group were twice 

those in the control group. Next, the binomial distributions describing the numbers of statistically 

significant studies in a series of equally powered trials of the same intervention were determined. 

These were compared with varying criteria for consensus among expert reviewers, expressed in 

terms of the number of ‘positive’ studies showing a statistically significant difference that 

reviewers would require before approving the experimental method. 

 

Results: False-negative evaluations (i.e. failures to approve a technique that actually doubled 

survival) were extremely common under a wide range of realistic assumptions and consensus 

criteria, especially when simulated long-term survival data were considered. Similar methods 

showed that false-positive evaluations would be extremely rare, provided that at least two of the 

clinical trials in a series showed a statistically significant benefit of the experimental method.  

 

Conclusions: Optimization of evidence evaluation can and should be carried out to make better 

use of available data in creating resuscitation guidelines. One simple approach is the ‘two and 

one quarter test’: if at least two well-conducted studies in a series are significantly positive 

(P<0.05) comprising at least one-quarter of all studies in the series, a positive effect can be 

inferred with small Type I and Type II errors. In addition, greater reliance on modern, unbiased 

methods such as cumulative meta-analysis is needed to increase the sensitivity of evidence 

evaluation for detecting useful innovations in resuscitation. 

 

Keywords: Cardiopulmonary resuscitation; Guidelines; Human experimentation; Clinical trials; 

Meta-analysis; Standards 
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1. Introduction 

 

Cardiopulmonary resuscitation (CPR) is unusual among medical treatments in that clinical 

practice is determined largely by national or international guidelines and to a much lesser extent 

by the judgment of individual clinicians. Such standardization minimizes chaos in highly 

emergent situations, but also discourages innovation. Improvements must be blessed by 

guideline writing committees, which tend to follow implicit consensus criteria. The guidelines 

that direct the efforts of thousands of individuals worldwide in lifesaving efforts are formulated 

by committees of volunteer experts in organizations such as the European Resuscitation Council 

and the American Heart Association [1]. These experts are typically medical professionals who 

rely on traditional methods of literature review, prior experience, and clinical judgment to arrive 

at a consensus, to which the fewest committee members can strenuously object. A potential 

improvement in resuscitation guidelines is proposed, and consensus is achieved after review, 

debate, and synthesis of evidence from various research studies [2]. Optimization of lifesaving 

efforts around the world is dependent on accurate outcomes of this process. 

 

In the rare situations, in which there is a large number of consistently positive randomized 

clinical trials, consensus favoring change is easy. This situation, however, is highly unlikely in 

the domain of cardiopulmonary resuscitation. Compared with clinical trials of promising new 

drugs that are supported by large multinational corporations, trials of resuscitation techniques are 

underfunded and data poor. Even in a well-investigated field such as treatment of myocardial 

infarction [3,4], years, even decades, may pass as clinical trials accrue, yielding a mixture of 

seemingly ‘conflicting’ positive and neutral studies. In the domain of resuscitation, there has 

never been a method or technique supported by overwhelmingly positive data from multiple 

randomized clinical trials. Yet guideline writers must create guidelines anyway, striving to make 

the most efficient use of available data. 

 

In this sense, one can think of the evidence evaluation process as a diagnostic test to detect the 

presence of potential improvements in CPR, for which the concepts of sensitivity and specificity 

come into play. Ideal guideline writers would avoid both false-positive evaluations (concluding a 

guideline change is beneficial when in fact it is not) and false-negative evaluations (concluding a 

guideline change is of no benefit, when in fact it would be). If the process is not specific, 

rescuers and their instructors will be burdened by needless, ineffective changes. If the process is 

not sensitive, life-saving improvements in resuscitation technique will be missed. 

 

Lack of specificity corresponds to a ‘Type I’ statistical error or a false-positive conclusion. Lack 

of sensitivity corresponds to a ‘Type II’ statistical error or a false-negative conclusion [5]. In this 

paper, we shall examine the Type I and Type II errors inherent in consensus evidence evaluation 

in the field of resuscitation. Understanding of the underlying mathematical and statistical 

realities can lead to better criteria for evaluating potential improvements in resuscitation 

technique. 
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2. Materials and methods 

 

2.1. Approach 

 

This paper presents a family of thought experiments to simulate the evidence-based review of 

series of randomized clinical trials, in which there is a known true difference in resuscitation 

success. Of particular interest is the probability of reaching an incorrect consensus decision as a 

function of the numbers of patients in individual clinical trials and the criteria that are used to 

reach ‘consensus’. In this way, one can examine the consequences of different evidence 

evaluation strategies. Nomenclature for the simulations is summarized in Table 1. All 

computations can be made readily on a routine Microsoft Excel spreadsheet, using arithmetic 

operators and functions for the square root, the binomial distribution, the normal distribution, and 

the inverse normal distribution. 

