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SUMMARY 

 

This study examined the effect of carbon dioxide, lidoflazine, and deferoxamine therapy upon 

the 10-day survival incidence and subsequent neurologic function of rats subjected to 7 min of 

cardiorespiratory arrest with resuscitation. Cardiac arrest (asystole) was induced at time zero by 

injection of cold, 1% KCl into the left ventricle of ketamine-anesthetized rats pretreated with 

succinylcholine. Positive pressure ventilation was discontinued at time zero. Cardiopulmonary 

resuscitation (CPR) was begun at 7 min, and animals with return of spontaneous circulation were 

entered into the study. Twenty treated rats were ventilated for 1 h with 7% carbon dioxide-93% 

oxygen and given lidoflazine (2.0 mg/kg, i.v.) and deferoxamine (50 mg/kg, i.v.) 5 min after 

CPR. Twenty control rats were ventilated for 1 h with 100% oxygen and given lidoflazine 

vehicle and deferoxamine vehicle. Lidoflazine treatment (1.0 mg/ kg) for the treated group, or 

lidoflazine vehicle for the control group, was repeated at 8 h postresuscitation. At 2 days 

postresuscitation, 75% of treated rats vs. 25% of control rats were alive (Chi-square = 10.0, d.f. = 

1, P < 0.01), and at 10 days, 60% of treated rats vs. 25% of control rats were alive (Chi-square = 

5.01, d.f. = 1, P < 0.05).  There was no detectable neurologic deficit among survivors in either 

group at 15 days. The combination of carbon dioxide, lidoflazine, and deferoxamine, 

administered after return of spontaneous circulation, is a simple and easily administered 

treatment regimen that improves the survival incidence without neurologic deficits in this animal 

model of cardiorespiratory arrest and CPR. 

 

Key words: Cardiorespiratory arrest - Carbon dioxide - Lidoflazine - Deferoxamine- Survival 

rate- Neurologic deficit 
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Abbreviations: CPR, cardiopulmonary resuscitation; IAC-CPR, interposed abdominal 

compression-cardiopulmonary resuscitation. 
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INTRODUCTION 

 

Modem methods of cardiopulmonary resuscitation and advanced cardiac life support can 

successfully restore spontaneous circulation in up to 56% of victims of prehospital cardiac arrest 

(DeBard, 1981). However, fewer than half of the initially resuscitated patients survive to leave 

the hospital (DeBard, 1981; Eisenberg et al., 1979; Myerburg et al., 1980). Central nervous 

system (CNS) damage and hemodynamic abnormalities have caused 59% and 31%, respectively, 

of postresuscitation, in-hospital deaths (Myerburg et al., 1980), and permanent functional 

neurologic disability is reported in 10%-40% of patients surviving prehospital cardiac arrest 

(Liberthson et al., 1974). In recent years, evidence has begun to accumulate to support the 

hypothesis that a significant fraction of the irreversible tissue injury observed after ischemia and 

reperfusion is actually caused during the reperfusion phase, and is therefore amenable to 

prevention or treatment by therapy administered after initially successful cardiac resuscitation, 

both in the emergency room and during subsequent hospitalization. 

 

Selected therapeutic interventions directed at one or more of the changes which have been 

postulated to occur after resuscitation from cardiac arrest, or have been shown in vitro to occur 

during reperfusion of ischemic tissue, may be a logical means of preventing or minimizing the 

adverse effects that occur during the postresuscitation period. In the present study, we evaluated 

the effectiveness of a simple and easily administered multi-modal therapy, including a cerebral 

vasodilator (carbon dioxide), a calcium entry blocker (lidoflazine), and an iron chelator 

(deferoxamine), intended to minimize reperfusion injury following total circulatory arrest and 

CPR in rats. All therapy was administered after return of spontaneous circulation in a clinically 

realistic time frame (DeGaravilla et al., 1984). 

 

 

MATERIALS AND METHODS 

 

Male Wistar rats, each weighing between 350 and 500 g, were utilized in this study. Following 

anesthesia with an intraperitoneal injection of ketamine (60 mg/kg) and neuromuscular blockade 

with succinylcholine (1.5 mg/ kg), cardiorespiratory arrest (asystole) was induced in each rat by 

a percutaneous intracardiac injection of 0.4-0.8 ml of a cold 1% KCI cardioplegic solution and 

digital compression of the thorax (DeGaravilla et al., 1984). Electrocardiograms were monitored 

throughout the arrest and immediate postresuscitation period. The cardiorespiratory arrest was 

maintained for 7 min. Resuscitation was accomplished by interposed abdominal compression-

cardiopulmonary resuscitation (IAC-CPR) (Voorhees et al., 1984) and jet ventilation at 70 

breaths/min with 7% carbon dioxide-93% oxygen (treated group) or with 100% oxygen (control 

group). The ventilatory gas used, and therefore the group entered, was alternated each time an 

animal was successfully resuscitated and entered into the study. Any variability in handling the 

animals and in the procedures used was effectively minimized in this fashion. This method of 

cardiorespiratory arrest and resuscitation was continued until 20 rats each were successfully 

resuscitated and entered both groups. 
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Following 1-3 min of IAC-CPR, the return of a strong spontaneous apex heartbeat, and the return 

to sinus rhythm as documented by the electrocardiogram, the treated rats were given lidoflazine 

