
212 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 2006

Space-Time Coding: an Overview
Giuseppe Caire, Petros Elia, and K. Raj Kumar .

Abstract— This work provides an overview of the fundamental
aspects and of some recent advances in space-time coding
(STC). Basic information theoretic results on Multiple-Input
Multiple-Output (MIMO) fading channels, pertaining to capacity,
diversity, and to the optimal Diversity-Multiplexing Tradeoff
(DMT), are reviewed. The code design for the quasi-static, outage
limited, fading channel is recognized as the most challenging and
innovative with respect to traditional “Gaussian” coding. Then,
a survey of STC constructions is presented. This culminates with
the description of families of codes that are optimal with respect
to the DMT criterion and have error performance that is very
close to the information theoretic limits. The paper concludes
with some important recent topics, including open problems in
STC design.

Keywords: Space-Time Coding, MIMO systems, fading chan-
nels, Diversity-Multiplexing Tradeoff.

I. INTRODUCTION

Since the seminal work of Telatar [1], Foschini and Gans
[2], Tarokh et al. [3], and Guey et al. [4], multiple antenna
transmission/reception has emerged as a key tool to achieving
high spectral and power efficiency in wireless communica-
tions. Loosely speaking, signaling schemes that exploit both
the classical Shannon degrees of freedom (time-frequency)
and the additional spatial degrees of freedom (antennas) are
referred to as Space-Time Codes (STC), a term popularized by
[3]. The literature on STC is extremely vast (an incomplete
sample is provided, for example, by [5], [6], [7], [8] and
references therein).

Several settings have been developed on the basis of differ-
ent physical channel models and, for each setting, information
theoretic results and associated coding schemes have been
addressed.

The general complex baseband channel for space-time sig-
naling with M transmit and N receiving antennas is given by
the Multi-Input Multi-Output (MIMO) Gaussian linear channel
model1

yt =
√

ρHtxt + wt, t = 1, . . . , T (1)

where T denotes the code block length (expressed in “channel
uses”), {xt ∈ CM : t = 1, . . . , T} are the transmitted vectors,
{yt ∈ CN : t = 1, . . . , T} are the received vectors, {wt ∈
CN : t = 1, . . . , T} are the channel Gaussian noise vectors,
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1Notation: T denotes transpose and H denotes Hermitian transpose. The
notation v ∼ CN (µ,Σ) indicates that v is a proper [9] complex Gaussian
random vector with mean µ and covariance matrix Σ. For real Gaussian
random vector we use the notation v ∼ N (µ,Σ).

assumed temporally and spatially white with i.i.d. entries
∼ CN (0, 1), and {Ht : t = 1, . . . , T} is the N ×M channel
matrix process with the elements hi,j,t representing the fading
coefficients between the j-th transmit and the i-th receive
antenna at time t. Without loss of generality, we assume a
normalized channel such that 1

TNM

∑T
t=1E[tr(HH

t Ht)] = 1.
We hasten to say that the above model encompasses also the
case of a general frequency and time-selective fading channel,
where the index t denotes an “abstract” index corresponding
to some predetermined sequence of time-frequency bins, ob-
tained for example by using OFDM. In this case, Ht denotes
the MIMO channel response at time-frequency bin t. The
following average transmit power constraint is enforced:

1
T

T∑
t=1

E
[|xt|2

] ≤ 1. (2)

With the above normalizations, ρ represents the average trans-
mit SNR (total transmit power divided by the noise power
spectral density), that corresponds to the average received SNR
per receiving antenna.

With respect to code construction, it turns out that the
optimal code design varies quite significantly depending on
the basic model assumptions. Section II provides an overview
of the main settings and the related information theory and
coding results. Section III focuses on the case of quasi-static
fading, originally considered in [3], for which the asymptotic
performance in high-SNR is characterized by the diversity-
multiplexing tradeoff (DMT) studied in [10]. This case offers
perhaps the richest and most original coding design problem,
that has been the subject of very active research in the recent
past. Section IV reviews a number of space-time coding
constructions some of which achieve the optimal DMT of [10].
Finally, Section V presents some recent research thrusts. Since
most of this work is still on-going, this section is intended
more as a motivation for future work than as a comprehensive
overview of a well settled set of results. Conclusions are
pointed out in Section VI. Due to space limitation and to the
tutorial nature of this paper, we omit the proofs of the results
and we provide pointers to the corresponding literature.

II. RELIABLE COMMUNICATIONS WITH MULTIPLE
ANTENNAS

The early information theoretic analysis of the MIMO
channel (1) focused on the ergodic capacity. The assumption
underlying the ergodic setting is that the random matrix
process {Ht} is stationary and ergodic, and that the block
length T is arbitrarily large. As a matter of fact, as of today
the capacity of such channels is generally still unknown and
only the low-SNR (see for example [11]) and high-SNR (see
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for example [12], [13], [14]) have been characterized through
asymptotically tight bounds.

At the other extreme of the channel statistics assumptions
treated in the literature, we find the quasi-static block-fading
model, where Ht = H, a random but constant matrix,
for any (arbitrarily long) block length T . The information
theoretic treatment of this channel model requires a more
general capacity formula than the standard information-stable
(in brief, ergodic) setting mentioned above. For channel statis-
tics practically relevant in wireless communications, it turns
out that the Shannon capacity is identically zero and the
ε-capacity (also known as “outage capacity”) provides the
limiting performance behavior of coding. Interestingly, the
literature on STC design has mainly focused on the latter
model (quasi-static block-fading), while information theory
has mostly investigated the capacity of the former model
(ergodic). In the next two subsections we give an account of
the some relevant results, and point out why STC design for
the quasi-static block-fading channel presents some unique and
novel problems in coding theory.

A. Ergodic fading

Given the fact that the general ergodic channel model
appears to be very hard to analyze, research has focused
and (almost) completely solved a much simpler problem that
nevertheless yields very relevant results in practical settings,
as it shall be argued in the following. The simplified model
considers the augmented channel with output {yt,Ht}, that is,
it assumes perfect Channel State Information at the Receiver
(CSIR). This is representative of systems based on “coherent”
detection under the simplifying assumption that the channel
matrix can be estimated very accurately.

For high SNR, if the channel is a strictly band-limited
Doppler process [15] with single-side Doppler bandwidth
B/2, the capacity is asymptotically given by the perfect
CSIR capacity multiplied by the factor (1 − M/L), where
L = bW/Bc is the minimum pilot insertion period in order to
sample the channel process at the Nyquist rate, and where
W/2 denotes the single-side bandwidth of the signal [16],
[13], [17]. In practice, B ≈ 100 Hz and W ≈ 1 MHz (see
the discussion on these order of magnitude provided in [18]),
therefore L ≈ 104. This implies that for most cases that are
relevant in practice, in the high-SNR high-spectral efficiency
region where the application of MIMO systems is typically
advocated, the cost of explicitly estimating the channel is
very small. We conclude that the approximation of perfect
CSIR yields indeed very relevant results in practice and has
the advantage of simplicity for information theoretic analysis
and code design. Therefore, this paper focuses on this case,
with the caveat that the results presented here might not be
relevant for cases where the channel matrix process is not a
band-limited Doppler process (e.g., {Ht} evolves according
to a Gauss-Markov AR-1 process), and for the region of low
SNR and low spectral efficiency (e.g., in the Ultra-Wide-Band
case [11], [19]).

From standard information theoretic arguments it follows

that the ergodic capacity under the perfect CSIR assumption2

is given by [1]

Cerg(ρ) = max
Σx≥0, tr(Σx)≤1

E
[
log

(
1 + ρHΣxHH

)]
(3)

where H is a random matrix with pdf pH(·), the first-order
distribution of the process {Ht} that does not depend on t
by stationarity. Notice that the ergodic capacity with perfect
CSIR depends only on the first-order statistics of the channel
process. As long as the channel process is stationary and
ergodic, its correlation w.r.t. t is irrelevant to capacity. For
the class of isotropically right-invariant channels, i.e., channels
such that HU and H are identically distributed for any fixed
unitary matrix U (independent of H), [1] shows that Σx =
1
M I is the optimal input covariance matrix. In particular, this
is the case for the Rayleigh i.i.d. fading model, where

pH(H) =
1

πMN
exp

(−tr
(
HHH

))
. (4)

In general, the mutual information

Ierg(ρ)
4
= E

[
log det

(
I +

ρ

M
HHH

)]
(5)

is the supremum of rates achievable by the ensemble of
random Gaussian codes that send uncorrelated symbols with
uniform power allocation over the antennas.