 

Table 1  Nomenclature 
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The general approach is first to determine the statistical power of hypothetical individual clinical 

trials in which the experimental resuscitation technique actually doubles survival. The statistical 

power of a trial is the probability of finding a statistically significant difference experimentally 

when a given true difference in survival between the experimental and control groups exists. 

Next, the binomial distribution for the number of significant positive studies in a series of 

similarly powered trials is determined. This distribution can be compared with the number of 

significant positive studies that would be required for approval by a review committee operating 

under various criteria for consensus. 

 

A strict committee would require a large number of significant positive trials; a more lenient 

committee would require a smaller number of positive trials. When the number of studies 

exceeds the consensus criterion, a true-positive recommendation will result. When the number of 

studies falls short of the consensus criterion, a false-negative recommendation, or Type II error, 

will result. In this way, one can study the frequencies of Type II errors under a variety of 

plausible conditions typical in the field of resuscitation. These can be compared with the 

frequencies of Type I errors under similar consensus criteria when there is, in fact, no difference 

between experimental and control treatments. In this way, one can explore when errors in 

evidence evaluation are likely to occur and in turn suggest strategies to minimize them. 

 

2.2. Describing an individual study 

 

Consider a single randomized clinical trial in which a new resuscitation method is compared with 

an old one. The experimental method might involve a new form of thoraco-abdominal 

compression, a new method of ventilation, a new drug, a new defibrillation waveform, or a new 

sequence of live-saving maneuvers. Since the purpose of resuscitation is the restoration of life, 

clinical trials ultimately focus on survival data [6–8]. Generally, one or more of three classical 

outcome measures is tabulated in such studies: return of spontaneous circulation (ROSC), 24 h 

survival, or survival to hospital discharge. The experimental CPR technique is judged superior if 

there is a statistically significant difference in at least one of these dichotomous variables. 

Generally, by the time randomized clinical trials are organized and approved, results of animal 

studies and non-randomized human studies have ruled out substantial safety concerns regarding 

the new method. Hence, the key question becomes whether the new method produces greater or 

less overall resuscitation success than standard CPR. 

 

The possible results of any such clinical trial can be described by the binomial sampling 

distributions shown in Fig. 1. These distributions show the range of possible outcomes of a 

particular clinical trial if the entire study were repeated a very large number of times in the same 

population. Here, the horizontal axis represents the difference between experimental and 

standard CPR in the proportion of immediate, 24 h, or discharge survivors. The vertical axis 

represents the probability density for the sampling distributions. ‘Probability density’ is scaled 

such that the area under each distribution is unity.  

 

The left-hand distribution is computed for the null hypothesis that 1 = 2. That is, the true 

probability, 2, of survival with experimental CPR is identical to the true probability, 1, of 
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survival with standard CPR. The mean difference is zero, as expected, but there is substantial 

variation. The right-hand distribution is computed for the alternative hypothesis that 2 > 1. 

Here the mean difference is positive, reflecting the true-positive effect. There is, however, 

substantial variation in possible outcomes of the trial. In a small percentage of cases, the 

measured difference in survival could be negative, despite a true-positive effect. 

 

 
 

Fig. 1. Example of a distribution of measured differences in proportions of survivors 

under the null hypothesis (‘No effect’) and an alternative hypothesis (‘True-positive 

effect’) for a model of 24 h survival data in which standard CPR results in 10% 

survival and experimental CPR results in 20% survival. The modal difference is the 

expected 10% increase. Random variability in the results produces substantial overlap. 

Here, there are 100 patients in each group. 

