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SIMULATION OF FREE RADICAL REACTIONS IN BIOLOGY 

AND MEDICINE: A NEW TWO-COMPARTMENT KINETIC 

MODEL OF INTRACELLULAR LIPID PEROXIDATION 

 
CHARLES F. BABBS and MELISSA GALE STEINER 

 

Biomedical Engineering Center, Purdue University, West Lafayette, Indiana, USA. 

 

Abstract -- To explore mechanisms of free radical reactions leading to intracellular lipid 

peroxidation in living systems, we developed a computational model of up to 109 simultaneous 

enzymatic and free radical reactions thought to be involved in the initiation, propagation, and 

termination of membrane lipid peroxidation. Rate constants for the various reactions were 

obtained from the published literature. The simulation model included a lipid membrane 

compartment and an aqueous cytosolic compartment, between which various chemical species 

were partitioned. Lipid peroxidation was initiated by the iron-catalyzed, superoxide-driven 

Fenton reaction. A "C"-language computer program implemented numerical solution of the 

steady-state rate equations for concentrations of nine relevant free radicals. The rate equations 

were integrated by a modified Euler technique to describe the evolution with time of simulated 

concentrations of hydrogen peroxide, ferric and ferrous iron, unsaturated lipid, lipid 

hydroperoxides, superoxide anion, and biological antioxidants, including SOD and catalase. 

Initial results led to significant insights regarding mechanisms of membrane lipid peroxidation: 

 

1. segregation and concentration of lipids within membrane compartments promotes chain 

propagation;  

2. in the absence of antioxidants computed concentrations of lipid hydroperoxides increase 

linearly about 40 M/min during oxidative stress;  

3. lipid peroxidation is critically dependent upon oxygen concentration and the modeled 

dependence is similar to the experimental function;  

4. lipid peroxidation is rapidly quenched by the presence of Vitamin E-like antioxidants, 

SOD, and catalase;  

5. only small (l to 50 M) amounts of "free" iron are required for initiation of lipid 

peroxidation;  

6. substantial lipid peroxidation occurs only when cellular defense mechanisms have been 

weakened or overcome by prolonged oxidative stress, hence understanding of the balance 

between free radical generation and antioxidant defense systems is critical to the 

understanding and control of free radical reactions in biology and medicine. 

 

Keywords--Antioxidant, Free radical, Hydroxyl radical, Simulation model, Superoxide, 

Superoxide dismutase, Xanthine oxidase 
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INTRODUCTION 

 

Free radicals are currently thought to be significant agents of tissue injury in a large number of 

disease states afflicting man and animals.
1-6

  Owing to their high reactivity, most free radicals 

postulated to attack biologic substrates must exist in vivo in extremely low instantaneous 

concentrations. The measurement of highly reactive free radicals such as the hydroxyl radical 

(HO) therefore represents a formidable technical challenge, which is only beginning to be met 

in quantitatively meaningful ways.
7-10

  At present, there remains an open question as to whether 

free radical generation within living cells is inconsequential or pathophysiological, that is, 

whether free radicals are easily detoxified byproducts, produced in relatively small numbers, or 

whether under some circumstances cells are capable of making free radicals in sufficient 

numbers to cause their own self-destruction. 

 

Computer modeling offers one approach to investigation of this question. The fundamental 

kinetics of the most quoted reactions postulated to cause radical mediated cell injury are well 

known from the published literature. The process of calculating the extremely small, 

instantaneous free radical concentrations according to the "steady-state" hypothesis is well 

established,
11-13

 and can be done in a computationally intensive, but straightforward manner by 

numerical methods. Numerical integration of many simultaneous differential equations is also a 

conceptually simple, but tedious task, well suited to modern, high speed computers. Previously 

computational models have proved valuable in elucidation of free radical reactions occurring in 

flame chemistry and in photochemical smog, and recently in ozone depletion in the high 

atmosphere.
14-17

  A recent report of Tappel and coworkers has pointed out the advantages of 

simulation modeling of oxidative reactions in biology.
18

 

 

Following this tradition, the authors have developed a library of conceptually simple, modular, 

"C"-language computer code during the past 3 years to solve the steady state rate equations for 

free radical chain reactions proposed to occur during oxidative stress in biological systems. This 

paper describes the creation of the model, and initial results and insights derived therefrom. The 

particular form of oxygen radical injury to tissue that has most interested us is known as 

reoxygenation or reperfusion injury, in which a burst of oxygen radicals is thought to be 

generated when oxygen is suddenly restored to previously hypoxic tissues. This type of rapid 

reoxygenation occurs, for example, in resuscitation after cardiac arrest or in the treatment of 

acute coronary artery occlusion following lysis of a blood clot that obstructed the artery. A 

chemical explanation for reoxygenation injury has been evolving, and has been the subject of 

several reviews.
6, 19, 20

  A synthesis of the most quoted chemical mechanisms includes the 

reactions listed in Table 1. 
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Table 1. Putative Initiation and Chain Propagation Reactions in 

Reperfusion Injury Mediated by Oxygen Radicals 

 

 
 

 