A different point of view on the optimality of the uniform
power allocation is provided in [20], in the context of a MIMO
compound channel where the channel matrix is deterministic
and fixed but unknown to the transmitter, and can take any
arbitrary value in some constraint set H satisfying the property
that if H ∈ H then also HU ∈ H, for any unitary matrix U.
It turns out that the compound MIMO channel capacity in this
case is also achieved by the input covariance matrix Σx = 1

M I.
Furthermore, using the fact that log det(·) is concave and non-
decreasing on the cone of positive semidefinite matrices, for
any channel distribution pH(·) it follows that

Ierg(ρ) ≤ Cerg(ρ) ≤ Ierg(Mρ). (6)

Hence, the penalty of uniform power allocation is at most
10 log10 M dB in SNR. This represents a vanishing fraction
of capacity in the region of large SNR, where capacity grows
like Cerg(ρ) ≈ min{M, N} log ρ.

Considerable effort (see for example [21], [22], [6], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32]) has been
devoted to determine the optimal input covariance matrix Σx

in (3) for various channel first-order statistics fH(·) despite
the fact that, practically, it is not very relevant for the system
design. The following channel statistics have been considered:
1) the correlated “Rayleigh” fading channel, where H has
zero-mean Gaussian elements jointly distributed according to
some covariance matrix; 2) the Ricean fading channel where
H = abH + S, with a and b deterministic vectors (line-
of-sight component), and S with zero-mean Gaussian i.i.d.
elements (scattering component); 3) the Ricean correlated
channel model where S has correlated elements.

2Notation: we use natural logarithms and measure information rates in nats
per channel use, unless said otherwise.



214 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 2, NO. 3, SEPTEMBER 2006

From the code design viewpoint, achieving ergodic capacity
does not present any conceptual difficulty. It can be shown
that Cerg(ρ) is achieved by the random Gaussian code en-
semble such that codewords X = (x1, . . . ,xT ) are generated
independently with i.i.d. components, with xt ∼ CN (0,Σx)
for the capacity-achieving input covariance Σx. Instances in
this ensemble can be generated by the following conceptually
simple “spatial-shaping” scheme: 1) generate codes in the
Gaussian random coding ensemble that achieves the capacity
of the classical unfaded single-input single-output AWGN
channel, with i.i.d. components ∼ CN (0, 1) and block length
MT ; 2) format the MT code symbols into a space-time code
array X′ of dimension M × T ; 3) obtain the actual space-
time codeword X by letting X = Σ1/2

x X′, where Σ1/2
x is a

square-root factor of Σx (e.g., obtained by Karhunen-Loeve
or Cholesky decomposition).

The above conceptual construction suggests that good codes
for the ergodic MIMO channel can be easily obtained from
standard good codes designed for the AWGN channel via
simple signal processing. In fact, the best known schemes
for the ergodic setting have been obtained by using powerful
codes (e.g., turbo-codes and LDPC and the like) mapped over
standard QAM/PSK modulation constellations by standard
bit-interleaved coded modulation [33] and sent directly over
the M transmit antennas possibly through a linear precoder
(the number of references dealing with this construction is
overwhelming, see for example [34], [35], [36], [37], [38]
and references therein for a very partial list). Here, research
has focused mostly on the efficient signal-processing at the
receiver rather than on the code design itself. In [34], [36],
[39], [37], [38] the use of a soft-in soft-out Sphere-Decoder for
the MIMO channel is advocated, in order to implement an it-
erative space-time decoder analogous to the turbo-equalization
scheme proposed for ISI channels [40]. In order to avoid the
heavy computational complexity of the soft-in soft-out MIMO
detectors, a layered structure with successive interference
cancellation can be exploited. The mutual information chain-
rule [41]

I(x;y|H) =
M∑

j=1

I(xj ;y|H, x1, . . . , xj−1)

applied to (3) yields the decomposition

E
[
log det

(
I +

ρ

M
HHH

)]
=

M∑

j=1

E[log(1 + βj)] (7)

where βj is the Signal to Interference plus Noise Ratio (SINR)
at the output of a Minimum Mean-Square Error (MMSE)
detector that estimates the j-th antenna signal xj assuming
x1, . . . , xj−1 perfectly known and treating xj+1, . . . , xM as
Gaussian interference. The above mutual information decom-
position suggests the horizontal layered scheme represented in
Fig. 1 (encoding) and Fig. 2 (decoding). The MMSE decision-
feedback receiver structure of Fig. 2, also known as “nulling
and canceling” approach, is usually referred to as the “V-
BLAST” receiver [42]. With the V-BLAST architecture, the
MIMO soft-output detection problem is reduced to a sequence

of soft-output detectors for the resulting single-input single-
output channels obtained at each cancellation stage, along
with the additional (small) complexity of MMSE filtering and
interference cancellation. If we choose the coding rates of the
component codes in the layered scheme of Fig. 1 such that
layer j has rate Rj slightly less than the corresponding ergodic
rate E[log(1 + βj)], then the probability of decoding error at
each component decoder is very small and the effect of error
propagation is negligible. This rate allocation is a common
trait of layered coding architectures with multistage decoding
[43].

Encoder 1

Encoder 2

Encoder 3

Encoder 4

x1,1, . . . , x1,T

x2,1, . . . , x2,T

x3,1, . . . , x3,T

x4,1, . . . , x4,T

Demultiplexing

Information bits

Fig. 1. Transmitter block diagram for a layered V-BLAST scheme with
M = 4.

Re-encoding

Modulation
and

Re-encoding

Modulation
and

Re-encoding

Modulation
and

Information bits

MMSE

MMSE

MMSE

MMSE

Vector (dim 4)

Decoder 1

Decoder 2

Decoder 3

Decoder 4

Outputs of virtual single-in single-out channels with SINR βj, j = 1, 2, 3, 4

Multiplexing

y1,1, . . . , y1,T

y2,1, . . . , y2,T

y3,1, . . . , y3,T

y4,1, . . . , y4,T

Fig. 2. Receiver block diagram for a layered V-BLAST scheme with N =
M = 4.

B. Quasi-static block-fading

We have seen that the design of codes for the ergodic MIMO
fading channel does not present particular challenges. On the
contrary, the STC literature has focused mainly on the quasi-
static block-fading channel model. As mentioned before, in
this case the STC design presents some unique challenges that
make STC a distinct and new field in coding theory, for which
new tools have been developed. The quasi-static block-fading
model is obtained from (1) by assuming that Ht = H for all
t = 1, . . . , T , where H is a random channel matrix, distributed
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according to some pdf pH(H), that stays constant over the
whole duration of a codeword. This assumption is justified by
considering very slowly-varying fading and coding with some
practical latency constraint, that prevents from interleaving
codewords over a very large number of independent channel
realizations.