 

 

The curves in Fig. 1 represent a mathematical description of the possible results of a particular 

clinical trial, even though the actual difference in resuscitation success, 2 − 1, is constant. This 

inevitable variability of the binomial distribution occurs whenever one measures a dichotomous 

variable such as survival that describes each patient as a success or a failure, a plus or a minus, a 

1 or a zero. As the number of patients in each group increases, the standard deviation of the 

difference in the proportion of survivors between experimental and control groups decreases 

according to the formula [9, 10]: 

 

      
(1)
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The dashed vertical line at the proportion, p*, on the horizontal axis of Fig. 1 represents the 

critical value for statistical significance. Given the null hypothesis that there is no real difference 

between the groups (2 = 1), the measured proportion of survivors in the experimental group 

would be greater than p*only a small proportion of the time. The area under the curve 

representing ‘No effect’ (open circles) to the right of p* is related to the Type I error, , which 

is the probability of concluding a significant effect of treatment exists (either positive or 

negative), when in fact there is no difference. This area is equal to /2 (typically, 0.025) for two-

sided or two-tailed tests of significance.  According to the usual decision rules for statistical 

significance, a study is considered ‘positive’ if the observed success in the experimental group is 

greater than p*. The study is considered neutral or ‘negative’ if the observed proportion of 

survivors in the experimental group is less than p*.  

 

The area under the curve representing a ‘True-positive effect’ (filled circles) to the left of p* is 

the Type II error, denoted , which is the probability of concluding there is no difference when 

in fact there is a difference. The area under the same curve to the right of p*, or 1 − , is the 

power of the study. The power is the probability of obtaining a statistically positive result when a 

true treatment effect is present (2 > 1). 

 

According to the difference in proportion test [9, 11, 12], the critical difference in measured 

proportions, p*, required for statistical significance can be computed from the inverse normal 

distribution function, F−1
, as 

 

        
(2)

 

 

Here,  is the acceptable Type I error for a two-tailed test of significance, and  p1−p2  is the 

standard deviation of the difference in proportions, assuming the null hypothesis. For example, if 

1 − /2 is 0.975, then p* is the 97.5
th

 percentile of a normal distribution with a mean of zero 

and a standard deviation of p1−p2 . The value of p1−p2  is obtained exactly by evaluating the 

expression of Eq. (1) for 2 = 1. For the situation in which there is a true effect and 2 > 1, 

errors in statistical inference are Type II errors. For such a study, the Type II error, , is given by 

the cumulative normal distribution function, F, as 

 

       
(3)

 

 

This is the area from negative infinity to p* under a normal distribution with mean 2 − 1 and 

standard deviation p1−p2 . In turn, the power of the study, or the probability that the study will 

yield a significant positive result, is 1 − . 
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2.3. Describing likely treatment effects in resuscitation trials 

 

Treatment effects for typical resuscitation studies are easily imagined. For standard CPR, the 

approximate frequency of successful ROSC is about 25%, that of 24-h survival is about 10%, 

and that of hospital discharge is about 5% [13–18]. These values represent typical control 

outcome measures. Hypothetical large and small improvements in survival as the result of an 

experimental technique are indicated in Table 2. A large treatment effect is modeled as one that 

doubles positive outcome measures. For the purpose of comparison, a small treatment effect is 

modeled as one that improves outcome measures by 20%. 

 

 

Table 2  Hypothetical positive treatment effects for simulation of consensus decision making, 

expressed in terms of true probabilities , of successful resuscitation by various measures 

 

 
 

 

2.4. Describing series of clinical trials 

 

Imagine an ideal world in which a particular resuscitation study could be replicated many times 

independently in the same general population of patients. Suppose each of the replicated studies 

consists of an experimental and a control group, for which survival data after resuscitation are 

reported. For present purposes, it will suffice to let all replications have the same total number of 

patients, N, and for simplicity to let the N patients in each study be equally divided between 

experimental and standard CPR. It then becomes straightforward to explore N as a parameter. 

 

Suppose there is a true treatment effect such that 2 > 1, as in Fig. 1 (filled circles). Table 3 

presents the formulae for calculating the probabilities of obtaining a given number of statistically 

significant, ‘positive’ studies in such a series of replications. These probabilities are derived from 

the basic independence, product, and addition rules of probability theory [19], and from the 

definition of the power of a study (1 − ). The left hand column in Table 3 presents the total 

number of studies in a series. Each column to the right indicates a given number of statistically 
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significant studies in a series, ranging from none of the studies in the series being significant to 

all of the studies in the series being significant.  