The putative pathological chemistry begins with the sequence of reactions (1-3), known 

collectively as the superoxide-driven Fenton reaction. Superoxide ions (O2
-
) are thought to be 

generated by the action of xanthine oxidase upon accumulated xanthine or hypoxanthine 

substrates,
19

 as well as by the actions of mitochondria and activated leukocytes. Both xanthine 

oxidase and hypoxanthine have been shown to be elevated in postischemic tissues,
19, 21, 22

 owing 

both to the conversion of xanthine dehydrogenase to xanthine oxidase and to the accumulation of 

hypoxanthine in ischemic tissues. The hydroxyl radicals (HO) formed in reaction (3) might then 

attack cellular proteins (RH) and lipids (LH) directly or via intermediate radicals (R) of longer 

half-life (reactions 4-6). The abstraction of hydrogen ions from membrane phospholipids by 

radicals (reactions 4, 6, and 8) occurs most readily at sites of two or more double bonds.
23

 The 

lipid alkyl radicals (L) can then react with molecular oxygen (7), even at the low concentrations 

present during incomplete ischemia
24

 and especially during reperfusion when oxygen is 

abundant, followed by slow chain propagation in the organized structure of membranes (7, 8). 

The latter is a self-propagating sequence for lipid peroxidation. 

 

In the present investigation we chose to focus on the generation of LOOH as the presumed 

principal product of pathological free radical chemistry, because these compounds have been 

most extensively studied as end products of oxidative tissue injury.
23, 25-28

  In particular, lipid 

hydroperoxides may biophysically alter the character of the cell membrane
25

 rendering it leaky to 

calcium ions and intracellular proteins. Lipid hydroperoxides may also break down into toxic 

products such as 8-hydroxynonenal
29

 or oxidized arachadonic acid derivatives.
30

 

 

To determine if pathological chemistry similar to that just described is a kinetically reasonable 

route to the production of membrane lipid hydroperoxides in cells during reoxygenation after 

ischemia, one of us (CFB) began to develop a computer model of lipid peroxidation in 1985, 

which has slowly evolved in its sophistication. This paper describes the model and the initial 

mechanistic insights it has provided. 
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COMPUTATIONAL METHODS 

 

General features 

 

The software employed in the present research performs steady-state solution and then numerical 

integration of the simultaneous kinetic equations describing the superoxide driven Fenton 

reaction, lipid peroxidation reactions, and subsequent secondary radical and chain termination 

reactions. The output includes concentrations of the various radical and nonradical species at 

specified sampling times, calculated as functions of all the other concentrations. A "C"-language 

software library first implements a modified Gauss-Seidel technique to solve the simultaneous 

steady-state equations, dri/dt = 0, for the concentrations of reactive intermediate radicals, ri, 

including HO, L, LO, LOO, R, RO, ROO, A, and GS, where L is an oxidizable lipid, 

R is an oxidizable nonlipid, A is a vitamin E-like membrane antioxidant, and GSH is a 

glutathione-like cytosolic antioxidant. Superoxide is treated numerically as a nonradical species 

to reflect its relatively low reactivity, and to allow convenient manipulation of its concentration. 

In the second phase of computation a simple Euler method is applied to integrate the various 

concentration versus time curves for each nonradical species. Radical concentrations are 

recalculated from the steady state equations at specified intervals much longer than dt, in keeping 

with the steady state assumption. 

 

Steady state equations 

 

The first stage of the hybrid numerical method employed in the present model requires the 

solution the classical steady-state equations, dri/dt = 0, to obtain the concentrations of the highly 

reactive free radicals, ri, in the system. The steady state equations are excellent approximations, 

based upon the stationary state or steady-state assumption for non-exploding systems of coupled 

free radical reactions,
12, 13

 which states that the instantaneous concentrations of highly reactive 

intermediates are extremely small compared to the concentrations of other species in the system, 

and in turn the absolute values of the time derivatives of reactive free radical concentrations are 

approximately equal to zero. This assumption must hold in a more-or-less steadily progressing 

reaction involving free radicals, since if the population of reactive intermediate radicals were 

increasing, the rate of product formation would accelerate in an explosive manner, and if the 

population of radicals were decreasing, the rate of product formation would be rapidly quenched. 

Hence, for a system of rate equations describing the formation and disappearance of N free 

radicals, a set of N stationary state equations and N unknown radical concentrations can be 

defined, as described by Gimblett
12

 and Emanuel.
13

 

 

In the software developed for the present application, seed values for the unknowns are taken as 

first estimates for radical concentrations, and the estimates are continually improved by a 

modified Gauss-Seidel iteration. Typically, seed values are based on the results of brief (10 sec) 

trial simulations, and previous experience with similar models. The stationary state equation for 

the most reactive free radical (HO) is evaluated first, the stationary state equation for the next 

most reactive radical second, and so forth, in the order HO, L, LO, LOO, R, RO, ROO, 

A, and GS. This approach creates a coefficient matrix for the complete set of equations that is 
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very nearly triangular, and hence quite efficiently solved by the modified Gauss-Seidel 

approach.
31 

 

We use the term "modified Gauss-Seidel," because some of the stationary state equations 

contained squared terms, derived from radical-radical termination reactions. Hence, the set of 

equations to be solved is not necessarily linear. To permit convergence of the iterative method in 

simulations with prominent radical chain termination reactions, it was necessary to introduce a 

damping factor, , with value between zero and unity, and to replace the new estimate, ri
n+1

 of 

radical species, i, at time step n + 1, with  ri
n+1

 + (1  ) ri
n
. When  = 1, the method is identical 

to the usual Gauss-Seidel iteration for linear equations. When termination reactions are 

prominent, a suitable choice of  < 1 (e.g.,  = 0.03) allows convergence of the iteration to solve 

for the small, instantaneous concentrations of free radical species, despite the presence of 

quadratic terms. 