(2 mg/k.g) and deferoxamine (50 mg/kg) by slow intravenous infusion for a 15-min period. The 

control rats were given equivalent volumes of the vehicle for the lidoflazine solution (a dilute 

acetic acid solution, pH = 4.5) and the solvent for the deferoxamine (0.9% saline) by jugular 

intravenous infusion. Lidoflazine (1.0 mg/kg) was given to treated rats again at 8 h 

postresuscitation by intraperitoneal injection, and control rats received the lidoflazine vehicle. 

All rats were placed on a 37°C heating pad after resuscitation, and 5 ml each of 5% dextrose 

solution and lactated ringers solution were given by subcutaneous injection to maintain 

hydration. The ventilation frequency was gradually reduced to 20/min during the subsequent 120 

minutes and then discontinued when vigorous spontaneous respirations were observed. 

 

The rats were returned to individual cages following resuscitation and stabilization, and were 

observed daily. The number of animals surviving postresuscitation was recorded at 1 h, 12 h, 24 

h, and at daily intervals for 10 days. Chi-square statistics were calculated to test the null 

hypothesis that at each recording time the percentage of rats surviving in the control and treated 

groups was the same (Dunn, 1977). 

 

Neurologic deficits at 15 days postresuscitation were evaluated in each rat by applying a 

modification of the Safar neurologic scoring method for dogs (Safar et al., 1976). This method 

has been validated in numerous studies in this laboratory and has proven applicable to the rat 

model of cardiorespiratory arrest and resuscitation. All neurologic evaluations were done by the 

same individual and without knowledge of the treatment group to which the rat belonged. The 

specific tests and the corresponding point values are listed in Table I. A score of 0 represented no 

detectable neurologic deficits, and a score of 100 points represented maximal neurologic deficit 

(brain death). 
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TABLE I. NEUROLOGIC DEFICIT SCORING CRITERIA 

 

Neurologic deficit scoring for rats: Normal rat = 0, brain death = 100.  

Modified from the neurological deficit scoring for dogs from Safar and Nemoto. 
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RESULTS 

 

Eighty-four percent of the rats (20/24) in which 100% oxygen was the ventilatory gas (control 

group) were successfully resuscitated and entered in the study, and 77% of the rats (20/26) in 

which 93% carbon dioxide/7% oxygen was the ventilatory gas (treated group) were successfully 

resuscitated and entered into the study. Rats in the control group regained a spontaneous sinus 

rhythm and palpable heart beat in a mean time of 74 sec (range of 62-90 sec, median of 72 sec). 

Rats in the treated group regained a spontaneous sinus rhythm and palpable heart beat in a mean 

time of 76 sec (range of 60-83 sec, median of 69 sec). The percentage of rats surviving was 

significantly greater (Chi-square = 10.0, d.f. = 1, P < 0.01) in the treated group than the control 

group, 75% vs. 25% respectively, at 2 days postresuscitation (Fig. 1). The difference in survival 

between the 2 groups was maximum at 2 and 3 days postresuscitation. After 3 days, the 

difference in survival between the 2 groups remained relatively constant, and after 10 days 60% 

of the treated animals were alive and 25% of the control animals were alive (Chi-square = 5.0, 

d.f. = 1, P < 0.05). 

 

 

 
 

Fig. 1. The sequential survival incidence of treated vs. control rats for 10 days 

following resuscitation from 7 min of cardiorespiratory arrest (n = 20 for each group). 

 

It should be noted that lidoflazine frequently caused bradycardia and a palpable diminution of the 

apex beat if given during less than a 15-min time span. Neurologic deficit scores were not 

different between the treated and control groups. The mean score for survivors in both the treated 

and control groups was 2 out of a possible 100 points. The ranges of scores for survivors in the 

treated and control groups were 0-4 and 0-3, respectively. 
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DISCUSSION 

 

Increased awareness of cardiopulmonary resuscitation techniques by the general public, and the 

development of community based emergency medical systems have increased the number of 

patients that survive an out-of-hospital cardiac arrest (Myerberg et al., 1980; Liberthson et al., 

1974). However, many of these patients either die within the early postresuscitation period or 

survive with major organ disability, especially CNS dysfunction (Liberthson et al., 1974; 

Schaeffer and Cobb, 1975). 

