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Abstract: For a connected graph G, the eccentric connectivity index (ECI) and the first Zagreb eccentricity index of G are defined as 
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 , respectively, where deg ( )G iv  is the degree of iv  in G and ( )G iε v  denotes the 
eccentricity of vertex iv  in G. In this paper we compare the eccentric connectivity index and the first Zagreb eccentricity index of graphs. It is 
proved that 1( ) ( )cE T ξ T  for any tree T. This improves a result by Das[25] for the chemical trees. Moreover, we also show that there are infinite 
number of chemical graphs G with 1( ) ( )cE G ξ G . We also present an example in which infinite graphs G are constructed with 1( ) ( )cE G ξ G  
and give some results on the graphs G with 1( ) ( )cE G ξ G . Finally, an effective construction is proposed for generating infinite graphs with each 
comparative inequality possibility between these two topological indices. 
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1. INTRODUCTION 
E only consider finite, undirected and simple graphs 
throughout this paper. Let G be a graph with vertex 

set 1 2( ) { , , , }nV G v v v   and edge set ( )E G . The degree 
of ( )iv V G , denoted by deg ( )G iv , is the number of verti-
ces in G adjacent to v . For any two vertices ,i jv v  in a graph 
G, the distance between them, denoted by ( , )G i jd v v , is the 
length of a shortest path connecting them in G. Other un-
defined notations and terminology on the graph theory can 
be found in.[1] 
 For any vertex of graph G, the eccentricity ( )G iε v  is 
the maximum distance from iv  to other vertices of G, i.e., 

( ) max ( , )
j i

G i G i jv v
ε v d v v


 . If ( ) ( , )G i G i jε v d v v , then jv  is an 

eccentric vertex of vertex iv . For any graph G, we denote 
by G  the complement of G. As usual, let nS , nP , nC , nK  be 
the star graph, path graph, cycle graph and complete graph, 
respectively, on n  vertices. We denote by 

1 2,n nK  the 
complete bipartite graph with bipartition of sizes 1n  and 

2n . The Cartesian product G H  of graphs G and H is the 
graph with ( ) ( ) ( )V G H V G V H   and ( , )g h  is adjacent to 
( , )g h   if and only if ( )gg E G   and h h , or g g  and 

( )hh E H  . If G H , then G H  is denoted by (2)G  for 
short. Moreover, ( )kG  can be similarly defined. 
 A graphical invariant is a number related to a graph 
which is a structural invariant, in other words, it is a fixed 
number under graph automorphisms. In chemical graph 
theory, these invariants are also known as the topological 
indices. Two of the oldest graph invariants are the well-
known Zagreb indices first introduced in Ref. [2] where 
Gutman and Trinajstić examined the dependence of total 
π -electron energy on molecular structure and elaborated 
in Ref. [3] For a (molecular) graph G, the first Zagreb index 

1( )M G  and the second Zagreb index 2( )M G  are, respec-
tively, defined as follows: 

 

2
1 1

( )

2 2
( )

( ) deg ( ) ,

( ) deg ( )deg ( ).
i

i j

G i
v G

G

V

E
i G j

v v G

M M G v

M M G v v




 

 




 

 These two classical topological indices reflect the ex-
tent of branching of the molecular carbon-atom skeleton.[4] 
The main properties of 1M  and 2M  were summarized in 
Refs. [5,6]. Other recent results on Zagreb indices can be 
found in Ref. [7] and the references cited therein. 

W 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/85115768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
500 K. XU AND X. LI: Comparison Between Two Eccentricity-based Topological Indices of Graphs 
 

Croat. Chem. Acta 2016, 89(4), 499–504 DOI: 10.5562/cca3028 

 

 

 

 In analogy with the first and second Zagreb indices 
of graphs, some variants of them are invented, such as mul-
tiplicative Zagreb indices,[8,9] multiplicative sum Zagreb in-
dex,[10,11] Zagreb coindex[12,13] and so on. In particular, 
Vukičević and Graovac[14] defined the first and second 
Zagreb eccentricity indices as follows: 

 2
1 2

( ) ( )

( ) ( ) , ( ) ( ) ( ).
i i j

G i G i G j
v GV Ev v G

E G ε v E G ε v ε v
 

    

 Some mathematical properties of 1E  and 2E  can be 
found in Refs. [15,16]. 
 In 1997, Sharma, Goswami and Madan[17] introduced 
a distance-based molecular structure descriptor, which is 
named as “eccentric connectivity index” and defined as  