 

Numerical integration 

 

The second stage of the hybrid numerical method employs a simple Euler method for numerical 

integration of the rate equations in order to compute the evolution of reactant concentrations over 

time.
31

  The Euler program module calculates concentrations of the various species after 

successive small time steps, dt, as functions of all the other concentrations and the rate constants. 

For all reactions A + B  C + D, nonradical reactant concentrations at the end of the next time 

increment are estimated as the current concentration plus the incremental change,  

dA = k[A][B]dt. 

 

This process is repeated many times to track changes in reactant concentrations for a 

predetermined number of time steps. In the present study, sufficiently small time steps for 

integration were selected such that halving or doubling the time step did not affect the results. 

Central to the integration of non-enzymatic kinetic equations is a subroutine to compute the 

concentration changes during a differential time step, dt, produced by a family of competing 

bimolecular reactions of the form 

 

 
 

for which it is assumed that species A is most reactive (usually a radical). In the case that the 

consumption of A is rate-limiting, the distribution of products is determined according to 

competition kinetics, as described by Spinks.
32

  The kinetic behavior of the enzyme xanthine 

oxidase is modeled as a ping-pong/bi-bi mechanism, as described by Walsh.
33

  The enzymatic 

reactions of superoxide dismutase and catalase are simulated by application of pseudo-first order 

rate constants for the reaction of enzyme with substrate, k' = 2 × 10
9
 M

-1
sec

-1
 for SOD

34
 and  
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k' = 4 × 10
7
 M

-1
sec

-1
 for catalase.

35
  The kinetic model was validated repeatedly during the 

course of its development by comparison of computed solutions with known analytical solutions 

for simple test cases. 

 

Specification of relevant reactions 

 

Cumulative lipid hydroperoxide production by free radical mediated oxidation of unsaturated 

lipids was computed assuming the simultaneous occurrence of 32 relevant enzymatic and free 

radical reactions, described by rate constants obtained from the published literature (Table 2). 

Degradation of lipid hydroperoxide, once it had been formed, by reactions such as Fe
2+

 + LOOH  

  Fe
3+

 + OH
-
 + LO, was deliberately excluded to focus on total or cumulative formation of 

abnormally oxidized lipids. The kinetic model containing the set of 32 kinetic equations was 

derived from a much larger model including over 109 reactions described in the published 

literature (available from the authors on request) that could conceivably have played a role in this 

or similar systems. The list of equations ultimately included in the present model was obtained 

from the complete list by omitting obviously irrelevant ones, and by eliminating reactions which 

formed zero or negligible product (less than 0.1 M) during the course of representative test 

simulations. 
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Table 2. Rate Constants in the Model 

 

 
 

*The notation ae + b is equivalent to a x 10
b
. 

 

The software was capable of solving any number of simultaneous equations from 2 to 109 

without modification of the code. The program was so configured that if input rate constants 

were read as zero, the corresponding computations were simply not performed (i.e., arrays of 

pointers indicating reactions to be included in the simulation were resorted to exclude reactions 

with zero rate constants). This feature maximized the generality and convenience of the software 

library and minimized execution time, for any selected simulation. 

 

Two compartment extension of the model 

 

A preponderance of literature on the significance of free radical reactions in biology and 

medicine focuses on cell membrane lipid peroxidation as the major toxic consequence of free 
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radical generation in biological systems. In vivo cellular lipids vulnerable to peroxidation are not 

freely soluble, but rather arranged in phospholipid bi-layer membranes or confined to lipid 

droplets. Accordingly, we sought to adapt the original model of a homogeneous, one-phase 

solution to that of a two-phase system, incorporating both aqueous and membrane lipid 

compartments. In this model we define the total volume, VT as the sum of the volume of the 

aqeuous compartment, V1 and the volume of the lipid compartment, V2. These and other 

parameters relevant to compartmentalization are presented in Table 3. 

 

 

Table 3. Variables of the Two-Compartment Model 

 

 
 

The fundamental strategy for creation of the two phase model is to define an equivalent one-

phase model having reactant concentrations equal to the mean, volume-averaged reactant 

concentrations of the two phase system and also having reaction rate constants adjusted to 

account for the effects of phase separation. The conversion from compartmental concentrations 

to mean concentration is entirely straightforward, namely 

 
where, partition coefficient, q = c2/c1. Using equations (1) it is possible, whenever desired, to 

transform between specific compartmental concentrations, c1 and c2, and the mean concentration, 

c  for any reactant. This approach assumes equilibrium between the phases, as described by 

partition coefficient, q. 