 

The rationale for utilizing carbon dioxide, lidoflazine and deferoxamine in the present study to 

treat ischemic injury was based upon our current understanding of the pathophysiology of this 

type of injury in various tissues, previous studies in our laboratory, and the known effects of 

these drugs in normal tissues. First, Ames' "no reflow phenomenon" (Ames et al., 1968), which 

describes postischemic cerebral hypoperfusion, has been well substantiated by others (Gadzinski 

et al., 1982; Rehncrona et al., 1979; Snyder et al., 1973). This phenomenon may be caused by 

progressively increased cerebral vascular resistance without changes in intracranial pressure or 

evidence of thrombosis (Gadzinski et al., 1982; Rehncrona et al., 1979; Drewes et al., 1973). 

Therefore, maintenance of cerebral blood flow during the reperfusion phase after cardiac arrest 

appears to be a limiting factor in cerebral recovery from ischemic injury. Carbon dioxide is an 

effective and physiologic cerebral vasodilator which may alleviate postresuscitation global 

hypoperfusion of the brain (Cook and James, 1981; Harper, 1969). 

 

Second, several lines of evidence strongly implicate calcium in the pathogenesis of postischemic 

injury in both neural and non-neural tissue (Katz and Reuter, 1979; Schaune et al., 1979; Farber 

et al., 1981; Raichle, 1983). Three separate, potentially cytotoxic events have been attributed to 

intracellular calcium accumulation during reperfusion: (1) spasm of vascular smooth muscle, (2) 

mitochondrial failure, and (3) activation of intracellular membrane phospholipases. Lidoflazine, 

a calcium entry blocker, may inhibit the vasospasm and the intracellular calcium overload that 

occur following ischemia and reperfusion (Daenen and Flameng, 1981). This drug and other 

calcium antagonists have been reported to decrease neurologic deficits and cardiac pathologic 

alterations in animals following resuscitation from cardiac arrest (Daenen and Flameng, 1981; 

Hoffmeister et al., 1979; White et al., 1982; Winegar et al., 1983). 

 

Finally, membrane lipid peroxidation by free radicals has been proposed as a major mechanism 

for reperfusion injury (Siesjo et al., 1980; Cooper et al., 1980; Watson et al., 1984). Iron-

containing enzymes (e.g. xanthine oxidase, lipoxygenase) and ferrous chelate complexes (e.g. 

EDTA-Fe 
2+

, AMP-Fe
2+

) have been associated with the initiation of lipid peroxidation (Aust et 

al., 1982; Bucher et al., 1983; Sugioka et al., 1983). Anderson and Means have shown that iron 

and oxidative mechanisms are important factors in traumatic spinal cord injury in the cat 

(Anderson and Means, in press, 1986). Oxygen radicals have not been demonstrated in ischemic 

tissue however, and the status of intracellular protective mechanisms against free radicals has 

been the subject of conflicting reports (Siesjo et al., 1980; Cooper et al., 1980). Deferoxamine, a 

safe, clinically available iron binding agent, inhibits lipid peroxidation in vitro, and 

administration of this drug to rats following cardiopulmonary arrest has resulted in increased 

survival compared to untreated control rats in our laboratory (unpublished data). 
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The improved survival incidence that we found in animals treated with carbon dioxide, 

lidoflazine, and deferoxamine suggests that one or more of the biologic changes induced by 

ischemia and reperfusion, and altered or inhibited by these drugs, is a critical determinant in the 

progression to irreversible tissue injury during reperfusion. The marked difference between the 

treated and control groups at 2 days postresuscitation suggests that a critical step in the 

progression to irreversible tissue injury occurred at this time and that our therapeutic intervention 

had a beneficial effect upon host survival. In addition, one may speculate that the continued 

death of rats in the treated group is due to progressive reperfusion injury that occurred in animals 

that would have succumbed early following resuscitation but were protected by the combination 

therapy. The reperfusion tissue damage in these animals then progressed to lethal levels as the 

effects of the discontinued therapy diminished. The blood pressure was not monitored in the rats 

during this study. Therefore, the potential effect upon survival of changes in this parameter 

following therapy cannot be addressed. 

 

The neurologic deficit evaluation showed that all surviving animals were grossly normal, 

indicating that the quality of survival among treated animals was no different than that among 

controls. In addition, this combination therapy does not prolong recovery nor have detectable 

adverse side effects in this animal model. No attempt was made in this study to delineate the 

individual effectiveness of each therapeutic agent. The observed effects may have been due to 

any one, or combination of more than one, of the therapeutic modalities. Therefore, a part of or 

all of the combination therapy consisting of a cerebral vasodilator, a calcium entry blocker, and 

an iron chelator represents a feasible means of protection from postresuscitation morbidity and 

mortality following cardiorespiratory arrest that merits further investigation. 
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