 
( )

( ) deg ( ) ( ).
i

c
G i G i

v V G

ξ G v ε v


   

 The eccentric connectivity index (ECI) has been em-
ployed successfully for the development of numerous 
mathematical models for the prediction of biological activ-
ities of diverse nature.[18–20] The ECI also can be written as 
follows: 

  
( )

( ) ( ) ( ) .
i j

c
i j

v v E G

ξ G ε v ε v


   

Some properties of ECI have been reported in Refs. [21–23]. 
 A tree with maximum degree at most 4 is called 
chemical tree, which provides the graph representation of 
alkanes.[24] In particular, a graph with maximum degree at 
most 4 is called chemical graph. Denote by ( )n d  the set of 
trees of order n and with diameter d. 
 From definition, we have 1( ) ( )c

n nE S ξ S  and 

1( ) ( )c
n nE K ξ K  for 3n  . Therefore these two topological 

indices 1E  and cξ  are incomparable. In Ref. [25], Das 
proved that 1( ) ( )cE T ξ T  for any chemical tree T. The pa-
per is organized as follows. In Section 2, we show that 

1( ) ( )cE T ξ T  for any tree T. And we present that there are 
infinite number of chemical graphs G with 1( ) ( )cE G ξ G . In 
Section 3, we give an example in which infinite number of 
graphs G are constructed with 1( ) ( )cE G ξ G . Also several 
sufficient conditions are proved for graphs G with 

1( ) ( )cE G ξ G . In Section 4, an effective construction is pre-
sented for generating infinite graphs with each comparison 
possibility between these two topological indices. 
 

2. THE GRAPHS WITH E1(G ) > ξc(G ) 
In this section we characterize some graphs G with 

1( ) ( )cE G ξ G . Clearly, 1 2 2( ) ( )cE P ξ P . Then we deal with 
the case when T is a tree of order 3n  . Next we will prove 
that there are infinite number of chemical graphs G with 

1( ) ( )cE G ξ G . 

 Before presenting the main results, we need to intro-
duce some notations. A caterpillar,[26] denoted by 

1 2 3( , , , )n
k kP a a a   with 


   2

1
k

ii
a n k , is a tree of order 

n with diameter k obtained from a path 1 1 2 1k kP v v v    
by attaching 0ia   pendant vertices to the vertex iv  for 

2,3, ,i k  . If k is even, then 1kP   has a unique central 
vertex 

1
2

.kv


 Otherwise, 1kP   has two adjacent central ver-
tices 1

2
kv   and 1

2

.kv   If 3k   in 1 2 3( , , , )n
k kP a a a   with 

2 1 0a p   , 1 0ka q    and 2p q n   , then 

1 2 3( , , , )n
k kP a a a   is a double star and denoted by ( , )nDS p q  

for short. And 1 2 3( , , , )n
k kP a a a   is a dumbbell and denoted 

by 2( , )n kDB a a  if 2 0a  , 0ka   and 0ta   for 
3 1t k   . Moreover, 1 2 3( , , , )n

k kP a a a   is called a vol-
cano tree and denoted by ( 1)nV n k   if 1ta n k    
when tv  is a central vertex of 1kP   and 0ja   for any 
j t  for even k, and in the set ( 1)n n k   if 

1 1t ta a n k     when 1,t tv v   are two central vertices 
of 1kP   and 0ja   for any ,  1j t t   for odd k. If 2,d   

( )n d  contains a single tree .nS  The case is same when 
3n  . For 4,n   there are exactly two trees nS  and nP  

with 1( ) ( )c
n nE P ξ P  and 1( ) ( )c

n nE S ξ S . So in the following 
we always assume that 3d   and 5n  . For convenience, 
here we set 1( ) ( ) ( )A cξ G E G ξ G   for any connected graph G. 
 
Lemma 2.1. Suppose that ( )nT d   with 5n   and 
3 1d n    minimizes the value of Aξ . Then T must be a 
caterpillar. 
 