 

The strategy for determining the rate constants of a one phase model that account for the effects 

of phase separation upon the kinetics of the two phase system is based upon the following 

insight. If one assumes that the reaction 
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proceeds with a similar rate constant, k, such that d[A]/dt = k[A][B], in both the lipid and the 

aqueous phase, then the mean, volume-averaged, reaction rate for the two-phase system is a 

computable function of the rate constant, k, and the lipid/water partition coefficients of the 

reactants, qA and qB. In particular, as shown formally in the Appendix, 

 
From equation (3) it is clear that the mean, volume averaged rate of reaction in the two 

compartment model is directly proportional to the reaction rate, k[A][B], that would have 

occurred if the reactants had been uniformly distributed in solution in a one-compartment model 

at their mean concentrations. The constant of proportionality, equal to the coefficient of k[A][B] 

in equation (3), is a simply computable function of the lipid/water partition coefficients for 

reactants A and B and the fractional volume of the lipid compartment, 1/r.  In turn, one can 

define an equivalent rate constant, keq, for a simple one-compartment model, in which the 

evolution of mean concentration changes over time is the same as in the two-compartment 

model. The individual compartment concentrations can then be found, using equations (1). 

 

In this way it is possible to solve a two-compartment problem with one compartment software, 

after a simple transformation of the compartmental concentrations to mean concentration, 

together with simple transformation of the matrix of rate constants, [k], to the matrix of rate 

constants, [keq].  The required transformations can be appreciated intuitively and reasonably 

approximated in many cases. Consider, for example the case of the chain propagation reaction 

for lipid peroxidation, 

 
in a two-phase model containing 10% lipid, that is, r = 10. This reaction takes place in the lipid 

phase only. 

 

Let [LOO] and [LH] represent the mean, volume averaged concentrations; [LOO]1 = [LH]1 = 0 

represent the zero concentrations in the aqueous phase; and [LOO]2 and [LH]2 represent the 

concentrations in the lipid phase, which are 10 times the mean concentrations. The rate of 

reaction in the lipid phase will therefore be 
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The change in mean concentration, however will be 1/10th as great as that in the lipid 

compartment, or generally 

 
 

In this example, then, the effect of phase separation in the two-phase system is to increase the 

apparent rate constant for chain propagation by a factor of r = 10. Hence, to model the kinetics of 

this reaction in a two phase system, it is possible to run a one-phase model with mean reactant 

concentrations equal to those of the two-phase system and with a transformed rate constant,  

keq = rk, 10 times the original value. In this example the reaction is accelerated, because reactants 

are concentrated in the lipid phase. In a similar manner, and also by application of equation (3), it 

is possible to show that for the limiting cases of various combinations of highly water soluble 

reactants (q = 0) and highly lipid soluble reactants (q = ) the transformed rate constants 

describing the kinetics of the two-phase system are as shown in Table 4. 

 

Table 4. Rate Constant Transformations for Two-Phase Model 

 

 
 

Note that if one of two reactants is confined to one compartment and the second reactant to 

another compartment, the reaction rate will be zero. If both reactants are confined to a single 

compartment, a concentration effect is seen. In the remaining cases the equivalent rate constant 

for the two-phase system is the same as for the one-phase system. 
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Initial conditions 

 

In the current simulations we sought to capture the essence of biological lipid peroxidation in a 

two-phase model by assuming that reactants were either entirely lipid soluble (q = ), entirely 

water soluble (q = 0), or equally soluble in the two phases (q = 1), according to the specifications 

listed in Table 5. In this case, the simplified transformation of rate constants amounted to 

multiplication of k values for lipid-lipid compartment reactions by r (taken as 40 for a typical 

cell)
36

 or multiplication of k values by zero for phase-segregated reactants. 

 

 

Table 5. Assumed Compartmentalization of Species and Their Initial Mean Concentrations (M) 

 

 
 

Because our initial models were intended to represent the first few minutes of reoxygenation 

after tissue ischemia, iron at time zero was assumed to be in the reduced, ferrous state, which 

would be expected under anaerobic conditions. Hypoxanthine concentrations were selected on 

the basis of reports of Jennings,
37

 Buhl,
38

 and Ratych et al.
39

 of hypoxanthine concentration in 

postischemic heart and kidney tissue. Xanthine oxidase activity was based upon that reported by 

DellaCorte for the rat (80 mUnits/g).
40

 

 

Our initial computational models, variations of which were also studied, contained 50 mM 

polyunsaturated fatty acids susceptible to lipid peroxidation, and 1 mM hypoxanthine, and 0.15 

M xanthine oxidase. This amount of hypoxanthine was sufficient to metabolize 1 mM 
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hypoxanthine to uric acid in about 15 min. The standard model included 100 M iron modeled as 

the EDTA-chelate, sufficient to induce lipid peroxidation in vitro
23, 41 

and roughly equivalent in 

activity to the low molecular weight chelate iron in postischemic dog brain and heart.
42, 43

  

EDTA-chelated iron is commonly used in laboratory models of lipid peroxidation. The actual in 

vivo iron chelators that may be operative in free radical-mediated injury are not known, but may 

include either ADP
44

 or citrate,
45

 which are about one-third as effective as EDTA-chelated iron. 