From the information theoretic viewpoint, this channel is
non-ergodic (or “non-information stable” [44]). For such class
of channels, a coding theorem can be stated in terms of the
general Verdú and Han capacity formula [44] rather than in
terms of an average mutual information, as for the ergodic
case. Intuitively, since H is random but constant over the
duration of a codeword and the transmitter does not know
its realization, the randomness due to the fading cannot be
“averaged out” over the codeword block length. Therefore, for
any chosen transmission rate R > 0 there might be a non-zero
probability that the channel matrix H does not support rate R.
Hence, the error probability may not vanish with T →∞ no
matter how small R is chosen. For such class of channels,
a more meaningful performance measure is ε-capacity [44],
defined as the supremum of all ε-achievable rates.3 From the
general theory developed in [44], applied to the quasi-static
block-fading MIMO channel, we obtain

Cε(ρ) = sup {R : Pout(ρ,R) ≤ ε} (8)

where Pout(R), referred to as the information outage proba-
bility [45], [15], is defined by

Pout(ρ,R) = inf
Σx≥0,tr(Σx)≤1

P
(
log det

(
I + ρHΣxHH

) ≤ R
)

(9)
Simply put, the outage probability Pout(ρ,R) is the probabil-
ity that the mutual information for a given (fixed) channel
realization H falls below the transmitted rate R. Since H
is random, the mutual information for fixed H is a random
variable. This probability is minimized with respect to the
input covariance matrix Σx. It can be easily shown (see for
example [10]) that Pout(ρ,R) is the best possible block error
probability of any code in the limit of T → ∞. Notice
that this does not mean that some specific code with small
block length T and rate R cannot achieve a block error
probability smaller than Pout(ρ,R) for some ρ. However,
when we communicate at rate R we consider the transmission
of an arbitrarily large number of information bits. Then, when
we look at the probability of message error for arbitrarily large
message size, no code can do better than Pout(R).

The computation of Pout(ρ,R) for given channel statistics
pH(·) is generally a hard problem (see for example [46]). Also,
the determination of the outage-minimizing input covariance
Σx, that is generally different from the ergodic capacity
achieving input covariance, seems to be quite hard in general
(see for example [21], [24]). Nevertheless, the simple bound

log det
(
I + ρHΣxHH

) ≤ log det
(
I + ρHHH

)

that holds for all Σx such that tr(Σx) ≤ 1, yields that

P̃out(ρ, R) ≥ Pout(ρ,R) ≥ P̃out(Mρ, R) (10)

3A rate R is said to be ε-achievable if there exists a sequence of codes
of size exp(TR), block length T and error probability Pe(T ) such that
lim supT→∞ Pe(T ) ≤ ε [41].

where

P̃out(ρ,R) = P
(
log det

(
I +

ρ

M
HHH

)
≤ R

)
(11)

is the information outage probability when we impose uncor-
related inputs with uniform power allocation over all antennas.
As a matter of fact, the optimization of Σx yields negligible
outage probability improvement in the region of high SNR. In
fact, the DMT characterization of the quasi-static block-fading
MIMO channel (see Section III) is obtained by studying the
asymptotics of P̃out(ρ,R) for large ρ.

Let’s now consider the error performance of codes over the
quasi-static block-fading MIMO channel. Consider an STC C,
defined by a set of |C| codeword matrices X. The maximum-
likelihood decoder operates according to the minimum dis-
tance rule

X̂ = arg min
X∈C

T∑
t=1

|yt −√ρHxt|2

A simple union bound on the average block error probability,
conditioned on the channel realization H, is given by

Pe(ρ,H) ≤ 1
|C|

∑

X,X′∈C
X6=X′

P (X → X′|H) (12)

where the conditional pairwise error probability is given by

P (X → X′|H) = Q

(√
ρ

2
tr(HHH∆∆H)

)

≤ exp
(
−ρ

4
tr(HHH∆∆H)

)
(13)

where Q(·) denotes the Gaussian tail function, where we
define the codeword difference matrix ∆ = X−X′ and where
the last line follows from the Chernoff bound. Unfortunately,
by averaging (12) with respect to H the resulting union bound
is generally very loose. A much more precise upper bound is
obtained by [47], [37]

Pe(ρ) ≤ E


min





1,
1
|C|

∑

X,X′∈C
X 6=X′

exp
(
−ρ

4
tr(HHH∆∆H)

)







(14)
The drawback of (14) is that the expectation with respect to H
must be performed by Monte Carlo simulation. However, by
looking at the individual average pairwise error probability,
some important guidelines for the design of STCs for the
quasi-static block-fading channel can be drawn [3]. From
the theory of quadratic forms in complex Gaussian random
variables, we obtain4

E[P (X → X′|H)] ≤ E
[
exp

(
−ρ

4
tr(HHH∆∆H)

)]

=
(

det
(
I +

ρ

4
∆∆H

))−N

≈ ρ−νN


1

4




ν∏

j=1

λj




1/ν



−νN

(15)

4From now on, implicitly we assume the i.i.d. Rayleigh fading channel
model, with pdf given by (4).
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where {λj : j = 1, . . . , ν} are the non-zero eigenvalues of
∆∆H, and ν = rank(∆). The last line reveals that the average
pairwise error probability decreases as an inverse power of ρ,
that is, in the classical log-log chart (log10 Pe versus SNR in
dB), for large ρ it is a straight line with slope −νN . The
slope of error probability is referred to as “diversity”. The
above bound yields that the code diversity is given by νminN ,
where νmin is the minimum rank over all non-zero codeword
matrix differences. In the high-SNR region, where typically
the performance of a code becomes meaningful, the code
diversity becomes the dominating factor for good performance.
Hence, maximizing the minimum codeword difference rank
can be considered as the first distinctive and most important
criterion for STC design. For T ≥ M , it is clear that we
seek “full-rank” codes, that is, codes with νmin = M . In
this case, the code diversity is MN , that corresponds to
the maximum diversity order of the channel itself (notice
that the number of fading degrees of freedom, equal to the
number of independent fading coefficients, is indeed MN ).
The second criterion that was proposed in the STC literature,
also based on (15), is to maximize the harmonic mean of the

non-zero eigenvalues,
[∏ν

j=1 λj

]1/ν

for the codeword pairs
with minimum rank νmin. For “full-rank” codes, we have∏M

j=1 λj = det(∆∆H). Therefore, the relevant design crite-
rion becomes the maximization of the minimum determinant
det(C) = min∆ 6=0 det(∆∆H).

We shall see in the following sections that the “rank
and determinant” criteria, that were proposed in early STC
literature based on the pairwise error probability analysis,
indeed plays a fundamental role in the definition of a family of
STCs that achieve the optimal DMT. However, these criteria
have to be re-interpreted in light of the theory that shall be
developed in the next section.

III. DIVERSITY-MULTIPLEXING TRADEOFF OF
QUASI-STATIC CHANNELS

The capacity of the ergodic MIMO channel for high-SNR
is given by

Cerg(ρ) = min{M, N} log ρ + o(1)

On the other hand, the block error probability of codes on the
quasi-static block-fading MIMO channel is, at best, Pe(ρ) .=
ρ−MN . 5 The early literature on STC focused on the design
of “full-rate” and “full-diversity” codes, where the former
means that the number of transmitted independent information
symbols per channel use is equal to min{M, N} and the latter
means that the error probability slope (in the sense said before)
is equal to MN . More recently it was recognized that these
two goals can be accomplished simultaneously, so that there
is no actual “tradeoff” between full-rate and full-diversity.
Constructions of full-rate full-diversity STCs are by now well-
known (see for example [48]).

Zheng and Tse in [10] formulated a more meaningful
tradeoff in terms of the channel “SNR exponent”. Let’s fix

5Notation: .
= denotes exponential equality, i.e., f(z)

.
= zb means that

limz→∞ log f(z)
log z

= b, ≥̇ and ≤̇ are used similarly.

the block length T and let ρ → ∞. Let’s consider a family
of codes {Cρ}, where code Cρ operates at SNR ρ, with rate
R(ρ) and error probability Pe(ρ). We define the multiplexing
gain r of the family as the pre-log factor of R(ρ), that is,
we let R(ρ) .= r log ρ. Also, we define the diversity
gain d of the family as the slope of Pe(ρ) in the log-log
error probability chart, that is, Pe(ρ) .= ρ−d. Then, the
channel SNR exponent is defined as the largest achievable
diversity gain d?(r) for every r ≥ 0. This represents the best
possible diversity-multiplexing tradeoff (DMT) achievable by
any family of STCs

In [10], d?(r) is determined for the case of i.i.d. Rayleigh
fading. In particular, d?(r) is equal to zero for r ≥
min{M, N} and for 0 ≤ r < min{M,N} it is given by
the piecewise linear function interpolating the points

(r = k, d?(r) = (M − k)(N − k)) , (16)

for k = 0, 1, . . . , min{M, N}. Fig. 3 shows d?(r) versus r
for M = N = 4.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16
M = N = 4

r

d(
r)

Fig. 3. DMT d?(r) in the case of M = N = 4.