Proof. We choose an arbitrary tree ( )nT d   with ( )Aξ T  as 
small as possible. If 1 2 3( , , , )n

d dT P a a a  , then our result 
holds immediately. Otherwise, we can assume that 1dP    

1 2 1d dv v v v  is a diametral path in T. Then T can be viewed 
as a tree obtained by attaching a subtree iT  to each of 
vertex iv  with {2,3, , }i d   such that ( )idiam T 

( )T id ε v . There must be a pendant vertex, say kv , from 
( )mV T  with ( , ) 2T k md v v   where m   {3,4, , 1}d   and 

( )k jv v E T  ( {1,2, , , 1})j d d   . Without loss of general-
ity, we assume that 1( ) ( , ) 1T m T m dε v d v v d m     and 

( )T kε v t  with 1 1t d m    . 
 Now we construct a new tree T   obtained from T by 
deleting the edge k jv v  and adding a new edge k mv v . Then 
T   still belongs to ( )n d  with ( ) 1 1kT

ε v d m      with 
( ) 1mT

ε v d m     and ( ) ( )x T xT
ε v ε v   where x k . 

Note that 1 1t d m    . Therefore, only considering 
the contribution of the vertices ,j kv v  and mv  to Aξ , we 
have 

 

 

( ) ( ) 1 deg ( ) ( 1) ( 1)

  ( 1 ) 1 deg ( )
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  ( 2 1)( 2 )
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         

     

      
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                          ( 1 )( 2 )
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t d m t t

d m d m

t d m

       

    
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that is, ( ) ( )A Aξ T ξ T  . If T   is a caterpillar, our result fol-
lows. If not, we can continue the above construction pro-
cess until we obtain a caterpillar 1 2 3( , , , ) ( )n

d d nP a a a d    . 
Then our result holds from the fact that Aξ  strictly de-
creases in the above construction process.  □ 
 
Lemma 2.2. Let 1 2 3( , , , )n

d dT P a a a   be a non-volcano 
tree. Then there is another caterpillar ( )nT d    with 

( ) ( )A Aξ T ξ T  . 
 
Proof. By assumption, there is a non-central vertex iv  in 
the diametral path of 1 2 3( , , , )n

d dT P a a a   such that 
0ia  . First, let d be even. When d is odd, our proof can 

be similarly completed and so omitted here. Without loss 
of generality, assume that  2

di . Now we construct a new 
tree T   from T by deleting all the pendant edges incident 
with iv  and joining them with the vertex 1iv  . Note that 
deg ( ) 2T i iv a   and T   is still a caterpillar with diameter 
d. Moreover, we have  

 
 

 

1 1

2 2

( ) ( )

( 2)( 2 1) ( 1)( 1 1)

 ( 1) ( 1 2) ( 1 2)

 ( ) deg ( ) deg ( )

( 2) ( 1) 1 ( 1) ( )

2( ) 1

0,

( ) ( )

A A

i

i

T i T i i

i i i

i

ξ T ξ T

a d i d i d i d i

d i d i a d i

d i d i v d i v a

a d i d i a d i a d i

a d i



 





           

          

          

            

  



 

which finishes the proof of this lemma.  □ 
 
 Now we define the a function as follows: 

 






 
  

 
  

  



 








2

2

2

1

2

2

( 1) 7 1
2 ( 2 )      ;

4 4

( 2)
 2 ( 2 ) 3                                            .

4

( 2)

( , )

d

d

d
i

d
i

d d
i i if d is odd

d n d
i i d if d is even

n d d n

h n d  

By some calculations, we have ( ( 1)) ( , )A
nξ V n d h n d    

for even d and ( ) ( , )Aξ T h n d  for any ( 1)nT n d    
when d is odd. 
 
Theorem 2.3. Let T be a tree of order 4n  . Then  

 ( )Aξ T n  

with equality holding if and only if nT S . 
 
Proof. Note that the set of all trees of order n can be 
partitioned into the union of the sets ( )n d  with  

{2,3, , 1}d n   . Moreover, it can be easily checked that 
( , ) ( , 2)h n d h n d   for any polarity of d. 

 Assume that T is a tree of order 3n   with Aξ  as 
small as possible. By the above argument, we conclude that 
T is a tree in (2)n  or in (3)n , that is, nT S  or 

1 2( , )nT DS n n  with 1 1n  , 2 1n   and 1 2 2n n n   . 
By definition, we have 1 2( ) 4 4 ( ( , ))A A

n nξ S n n ξ DS n n    . 
Thus nT S  from the choice of T. 
 Conversely, if nT S , we have ( )Aξ T n , finishing 
the proof of this theorem. □ 
 
From Theorem 2.3, the following corollary can be easily ob-
tained. 
 
Corollary 2.4. Let T be a tree of order 3n  . Then 

1( ) ( )cE T ξ T . 
 