In some simulations, the presence of low, normal, and high levels of endogenous antioxidants 

(such as Vitamin E) was modeled. Oxygen concentration was modeled over a range from zero to 

1000 M, taking as a reference the value of 200 M for the dissolved oxygen concentration in 

air saturated water
46

 and a corresponding conversion of 1 M = 0.70 mmHg. The standard model 

of nonischemic tissue contained 50 M oxygen. 

 

Using the foregoing computational strategy, we explored the production of LOOH in a two-

phase model of biological cells containing varying amounts of iron, oxygen, Vitamin-E-like 

antioxidants, superoxide dismutase, and catalase. Simulations were run on either a Sun 3/60 

work station or a Sun 4 mini-computer, each operating under UNIX and capable respectively of 

approximately 1 x 10
6
 and 8 × 10

6
 double-precision floating point operations per second. Typical 

execution times ranged from 2 to 60 min. Outputs of computations included concentrations of all 

radical and nonradical species as functions of time, checks and balances to ensure that steady 

state criteria for reactive radical species were met, and chemical "fluxes" through each simulated 

reaction (i.e., the total number of molecules of species A consumed in reaction, A + B  

products, for the duration of the simulation). 

 

 

RESULTS 

 

Compartmentalization 

 

Figure 1 illustrates the effects upon lipid peroxidation of compartmentalization of lipids within 

membranes. Simulated net accumulation of lipid hydroperoxides (LOOH) is plotted as a function 

of time under favorable conditions for LOOH formation (no superoxide dismutase, catalase, or 

membrane antioxidant). We refer to this as an "undefended model," because antiradical defense 

mechanisms are absent. The lower curve (1C) represents LOOH accumulation in an undefended 

one-compartment model, in which all species are treated as if in dilute solution. 
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Fig. 1. Effects upon lipid peroxidation of compartmentalization lipids within membranes. Lower 

curve (1C) describes the one compartment model; upper curve (2C) describes the two 

compartment model. Compartmentalization of lipids greatly increases LOOH formation. 

 

 

The upper curve (2C) represents LOOH accumulation in an undefended two-compartment 

model, in which peroxidizable lipid species are treated as if confined in a membrane-like 

compartment of total volume 1/ 40th that of bulk tissue. Membrane compartmentalization clearly 

enhances the amount of lipid peroxidation in this model system. Analysis of specific reaction 

fluxes reveals that chain propagation (LOO + LH  LOOH + L), in particular, is greatly 

enhanced (0.25 to 351.91 M after 10 min) in the compartmentalized model, owing to the higher 

local concentration of lipid and lipid radicals within the membrane. In the one compartment 

model, chain length for propagation of lipid peroxidation (i.e., the steady state rate of total 

LOOH formation divided by steady state rate of L formation by reaction 3) was only 0.0014, 

while in the two-compartment model with otherwise identical initial conditions, chain length was 

1.71. Thus, even though chain propagation is relatively slow (k = 32 M
-1

sec
-1

), the concentration 

of lipids within the membranes can make chain propagation significant. Since 

compartmentalization of lipids is certainly expected in vivo, all further simulations were 

performed with the assumptions of the two-compartment model, as defined in Tables 4 and 5. 
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Compact format for lipid peroxidation data 

 

To characterize lipid peroxidation in the two-compartment simulation model, we noted that the 

rate of LOOH formation is approximately linear under steady state conditions, as long as 

superoxide is being produced. Analysis of preliminary results under a variety of conditions 

showed that the final value of LOOH accumulated at 10 min is a convenient measure of the 

overall rate of lipid peroxidation. A 10-min period corresponds roughly to the duration of the 

respiratory burst of leukocytes
47

 and to the interval during which hypoxanthine concentration 

remains elevated in postischemic cardiac muscle
37

 as a potential source of excessive superoxide 

formation. 

 

Sensitivity analysis 

 

To assess the sensitivity of final lipid hydroperoxide concentration to potential errors in assumed 

rate constants, we performed a sensitivity analysis, in which the fractional change in LOOH 

concentration during a test simulation was compared to the fractional change in each rate 

constant for representative test simulations. 

 

In particular, we adopted the method of Dodge
16

 , in which the rate equations were first 

integrated with all the constants at their "standard" values (Table 2) to obtain the concentration-

time profile for LOOH. Then one of the rate constants was doubled, that is, increased by 100%, 

while all the other rate constants were held fixed. The model was re-solved with these new 

settings, and the concentration-time curve for LOOH re-plotted. The fractional change in the area 

under the LOOH versus time curve (absolute value in percent) was divided by the fractional 

change in the selected rate constant (100%) to obtain the sensitivity ratio for each rate constant. 