We notice here the following interesting parallel: in the
classical theory of error exponents, we are interested in the
exponential rate of decay of Pe versus the code block length
T → ∞ for fixed channel parameter (the SNR ρ in our
case) and for codes of fixed rate (bit per symbol, i.e., unit
of block length). In the quasi-static block-fading channel, we
already know that the classical error exponent is zero (since
the Shannon capacity itself is zero). The DMT formulation
exchanges T for log ρ, and investigates the rate of decay of
Pe versus log ρ →∞ for fixed T and multiplexing gain r (bit
per unit of log ρ, proportional to “bit per dB”). It turns out
that, while for classical error exponents only upper (sphere-
packing) and lower (random coding) bounds are generally
known6, in the case of DMT, d?(r) is fully determined. Zheng
and Tse proved the converse by analysing the behavior of
P̃out(ρ, r log ρ) for large ρ and by using Fano inequality,

6They may coincide for certain ranges of rate.
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and the achievability part by considering a random Gaussian
coding ensemble. Their upper and lower bound coincide for
all r only under the additional block length condition T ≥
M +N−1. This condition is needed because of the weakness
of the random coding approach. More recently [49] provided
a general explicit construction of codes achieving the optimal
DMT for all block length T ≥ M .

The above results show that the performance of any “good”
code over the quasi-static block-fading MIMO channel in the
regime of high SNR is essentially determined by the outage
set, that is, the set of channel matrices

O =
{
H : log

(
1 +

ρ

M
HHH

)
≤ R

}
. (17)

The particular form of d?(r) obtained in (16) is obtained for
i.i.d. Rayleigh fading. 7 Zheng and Tse posed the problem of
finding coding constructions that achieve the optimal DMT
and admit algorithms for efficient encoding and decoding
other than exhaustive codebook lookup table and brute-force
minimum distance calculation, as in the case of random
codes. At that time, the only known construction was the
famous Alamouti code for the M = 2, N = 1 channel
[51] (see Section IV-A). Zheng and Tse also showed that Or-
thogonal Space-Time Block Codes (OSTBC) [52] in general,
achieve maximum diversity but not maximum multiplexing
gain whereas the simple “uncoded” V-BLAST (see Section
IV-B) achieves maximum multiplexing gain but not maximum
diversity.

The code construction problem posed in [10] sparked
considerable research effort. The first STC ensemble that
achieves the optimal DMT for all M, N while admitting
efficient encoding and decoding is the LAST code construction
provided in [53] (see Section IV-E). The first explicit (non-
random ensemble) construction of STCs achieving the optimal
DMT for all M, N was then provided in [49], and it is based
on Cyclic Division Algebra (CDA) codes (see Section IV-D).

In general, the outage probability can be defined as
P̃out(ρ,R) = P (O) and the corresponding optimal DMT
d?(r) depends on the channel statistics pH(·). A code family
{Cρ} may achieve the optimal DMT for some channel statistics
but may not be optimal for some others. A stronger version
of the DMT formulation is given in [54], [18] in terms of the
approximate universality condition. Intuitively, the operational
significance of the information outage probability relies on the
existence of “universal codes” of rate R and sufficiently large
block length such that, for every ε > 0, their probability of
error is smaller than ε for all channel realizations H /∈ O
while it can be larger than 1 − ε for all channel realizations
H ∈ O.

While universal codes can be found only in the limit of
large block length T (e.g., in the ensemble of random Gaussian
codes), for high-SNR and fixed T it makes sense to consider
the laxer approximate universality condition given as follows.
A code family {Cρ} is approximately universal if there exists
α > 0 independent of ρ such that Pe(ρ) ≤̇ exp(−αρ) for all
H /∈ O.

7For Gaussian H with arbitrary mean and arbirary full-rank correlation, it
can be shown that d?(r) takes on the same form [50].

In [54] (see also [18]), necessary and sufficient conditions
for approximate universality of STCs are given in terms of
the eigenvalues of the codeword matrix differences ∆∆H.
Remarkably, the CDA codes constructed in [49] are also shown
to satisfy the non-vanishing determinant (NVD) property (see
Section IV-D). This implies the conditions given in [54] for
approximate universality. It follows that the CDA codes of
[49] are also approximately universal.

IV. LINEAR-DISPERSION AND LATTICE SPACE-TIME CODES

A general STC setting is that of the Linear-Dispersion (LD)
codes, as introduced in [55], in which each STC codeword
matrix X is defined to be of the form

X =
Q∑

q=1

(αqAq + ıβqBq), (18)

where {Aq,Bq} are arbitrary space-time “spreading” matrices
in CM×T and the {αq, βq} are real information symbols such
that the corresponding complex symbol sq = αq +ıβq belongs
to some discrete and finite complex set A referred to as the
“information symbol constellation”. The coding rate of a LD
code defined as above is given by R = Q

T log |A|, since Q
independently chosen symbols from A are transmitted in T
channel uses.

A more convenient description is obtained by considering
the vector equivalent x of X, where x is the image of the real
information vector s ∈ R2Q with components given by the
αq’s and βq’s symbols. The corresponding mapping s 7→ x
can be described by a generator matrix G ∈ R2MT×Q such
that

x = Gs. (19)

Furthermore, the channel model (1) can be rewritten in the
real-vectorized form,

y = Hx + w, (20)

by column stacking of the real and imaginary components of
the respective matrices. In (20) we have y ∈ R2NT , x ∈
R2MT and with some abuse of notation, we redefine H to be
the 2NT×2MT real equivalent channel matrix (including the
SNR factor

√
ρ as part of the channel for ease of notation).

For

x =
[
Re{x1}T, Im{x1}T, . . . , Re{xT }T, Im{xT }T

]T
,

and with y,w defined similarly, then H takes on the block-
diagonal form [53]

H =
√

ρ diag
([

Re{H1} −Im{H1}
Im{H1} Re{H1}

]
, . . . ,

, . . . ,

[
Re{HT } −Im{HT }
Im{HT } Re{HT }

])
.

Typically, A is a QAM constellation, that is, the real infor-
mation vectors s are given by the intersection of a scaled and
translated version of the integer lattice Z2Q with a hypercube
boundary region. We denote by U the set of all information
vectors s. It follows that the image GU of the encoding
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mapping (19) is a subset of an integer lattice in R2MT with
generator matrix G. The relation between LD codes and
lattices shall be fully exploited by the LAST code construction
defined later on. At this point, it is worthwhile to notice that
the inherent lattice structure can be exploited both for efficient
encoding via (19) and for efficient ML decoding. In fact, the
ML decoder operates according to the decision rule

ŝ = arg min
s∈U

|y −HGs|2 (21)

Provided that U is defined by a simple boundary region, as
in the case of the hypercube (QAM information symbol con-
stellation), then the minimum distance search in (21) can be
implemented efficiently by using ideas from the literature on
closest lattice point search, also known as “Sphere-Decoding”
(SD) [56], [57], [58], [59]. This significantly decreases the
average decoding complexity with respect to an exhaustive
search. Furthermore, SD has been recently recognized to be
an instance of the more general branch and bound tree search
technique [60]. As such, better tree search algorithms such as
sequential decoding (stack or Fano algorithms) can be used
with even more computational savings [60].

The remainder of this Section discusses some notable
instances of LD codes, the related class of LAST codes
and finally an approach that to combines the best of both
constructions.

A. The Alamouti code: achieving full diversity

The Alamouti code [51] consists of a set of mutually
orthogonal matrices, taking the form:

CAlam =
{
X =

[
s1 −s∗2
s2 s∗1

]
, s1, s2 ∈ A

}
. (22)

In the real vectorized notation (19), letting s =
(α1, β1, α2, β2)T the matrix G corresponding to (22) is
given by

GAlam =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
0 0 −1 0
1 0 0 0
0 0 0 1
0 −1 0 0




.