From Corollary 2.4, any chemical tree T fulfills the property 
that 1( ) ( )cE T ξ T , which is also recently proved by Das.[25] 
 Note that any vertex  in the cycle nC  has the same 
eccentricity 2

n  . Therefore we have 1( ) ( )c
n nE C ξ C  for 

4n  . In the following theorem we prove the existence of 
chemical graphs G with 1( ) ( )cE G ξ G . 
 
Theorem 2.5. There are infinite number of chemical graphs 
G such that 1( ) ( )cE G ξ G . 
 
Proof. Now we consider the graph 2nG C K   with 6n  . 
Note that G is a 3-regular graph of order 2n. Assume that 

1 2 1 2( ) { , , , , , , , }n nV G v v v u u u    where 1 2 nv v v  and 

1 2 nu u u  with their natural adjacency relation form two in-
duced cycle nC  in G. 
 For any positive integer k with 1 k n  , we set 
| | min{ , }nk k n k  . It can be verified that 

  2( ) 1 3G i
nε v    for any vertex iv  with tu  as its eccen-

tric vertex in G where  2| |n
nt   . By symmetry, we have 

 2( ) 1G j
nε u    for any vertex ju . Thus ( ) 0Aξ G  , that is, 

1( ) ( )cE G ξ G  as desired.  □ 
 

3. THE GRAPHS WITH E1(G ) ≤ ξc(G ) 
In this section we prove several results on the graphs G with 

1( ) ( )cE G ξ G . 
 Recall that 1 2 2( ) ( )cE K ξ K . Also 1 4 4( ) ( )cE C ξ C  with 

(2)
4 2C K . Note that, for 2k  , ( )

2
kK  is just the k-cube 

which is a k-regular graph with each vertex with eccentricity 
k. Now we give a more general result. 
 
Example 3.1. ( ) ( )

1 2 2( ) ( )k c kE K ξ K  for any 1k  . 
 
Next we turn to the results for the graphs G with 

1( ) ( )cE G ξ G . Although in Section 2 we prove that 

1( ) ( )cE T ξ T  for any tree of order 2n  , we have the op-
posite result for the complements of all trees of order 

2n  . Below we first list an essential lemma for the com-
plement of a graph. 
 



 
 
 
502 K. XU AND X. LI: Comparison Between Two Eccentricity-based Topological Indices of Graphs 
 

Croat. Chem. Acta 2016, 89(4), 499–504 DOI: 10.5562/cca3028 

 

 

 

Lemma 3.2.[27] Let G be a connected graph with the con-
nected complement. 
( )i  If 3d  , then G  has diameter 2d  . 
( )ii  If 3d  , then G  has a spanning subgraph which is 

a double star. 
 
Lemma 3.3. Let G be a self-centered graph of order 2n   
with ( )iv V G . Then deg ( ) 2G iv  . 
 
Proof. To the contrary, we assume that deg ( ) 1G iv   with 

( )i jv v E G . Note that 2n  . Then ( ) ( ) 1G i G jε v ε v  . This 
is a contradiction since G is self-centered.  □ 
 
 Note that 3P  is disconnected and 4 4P P . Moreo-
ver, it can be verified that 1( ) ( )cE T ξ T  for the trees of or-
der 5 except 5(1,2)DS  with 1 5 5( (1,2)) ( (1,2))cE DS ξ DS . So 
we assume that 5n   in the following theorem. 
 
Theorem 3.4. Let T be a tree of order 5n   with diameter 

2d  . Then 1( ) ( )cE T ξ T . 
 
Proof: If 3d  , then 1 2( , )nT DS n n  with 1 2 2 2,n n n     

1 1n   and 2 1n  . Assume that the only two vertices with 
eccentricity 2 in T are 1v  and 2v  with 1deg ( )T v 

1 2 21 1 deg ( )Tn n v    . Then 1 2( ) ( ) 3T Tε v ε v  , and 
all other vertices have the same eccentricity 2 in T . 
Moreover, all vertices other than 1 2,v v  in T  have degrees 

2n  . If 1 1n  , then 2 3n n   and 1deg ( ) 3T v n  , 

2deg ( ) 1T v  . Note that 5n  . Then we have  

1

2

( ) ( ) 3( 3 3) 3(1 3) 2( 2)( 2 2)

2 9 8 0.

cξ T E T n n n

n n

         

   
 

 For 1 2n  , similarly as above, we get  

 2
1( ) ( ) 2 9 8 0cξ T E T n n     . 