 

Table entries are the probabilities of obtaining the indicated number of statistically significant 

trials in a particular column under the assumed conditions. For example, if there is only one trial 

in the series, the probability that it will not be significant, despite a true effect is the Type II 

error, , and the probability that it will be significant is the power, 1 − . Accordingly, for a 

series containing only one study, the probability of obtaining zero positive studies in the series is 

, and the probability of obtaining one positive study in the series is 1 − . If there are two trials, 

the probability that both will be negative is 
2
 and the probability that both will be positive is  

(1 − )
2
. The probability that one will be positive and one will be negative is (1 − ), but there 

are two ways this can happen. Hence, the probability that one of the two studies will be 

statistically positive is 2(1 − ). This process can be continued for larger series, leading to the 

remaining entries in Table 3. The binomial nature of these probabilities is well known [20, 21]. 

 

 

Table 3  Probabilities of various outcomes for series of independently 

replicated studies with the same statistical power (1 − ) 

 

 
 

 

2.5. Describing consensus among evidence evaluators 

 

Although consensus is actually achieved by human judgment and group dynamics, members of 

the group seem to follow unconscious mathematical rules that can be used to create an 

operational definition of consensus for the purpose of the present analysis. This process has been 

described in the statistical literature as ‘vote counting’ by Hedges, Ingram, and other workers 

[10, 20–22]. In the vote-counting paradigm, each study ‘casts a vote’ in favor of the experimental 

intervention if it shows significant positive results. The study casts a vote against the intervention 

otherwise. The reviewers conclude there is a genuine treatment effect when there is a certain 

proportion or more of positive votes. 

 

Vote counting is probably the most common decision procedure used in traditional research 

reviewing. If the proportion of positive ‘votes’ is large, then the treatment under investigation 

presumably has an effect. For example, a group of evaluators might consider evidence 

compelling if 75% or more of trials are significantly positive. The group might then reach a 

consensus that the innovation under study is effective and worthy of recommendation.  
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Review committees are at liberty to select any such level, which may vary with the total number 

of studies. At the 75% level, it seems to be a safe bet to agree with a positive conclusion. 

However, when only one-half of the studies show a statistically significant positive effect, and 

one-half do not, many authorities tend to conclude, often erroneously, that the research is 

inconclusive and ‘more research is needed’ [10]. 

 

For the purposes of the present analysis, we shall define a consensus threshold, c, as the 

minimum proportion of statistically positive studies in a series that is judged sufficient to justify 

a strong recommendation of a new procedure. For example, a 3/4 consensus threshold would 

describe the thinking of a group convinced by four of four or three of four positive studies, but 

not by two of four. For larger series of replicated studies, the consensus threshold is just the 

overall fraction or percentage of statistically significant positive studies. 

 

2.6. False-positive consensus evaluations 

 

In situations in which there is no real treatment effect, evaluators can come to either a true-

negative or a false-positive consensus. The probability of reaching an incorrect, false-positive 

consensus in a series of replicated studies having the same two-tailed Type I error, , is easily 

computed. If there is only one study in the series, the probability of a false-positive result is /2. 

If there are two studies, A and B, and if a 2/2 consensus is required, the probability that both A 

and B are falsely positive, which is equal to the probability of a false-positive consensus, is 

(/2)(/2) = 
2
/4. For  = 0.05, this value is 0.000625. If only a 1/2 consensus is required, the 

probability is (
2
/4) + 2(/2)[1−(/2)]. This expression corresponds to the combined 

probabilities for A+/B+, or B+/A−, or B−/A+, where the superscript + means that the results of 

study were positive for two-sided significance level , and the superscript − means that they 

were not. For  = 0.05, the probability for a 1/2 consensus or better is 0.049375. In general, the 

probability of reaching an incorrect false-positive n/m consensus is  
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refers to the number of combinations of m things taken k at a time [23]. 