For QAM information symbol constellation of size |A| = ρr,
with 0 ≤ r ≤ 1, the Alamouti code has rate R = r log ρ
and probability of error Pe(ρ) .= ρ−2(1−r) over the
M = 2, N = 1 channel [10]. Hence, the Alamouti code is
DMT optimal for this case. Unfortunately, for any N > 1
it fails to achieve the optimal DMT. The intuition behind
this shortcoming is that the Alamouti code transmits only one
QAM symbol per channel use, while the channel with N > 1
supports up to min{2, N} = 2 degrees of freedom, that is, up
to 2 independent symbols can be transmitted on each channel
use.

The Alamouti code is the simplest and best known instance
of the family of OSTBC discovered in [52] (see also [61],
[62] for additional constructions and properties) that are easily

shown to support non-zero diversity gain only for multiplexing
gains r ≤ 1. The main advantage of OSTBCs is that they
allow for very simple decoding, where the MIMO channel is
turned into a set of non-interfering parallel channels by simple
signal combining operations, so that ML decoding reduces to
the independent detection of the information symbols and not
even the SD is needed in order to implement (21), as explained
in [51], [52].

B. Uncoded V-BLAST: achieving full rate

To improve upon the rate limitation of OSTBCs, full-
rate codes were constructed. Perhaps the simplest example is
uncoded V-BLAST, that corresponds to the encoder of Fig. 1
with trivial components codes with block length T = 1. In this
case, the encoder matrix G is equal to the M ×M identity.
Assuming M ≤ N , we use independently chosen QAM
symbols from a constellation A of size |A| = r

M log ρ to drive
the M antennas. At the receiver, the ML (minimum distance)
decoder (21) is implemented (e.g., by SD).8 It follows that
for transmission rate equal to R = r log ρ the resulting error
probability can be shown to decay like Pe

.= ρ−N(1−r/M).
Notice that for the squared channel case M = N this SNR ex-
ponent coincides with the optimal DMT d?(r) in the segment
M − 1 ≤ r ≤ M of high multiplexing gain. On the contrary,
for N > M uncoded V-BLAST is strictly suboptimal. It
is interesting to notice that the exponent N(1 − r/M) for
N ≥ M is the best possible exponent achieved by “space-
only” codes, that is, by coding across the transmit antennas
without exploiting the time dimension (block length T = 1).
Furthermore, it can also be shown that by coding across time
without exploiting the antenna dimension (e.g., the scheme
of Fig. 1 with non-trivial component codes), the above SNR
exponent of error probability cannot be improved. This shows
somehow intuitively that coding across antennas (space) and
time is necessary in order to achieve the whole DMT curve.

C. TAST codes: achieving full rate and full diversity

Before the DMT optimality problem was posed, most
literature on LD codes focused on the careful design of
the encoding matrix G in (19) in order to obtain full-rate
full-diversity codes. Recall that full-rate here means codes
that send min{M,N} independently chosen symbols from
the underlying information set A per channel use, and full-
diversity indicates codes with error probability slope MN , that
is, with det(C) 6= 0. Among the first systematic constructions
of such codes, the Threaded Algebraic Space-Time (TAST)
code construction of [48] is particularly noteworthy for its
generality, simplicity and performances.

The TAST construction makes use of codes designed for
the Single-Input Single-Output (SISO) channel as component
codes. Each SISO component codeword is assigned to a thread
in the ST codeword, the concept of which is formalized as
follows. A layer is defined as a section of the ST codeword

8Interestingly, uncoded V-BLAST has been proposed in the literature in
conjunction with the nulling and canceling strategy of Fig. 2 [42]. This strat-
egy, that can achieve the ergodic capacity, is unfortunately very suboptimal
under quasi-static block-fading as shown for example in [10], [18].
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matrix having the property that each symbol interval within
the section is allocated to at most one antenna [63]. This
property ensures that all spatial interference experienced by
the layer comes from outside the layer. For example, in the
coded V-BLAST scheme of Fig. 1 each layer is associated to
one particular antenna and spans all time slots t = 1, . . . , T .
In another variant called D-BLAST [64], [10], [18], the layers
are stacked along the diagonals in the ST codeword matrix.
A thread is defined as a layer which has full temporal and
spatial span, i.e., we are guaranteed to find a component of
the thread along any particular antenna j = 1, . . . , M or time
slot t = 1, . . . , T . The work in [48] considers the design of
M×T STCs that are composed of L ≤ M threads. The design
problem now reduces to the design of SISO component codes
for each thread such that the resultant STC is endowed with
full diversity, that is, its minimum determinant is non-zero.

This goal is achieved in two distinct design steps. First,
each thread is guaranteed to achieve full diversity when it
is transmitted in isolation, i.e., by zeroing all other threads.
This is obtained by generating the vector of symbols in
each thread by rotating an M -dimensional information symbol
vector by an M ×M rotation matrix R, with elements from
a rational number field extension, specifically designed to
provide non-zero product distance [65], [66]. Then, in order
to guarantee that the set of matrices formed by stacking all
threads together forms a code C with det(C) 6= 0, the threads
are scaled by a set of diophantine numbers (properly chosen
algebraic numbers), or transcendental numbers. This provides
the required “algebraic separation” of the threads such that the
non-zero determinant is enforced.

However, it turns out that for the choice of rotation matrices
and diophantine scaling coefficients chosen in [48] (and in
many other subsequent works), when the size of the underlying
information symbol constellation A increases the minimum
determinant approaches zero. This is due to the fact that the
approximation of certain real numbers by rationals obtained by
the diophantine numbers progressively gets better and better.
This fact prevents the original TAST construction from achiev-
ing the optimal DMT, and also shows that, generally speaking,
constructing a DMT-optimal code family is more difficult than
constructing a full-rate full-diversity code operating at given
rate R.

D. STCs from Cyclic Division Algebras
The first construction of space-time codes from Cyclic

Division Algebras (CDAs) was proposed by Sethuraman and
Sundar Rajan [67] and independently, shortly after, by
Belfiore and Rekaya [68]. The multiplicative invertibility of
all the elements in a division algebra together with the additive
closure, renders the algebra as a natural source of full-diversity
STCs. The construction is based on the matrix representation
of the elements of the division algebra. The particular class
of CDAs has a simple structure, (see [69]). Codes derived for
CDAs include the 2× 2 Golden code. The 2× 2 Yao-Wornell
and Dayal-Varanasi codes are also intimately related to the
family of CDA codes.

Besides their reduced signaling and decoding complexity,
CDA codes meet several information theoretic criteria. For

example as previously mentioned, it was shown in [49], [70]
that CDA-based ST codes that also possess the non-vanishing
determinant (NVD-[71]) property, achieve the optimal DMT
for all (M, N). Based on existing constructions for restricted
values of M , (see [71], [68], [72]), the authors in [49], [70]
provide constructions of such DMT optimal codes for all M ,
all T ≥ M . We now present an overview of this construction
and limit our exposition to the minimum delay case of T =
M = n for the sake of space limitation.

The starting point for the construction of such an n×n STC
is a cyclic division algebra D, with center F and maximal
field L, where L/F is an n-degree cyclic Galois extension.
Let σ be the generator of the Galois group Gal(L/F), and let
{1, z, . . . , zn−1} be the basis of D, as a right vector-space
over L. z is an indeterminate satisfying

`z = zσ(`) ∀ ` ∈ L and zn = γ,

for some non-norm element γ ∈ F\{0}. More specifically, γ
has the property that the smallest positive integer t for which
γt is the relative norm NL/F(u) of some element u in L\{0},
is n. The corresponding CDA D(L/F, σ, γ) consists of all
elements of the following form

u =
n−1∑

i=0

zi`i, `i ∈ L, (23)

whose left-regular matrix representation is given as



`0 γσ(`n−1) γσ2(`n−2) . . . γσn−1(`1)
`1 σ(`0) γσ2(`n−1) . . . γσn−1(`2)
...

...
...

. . .
...

`n−1 σ(`n−2) σ2(`n−3) . . . σn−1(`0)


 .

(24)
Despite the fact that the elements of the above matrix belong
to the maximal subfield L, the CDA structure ensures that the
determinant of the matrix is an element of the center F.

In order to construct an STC C with full rate and the NVD
property, one can choose [68]

• γ ∈ O∗F,
• {β1, . . . , βn} to be an integral basis for L/F,
• restrict the `i in (24) to be of the form

{∑

i

aiβi | ai ∈ A
}

.

where A is a QAM constellation.