 If 3d  , then, by Lemma 3.2 ( )i , T  has diameter 
2d  . Now we claim that T  is a 2-self-centered graph.  

If not, T  has a vertex iv  with ( ) 1iTε v  , i.e., 
deg ( ) 1iT v n  . Thus iv  is an isolated vertex in T, which is 
a contradiction since T is a tree. Observe that a connected 
2-regular graph is just a cycle nC  whose complement is not 
a tree for 5n  , in view of Lemma 3.3, we find that T  is a 
2-self-centered graph with deg ( ) 2iT v   for any vertex iv  
and there is at least one vertex jv  with deg ( ) 2jT v  . Thus 

1( ) ( ) 0cξ T E T  , finishing the proof of the theorem.  □ 
 
 In the following theorem we give a sufficient condi-
tion for the graphs G of order n and with 1( ) ( )cE G ξ G . 
 
Theorem 3.5. Let G be a connected graph of order 5n   
with 2, 2nK   as its subgraph. Then 1( ) ( )cE G ξ G . 
 
Proof. If 2, 2nG K  , then we have ( ) 8( 2)cξ G n   and 

1( ) 4E G n . It follows that 1( ) ( )cξ G E G  from 5n  . 
Therefore in the following we assume that G  contains 

2, 2nK   as a proper spanning subgraph. 

 Since G contains 2, 2nK   as a proper spanning sub-
graph, the eccentricity of any vertex in G is 1 or 2. Moreo-
ver, deg ( ) 2G kv   for any vertex ( )kv V G  with ( ) 2,G kε v   
and ( ) 1G id v n   for any vertex ( )iv V G  with ( ) 1.G iε v   
If there is a vertex ( )kv V G  with degree 1n  , then 

1( ) ( )cξ G E G  immediately. Otherwise, G is 2-self-centered 
graph. Considering that 2, 2nK   is a proper spanning sub-
graph of G, there are at least two vertices ,i jv v  with 
deg ( ) ( )G i G iv ε v  and deg ( ) ( )G j G jv ε v . So 1( ) ( )cξ G E G , 
finishing the proof of the theorem.  □ 
 
 We can easily observe that the graph G in Theorem 
3.5 has minimum degree at least 2 and deg ( ) ( )G i G iv ε v  
for any vertex ( )iv V G  with at least one strict inequality. 
But these conditions are not necessary for 1( ) ( )cξ G E G . 
Next we will give an example with 1( ) ( )cξ G E G  but not 
satisfying these above conditions. Denote by *G  the graph 
obtained by attaching a pendant vertex to each of the ver-
tices in a connected graph G. Clearly, for 3n  , any pen-
dant vertex in *

nK  has eccentricity 3, and any other vertex 
has a same eccentricity 2 in it. Thus * *

1( ) ( )c
n nξ K E K 

2 ( 2) 3 (1 3) 2 ( 5) 0n n n n n       if 5n  . 
 
Example 3.6. * *

1( ) ( )c
n nE K ξ K  for 5n  . 

 
Note that all the graphs described in Theorems 3.4 and 3.5 
have diameter at most 3. In Ref. [28], a class of graphs are 
constructed with exactly two distinct eccentricities (see Fig-
ure 1). Here 0G  is an arbitrary graph, each of whose verti-
ces is adjacent to any vertex from 1 1 1 1{ , , , }x y z w . The black 
vertices have eccentricity 1r   and the white vertices have 
eccentricity r in G. The graph schematically shown in Figure 
1 is denoted by 0( ; 1, )G S G r r   with diameter r. In the 
following theorem we prove the existence of graphs G with 
diameter more than 2 fulfilling 1( ) ( )cE G ξ G . 
 
Theorem 3.7. For any integer 2r  , there is a graph G with 
diameter r and fulfilling 1( ) ( )cE G ξ G . 
 