To reduce computation time to a reasonable amount, a coarser time resolution (dt = 0.01 sec) for 

numerical integration and a shorter simulation time (duration = 10 sec) were used for the 64 

separate simulations required in the sensitivity analysis. 
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The results of are presented in Fig. 2, in which the sensitivity ratio in a standard undefended 

model is plotted as a function of the discrete rate constant ID numbers in Table 2. Nine rate 

constants showed a sensitivity ratio greater than 0.1, indicating that a 100% change in assumed 

rate constant caused a greater than 10% change in eventual lipid peroxidation. These more 

critical reactions included reactions 0, 3, 5, 6, 60, 61, 67, 89, and 102, which can be arranged in a 

rational sequence as shown in Table 6. The general scheme of the critical reactions, as revealed 

by the sensitivity analysis, is quite similar to that in prior reports of free radical-mediated lipid 

peroxidation (Table 1). These rate constants are relatively well established in the published 

literature, in most cases on the basis of several sources.
48

  

 

 
 

Fig. 2. Sensitivity analysis. Rate constants are identified by number as in Table 2. The sensitivity 

ratio is the relative change in LOOH formation divided by the relative change in a single 

specified rate constant. A large sensitivity ratio indicates that a change in the specified rate 

constant has a meaningful effect on the rate of lipid peroxidation. 
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Table 6. Key Reactions Identified by Sensitivity Analysis 

 

 
 

One critical rate constant for which literature values varied was that for oxygen addition to lipid 

alkyl radicals, k[5], ranging from 10
7
 to about 5 × 10

9
, depending on the type of lipid radical, 

LH. In our standard model, we selected a conservative value for this rate constant for nonspecific 

lipids, 9 × 10
6
, based on the work of Uri.

49
 Since the lipid composition of various biological 

systems may vary greatly, we specifically explored results of simulations executed with rate 

constants for oxygen addition ranging from 10
6
-10

10
. The results are shown in Table 7 and 

indicate that large increases in the rate constant within the specified range, do not produce large 

increases in LOOH formation. The rate of oxygen addition is indeed quite fast, but lipid 

hydroperoxide formation is typically limited by generation of the lipid alkyl radical, L. 

 

Table 7. Effect of Changing the Rate Constant for Oxygen Addition to Various Lipids 
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Prooxidant effects 

 

Figure 3 illustrates the prooxidant effects of oxygen concentration upon overall lipid 

peroxidation in the undefended two-compartment model. The inset shows the final values for 

LOOH concentration at 10 min. LOOH formation depends on the presence of oxygen in a 

nonlinear fashion, half maximal responses occurring with about 30 M oxygen. Air-saturated 

water at one atmosphere contains about 200 M oxygen. Taking the corresponding conversion to 

partial pressure of 1 M O2 = 0.70 mmHg, one can appreciate that relatively low oxygen 

tensions in tissue are theoretically required to support lipid peroxidation, a finding in agreement 

with experimental data.
24

 

 

Figure 4 shows the effect of increasing soluble iron concentrations in the presence and absence 

of antioxidant enzymes. Antioxidant enzymes alter both the maximal degree of lipid 

peroxidation and the shape of the iron-dependence curve. In the absence of SOD and CAT, lipid 

peroxidation is greatest, and maximal levels are produced with very low iron concentrations near 

1 M. Analysis of reaction fluxes revealed that under these conditions Fenton's reaction is 

limited by the rate of production of hydrogen peroxide, rather than by the availability of iron. 

When SOD alone is added, lipid peroxidation is quenched, and hydrogen peroxide is readily 

formed from superoxide. Under these conditions, hydrogen peroxide availability is no longer 

limiting; increasing iron levels engender increasing lipid peroxidation. The plateau of the iron-

LOOH curve is shifted to the right, and the curve encompasses biologically relevant 

concentrations of iron. When both SOD and CAT are added, the effect is similar to that of SOD 

alone (Figure 4). 
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Fig. 3. Prooxidant effects of oxygen upon overall lipid peroxidation in the two compartment 

model. At a constant iron concentration (100 M), the oxygen concentration was varied from 10 

to 250 M. The rate of LOOH formation is dependent upon oxygen concentration in a nonlinear 

fashion (inset). Inset shows final LOOH concentration at the end of a 10 min simulation as a 

function of oxygen concentration 
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Fig. 4. Prooxidant effects of iron upon overall lipid peroxidation in the two compartment model, 

as influenced by antioxidant enzymes. At a constant oxygen concentration (50 M), the iron 

concentration was varied from 0.01 to 50 M. In the absence of antioxidant enzymes as little as 1 

M ferrous iron produces near maximal amounts of LOOH. In the presence of antioxidant 

enzymes the magnitude and shape of the curve describing iron-dependent production of LOOH 

are changed. 
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Iron and oxygen were highly effective species in our model in promoting lipid peroxidation, just 

as we have observed in the laboratory,
10, 24 

 but because of their nonlinear actions, higher 

concentrations tended to have small marginal effects. For the purpose of the present simulations, 

therefore, near-maximally effective levels of 100 M Fe and 250 M oxygen were used 

subsequently to provide a provocative test of antioxidant defense mechanisms. 