The above restrictions result in the determinant being an
element of Z[ı]. The NVD property of the resulting STC
follows from the closure under subtraction of the division
algebra and from the fact that Z[ı] is discrete. Therefore, det(C)
is bounded away from zero by some constant.

CDA codes achieve optimality in the high-SNR regime, but
they may not perform well in the range of moderate to low
SNR. A DMT optimal constructions that also performs well
in low SNR will be explored later.
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E. Lattice Space-Time Codes

We have already pointed out that the encoding mapping
(19) yields a 2Q dimensional integer lattice in R2MT when
the information vector s takes on values in the whole Z2Q.9 In
particular, we are interested in full-dimensional LAST codes
[53], where Q = 2MT and G has rank 2MT .

This approach consists of finding a lattice Λ = {λ = Gs :
s ∈ Z2MT }, a suitable Jordan-measurable shaping region R ⊂
R2MT and a translation vector u0, such that the space-time
vectorized codewords are given as the set of points C = {Λ+
u0} ∪ R. The translation vector u0 is chosen such that the
resulting code is centered around the origin, i.e., 1

|C|
∑

x∈C x =
0. The shaping region R is designed in order to obtain the
desired rate (number of points in C) and in order to achieve
a large shaping gain. Notice that this is not possible if we
insists on the linear encoding mapping given by (19). In fact,
with the general LD encoding, the code C is given by GU ,
the image of the information set U under the linear map G. If
this is contained in a hypercube, then G is contained in some
diamond-shaped paralleletope that may be far from the best
(spherical) shaping.

Beyond the above general construction, we focus here on the
class of nested LAST codes [53], where R is the fundamental
Voronoi cell of a sublattice Λs ⊂ Λ, referred to as the “shaping
lattice”, and u0 is a pseudo-random dithering vector uniformly
distributed overR whose realization is known to the receiver.10

The resulting encoding scheme is represented in Fig. 4.

xc

u0

Xs Space-Time

Formatting
modΛs To the transmit antennasG

Fig. 4. Transmitter block diagram of the modulo-Λ scheme.

We define the lattice minimum distance quantization func-
tion

QΛ(z) = arg min
λ∈Λ

|z− λ|2 (25)

and the modulo-Λ function

z mod Λ = z−QΛ(z) (26)

The LAST codeword in the scheme of Fig. 4 is given by x =
[Gs + u0] mod Λs. By definition, x is uniformly distributed
on R. Furthermore, x and s are statistically independent if not
conditioned on u0. It follows also that the transmitted energy
per channel use is related to the second-moment of the shaping

9In this section, without loss of generality, we assume no translation and
scaling of the integer grid.

10Pseudo-random dithering known at the receiver is a common procedure
in digital communications. For example, pseudo-random direct-sequence
spreading is currently used in CDMA and information bit scrambling using
pseudo-random sequences is typically used to enforce the correct signal power
spectral density and/or for privacy purposes. Hence, the assumption made here
that u0 is known to the receiver is not particularly restrictive in practice.

lattice Λs by

ρ =
1
T

∫

R
|z|2dz

It is clear that any two points λ ∈ Λ in the same coset of
the partition Λ/Λs are completely equivalent for the above
encoder, in the sense that they are mapped in the same
transmitted point x. Hence, the modulo-Λ encoder of Fig. 4
maps effectively the information vectors into the cosets of Λs

in Λ.
Enumerating the points in C (even in the absence of the

random dithering) is usually difficult, given the complicated
polyhedral shape of R. A much simpler but suboptimal
decoder is provided by the so-called Lattice Decoding rule,
that consists of finding the point Hλ̂ of the infinite lattice
HΛ with minimum distance from the received point y. Then,
since the information message is encoded in the cosets of
the partition Λ/Λs, the index of the coset that contains λ̂ is
output as the decoded message. Unfortunately, such a direct
but “naive” application of Lattice Decoding is shown in [53]
to fall short of achieving the DMT optimality.

Erez and Zamir [73] showed that nested lattice codes,
constructed according to the modulo-Λ scheme of Fig. 4,
can indeed achieve the channel capacity of the single-input
single-output unfaded AWGN channel under lattice decoding
provided that a linear MMSE estimation stage is used at the
receiver, and the lattice decoder is applied to the output of the
MMSE estimator. In [53] this idea is extended to the fading
MIMO channel. It turns out that the linear MMSE estimation
stage that works for the SISO channel must be replaced by
a MMSE decision feedback equalizer (MMSE-DFE) in the
MIMO case. The resulting modulo-Λ MMSE-DFE scheme is
shown in Fig. 5.

y′y

u0

−
Coset

Identifier

ŝ
F

B

modΛs

Fig. 5. Transmitter block diagram of the modulo-Λ scheme..

The receivers makes use of an MMSE-DFE pre-processing
stage on the received signal. Let F and B denote the forward
and feedback MMSE-DFE matrix filters, given by [53]. The
output of the MMSE-DFE preprocessing stage is given by

y′ = Fy −Bu0 (27)

Notice that the dithering vector is removed through the
MMSE-DFE feedback metrix B. Due to the mod-Λ encoding
at the transmitter, it can be shown that y′ can be rewritten in
the form [53]

y′ = Bc + e, (28)

where c = HGs+λ for some λ ∈ Λs and where e is a noise
plus residual interference that is generally not Gaussian but
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is uncorrelated and white, i.e., E[eeT] is proportional to the
identity matrix. Since information was encoded into cosets of
Λs in Λ, the transformation of Gs into c′ involves no loss of
information. The identification of the coset c + Λs is done as
follows. The decoder first finds

ẑ = arg min
z∈Z2MT

|y′ −BGz|2 , (29)

Since the above search is applied to the whole (infinite) lattice,
efficient closest lattice-point search methods (SD, sequen-
tial decoding, [60]) can be applied without any complicated
“boundary control”.11 Finally, the decoded information mes-
sage ŝ is retrieved by finding the coset of Λs in Λ that contains
Gẑ. This can be obtained by computing Gẑ mod Λs.

The main result of [53] is the proof that there exist families
of nested LAST codes with fixed block length T ≥ M +N−1
that achieve the optimal DMT for all 0 ≤ r ≤ min{M, N}
under the above modulo-Λ scheme. These codes are based on
the ensemble of random modulo-prime lattices studied in [74]
and more recently in [75], that are very easy to generate. In
[53] it is shown that lattices generated at random from the
ensemble yield good codes with high probability with little
effort to construct them. Furthermore, this good performance
is achieved with greatly reduced decoding complexity thanks
to the modulo-Λ scheme of Figs. 4 and 5. Nevertheless, finding
the best LAST codes for a given N,M and T requires some
carefully crafted construction or some criterion for searching
the lattice ensemble. One of such constructions is examined
in the following.

F. Merging of two different methodologies

There exist three important ideas underlying the construc-
tion of good STCs, viz., approximate universality, energy
efficient signaling and, at the decoder side, low-complexity
Lattice Decoding. A synergy of the mathematical structure
of CDA codes and the LAST framework is expected to
yield schemes that are both approximately universal (high
SNR), energy efficient (lower SNR) and that can be decoded
efficiently using MMSE-DFE Lattice Decoding. Moreover,
these approaches are complimentary and do not compromise
on each other, as we will see in the sequel. Notice that a
scheme that is both energy efficient and endowed with NVD,
essentially packs more codewords in a given volume without
compromising on the minimum determinant of the scheme.
The following discussion presents an overview of two recent
schemes that have strived to exploit this synergy to construct
STCs that have excellent performances.