Proof. For any integer 2r  , we choose a graph G 

( ; 1, )nS K r r with 3n r . From the structure of ( ; 1, ),nS K r r  
we find that there are n vertices in nK  of ( ; 1, )nS K r r  with 
eccentricity 1r   and degree 3n  , other vertices have a 

 

 

Figure 1. Graph G with only two eccentricities  1r  and r. 
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same eccentricity r  in ( ; 1, )nS K r r . Note that 3n r  and 
2r  . Then  

 
 

1

2

2

2

( ) ( ) 3 ( 1) ( 1) (3 )2

 (2 ) 4( 3) 2 ( 1 )4

( 4 ) ( 1) ( 1 )4

 2 (2 8 7)

3 (2 4)( 1) (2 1)4

 2 (2 8 7)

2 ( 15 11) 0.

cξ G E G n r n r r r

r r r n r r

n r n r n r r

r r r

r r r r r

r r r

r r r

       

      

      

  

    

  

   

 

This completes the proof of the theorem.  □ 
 

4. AN EFFECTIVE CONSTRUCTION 
From Example 3.1, we would like to give a more general re-
sult for generating infinite graphs with different compari-
son relations. To do it, we first prove a useful lemma as 
follows. 
 
Lemma 4.1. Let G be a connected graph of order 2n   
and 2H G K  . Then ( ) ( ) 1H Gε w ε w   for any vertex 

( )w V H . 
 
Proof. Assume that 1 2( ) { , , , }nV G v v v   and 1 2( ) { , ,V H v v

1 2, , , , , }n nv v v v     with 1 2 1 2[{ , , , }] [{ , , , }]n nH v v v H v v v     
G  where iv   is the copy of vertex iv  in H  for 1,2, ,i n  . 
By symmetry, it suffices to prove that ( ) ( ) 1H i G iε v ε v   for 

1,2, ,i n  . 
 Assume that ( )G iε v k  for an arbitrary vertex 

( ) ( )iv V G V H  . Then there exists a vertex jv  as an ec-
centric vertex of iv  in G. Therefore ( ) ( , )H i H i jε v d v v  

1k   from the structure of H. Next we prove that 
( ) 1H iε v k  . Otherwise, we have ( ) 2H iε v k  . Then 

there is a vertex ( ) \ ( )mv V H V G   with ( , ) 2H i md v v k   . 
By the structure of H, again, we have ( , ) 1G i md v v k  , 
contradicting the fact that ( )G iε v k . So ( ) 1H iε v k  

( ) 1G iε v  , finishing the proof of the lemma.  □ 
 
Theorem 4.2. Assume that G is a connected graph of order 

2n   with ( ) deg ( )G i G iε v v  for any vertex ( )iv V G . 
Then 1 2 2( ) ( )cE G K ξ G K  . 
 
Proof. Let 2H G K  . From the structure of H, we have 
deg ( ) deg ( ) 1H Gw w   for any vertex ( )w V G . Thus 

1( ) ( )cE G ξ G . By Lemma 4.1, we have 

  
1 2 2

( )

1

( ) ( )

2 ( ( ) 1) ( ( ) 1) (deg ( ) 1)

4( ( ) ( )) 0.

i

c

G i G i G i
v V G

c

E G K ξ G K

ε v ε v v

E G ξ G





    

  


 

 

Therefore, our result holds immediately.  □ 
 

 Similarly as above, we can easily obtain the corollary 
below. 
 
Corollary 4.3. Assume that G is a connected graph of order 

2n   with ( ) deg ( )G i G iε v v  for any vertex ( )iv V G . 
Then 1 2 2( ) ( )cE G K ξ G K  . 
 
By Theorem 4.2 and Corollary 4.3, we can get infinite 
graphs with each possibility for comparison between the 
first Zagreb eccentricity index and eccentric connectivity in-
dex. 
 Recall that the graph *G  is defined in Section 3. In 
addition to Example 3.1 for 1

cE ξ , by Theorem 4.2 and 
Corollary 4.3, we can give the following examples for other 
comparative inequalities between 1E  and cξ . 
 
Example 4.4. * *

1 2 2( ) ( )c
n nE C K ξ C K   for any 4n  , 

1 2 1 21 , 2 , 2( ) ( )c
n n n nE K K ξ K K   for 2 1 2n n  . 

 

5. CONCLUSION 
In this paper we present some results on the comparison 
between 1( )E G  and ( )cξ G  on the graphs G including some 
chemical graphs. In particular, we show that 1( ) ( )cE T ξ T  
for any trees T including chemical trees. Some sufficient con-
ditions are obtained on the graphs G with 1( ) ( ).cE G ξ G  
Moreover, we also give a construction method for generating 
infinite graphs G for each comparative inequality between 

1( )E G  and ( )cξ G . Now it seems to be an open and attractive 
problem to characterize completely chemical graphs with 
some comparative inequality between 1E  and cξ . 
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