 

2.7. False-negative consensus evaluations 

 

In situations in which there is a true treatment effect, evaluators can come to either a true-

positive or a false-negative consensus. In these situations, the probability of obtaining a false-

negative consensus is 1 minus the probability of obtaining a true-positive consensus. The 

probability of obtaining a true-positive consensus for a given consensus threshold may be 

computed from the terms in Table 3, working from right to left by rows, for example, as follows: 

 

 
 

Eq. (5a) can be expressed more compactly in terms of the cumulative binomial distribution 

function B(s, t, p) for  s  successes in  t  trials with probability  p. This function is available in 

Microsoft Excel and was used for spreadsheet computations. Using this function, Eq. (5a) is 

equivalent to 

 

        
(5b)

 

 

In turn, the probabilities of coming to a false-negative consensus for each consensus threshold 

may be computed as 

 

     
(6)
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2.8. Design of simulations 

 

Using the forgoing concepts, one can perform a series of thought experiments to explore the 

outcome of the evaluation of a series of studies that compare an experimental treatment with a 

standard treatment as a function of three key variables. These include the number of patients in 

each study, the true difference, if any, in resuscitation success, and the consensus threshold. Of 

special interest are the probabilities of false-positive and false-negative evaluations as functions 

of these variables. 

 

3. Results 

 

3.1. False-positive consensus decisions 

 

Table 4 shows values computed from Eq. (4) for series of four, six, eight, and ten studies, 

assuming  = 0.5.  Each column represents the total number of studies and each row represents 

the minimum number of positive studies in the series for a positive consensus. Table entries are 

probabilities that a positive consensus would be reached when there is in fact no difference 

between treatment groups, i.e. 2 = 1. In this situation, all errors of research evaluation and 

synthesis are Type I errors. Whenever there are more than two positive studies in a series, the 

values in Table 4 are quite small. For series of four or six studies, the presence of only two 

positive studies excludes the null hypothesis at the P = 0.01 level (bold font). That is, the 

probability that the null hypothesis is correct is less than 1%. For series of eight or ten studies the 

presence of only three positive studies excludes the null hypothesis at the P = 0.01 level. Thus, as 

previously described [10, 20], only two or three significant positive studies are required to reject 

the null hypothesis. 

 

Table 4 Probabilities of false-positive consensus decisions based on a series of replicated studies 

in which there is no true difference and the two-tailed Type 1 error, , of each study is 0.05 

 

 
 

 

These results are independent of the particular kinds of data or significance tests used in the 

studies. They are also independent of the number of patients, N, in any of the studies, because the 

N values of the individual studies are already taken into account in selecting the critical values 

for significance testing. 
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3.2. False-negative consensus decisions 

 

For cases in which 2 is greater than 1, the errors in evidence evaluation are Type II errors. 

Here, the probabilities of false-negative consensus decisions are dependent on study N values. 

For simplicity in the present analysis, we assume the same N for all studies in the series. Fig. 2 

illustrates probabilities for false-negative conclusions as a function of N in a variety of scenarios 

in which the true difference in survival for experimental CPR is twice that for standard CPR, i.e. 

2 = 21. Three different control levels of survival are modeled as indicated in Table 2, 

corresponding to discharge survival, 24-h survival, and ROSC for typical standard CPR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Please continue on next page.] 

 



13 

 

 

 

 

Fig. 2. Probabilities of 

reaching a false-negative 

consensus from series of 

replicated clinical trials, 

given an actual twofold 

improvement in 

resuscitation success. 

Separate charts describe 

scenarios simulating three 

different survival endpoints 

commonly measured in 

resuscitation research. 

Clustered groups of three 

curves represent possible 

consensus criteria. Solid 

symbols indicate that at 

least one-half of studies 

must show a significantly 

positive result with  = 

0.05. Smaller open symbols 

indicate that at least one-

quarter of studies must 

show a significantly 

positive result. Larger open 

symbols indicate that at 

least three-quarters of 

studies must show a 

significantly positive result. 

Symbol types represent the 

number of studies to be 

evaluated: circles, four 

studies; triangles, eight 

studies; squares, 16 

studies. (a) Stimulates 

discharge survival, (b) 24-h 

survival, (c) return of 

spontaneous circulation. 
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For each control survival level (a)–(c), the probabilities of false-negative evaluations are plotted 

as a function of the total number of patients, N, in each of the replicated studies. Keep in mind 

that for every case the true probability of survival for experimental CPR, 2, is twice that of 

control CPR, 1. The nine curves in each chart appear in groups of three. Each group represents a 

different consensus threshold. The middle group (solid symbols) represents a consensus 

threshold of 50%. That is, evaluators require 50% or more of the reviewed studies to show 

statistically significant results before reaching a consensus that the innovation under study is 

truly effective. The left-hand group of three curves (small open symbols) represents a less 

stringent consensus threshold of 25%. The right hand group of three curves (larger open 

symbols) represents a more conservative consensus threshold of 75%. The three curves within 

each group indicate the evaluation of four, eight, or 16 similar studies. Circles indicate a series of 

four studies, triangles a series of eight studies, and squares a series of 16 studies. 