1) Perfect space time codes: Perfect space-time codes were
first introduced in [76] as space-time codes that have full
rate, full diversity, non-vanishing determinant, uniform average
transmitted energy per antenna and cubic shaping, i.e., the
points x ∈ C form a regular finite grid contained in an
hypercube. The above traits endow perfect codes with near-
optimal error performance. The ability of the codes to have
a uniform average transmitted energy per antenna and across

11Following [58], [60], we refer to the boundary control as the problem of
checking that a vector in the infinite lattice belongs to the code C. This may
be easy or very complicated, depending on the shaping region.

time slots and their cubic shaping follow from the fact that
the generator matrix in (19) is unitary. Therefore, by choosing
the information symbol constellation A to be a QAM constel-
lation, the code C is contained in a rotated hypercube in 2M2

real dimensions.12 Such a unitary transformation preserves the
energy efficiency of the code.

Perfect codes were constructed in [76] for n = 2, 3, 4, 6
and in [77] for all integer values of n. In practice, codes
that achieve the defining conditions can be derived from CDA
codes with a proper unit-magnitude non-norm element and
with an information set carved out of an orthogonal lattice.
The construction for odd n is given by the following recipe,
while the generalization for all n follows easily [77] and is
omitted for brevity.

Perfect code construction: Let G be a unitary, circulant n×
n lattice generator matrix with first row elements given by

G(0, j) =
1
p
wλ

∏ p−1
2 −1

k=0

(
(1−wrk

)
∑ p−1

n

k=1
(−1)kn+j(1−wrkn+j

)
)

where j ∈ [0, n−1], p ≡ 1 (mod n) is a prime, w = e
2πı

p , r is
a primitive element of the multiplicative group Z∗p of integers
modulo p without zero, and λ(r − 1) ≡ 1 (mod p). Set

Γ =




0 0 · · · 0 π1
π∗1

1 0 · · · 0 0
...

0 0 · · · 1 0


 (30)

where π1π
∗
1 = q ≡ 1(mod 4), q a prime that generates Z∗p.

For {f
j
}n−1

j=0 being n independent QAM n-tuples, it follows
that the n× n matrices given by

X =
n−1∑

j=0

Γj
(
diag

(
f

j
G

))

yield perfect codes.
2) Structured LAST codes: The choice of the lattices Λ

and Λs greatly influences the performance (in terms of error
probability) of the nested LAST codes. In a recent work, the
authors in [78] constructed structured-LAST (S-LAST) codes
using rotated versions of dense lattices in R2n2

space as the
coding lattice Λ. Specifically, they choose

G = GpGΛ′ ,

where GΛ′ and Gp are respectively the lattice generator
matrices of the n × n perfect code, and an integral lattice
in 2n2-dimensions that is good for packing [79]. Since G is
not necessarily unitary, carving a set of points from Λ using a
conventional linear map is not energy efficient [78]. This leads
naturally to the use of a modulo-Λ scheme. A simple way to
obtain the shaping lattice consists of using a self-similar nested
sublattice of Λ, i.e., letting Λs = QΛ, with Q ∈ Z+. This
ensures that the resulting code is a rotated and scaled version
of a dense lattice packing, resulting in excellent performance at
finite SNRs. Due to the fact that Λ′ is an integral lattice, the S-
LAST codes also possess the CDA structure and therefore are

12As for CDA codes, we restrict the treatment here to the case of M =
T = n.
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approximately universal (under minimum distance ML decod-
ing). As a matter of fact, they provide very good performance
also under the much simpler MMSE-DFE Lattice Decoding
scheme of Fig. 5. Fig. 6 shows a comparison between the
Golden code and the Gosset S-LAST code (obtained by taking
Λ′ to be the Gosset E8 lattice in 8 dimensions) under ML and
MMSE-DFE Lattice Decoding. Notice that the performance
of MMSE-DFE Lattice Decoding is very close to that of ML
decoding, while achieving significant reductions in complexity
[60]. Gains due to shaping become more pronounced at higher
data rates. A corresponding plot comparing 3×3 perfect codes
with an S-LAST code constructed taking Λ′ equal to the Λ18

lattice under MMSE-DFE lattice decoding is shown in Fig. 7.
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Fig. 6. Golden and Gosset S-LAST codes under ML and MMSE-DFE
decoding.
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Fig. 7. Performance of 3× 3 Perfect and Λ18 S-LAST codes.

V. RECENT DEVELOPMENTS

A. Space-Time Coding for ARQ systems

El Gamal, Caire and Damen in [80] considered signaling
across the same quasi-static Rayleigh fading channel using an
L-round Automatic Retransmission reQuest (ARQ) protocol.
The protocol assumes the presence of a noiseless feedback
channel, which is capable of conveying one bit of information
(ACK/NACK message) per T uses of the feedback channel.
The channel may change independently at every new transmis-
sion (this is representative of a system where the ARQ blocks
are transmitted at different subcarriers or well separated in
time by some time-frequency hopping pattern), or stay fixed
over all L protocol rounds. Two schemes are considered. In
the basic scheme, the input power constraint is imposed on a
per-block basis: the transmitter cannot modulate its transmit
power as a function of the the received ACK/NACK messages.
In the “power control” scheme, the input power constraint is
imposed on average, over a long sequence of protocol rounds.
In this case, the transmitter is allowed to boost the transmit
energy in order to decrease the probability of error in the rare
events where the channel misbehaves.

The optimal SNR exponent in the various cases discussed
above is determined in [80] and it is termed the Diversity-
Multiplexing-Delay Tradeoff (DMDT) since the ARQ protocol
introduces an additional dimension to the problem, namely,
the maximum delay L up to which a decision on the current
information message must be made.

For channels with independent Rayleigh fading, where the
channel remains constant throughout all the ARQ rounds (the
long-term static fading case), the SNR exponent of the MIMO-
ARQ channel is given by

d∗ls(r) = d?
( r

L

)
, (31)

for 0 ≤ r < min{M, N} and zero elsewhere. An example for
M = N = 4 and different values of L is shown in Fig. 8.
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For the case where the channel changes independently at
each block (short-term static fading case), the corresponding
expression is given by:

d∗ss(r) = Ld?
( r

L

)
. (32)

In both cases, we see that especially in the region of high
multiplexing gain, an optimal ARQ scheme allows for con-
siderably larger diversity gains than a system with no ARQ
(L = 1).

The DMDT for the case of power control yields extremely
large values of the SNR exponent. This shows that, if the
transmitter is allowed to boost power in order to compensate
for channel outages, very significant improvement in error
probability is possible.

The intuitive explanation of why ARQ is able to greatly
improve the SNR exponent (diversity) can be provided as
follows. At high SNR, errors are essentially due to the channel
misbehavior, i.e., when the channel matrix is in the outage set.
This is a rare event, in the sense that it decreases as ρ−d1 for
some d1 > 0, the SNR exponent of errors in the first ARQ
round. The transmission rate R is essentially determined by
the rate of the first round R1, since R ≈ R1/(1− ρd1) ≈ R1

when ρ →∞. On the contrary, if the decoder is able to detect
errors with sufficiently high probability, the probability of error
is essentially determined by the last round, where decoding is
based on the received signal over all L blocks. The effective
rate at the last round is R1/L. Hence, it is reasonable to
expect that the SNR exponent of the ARQ system with rate
R

.= r log ρ is given by the exponent of the corresponding
MIMO channel d?(·) calculated at multiplexing gain r/L.
The factor L in (32) is due to the additional time diversity
that arises when each protocol round transmits a coding block
over an independent channel realization. The rationale behind
the above argument applies also to the case of power control,
even though the expression of the SNR exponent is much more
complicated and can be computed only via a recursive formula
(see [80]) for details).

On the code construction side, [80] also introduced the
incremental redundancy lattice space-time (IR-LAST) scheme.
This is the ARQ version of the LAST codes treated in [53].
It is proved through a random coding argument that IR-LAST
achieve the optimal DMDT. The scheme uses a list decoder,
based on the MMSE-DFE Lattice Decoder modified to be
a bounded distance decoder. The search radius is chosen in
order to strike the optimal balance between probability of error
(accepting a wrong message) and the probability of declaring
a decoding error.

Following these results, explicit constructions of codes for
the MIMO-ARQ channel are provided in [81]. This work
provides sufficiency criteria for DMDT optimality based on
a combination of the NVD criterion and another criterion that
involves the Frobenius norm of the codeword matrices of the
first round of transmission. Then, [81] explicitly constructs
STCs based on structural modifications of previous square
and rectangular CDA codes, that meet these criteria and are
therefore DMDT-optimal. These codes are constructed for the
cases where L is a multiple of M or L is a multiple of M ,
and incur minimum block length.