 

 

Antioxidant defense mechanisms 

 

Even in the presence of such near maximal oxidative stress, the production of lipid 

hydroperoxides was substantially reduced by the introduction of antioxidant defense 

mechanisms. In Fig. 5 the influence of increasing amounts of a vitamin E-like chain breaking 

antioxidant (AH) in the membrane compartment is demonstrated. Adding antioxidant in mean 

concentrations within the range reported for normal tissues (10 to 50 M) suppresses the initial 

rate of lipid peroxidation until the antioxidant is consumed. During the antioxidant-induced 

induction period, measured between time zero and the break in slope of the curves in Fig. 5, little 

hydroperoxide is produced. Thereafter, production rises as if there were no antioxidant. The 

addition of antioxidant decreases the initial rate of lipid hydroperoxide formation (first 60 sec) 

from 0.74 to 0.54 M/sec and then to 0.09 M/sec with 0, 10, and 50 M AH, respectively 

(inset). Higher, therapeutic concentrations of antioxidant had correspondingly greater effects, 

prolonging the duration of the induction period in proportion to the amount of antioxidant 

initially present. This effect is of chain-breaking antioxidants classically known for pure 

chemical systems.
11

 

 

Addition of superoxide dismutase to the aqueous, cytosolic compartment of the model, as a sole 

antioxidant, induced a biphasic alteration in the computed amount of lipid peroxidation. Very 

small amounts of SOD alone slightly potentiated lipid peroxidation, but concentrations greater 

than 0.1 M profoundly suppressed it (Fig. 6). The addition of cytosolic SOD + catalase, 1 to 10 

M in a 1:1 molar ratio, as roughly occurs in vivo, 
50

 substantially reduced lipid peroxidation to 

about one-tenth that in an undefended model (Fig. 7). SOD alone was nearly as effective as SOD 

+ catalase, supporting the notion that SOD is the most important intracellular antioxidant 

enzyme. 
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Fig. 5. Influence of increasing amounts of a vitamin E-like chain breaking antioxidant (AH) in 

the membrane compartment. Initial conditions simulated near-maximal oxidant stress, with 

oxygen at 250 M and ferrous iron at 100 M. The presence of AH greatly decreases the initial 

rate of LOOH formation, as shown in the inset. After consumption of AH the rate of lipid 

peroxidation returns to the value observed in the absence of AH. 
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Fig. 6. Effects of SOD in simulated lipid peroxidation in the two compartment kinetic model. 

Increasing amounts of SOD from 0.1 to 10 M progressively quench formation of LOOH. In the 

presence of ferrous iron initially, a small prooxidant effect is seen (Time 0--25 sec). Suppression 

of LOOH formation is dependent upon SOD concentration in a nonlinear fashion (inset). 
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Fig. 7. Effects of equimolar SOD and catalase on simulated lipid peroxidation in the two 

compartment kinetic model. Increasing amounts of the dual antioxidant enzymes (0.1 to 10 M) 

progressively quench formation of LOOH somewhat more than similar amounts of SOD alone. 

Suppression of LOOH formation is dependent upon SOD + CAT concentration in a nonlinear 

fashion (inset). 

 

 

Absolute values of free radical concentrations 

 

Table 8 presents absolute values of steady-state, instantaneous radical concentrations for typical 

defended and undefended tissue models during oxidative stress caused by 1 mM hypoxanthine 

and 0.15 M xanthine oxidase. The values range from 10
-15

-- 10
-7

 M, illustrating the extremely 

small absolute concentrations of reactive intermediate radicals that one would reasonably expect 

in a biological system. These small values help one appreciate why free radicals have been such 

elusive pathogens for so many years and why making direct measurements of specific radicals in 

vivo remains a formidable technical challenge.  
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Table 8. Absolute Values of Steady State Radical Concentrations 

 

 
 

DISCUSSION 

 

Kinetic models, such as that herein described, can help to unify knowledge from many 

disciplines and to provide insight concerning mechanisms of free radical mediated tissue 

damage. The present simulations allowed us to explore quantitatively the specific chemical 

mechanisms by which "bursts" of oxygen-centered free radicals may alter membrane integrity 

through the mechanism of lipid peroxidation. Importantly, the simulations provided quantitative 

estimates suggesting that the various multifaceted antioxidant defenses against free radical-

mediated lipid peroxidation can be extremely effective in defending cell membranes against 

oxidative stress derived from the metabolism of excess hypoxanthine by xanthine oxidase. The 

balance between oxidative stress and antioxidant defense mechanisms was revealed as a key to 

the understanding of the chemical mechanisms leading to lipid peroxidation. 

 

In exploring factors that alter the oxidative stress/defense balance, computational models may 

provide helpful guides to productive research. Computer models of complex biological systems 

have become increasingly popular as research tools.
51

  Such models can serve to sharpen 

intuition, to suggest interesting new experiments, and to explain or interpret results of previous 

ones. While they are by no means a substitute for experimental studies, computational models do 

require one to advance from qualitative theorizing--in the present case permitting quantitative 

predictions as to the numbers of free radicals of different types expected in the cytosolic and 

membrane compartments of cells in the face of oxidative stress. Most previously published 

theoretical discussions of free radical reactions in vivo have been qualitative in nature, with only 

implicit regard for rate constants of specific reactions. The development of a computer model, 

however, forces its creator to formulate concrete and specific hypotheses as to mechanisms and 

to state assumptions explicitly and quantitatively. The results of modeling provide quantitative 

tests of the proposed hypotheses and can be compared with analogous experimental results that 

are available. 