 

Fig. 2(a) shows results typical of long-term, discharge survival as an end-point. Long-term 

survival is the most valued end point in resuscitation research, based on the laudable desire of 

both patients and clinicians to eschew methods that restore circulation but prolong life only a few 

hours or days. Such methods would increase cost and suffering without increasing quality of life. 

Compared with the probabilities for false-positive evaluations in Table 4, the plotted 

probabilities for false negative evaluations in Fig. 2(a) are large. For small to medium sized 

studies, including fewer than 1000 patients, the chances of false-negative evaluations can be 50% 

or greater for long-term survival endpoints.  

 

For reference, the mean study N values in current trials of experimental CPR is in the range of 

300 total patients [16, 17]. Brown et al.’s review of negative studies in emergency medicine [12] 

found a mean N of 82 and range of 12–394 for the number of patients in both experimental and 

control groups. In this range of N, the probability of making a false-negative consensus 

evaluation of an experimental method that in fact doubles long-term discharge survival is very 

high.  

 

The sensitivity of the evidence evaluation process is 1 minus the probability of reaching a false-

negative consensus. For studies with N in the range of 50–500 patients, the sensitivity of 

evidence evaluation based on long-term survival data is roughly 50%. That is, the overall 

assessment of research literature is correct about half the time. For realistically conservative 

consensus criteria, requiring at least 50% of eight or more studies to be statistically 

significant, the ability of the evidence evaluation process to recognize an innovation that 

actually doubles long term survival is less than 10%. In order for the probability of false-

negative consensus to become less than 10%, the studies must include 1000 or more patients 

each. The consensus threshold does have a large influence on the sensitivity of the evidence 

evaluation process, especially for small to medium sized studies. Only when total study N is 

greater than 1000 is the process insensitive to the consensus threshold. 

 

Results within each group of curves are also revealing and important. Consider the solid symbols 

in Fig. 2(a). These represent a consensus threshold of 50%. Note that when the curve height is 

greater than about 0.2, the probability of false-negative evaluation actually increases as the 
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number of studies to be integrated increases from four to 16. Hedges and Olkin described this 

counterintuitive effect in 1980 [20]. We shall refer to it as the Hedges–Olkin paradox. The 

paradox is that, under certain conditions, the larger the number of studies conducted, the greater 

is the certainty of reaching the false conclusion that there is no effect. This paradox is a genuine 

consequence of the laws of probability. 

 

The necessary conditions for the Hedges–Olkin paradox are common in resuscitation research 

and occur when the statistical power of the studies is less than the consensus threshold. The 

Hedges–Olkin paradox is true because, if a given study were replicated a large number of times, 

the proportion of replications with statistically significant results would be equal to the power. 

Consequently, if the power is less than the consensus threshold then, as more studies are carried 

out, the proportion of positive studies will tend to become less than the consensus threshold. This 

conclusion is also true if the study powers vary, but the average power is less than the consensus 

threshold ([21], p. 52). Thus, under conditions common in the field of resuscitation, the 

sensitivity of the consensus process to detect true-positive effects decreases as the number of 

studies reviewed increases! In turn, the probability that a research review reaches the correct 

decision tends toward zero as more research is carried out [20]! 

 

This disturbing situation is improved slightly by choosing end points with greater 1, such as 24-

h survival or immediate survival after attempted resuscitation (ROSC). For typical 24-h survival 

with 1 in the range of 0.1, the evaluation of studies with N values in the range 100–200 has a 

50% sensitivity with a 50% consensus threshold (Fig. 2(b)). The Hedges–Olkin paradox is still in 

effect, however. When 1 is in the range of 0.25, corresponding to the ROSC end-point, then 

consensus evidence evaluation is capable of detecting an effect with a sensitivity greater than 

90% for typically powered resuscitation studies (Fig. 2(c)). 