B. Space-Time Trellis Coded Modulation Revisited

In typical terrestrial wireless links, the coherence time is
several orders of magnitude greater than the symbol dura-
tion. This immediately opens up the possibility of designing
STCs with long block lengths T in order to achieve larger
coding gain. This scenario is also relevant in a packet data
communication system where the metric of performance is
the packet error rate. In this case it is of interest to design
codes with RT information bits of the order of one packet
size (typically, between 100 and 1000 bits, depending on
the applications). An additional design objective is to ensure
that the STCs so constructed can be decoded with reasonable
complexity. For example, for block length T of the order of
100 channel uses and M = 2, 4 antennas, even the most
efficient implementation of the SD or of the MMSE-DFE
(sequential) Lattice Decoder yields prohibitive computational
complexity.

One option is to use the horizontal-stacking or row-deletion
constructions of [49], in which rectangular DMT optimal STCs
are constructed from their square counterparts by either con-
catenating several small block-length components or deleting
rows from a large square code, obtained as described in
Section IV-D. Although it is proven in [49] that these codes are
DMT optimal, it turns out that the rectangular codes obtained
by row deletion require very high decoding complexity and
the horizontal stacking construction yields a large performance
gap from optimal (information outage probability) for large
block length.

In a recent work [82], the authors propose the use of a
Space-Time Trellis-Coded Modulation (ST-TCM) scheme to
improve the coding gain for large T . They focus on the M = 2
case and construct ST-TCM schemes based on partitions of
the Golden code (these correspond to constructing partitions
of the rotated Z8 lattice owing to the Golden code being a
perfect code). The resulting codes are termed Golden ST-TCM
(GST-TCM). Each branch on the trellis is labeled with these
partitions in such a way that a lower bound on the mini-
mum determinant of the resulting GST-TCM is maximized.
Decoding of these codes is performed using a Viterbi decoder
operating on the trellis, in conjunction with a SD that computes
the branch metrics. While this type of trellis STC schemes is
still at its early stage, we may say that designing STC that
are provably DMT optimal, that performs well also at low to
moderate SNR and that can handle information block length
of the order to 100 to 1000 bits is an interesting open problem
that is also extremely relevant for applications such as future
wireless LANs.

C. Cooperative wireless networks

Space time schemes can be applied in the context of
cooperative diversity protocols in wireless networks, where
several users cooperate with each other to jointly achieve better
error performance.

Several cooperative diversity protocols were recently pre-
sented (e.g., [83],[84],[85],[86]). These can be grouped into
two main categories: 1) amplify-and-forward, where the assist-
ing nodes perform a linear operation on the signal vector they
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receive from the information source, before forwarding it; 2)
decode-and-forward, where the assisting nodes try to decode
the received signal, and eventually re-encode it before sending
it again. The works in [83], [84], [85] investigate the DMT
(high-SNR performance) of different cooperation protocols.

In this setting, outage based asymptotic optimality was
thought to require infinite block length and infinite decoding
complexity, and in some cases to require full knowledge
of the channel at all receiver nodes. Novel space-time code
constructions (see [87],[88]) have played an important role
in improving these existing performance optimality bounds,
and then meeting these bounds with finite and minimum
block length, small encoding an decoding complexity, reduced
channel knowledge, and for general network topologies and
statistical characterizations [88].

D. The multiple access space-time channel

Consider a multiple-access quasi-static block-fading MIMO
channel with independent Rayleigh fading with K users, each
transmitting with M transmit antennas. Differently from the
cooperative setting mentioned before, where the terminals can
either transmit or receive and therefore can cooperate in order
to deliver their message to the destination, in the multiple-
access setting the K user terminals can only transmit and
independently encode independently generated information
messages. Hence, no explicit cooperation is possible [41]. The
receiver is equipped with N antennas. Each user i has rate
Ri = ri log ρ, i.e., its multiplexing gain is ri. We say that
the system is in error if one or more users’ messages are
erroneously decoded. For the overall system error probability
to decay as fast as ρ−d, there exists a limit on the multiplexing
gain K-tuple (r1, r2, · · · , rK) that the channel can support.
In terms of the DMT, [89] shows that for block length T ≥
KM +N − 1, the multiplexing gain region R(d) of K-tuples
(r1, r2, · · · , rK) such that the overall system error probability
decays as fast as ρ−d, is given by:

R(d) =

{
(r1, r2, · · · , rK) ∈ RK

+ :

∑

s∈S
rs ≤ r∗|S|M,N (d), ∀S ⊆ {1, · · · ,K}

}

(33)

where r∗|S|M,N (d) is the solution of

d?
|S|M,N (r) = d

where in this section we denote by d?
m,n(r) the SNR exponent

of a single-user MIMO channel with m transmit and n receive
antennas, as given in (16). In words, r∗|S|M,N (d) denotes the
maximum allowable multiplexing gain for a given diversity d
for a single user channel with |S|M transmit and N receiving
antennas. The above results says that the system is not in
outage if all single user channels corresponding to some
selection of the users are not in outage.

For the symmetric case where all users have the same
multiplexing gain r1 = · · · = rK = r and diversity gain

d, equation (33) yields

r = min
k=1,··· ,K

1
k

r∗kM,N (d) (34)

and as a result the Multiple Access Channel (MAC) SNR
exponent d?

mac(r) becomes

d?
mac(r) = min

k=1,··· ,K
d?

kM,N (kr). (35)

Theorem 3 of [89], provides some insight by pointing out
that there exist two regions of multiplexing gain where the
performance of the multiple-access channel distinctly varies.
In the first region, corresponding to a ’light’ information load
of the channel, the diversity-multiplexing performance of the
system is as though there was only one user present. In the
other region corresponding to a heavily loaded channel, the
diversity-multiplexing performance is as if all the users are
(implicitly) cooperating. In these two regions the optimum
MAC MDT is given in [89] by the following SNR exponent:

d?
mac(r) =





d?
M,N (r)

for 0 ≤ r ≤ min
{

M, N
K+1

}

d?
KM,N (Kr)

for min
{

M, N
K+1

}
≤ r ≤ min

{
M, N

K

}

(36)
given that T ≥ KM + N − 1. For r > N/K, the SNR
exponent is zero. The explicit construction of codes for the
MIMO MAC that achieve the above MAC DMT is an inter-
esting open problem. In particular, the standard approach of
successive decoding that achieves the capacity region of the
non-fading Gaussian MAC falls short of achieving the optimal
MAC DMT. Truly multiuser joint decoding is called for here,
and its instrumentation with low complexity appears to be
very challenging. The LAST framework with low-complexity
MMSE-DFE Lattice Decoding (and related sequential decod-
ing algorithms) might prove to be useful in this context.

VI. CONCLUSIONS

In this paper we have motivated the study of space-time
codes for the quasi-static block-fading channel model starting
from information theoretic arguments. We have identified the
DMT optimality, and the stronger approximate universal DMT
optimality, as the most desirable properties that a STC family
should enjoy. A sequence of code constructions was presented,
starting from the general linear-dispersion framework, and
moving progressively upward to constructions that provably
achieve the optimal DMT. Among those, the most interesting
families of codes are CDA and LAST codes. Then, we
have briefly discussed some approaches to combine the good
features of these two families. The objective is to construct
good codes in a deterministic manner (non-random lattices)
while retaining the good features of LAST codes, and in
particular the low decoding complexity of the MMSE-DFE
Lattice Decoder in the modulo-Λ scheme.

Finally, we have listed a number of recent topics of re-
search, such as the code design for MIMO ARQ schemes,
the design of Trellis Coded STCs re-interpreted in light
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of the CDA/LAST framework, the design of codes for the
cooperative channel and for the MAC channel.

These, and several more subjects that have been left out for
lack of space, are on-going research and offer a rich set of
open problems. One of the purposes of this tutorial paper is
that of introducing interested researchers to the state-of-the-art
and motivating them to the study of this fascinating areas of
coding and information theory.
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