 

The application of computer simulation to the study of free radicals in biology seems especially 

apt for two reasons. First, it is possible to focus a wealth of knowledge concerning the chemical 

kinetics of free radical reactions obtained from pulse radiolysis studies (references Table 2) upon 

the biological problem at hand. In this sense simulation models can provide focal points for 

integration and unification of much existing knowledge about free radical chemistry. A second 
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reason to apply computer models to the study of free radicals in biology relates to the 

exceedingly small instantaneous concentrations of free radicals in tissue, ranging from 10
15

 to 

10
7

 M, which are so minute as to be extremely difficult to measure experimentally. 

 

Direct measurement of free radicals in vivo, especially quantitative measurement, remains 

extremely difficult to perform. Indeed, the existence of pathologically significant numbers of free 

radicals in vivo remains an open question. Computer modeling offers one approach to addressing 

the question of whether numbers of reactive oxygen radicals, adequate to cause substantial 

cellular injury, could indeed be generated under plausible biological conditions. Computer 

modeling also offers a means of suggesting strategies to minimize free radical injury, when it is 

likely to occur.  

 

Following this process, the authors have begun to develop insights into specific biological 

mechanisms. Hydroxyl radicals can be made by the superoxide-driven Fenton reaction in the 

presence of reactant concentrations likely to exist in vivo. In the absence of antioxidants, 

computed concentrations of lipid hydroperoxides equal or exceed those measured experimentally 

in some species after ischemia and reoxygenation.
52

  However, antioxidants present in vivo have 

powerful quenching effects, such that the actual number of radical initiators depends very much 

upon the balance of prooxidant and antioxidant forces in the intracellular environment. 

 

The compartmentalization of oxidizable lipids in membranes distinctly enhances the probability 

of chain propagation by making the effective concentrations of potential chain carriers and 

oxidizable lipids in the membrane much greater than their volume-averaged concentration. This 

compartmentalization of oxidizable lipids is key to understanding the apparent preferential 

damage to membranes caused by oxidative stress, and would seem to be a fundamental 

characteristic of cells and tissues. 

 

Oxygen is required for lipid peroxidation, but because the rate constant for oxygen addition to L 

is so great, only small concentrations of oxygen are required. This computational result is quite 

consistent with the proposition of Downey and coworkers
53

 that reperfusion injury of heart 

muscle can occur "without reperfusion" in small myocardial infarcts. According to this concept, 

even though a coronary artery occlusion is never reopened, oxygen radical injury may develop in 

the border zones supplied by oxygen diffusion and "trickle" blood flow from adjacent normal 

muscle.  

 

In addition to low levels of oxygen, only low concentrations of chelated, "free" iron are required 

for the initiation of lipid peroxidation. The results in Fig. 4, showing the iron dependence suggest 

that as little as 1 to 10 micromolar "free iron" is sufficient to support the superoxide driven 

Fenton reaction in simulated in vivo conditions. These results also, by implication, support the 

experimentally observed protective effects of strong iron chelators, like deferoxamine
54-56

, which 

render soluble iron inactive in Fenton's reaction. Rapid chain propagation in membranes, 

however, is suppressed until there is consumption of membrane antioxidants, such as vitamin E. 

Just as is classically known in the study of bulk lipids
11

, chain-breaking antioxidants are highly 

effective even in small concentrations, and protect against membrane lipid peroxidation until 
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they are consumed. Only after consumption of intra-membrane antioxidants, can membrane lipid 

peroxidation proceed at a vigorous rate by chain propagation.
11, 57

 

 

In general, membrane lipid peroxidation requires breakdown in the normal balance between 

oxidative stress and the multilayered antioxidant defenses of living tissue. The present modeling 

studies suggest that only when defense mechanisms are eroded through underlying disease or 

prolonged oxidative stresses does rapid membrane lipid peroxidation occur. 
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APPENDIX 

 

Consider a biological system containing two compartments, nominally an aqueous compartment, 

1, and a lipid compartment, 2. Let the following variables be defined, as in Table 3. 

 

 
 

Combining the defining expressions, the concentrations of reactants in the individual 

compartments 1 and 2 are easily shown to be related to the mean, volume averaged reactant 

concentrations as follows: 
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A generalized analysis of reactions taking place in either or both phases is as follows. For the 

reaction 

 

                                
 

the change in mean concentrations of A and B (denoted [A] and [B]) due to the reaction in 

compartment 1 (aqueous) only are 

 

 
 

Similarly, the changes in mean concentration of reactants A and B due to the reaction in (lipid) 

compartment 2 only are 

 

 
 

Combining expressions (3) and (4) the change in mean concentration due to reactions in both 

compartments, 

 

 
Substituting 

 

 
  

and rearranging, we find the mean, volume averaged, reaction rate for the two phase system is 

 

 
 

as presented in the text. Thus, the mean, volume averaged rate of reaction in the two 

compartment model is directly proportional to the reaction rate, k[A][B], that would have 

occurred if the reactants had been uniformly distributed in solution in a one-compartment model 

at their mean concentrations.  
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