 

The results in Fig. 2 were computed for studies reflecting a large, two-fold, improvement in 

resuscitation success. Fig. 3 illustrates similar results for more modest, incremental 

improvements in survival of 20%. Similar patterns of findings occur as before. However, the N 

values required to achieve a given level of sensitivity are much larger. False-negative evaluations 

are much more likely with small N studies typical of resuscitation research. For the endpoint of 

long-term survival, the Hedges–Olkin paradox reigns supreme. 
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Extremely large N values are required to obtain adequate sensitivity of the evaluation process — 

probably so large that cost would be prohibitive. Even using ROSC as the only endpoint, greater 

than 1000 patients in each study are needed. Only one recent resuscitation study has included this 

many patients [24]. Smaller positive effects are almost impossible to detect. These findings 

suggest that, in the field of resuscitation, traditional methods of research review and consensus 

development cannot lead to gradual improvement of guidelines by a series of small incremental 

steps. Only improvements with a large (e.g. two-fold or greater) impact upon outcome are likely 

to be adopted, and these only with good luck. 

 

4. Discussion 

 

The laws of probability and statistics have a lot to say about the way resuscitation research is 

conducted and the way resuscitation guidelines are created. Although studies of blood flow and 

hemodynamics deserve close scrutiny, the ultimate dependent variable in resuscitation is a 

dichotomous one—survival—putting investigators at the mercy of the binomial distribution. 

 

The extreme pathophysiology of sudden cardiac death, often including long down times and 

severe underlying disease, limits both control survival rates (1) and possible improvements in 

survival rate (2 − 1) even with the best of treatments. Small values of these parameters drive up 

the study N values needed to avoid both Type I and Type II errors in evidence evaluation.  

 

Unfortunately, resuscitation has been an ‘orphan research domain’, underfunded by federal 

governments and by multinational drug companies. Hence, N values of most resuscitation studies 

are small. Under these conditions, the traditional concepts of research reviewing often cannot 

function reliably to recognize clinically significant improvements when they are discovered. The 

metaphor of ‘weighing’ the evidence that underlies traditional research synthesis seems 

intuitively fair. One simply stacks up the significantly positive studies in one hand and the non-

significant, neutral studies in the other hand with some attention to their technical merits. If one 

stack is larger than the other, the decision seems obvious. This approach has deep roots in our 

system of justice and our normal approach to making choices in life by weighing ‘pros’ and 

‘cons’.  

 

This vote counting approach, however, is mathematically erroneous. The error is revealed in Fig. 

1, and has to do with the properties of dichotomous variables with binomial distributions. In the 

presence of a true effect, some studies will show no apparent difference, especially 

underpowered ones. Studies showing no statistically significant difference are not necessarily 

‘negatives’ or ‘cons’. One such study does not necessarily ‘cancel’ a significant positive study. It 

should be seen as part of a larger distribution. 

 

A related misunderstanding is that conventional significance testing ensures accurate decisions 

about treatment effects. This reasonable sounding idea is only partly correct. Conventional 

significance testing only minimizes Type I errors. It does not in any way protect against Type II 

errors [12]. Indeed, over-reliance on conventional significance tests by requiring smaller and 
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smaller P values actually increases the number of Type II errors and reduces the overall accuracy 

of evidence evaluation. 

 

In this setting, reliance on conventional methods of research reviewing and consensus will 

sacrifice many, perhaps most, genuine innovations in resuscitation technique. In particular, the 

current approach to guideline development would seem to obviate a series of successive 

incremental improvements (5% better ROSC here, 10% better ROSC there), which might have a 

substantial combined impact on overall success. Large, roughly two-fold improvements in 

resuscitation success, such as those reported by Sack et al. for interposed abdominal compression 

CPR [25] have been quite rare. As a result, major improvements in basic CPR have not appeared 

since its introduction in 1960 [26, 27]. In turn, researchers tend to become discouraged because 

their work, even when successful, never makes it into the guidelines. 

 

Inspection of the results in Table 4 describing Type I errors, together with those in Figs. 2 and 3 

describing Type II errors, leads to a simple approximate rule for eliminating many, but not all, 

systematic errors in evidence evaluation. This rule of thumb might be called the ‘two and one 

quarter test’. If the same intervention is tested repeatedly in the same population, and if there are 

at least two well-conducted significant positive trials representing one-quarter or more of all 

trials performed, then one can conclude with reasonable accuracy that the innovation under study 

has a true-positive effect. This simple test can serve as a poor man’s meta-analysis. One only has 

to count to two and to divide by four. This way of counting studies is much less stringent than 

the consensus criteria used by many research reviewers. Yet it is based soundly on the 

mathematical realities of the binomial distribution.  

 

The two and one quarter test is of course an approximation. It remains a form of vote counting. 

All forms of vote counting include a systematic bias toward Type II errors [22], especially when 

studies are substantially underpowered or the experimental effects are small (Figs. 2 and 3). A 

better way to obtain both increased sensitivity and increased specificity of evidence evaluation is 

to conduct a formal meta-analysis, which does not suffer from the systematic bias of vote 

counting or from the Hedges–Olkin paradox. The details of meta-analysis are beyond the scope 

of the present paper. The reader is referred to the cited references for an introduction to this 

topic. The two and one quarter test suggested here, however, can be used to identify candidate 

interventions for formal meta-analysis. 

 

Specific examples in need of meta-analysis in the field of resuscitation include interposed 

abdominal compression CPR (IAC-CPR) and active compression decompression CPR (ACD-

CPR). Both methods have been shown in more than two randomized clinical trials to produce 

clinical benefit in human beings compared with standard CPR. In both cases, the positive trials 

constitute more than one-quarter of the randomized clinical trials performed [1]. Of course, 

analysis of these real world innovations is more complex than the simple thought experiments 

presented in the present paper. In particular, the same intervention was not necessarily tested in 

all studies, because the techniques for performing IAC-CPR and ACD-CPR have evolved and 

improved with time and experience.  

 

Also, the studies of these techniques were not always replicated in the same populations. There 

are pre-hospital versus in-hospital trials. There are trials in different countries with different 
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health care systems by rescuers with different degrees of training [1]. Still, some of the 

variability in the results of multiple trials must have been caused by random variation of the 

binomial distribution, i.e. by luck. Typically, research reviewers tend to underestimate the 

‘normal’ amount of random variation in binomial data and over-interpret apparent differences. A 

humorous account of this tendency is provided by Hunter and Schmidt [10]. For interventions 

such as IAC-CPR and ACD-CPR that pass the two and one quarter test, more sophisticated 

techniques than those of traditional consensus development are needed to improve the accuracy 

of the evidence evaluation process. 

 

The techniques of meta-analysis, a general term for quantitatively combining evidence from 

related but independent studies, have recently become popular in the clinical literature. These 

methods have been well reviewed [10, 21 ,22, 28–31] and deserve serious consideration by 

guidelines writers. One important innovation is the technique of cumulative meta-analysis of 

outcome data, developed by Lau, Mosteller, Chalmers, and coworkers [3, 4]. Cumulative meta-

analysis is defined as the performance of an updated meta-analysis every time a new trial 

appears. This approach simplifies the process of integrating data from multiple clinical trials, and 

makes it possible to pinpoint the earliest time when the combined results of clinical trials first 

achieve statistical significance. Importantly, meta-analysis eliminates the Hedges–Olkin paradox. 

Meta-analysis also tends to focus more attention on actual data, balancing the contributions of 

non-native English speakers, less domineering personalities, and less persistent advocates with 

their opposites on the evidence evaluation team. 

 

5. Conclusions 

 

The results of the present study suggest that evidence for new resuscitation guidelines need not 

be ‘compelling’ in the sense that a majority or a super-majority of published studies are 

statistically significant. Many positive life-saving innovations would probably never be 

implemented under these conditions. Indeed, they would only be adopted if the proportion of 

positive studies were much greater than normally expected on the basis of probability theory. 

This means that the measured treatment effects (p2 − p1) would have to be substantially greater 

than the true treatment effects (2 − 1) — a matter of luck rather than merit.  

 

A long term consequence of this situation is that subsequent clinical results of a few lucky 

techniques would necessarily tend to be ‘disappointing’, i.e. closer to the true average outcome 

than to the initial lucky outcome. In turn, observers would tend to grow cynical about future 

innovations, perhaps requiring even more conservative consensus criteria and creating a self-

fulfilling prophecy. Unknowingly at the mercy of the Hedges–Olkin paradox, guideline writers 

would increasingly view resuscitation research as muddled, unproductive, and conflicting. 

Change would be put off once more, with yet another call for more data. A better approach 

would be a more realistic one, permitting modest incremental improvements based on the two 

and one quarter test, followed by unbiased meta-analysis of available results.  

 

Ideally, consensus guidelines should be a conduit for the prompt transfer of effective innovations 

from research centers to front line patient care. 
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